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ABSTRACT

Recently, semi-supervised semantic segmentation has achieved promising per-
formance with a small fraction of labeled data. However, most existing studies
treat all unlabeled data equally and barely consider the differences and training
difficulties among unlabeled instances. Differentiating unlabeled instances can
promote instance-specific supervision to adapt to the model’s evolution dynami-
cally. In this paper, we emphasize the cruciality of instance differences and pro-
pose an instance-specific and hardness-adaptive guidance for semi-supervised se-
mantic segmentation, named as HagSeg. Relying on the model’s performance,
HagSeg employs the class-weighted symmetric intersection-over-union to evalu-
ate the hardness of each unlabeled instance and then supervises the training on
unlabeled data in a hardness-adaptive manner. Specifically, HagSeg learns from
unlabeled instances progressively by weighing their corresponding consistency
losses based on the evaluated hardness. Meanwhile, HagSeg dynamically adjusts
the augmentation for each instance such that the distortion degree of augmented
instances is adapted to the model’s generalization capability across the training
course. Not integrating additional losses and training procedures, HagSeg can ob-
tain remarkable performance gains against current state-of-the-art approaches on
segmentation benchmarks under different semi-supervised partition protocols.

1 INTRODUCTION

Though semantic segmentation studies (Long et al., 2015} |Chen et al.,|2018)) have achieved signif-
icant progress, their enormous success relies on large datasets with high-quality pixel-level anno-
tations. Semi-supervised semantic segmentation (SSS) (Hung et al.| 2018 Mittal et al., 2019) has
been proposed as a powerful solution to mitigate the requirement for labeled data. Recent research
on SSS has two main branches, including the self-training (ST) (Lee et al., 2013) and consistency
regularization (CR) (Tarvainen & Valpolal[2017) based approaches. |Yang et al.|(2022)) follows a self-
training paradigm and performs a selective re-training scheme to train on labeled and unlabeled data
alternatively. Differently, CR-based works (Ouali et al.| 2020b; |Liu et al., 2022)) tend to apply data
or model perturbations and enforce the prediction consistency between two differently-perturbed
views for unlabeled data. In both branches, recent research (French et al., |2020; Yuan et al., 2021}
Hu et al.| 2021)) demonstrates that strong data perturbations like CutMix can significantly benefit the
SSS training. To further improve the SSS performance, current state-of-the-art approaches (Alonso
et al., 2021; 'Wang et al.| [2022)) integrate the advanced contrastive learning techniques into the CR-
based approach to exploit the unlabeled data more efficiently. Works in (Ibrahim et al., [2020; | Kwon
& Kwak, [2022) aim to rectify the pseudo-labels through training an additional correcting network.

Despite their promising performance, SSS studies along this line come at the cost of introducing
extra network components or additional training procedures. What’s worse, majorities of them
treat unlabeled data equally and completely ignore the differences and learning difficulties among
unlabeled samples. For instance, randomly and indiscriminately perturbing unlabeled data can
inevitably over-perturb some hard-to-train instances. Such over-perturbations exceed the general-
ization capability of the model and hinder effective learning from unlabeled data. As discussed
in (Yuan et al., [2021)), it may also hurt the data distribution. In addition, in most SSS studies, final
consistency losses on different unlabeled instances are minimized in an average manner. How-
ever, blindly averaging can implicitly emphasize some hard-to-train instances and result in model
overfitting to noisy supervision.
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Figure 1: Diagram of our proposed HagSeg. In a teacher-student framework, labeled data (z,y) is
used to train the student model, parameterized by 6, by minimizing the supervised loss £,. Unla-
beled data u, weakly augmented by A, (-), is first fed into both the student and teacher models to
obtain predictions p® and p', respectively. Then we evaluate the hardness of each unlabeled instance
by strategy ¢(p?, p*). Such hardness information can be subsequently utilized: 1) to apply an adap-
tive augmentation, denoted by A(-), on unlabeled data to obtain the student model’s prediction p;
2) to weigh the unsupervised loss £,, in a hardness-dependent manner. The teacher model’s weight,
6:, is updated by the exponential moving average of 6, across the training course.

In this paper, we emphasize the cruciality of instance differences and differentiate unlabeled data
in terms of instance hardness. First, the hardness, as a measure of the training difficulty, can vary
widely between different instances and between different training epochs of the same instance. Its
evaluation is closely related to the training status of the model, e.g., a hard-to-train sample can
become easier with the evolution of the model. Second, injecting such information into the SSS pro-
cedure is advantageous for processing unlabeled data in a more reasonable and discriminative way.
Since the hardness is assessed based on the model’s performance, we can leverage such information
to adjust the two critical operations in SSS, i.e., data perturbations and loss evaluations, to adapt to
the training state of the model dynamically.

