
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Surrogate Minimization: An Optimization Algorithm for Training
Large Neural Networks with Model Parallelism

Reza Asad REZA_ASAD@SFU.CA

Simon Fraser University
Reza Babanezhad BABANEZHAD@GMAIL.COM

Samsung AI, Montreal
Issam Laradji ISSAM.LARADJI@GMAIL.COM

ServiceNow Research
Nicolas Le Roux NICOLAS@LE-ROUX.NAME

Microsoft Research
Sharan Vaswani VASWANI.SHARAN@GMAIL.COM

Simon Fraser University

Abstract
Optimizing large memory-intensive neural networks requires distributing its layers across multiple
GPUs (referred to as model parallelism). We develop a framework that allows decomposing a neu-
ral network layer-wise and training it by optimizing layer-wise local losses in parallel. By using
the resulting framework with GPipe [12], an effective pipelining strategy for model parallelism, we
propose the Surrogate Minimization (SM) algorithm. SM allows for multiple parallel updates to the
layer-wise parameters of a distributed neural network and consequently improves the GPU utiliza-
tion of GPipe. Our framework ensures that the sum of local losses is a global upper-bound on the
neural network loss, and can be minimized efficiently. Under mild technical assumptions, we prove
that SM requires O(1/ϵ) iterations in order to guarantee convergence to an ϵ-neighbourhood of a
stationary point of the neural network loss. Finally, our experimental results on MLPs demonstrate
that SM leads to faster convergence compared to competitive baselines.

1. Introduction

As the size of neural networks continues to grow, models are too large to fit on a single GPU.
This necessitates the use of splitting the model across machines or multiple GPUs and is referred
to as model parallelism or pipeline parallelism. Distributing the model naively across GPUs and
training it using standard optimization methods such as (stochastic) gradient descent results in only
one GPU being active at a given time while rendering the other GPUs idle. The major challenge in
effective model parallelism is to reduce the ‘GPU idle time’ during forward and backward passes.
Gpipe [12] is a common technique that shrinks the “bubble of idle time” by partitioning a mini-
batch into micro-batches. The partitioning is done in a way that a worker can reduce its wait time
by immediately processing the next micro-batch (see Figure 1 for an illustration).

There are numerous algorithmic approaches that achieve model parallelism through forward,
backward, and update unlocking of a large neural network [3, 10, 13, 14, 17, 27]. Forward locking
refers to the constraint that one can not find the activation of a layer without visiting its previous
layers. Similarly, backward locking is the same constraint during backpropagation as computing the
gradients of a layer depends on the gradients computed from the upstream layers. In addition, up-
date locking refers to the problem that updating the parameters of a layer would require a complete

© R. Asad, R. Babanezhad, I. Laradji, N.L. Roux & S. Vaswani.

SURROGATE MINIMIZATION

Figure 1: We observe the need for algorithms that can optimize the layers of a large neural network
(distributed across GPUs). To this end, we propose modifying GPipe’s [12] pipeline
parallelism framework (Figure (a)). For both Figures, the x-axis represents the training
time for one epoch, and the graph is repeated across epochs. Here, Fi,j, Bi,j and Ui,j

represent the forward, backward, and update operation by worker i on micro-batch j. In
Figure (a), we identify additional bubbles of idle time before and after each update phase.
Figure (b) represents GPipe [12] using our optimizer. In this setup, one can do multiple
updates to the parameters of the layers of a network in parallel and remove the idle time.

forward pass. We categorize the works addressing such problems as parametric or non-parametric
approaches. [3, 14] are examples of parametric approaches that use a set of auxiliary networks to ad-
dress the update locking problem. However, adding auxiliary networks introduces complexity and
hyper-parameters, making the resulting implementation difficult. Furthermore, it has been shown
that approaches like [14] do not lead to good performance for deeper networks [13]. On the other
hand, [13] is an example of a non-parametric approach that uses delayed gradients to address the
backward locking problem. However, as the number of splits in the model increases the negative
impact of using delayed gradients on performance is more severe [13]. Another approach to achiev-
ing model parallelism is to use the Alternating Direction Method of Multipliers (ADMM) [23, 24].
In this framework, the objective of a large neural network can be split into sub-problems where the
sub-problems are solved in parallel. As a gradient-free approach, ADMM does not suffer from the
vanishing gradient problem. However, it is shown that, as the number of layers increases, ADMM
suffers from a severe loss in accuracy while offering speed up compared to SGD [25]. Tunable
Subnetwork Splitting Method (TSSM) [25] is a follow-up work that suggests a framework for fine-
tuning the gain from the speed of ADMM while maintaining good accuracy. However, for TSSM,
all experiments are done using one GPU, and no theoretical convergence guarantees are provided.