Motivated by these observations, we propose an instance-specific and hardness-adaptive guid-
ance for semi-supervised semantic segmentation (HagSeg) to boost the SSS performance. As shown
in Figure [T} following a standard consistency regularization framework, HagSeg jointly trains the
student and teacher models in a mutually-beneficial manner. The teacher model is an ensemble of
historical student models and generates stable pseudo-labels for unlabeled data. Intuitively, hard-
to-train instances undergo considerable disagreement between predictions of the teacher and stu-
dent models. Thus in HagSeg, we first evaluate the instance hardness of each unlabeled sample by
calculating the class-weighted symmetric intersection-over-union (IoU) between the segmentation
predictions of the student and teacher models. Then based on the evaluation, we perform hardness-
adaptive data perturbations on each unlabeled instance and minimize an instance-specific weighted
consistency loss to train models in a curriculum-like manner. In this way, different unlabeled in-
stances are perturbed and weighted in a dynamic fashion, which can better adapt to the model’s
generalization capability throughout the training processes.

Benefiting from the instance-specific and hardness-adaptive design, HagSeg obtains state-of-the-art
(SOTA) performance on Pascal VOC 2012 and Cityscapes datasets under different partition proto-
cols. For example, our method obtains a high mIOU of 75.3% with only 183 labeled data on VOC
2012, which is 17.8% higher than the supervised baseline and 4.3% higher than previous SOTA
performance. Our main contributions are summarized as follows,

* Hagseg can boost the SSS performance by highlighting the instance differences, without introduc-
ing extra network components or training losses.

* We design a hardness-evaluating strategy for unlabeled instances in segmentation tasks, based on
the class-weighted teacher-student symmetric IoU.

* We propose an instance-specific and hardness-adaptive SSS framework that injects instance hard-
ness into data perturbation and loss evaluation to dynamically adapt to the model’s evolution.
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2 HAGSEG

The goal of semi-supervised semantic segmentation is to generalize a segmentation model by ef-

fectively leveraging a labeled training set D, = {(x;, yi)}y:)f‘ and a large unlabeled training set

D, = {u;} li[:)’l"l, with typically | D,| < |D,|. In our method, following the consistency regulariza-
tion (CR) based semi-supervised classification approaches (Sohn et al., [2020; |Xie et al., [2020), we
aim to train the segmentation encoder and decoder on both labeled and unlabeled data simultane-

ously. In each iteration, given a batch of labeled samples B, = {(z;, y;)} Liﬁl and unlabeled samples
B, = {u;} Li’i‘, the overall training loss can be formulated as,
L=Ly+ MLy, (1

where )\, is a scalar hyper-parameter to adjust the relative importance between the supervised loss
L, on B, and the unsupervised loss £,, on B,,. Without introducing extra losses or network com-
ponents, HagSeg can effectively evaluate the instance hardness and then supervise the training on
unlabeled data in a hardness-adaptive fashion across the training course. In this section, we first
introduce our proposed HagSeg at a high level in Sec. [2.1] and then present the detailed designs in
terms of the hardness evaluation in Sec.[2.2]and the hardness-adaptive guidance in Sec.[2.3]

2.1 OVERVIEW

Built on top of the CR-based semi-supervised framework, HagSeg jointly trains a student model
with learnable weights 6, and a teacher model with learnable weights 6; in a mutually-beneficial
manner. The complete algorithm is shown in algorithm [T} On the one hand, the teacher model is
updated by the exponential moving averaging of the student weights, i.e.,

Gt $— oz@t “+ (1 — a)@s, (2)

where « is a common momentum parameter, set as 0.996 by default. On the other hand, the student
model relies on the pseudo-labels generated by the teacher model to be trained on the unlabeled
data. Specifically, the student model is trained via minimizing the total loss £ in Equation [I] which
consists of two cross-entropy loss terms, £,, and £, applied on labeled and unlabeled data, respec-
tively. Let H(z1, z2) denote the cross-entropy loss between prediction distributions z; and zo. The
supervised loss L, is calculated as,

1 [Be| 1 HxW

where §; = fo.(Aw(x;)), represents the segmentation result of the student model on the i-th weakly-
augmented labeled instance. j represents the j-th pixel on the image or the corresponding segmen-
tation mask with a resolution of H x W. The weak augmentation .4, includes standard resizing,
cropping, and flipping operations. Importantly, the way to leverage the unlabeled data is the key to
semi-supervised learning and also the crucial part differentiating our method from others. In most
CR-based studies, the standard (std) unsupervised loss £5*¢ is simply,

std 1 |B“" 1 ey t 1
L= 5 ;m 7:21 L(max(p(5)) > 7)H(p:(5), pL(5)), 4)

where p; = fo, (At (u;)) represents the segmentation output of the student model on the i-th un-
labeled instance augmented by .A3¢, while p! = fy, (A, (u;)) represents the segmentation outputs
of the teacher model on the ¢-th weakly-augmented unlabeled instance. 7 is a predefined confidence
threshold to select high-confidence predictions. A%!¢ represents standard instance-agnostic strong
augmentations, including intensity-based data augmentations (Cubuk et al.,2020) and CutMix (Yun
et al.l 2019) as shown in Table 5] of the appendix. However, such operations are limited in ignoring
the differences and learning difficulties among unlabeled samples.

Differently, in our proposed HagSeg, we treat each instance discriminatively and provide instance-
specific supervision on the training of unlabeled data. As shown in Figure |1} we first evaluate
the hardness of each weakly-augmented unlabeled instance via strategy ¢, and then employ the
instance-specific and hardness-adaptive guidance on the strong augmentations A as well as the
calculations of unsupervised loss £,,, which are elaborated in following sections.
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Algorithm 1 HagSeg algorithm in a mini-batch.

Input: Labeled batch B, = (xl,yl)}ll “’1‘, unlabeled batch B,, = {ul}llg ul (1B =
evaluation strategy ¢, weak augmentation A,,(-), adaptive strong augmentation A, (-)
Parameter: confidence threshold 7, unsupervised loss weight A,

= \B ‘ ElBl‘ HX1W f:XlW H(4:(4),v:(4)) // calculate the supervised loss.
for u; € B, do
i = fo,(Ay(u;))  // obtain segmentation predictions on weakly-augmented instances.
Pt = fo,(Aw(u;))  // obtain pseudo-labels from the teacher model.
vi = ¢(pt,pf)  // evaluate the hardness of each instance.
end for

B ; HxW . .
Lo= iy S e SV L max(pl (7)) > 7)H(fa, (AL (), pl (7)) +
]l(max(p? (7)) = 7)H(fo, (Asc(ul)),pf(j))] /lcalculate hardness-adaptive consistency loss
8: return L =L, + N\, L,

ul/s

h‘@.‘(‘:’??’.’“”

2.2 HARDNESS EVALUATION OF UNLABELED INSTANCES

In HagSeg, we evaluate the instance hardness to differentiate different unlabeled data. In most
hardness-related studies, the instantaneous or historical training losses |Zhou et al.| (2020); Smith
et al.| (2014) to the ground truth are used to assess the instance hardness. However, in semi-
supervised segmentation, evaluating the hardness of unlabeled data is challenging at 1) lacking
accurate ground-truth labels and 2) dynamic changes closely related to the model performance.
A “hard” sample can become easier with the evolution of the model, but such dynamics cannot be
easily identified without accurate label information. Since it is more difficult for the teacher and
student models to achieve consensus on a hard instance, we design a symmetric class-weighted IoU
between the segmentation results of the student and teacher models to evaluate the instantaneous
hardness. Such evaluation, denoted by ¢, can be regarded as a function of the model performance
and dynamically estimate the training difficulties of unlabeled crops throughout the training process.

Specifically, as shown in Figure |I|, we first obtain the segmentation predictions p$ and p! on the i-th
weakly-augmented unlabeled instance, from the student and teacher models, respectively,

1 HxW

= S (). = iy X Lmax(pi() 2 7) )
H><_W

o= o (), b= o Z (max(pi(7)) = 7). ©

where pf and p! represent the high-confidence ratios on p; and p!, respectively. Let wIOU(z1, 22)
denote the class-weighted IoU between segmentation predictions z; and z5. Note that, this evalu-
ation is not commutative, i.e., wlIOU(z1, z2) # WIOU(z2, z1). To make wloU valid for hardness
evaluation at each iteration, the symmetric hardness ~y; for i-th unlabeled instance is calculated as,

s ¢
vi = o(pl,p}) =1— [%WIOU(pf,pf) + %WIOU(pf,pf)] (7)

where 1/2 ensures the hardness is in [0, 1]. In this way, the hard instance that requires better gener-
alization ability will hold a large value of « while the easy one will be identified by a small ~.

2.3 HARDNESS-ADAPTIVE GUIDANCE

With the estimated hardness for each unlabeled instance, we carefully inject such information into
the training process by instance-specific hardness-adaptive strong perturbations and loss modifica-
tions. Specifically, we first leverage the instance hardness for adaptive augmentations both indi-
vidually and mutually. By “individually”, we adjust the intensity-based augmentation applied on
each instance according to its absolute hardness value; by “mutually”, we replace random pairs of
unlabeled data in CutMix with specific hard-easy pairs assigned by sorting the corresponding hard-
ness. Moreover, instead of indiscriminately averaging the losses, we weigh the losses of different
unlabeled instances by multiplying their corresponding hardness. We present these details below.
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2.3.1 HARDNESS-ADAPTIVE STRONG AUGMENTATIONS

The popular strong augmentations in recent semi-supervised segmentation studies mainly consist of
two different types: intensity-based augmentation and CutMix, as shown in Table[5of the appendix.
In HagSeg, we apply instance-specific adjustments to both types of augmentations.

Intensity-based augmentations. Standard intensity-based data augmentations randomly select two
kinds of image operations from an augmentation pool and apply them to the weakly-augmented
instances. However, as discussed by |Yuan et al.| (2021), strong augmentations may hurt the data
distribution and degrade the segmentation performance, especially during the early training phase.
Unlike distribution-specific designs (Yuan et al., |2021), we simply adjust the augmentation degree
for an unlabeled instance by mixing its strongly-augmented and weakly-augmented outputs. For-
mally, the ultimate augmented output of the i-th unlabeled instance, A% (u;), can be obtained by,

Ag (i) = i Ag (ui) + (1= 7i) A (u5) ®
where the distortion caused by the intensity-based strong augmentation is proportionally weakened
by the corresponding weakly-augmented output. In this way, hard instances with large hardness are
not perturbed significantly so that the model will not be challenged on potentially out-of-distribution
cases. On the other hand, easier instances with lower values of ~, which have been well fitted by
the model, can be further learned from their strongly-augmented variants. Such hardness-adaptive
augmentations can better adjust to the model’s generalization ability.

CutMix-based augmentations. CutMix (Yun et al.l|2019) is a widely adopted technique to boost
semi-supervised semantic segmentation. It is applied between unlabeled instances with a predefined
probability. It can randomly copy a region from one instance to another, and so do their correspond-
ing segmentation results. The augmentation pairs are generated randomly. Differently, in HagSeg,
we improve the standard CutMix by a hardness-adaptive design, which is distinct in two ways: 1)
the mean hardness determines the trigger probability of CutMix augmentation over the mini-batch
instead of using a predefined hyper-parameter; 2) the copy-and-paste pairs are assigned specifically
between the hard and easy samples. According to the instance hardness, we obtain two sequences
by sorting unlabeled samples of a mini-batch in the ascending and descending orders, respectively.
We then aggregate two sequences element-by-element to generate the hard-easy pairs. Formally,
given a specific hard-easy pair, (t,, ), the hardness-adaptive CutMix can be expressed as,

A () = My © up + (1 — M) © iy,

/ Bu
pﬁn — My, @p;+(lme)®pt, 1 1.
>
n=1

, by a trigger probability of ¥ =
AL (un) < My @ iy + (1 = My,) © upy |B.|

Pl = My © pl, + (1= My) © 1,
where M,,, and M,, denote the randomly generated region masks for u,, and u,,, respectively. Be-
sides, the pseudo-labels need to be revised accordingly after applying CutMix data augmentations,

obtaining pﬁ,/l and pf; . This mutual augmentation is applied following a Bernoulli process, i.e., trig-
gered only when a uniformly random probability is higher than the average hardness 7.

2.3.2 HARDNESS-ADAPTIVE UNSUPERVISED LOSS

Considering the learning difficulty of each instance, we design a hardness-adaptive unsupervised loss
to learn from unlabeled data differentially. Inspired by curriculum learning (Bengio et al.,|2009)), we
prioritize the training on easy samples over hard ones. Precisely, we weigh the unsupervised losses
for each instance by multiplying their corresponding easiness, evaluated by one minus hardness.
Combined with hardness-adaptive augmentations, we can calculate the unsupervised loss by,

1 |Bu| 1_7 HxW
L= BT sy Do Mmax(pl(i) = 7)H(, (L), PO

(10)

L(max(p} (7)) > 7)H(fo, (A (ui)), P} (7))]-
Since the hardness is evaluated upon each (weakly augmented) image instance, under its guide, the
two strong augmentations are performed separately rather than in a cascading manner. In this way,
the model will not be trained on over-distorted variants, and our hardness-adaptive designs can be
effectively utilized.
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Table 1: Comparison with SOTA methods on PASCAL VOC 2012 val set under different partition
protocols. Labeled images are sampled from the blended training set (augmented by SBD dataset),
including 10, 583 samples in total. $ means the results are obtained by setting the output_stride as 8
in DeepLabV3+ (16 for others). { means running more epochs in PSMT. * denotes our reproduced
results. Best results are highlighted in bold.

ResNet-50 ResNet-101
Method | 1/16 1/8 1/4 1/16 1/8 1/4
(662) (1323) (2646) | (662) (1323) (2646)

Supervised® | 63.8 69.0 72.5 67.4 72.1 74.7

MT (Tarvainen & Valpolal [2017) | 66.8 70.8 73.2 70.6 73.2 76.6
CCT (Ouali et al.,2020b) | 65.2 70.9 73.4 68.0 73.0 76.2
CutMix-Seg (French et al.;[2020) | 68.9 70.7 72.5 72.6 72.7 74.3
GCT (Ke et al.,[2020) | 64.1 70.5 73.5 69.8 73.3 75.3

CAC (Lai et al.,2021) | 70.1 72.4 74.0 72.4 74.6 76.3

CPS (Chen et al.,[2021) | 72.0 73.7 74.9 74.5 76.4 7.7

PSMT (Liu et al.,2022) | 72.8 75.7 76.4 75.5 78.2 78.7

ELN (Kwon & Kwak|[2022) | 70.5 73.2 74.6 72.5 75.1 76.6
ST++ (Yang et al., 2022) | 72.6 74.4 75.4 74.5 76.3 76.6
HagSeg (ours) | 74.8 76.5 77.0 76.5 77.9 78.1

U?PL% (Wang et al., 2022) | 72.0 75.2 76.2 74.4 77.6 78.7
HagSeg (ours): | 75.9 76.7 771 | 772 784 79.3

3  EXPERIMENTS

In this section, we examine the efficacy of our method on standard semi-supervised semantic seg-
mentation benchmarks and conduct extensive ablation studies to further verify the superiority.

Dataset and backbone. Following recent SOTAs (Chen et al.| [2021} |Yang et al.l 2022)) in semi-
supervised segmentation, we adopt DeepLabv3+ (Chen et al., [2018)) based on Resnet (He et al.,
2016) as our segmentation backbone and investigate the test performance on Pascal VOC2012 (Ev-
eringham et al.l 2015)) and Cityscapes (Cordts et al2016), in terms of the mean intersection-over-
union (mIOU). The classical VOC2012 consists of 21 classes with 1464 training and 1449 validation
images. As a common practice, the blended training set is also involved, including additional 9118
training images from the Segmentation Boundary (SBD) dataset (Hariharan et al.L[2011). Cityscapes
is a large dataset on urban street scenes with 19 segmentation classes. It consists of 2975 training
and 500 validation images with fine annotations.

Implementation details. For both the student and the teacher models, we load the ResNet weights
pre-trained on ImageNet (Deng et al., [2009) for the encoder and randomly initialize the decoder.
An SGD optimizer with a momentum of 0.9 and a polynomial learning-rate decay with an initial
value of 0.01 are adopted to train the student model. The total training epoch is 80 for VOC2012
and 240 for Cityscapes. Following (Wang et al.| [2022), training images are randomly cropped into
513 x 513 and 769 x 769 for Pascal VOC2012 and Cityscapes, respectively. On Cityscapes, we
also use the sliding evaluation to examine the performance on validation images with a resolution of
1024 x 2048. We set B,, = B, = 16 and adopt the sync-BN for all runs.

3.1 COMPARISON WITH STATE-OF-THE-ART METHODS

In this section, we demonstrate the superior performance of our HagSeg on both classic and blended
VOC 2012 and Cityscapes under different semi-supervised partition protocols. It is noteworthy that,
on blended VOC, U?PL (Wang et al., |2022)) prioritizes selecting high-quality labels from classic
VOC:s. Instead, we randomly sample labels from the entire dataset and adopt the same partitions as
specified in (Chen et al.| 2021} |Liu et al., [2022). Therefore, we reproduce corresponding results on
U?PL and evaluate HagSeg with different output_strides, 8 and 16, respectively, for fair comparisons.
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Table 2: Comparison with SOTA methods on classic PASCAL VOC 2012 val set under different
partition protocols. Labeled images are sampled from the official VOC train set, including 1,464
samples in total. Results are reported using Resnet-101. All notations are the same as in Table[T]

Method | 1/16 (92) 1/8 (183) 1/4(366) 1/2(732) Full (1464)

Supervised * 45.5 57.5 66.6 70.4 72.9

CutMix-Seg (French et al.,|[2020) 52.2 63.5 69.5 73.7 76.5

PseudoSeg (Zou et al., 2021) 57.6 65.5 69.1 72.4 73.2

PC?Seg (Zhong et al.,[2021) 57.0 66.3 69.8 73.1 74.2
CPS (Chen et al.,[2021) 64.1 67.4 71.7 75.9 -

PSMT (Liu et al.| [2022) 65.8 69.6 76.6 78.4 80.0

ST++ (Yang et al.,[2022) 65.2 71.0 74.6 71.3 79.1

HagSeg (ours) 68.8 74.4 78.5 79.5 81.2

U?PL} (Wang et al.| 2022)) 68.0 69.2 73.7 76.2 79.5

HagSeg:(ours) 70.0 75.3 79.1 80.2 82.0

Table 3: Comparison with SOTA methods on Cityscapes val set under different partition protocols.
Labeled images are sampled from the Cityscapes train set, including 2,975 samples in total.
Results are reported using Resnet-50. * and  represent reproduced results in HagSeg and U?PL,
respectively. Results with § are obtained by setting the output_stride as 8 in DeepLabV3+-.

Method | 1/16 (186)  1/8 (372)  1/4 (744) 1/2 (1488)

Supervised * 64.0 69.2 73.0 76.4

MT [Tarvainen & Valpolal(2017) 66.1 72.0 74.5 77.4

CCT (Ouali et al., )2020b)) 66.4 72.5 75.7 76.8

GCT (Ke et al.;,[2020) 65.8 71.3 75.3 771

CPS (Chen et al.,[2021) 74.4 76.6 77.8 78.8

CPS+ (Wang et al.| [2022]) 69.8 74.3 74.6 76.8

PSMT (Liu et al., [2022) - 75.8 76.9 77.6

ELN (Kwon & Kwak, 2022) - 70.3 73.5 75.3
ST++ (Yang et al., 2022) - 72.7 73.8 -

U?PL * (Wang et al., 2022) 67.8 72.5 74.8 77.1

HagSeg (ours) 74.3 77.4 78.1 79.3

U2PL%* (Wang et al., 2022) 69.0 73.0 76.3 78.6

HagSeg (ours): 75.2 78.0 78.2 80.2

PASCAL VOC 2012. In Tables [I| and 2| we compare our HagSeg with recent SOTA methods on
blended and classic VOC, respectively. We can clearly see from Table[I|that HagSeg can consistently
outperform others regardless of using ResNet-50 or ResNet-101 as the segmentation encoder. The
performance gain becomes more noticeable and clear as fewer labels are available. e.g., in the 1/16
partition, HagSeg can improve the supervised baseline by 11% and 9.1% when using ResNet-50
and ResNet-101 as the encoders, respectively, and improve the ST++ (Yang et al., 2022)) by 2.2%
and 2.0%, accordingly. Checking the results among different partitions, we can also observe that
HagSeg can even obtain better performance while using fewer labels compared to other SOTAs. For
example, HagSeg can obtain a high mIOU of 75.9% using only 662 labels, while U?PL requires
1323 labels to obtain a comparable performance of 75.2% mIOU on blended VOC. It suggests our
method is more label efficient and potentially a good solution for label-scarce scenarios. In classic
VOC with high-quality labels, our methods can outperform SOTA methods by a notable margin,
as shown in Table [2| We attribute this improvement to the hardness-adaptive guidance that treats
each unlabeled instance differently and effectively leverages them by instance-specific strategies
in HegSeg. Generally, in both classic and blended cases, reserving a large feature map (i.e., set
output_stride=8) can slightly improve the test performance.
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Figure 2: We examine the effect of the loss weight and confidence threshold on VOC and Cityscapes
under the 1/8 protocol in Figure (a) and (b), respectively. (c) shows how the mean instance hardness
varies across the training course on Cityscapes under the 1/4 partition. Best viewed on screen.

Table 4: Ablation studies on our HagSeg. We examine the effectiveness of the hardness-adaptive
guidance on the unsupervised loss, intensity-based and CutMix augmentations, respectively. Re-
sults are reported on PASCAL VOC 2012 under the 1/8 (1323) partition using Resnet-101 as the
backbone. Improvements over the supervised baseline are marked in blue.

Unsupervised Loss Intensity Augs CutMix Augs
standard +hardness | standard +hardness | standard +hardness
- - - - - 72.1 (supervised)
- - - - - 747 (2.61)

- - - - 75.5 (3.41)
- v - - - 75.4 (3.37)
v

mIOU

- 76.5 (4.41)

v - 76.1 (4.07)
- v v 76.9 (4.81)

v

v

- 76.7 (4.67)
v 77.9 (5.81)
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Cityscapes. In table[3] we evaluate our method on more challenging Cityscapes with ResNet-50 as
the segmentation encoder. HagSeg with output_stride= 8 can achieve high mIOUs of 75.2%, 78.1%,
78.2%, 80.2%, in four different splits (1/16, 1/8, 1/4, 1/2), respectively. When output_stride= 16,
given only 186 labeled images, HagSeg can obtain a notable performance gain of 10.3% against the
supervised baseline and 6.5% against the previous best, U2PL. Not relying on any pseudo-rectifying
networks (Kwon & Kwakl [2022)) or extra self-supervised supervisions (Wang et al., 2022)), HagSeg
achieves substantially better performance than the previous SOTAs, especially with fewer labels.
Despite the simplicity of Hagseg, the impressive performance further demonstrates the effectiveness
and importance of our instance-specific and hardness-adaptive guidance. Surely, regardless of dif-
ferent semi-supervised approaches, we can see from Tables [3] that providing more labeled samples
can easily improve the semi-supervised performance.

3.2 ABLATIONS STUDIES

We conduct ablation studies in the 1/8 partitions of blended VOC and Cityscapes, and examine the
impact of the hardness-adaptive guidance and approach-related hyper-parameters.

Effectiveness of hardness-adaptive guidance. The key of HagSeg lies in the instance-specific and
hardness-adaptive guidance. In Table [d] we conduct a series of experiments on VOC2012 dataset
to demonstrate its effectiveness on three components, the unsupervised loss, intensity-based and
CutMix augmentations, respectively. We can observe that, performing hardness-adaptive guidance
can consistently improve the standard operations, yielding around 1% improvements on all standard
counterparts. The powerfulness of strong augmentations can also be witnessed, as discussed in[Yang
et al.[(2022). As a whole, Hagseg can bring an improvement of 5.8% against the supervised baseline.
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Impact of hyper-parameters. In Figure 2| we investigate the influence of different A, and 7 on
both datasets. It can be seen from Figure that Hagseg is not very sensitive to the loss weight
on VOC while a large ), is beneficial for Cityscapes. By default, we set A, = 3 for all runs.
According to Figure 2(b)} we set 7 = 0.95 for VOC and 7 = 0.7 for Cityscapes as default settings.
This is simply because Cityscapes is a more challenging dataset requiring better discriminating
ability and using a high-threshold will prevent models effectively learning from unlabeled samples.
We can see from Figure that both the mean and standard deviation of hardness evaluations
on unlabeled data decrease as training processes and the model performance improves. Specifically,
easy instances (like Instance-1) can hold a low hardness from the very beginning, while the hardness
of hard instances (like Instance-1) fluctuates but eventually decreases.

4 RELATED WORK

Recent studies on CR-based semi-supervised learning have achieved impressive improvements in
classification tasks (Ouali et al., [2020a). Based on clustering assumptions, these methods enforce
prediction consistency on the unlabeled sample with different perturbations. Early works like Mean-
Teacher (Tarvainen & Valpola, 2017) aimed to generate a more robust and accurate pseudo-label us-
ing ensemble techniques. VAT (Miyato et al., 2018)), UDA (Xie et al.,[2020), and MixMatch (Berth-
elot et al.,[2019) then improved the performance by using more advanced augmentations, like adver-
sarial perturbations (Goodfellow et al.| 2015)), randomAug (Cubuk et al.,2020), and Mixup (Zhang
et al., |2017). More recent research intended to introduce additional training and supervision, like
using contrastive learning (Zhao et al., 2022), distribution alignment (Berthelot et al., 2020), and
Sinkhorn-Knopp clustering (Tai et al., [2021)), to further enhance the performance.

Motivated by the progress in semi-supervised classification, some studies aim to achieve dense seg-
mentation performance with only a fraction of labels. Generally, recent jobs can be categorized into
two main groups. 1) rectifying the pseudo-labels by training extra correcting networks (Ibrahim
et al., 2020; [Mendel et al.} 2020; [Kwon & Kwakl, [2022)), re-balancing the classes (He et al.,|[2021)),
or using multiple predictions (Liu et al., 2022)); 2) exploring more supervisions by using extra
losses (Chen et al.| |2021)), utilizing stronger augmentations (Yang et al., 2022} [Yuan et al., [2021),
or applying the advanced contrastive learning (Wang et al.l [2022; Zhong et al.,|2021}; |Alonso et al.}
2021} [Zhou et al.| |2021). These studies show promising results at the cost of integrating extra net-
work components or additional training processes. To the best of our knowledge, all the existing
studies indiscriminately perturb unlabeled samples and minimize an average consistency loss over
all unlabeled samples. Differently, we differentiate different samples in terms of the learning dif-
ficulty, evaluated as instance hardness. We utilize the hardness to guide the training process and
achieve new SOTA performance on several semi-supervised semantic segmentation benchmarks.

Instance hardness (Smith et al.,[2014; |[Prudéncio et al., 2015; Smith & Martinez, |2016;(Chang et al.,
2017) has been widely studied in hard example mining (Yuan et al., 2017 and curriculum learn-
ing (Zhou et al.| 2020). Their evaluation mainly depends on the instantaneous or historical training
losses with respect to ground truths. Lacking accurate label information makes hardness measure-
ments of unlabeled instances much more challenging. Some works (Yuan et al., 2017 Jin et al.,
2018)) perform qualitative hardness analysis by using a threshold to select hard samples after rank-
ing instances’ losses. However, quantitative hardness analysis, especially on segmentation tasks,
is still under-explored. In HagSeg, we propose a class-weighted symmetric metric to evaluate the
hardness of unlabeled instances in segmentation tasks effectively.

5 CONCLUSION

In this paper, we highlight the instance uniqueness and propose an instance-specific and hardness-
adaptive guidance (HagSeg) for semi-supervised semantic segmentation. Relying on our class-
weighted symmetric hardness-evaluating strategies, our method can treat each unlabeled instance
discriminatively and employ hardness-adaptive augmentation and loss weighting strategies in a
instance-specific manner. Without introducing extra network components or additional training
losses, HagSeg can remarkably improve the SSS performance. We hope our work can inspire future
semi-supervised studies to explore more model-related dynamic strategies and leverage unlabeled
data more efficiently and effectively.
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Figure 3: (a) using different hardness-evaluating strategies (b) qualitative results on Pascal VOC2012
using 183 fine labels. Columns from left to right denote the original images, the ground-truth, the
supervised segmentation results, and the HagSeg segmentation results, respectively.

A QUALITATIVE RESULTS

We present some segmentation results on Pascal VOC 2012 in Figure [3(b)] under the 183 partition
protocol, using the Resnet-101 as the encoder. We can see that many mis-classified pixels and
ignored segmentation details like arms in the supervised-only results are corrected in HagSeg.

B DATA AUGMENTATIONS

Table 5: List of various image transformations in HagSeg.

Weak Augmentations

Random scale
Random flip
Random crop

Randomly resizes the image by [0.5, 2.0].
Horizontally flip the image with a probability of 0.5.
Randomly crops an region from the image (513 x 513, 769 x 769).

Strongl: intensity-based Augmentations

Identity Returns the original image.

Invert Inverts the pixels of the image.

Autocontrast Maximizes (normalize) the image contrast.

Equalize Equalize the image histogram.

Gaussian blur ~ Blurs the image with a Gaussian kernel.

Contrast Adjusts the contrast of the image by [0.05, 0.95].

Sharpness Adjusts the sharpness of the image by [0.05, 0.95].

Color Enhances the color balance of the image by [0.05, 0.95]

Brightness Adjusts the brightness of the image by [0.05, 0.95]

Hue Jitters the hue of the image by [0.0, 0.5]

Posterize Reduces each pixel to [4,8] bits.

Solarize Inverts all pixels of the image above a threshold value from [1,256).
Strong2: CutMix augmentation

CutMix Copy and paste random size regions among different unlabeled images.

C MORE ON HARDNESS-EVALUATIONS

In Figure 3(a)] we explore more hardness-evaluating strategies and compare corresponding per-
formance with our class-weighted symmetric IOU evaluations in HagSeg. The “high-ratios” means
using the mean high-confident ratio of the student’s and teacher’s segmentation results. The “losses”
is evaluated by calculating the cross-entropy losses, using teacher’s outputs as target labels. In terms
of segmentation tasks, our proposed evaluation strategy is more appropriate and superior.
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