In this paper, we propose an alternative framework that allows decomposing the neural network
and trains it by optimizing layer-wise surrogates (referred to as local losses) in parallel. Our decom-
position ensures that the sum of local losses is a global upper-bound on the neural network loss, i.e.
layer-wise surrogates majorize the function, and therefore descent is guaranteed [4, 8, 16]. Using

2

SURROGATE MINIMIZATION

our framework in conjunction with GPipe helps eliminate additional bubbles of idle time prior to
and after each update phase. Figure 1 illustrates the difference between using vanilla GPipe [12]
vs. our modification. The proposed framework motivates us to develop an optimization algorithm
Surrogate Minimization (SM) that optimizes each layer-wise local loss in parallel resulting in mul-
tiple parametric updates for each layer. We note that the idea of constructing layer-wise local losses
has been explored before. LocoProp [1] proposes two mechanisms for constructing local losses that
allow for multiple parallel updates of the neural network parameters. However, the resulting algo-
rithm introduces two sensitive hyper-parameters per layer. This makes implementing LocoProp [1]
for deep neural networks difficult. In contrast, we demonstrate that the local losses in SM can be
minimized using conjugate gradient without introducing additional tunable hyper-parameters.

The organization of this paper is as follows. In section 2 we formally describe our problem
and assumptions. In section 3 we state the mechanism for constructing our local losses through
Proposition 1 and provide a pseudo-code for running SM in the most general setting. Furthermore,
in Theorem 1 of that section, we show that SM results in convergence to a stationary point of the
neural network loss at an O(1T) rate. Finally, we share empirical results on MLPs in section 4 and
demonstrate the effectiveness of using SM compared to other baselines.

2. Problem Formulation

Consider a neural network with m layers where θ(i) corresponds to the parameters of layer i of the
network. We define z(i) as the post-activation of the i-th layer where z(0) = X corresponds to the
input, and z(i) = f(z(i−1), θ(i−1)) with f as a smooth activation function1. Given an output vector
y, we aim to minimize the loss h(θ) ∶= ℓ(z(m)) w.r.t θ = [θ(0), θ(1), . . . , θ(m−1)]. Throughout, we
consider ℓ to be a convex loss, for example, equal to the squared loss for regression or the cross-
entropy loss for classification. We will assume that ℓ is L

(m)
z smooth w.r.t z(m). This property is

satisfied for standard losses – L
(m)
z = 1 for the squared loss and L

(m)
z = 1

4 for the logistic loss.
Though ℓ is convex, we note that h(θ) is a potentially non-convex function.

In the deterministic setting, GD is the standard method to optimize h(θ). Specifically, in
each iteration t ∈ [T], GD updates the vector θ as: θt+1 = θt − αt∇h(θ), where αt is the (po-
tentially varying) step-size at iteration t. Another common optimization algorithm is Newton’s
method which makes use of the Hessian ∇2h(θt) at iteration t and corresponds to the update rule:
θt+1 = θt−[∇2h(θt)]

−1∇h(θt). Compared to these approaches, SM updates the parameters of each
layer of a neural network in parallel for N steps. This capability amortizes the expensive cost of
forward/backward operations for a large neural network. Furthermore, SM utilizes the per-layer lo-
cal losses to form a block diagonal Hessian (using finite differences [21]) and hence avoids storing
the full Hessian in memory (Please see Section 3 for details).

Our method can be thought of as an extension to surrogate optimization proposed by Lavington
et al. [18]. This method is designed for applications where computing the loss ℓ(z) is expensive.
For example, in reinforcement learning (RL), computing ∇ℓ(z(m)) requires expensive interactions
with the environment. Methods such as GD or Newton’s method require computing ∇ℓ(z) for each
update to the parameters, and are hence computationally expensive. To alleviate this problem, the
SSO algorithm in Lavington et al. [18] uses the gradient of ℓ w.r.t z(m) to form a surrogate loss. The
surrogate loss is a global upper-bound on h(θ) and optimizing the surrogate can be done efficiently

1. For notational convenience, we assume that f is the same activation function across layers. All our results hold when
f is different across layers.

3

SURROGATE MINIMIZATION

for multiple steps without re-computing ∇ℓ(z(m)). Our framework and the resulting SM algorithm
can be interpreted as a parallel, multi-layer extension to SSO, and we describe it in the next section.

3. Surrogate Minimization

We first describe the surrogate minimization framework and the resulting algorithm, and then ana-
lyze its theoretical convergence.

We use a single forward and backward pass over the network to decompose it and construct a
set of local losses (per layer). More concretely, we use the smoothness of the global loss to form
an upper bound for it i.e., a surrogate loss. We then use our decoupling Lemma 1 on the smooth
surrogate loss to construct local losses for all layers recursively. In Proposition 1, we formally show
this construction and prove that the resulting sum of local losses is a global upper-bound on ℓ(z(m)).

Proposition 1 Consider an m-layer neural network model where z = [z(1), z(2), . . . z(m)] repre-
sent the post-activations with z0 = X , θ = [θ(0), θ(1), . . . , θ(m−1)] correspond to the parameters, f
is the activation function such that z(i) = f(z(i−1), θ(i−1)). For an arbitrary, but fixed zt, θt, the loss
ℓ(zm) can be upper-bounded in terms of the local losses L(i)θ,t(zt

(i−1), θ(i−1)) at layer i as follows:

h(θ) = ℓ(z(m)) ≤ ℓ(zt
(m)
) +

m

∑
i=1
L
(i)
θ,t(zt

(i−1), θ(i−1))where,

L
(i)
θ,t(zt

(i−1), θ(i−1)) ∶= ⟨
∂h(θt)

∂θ(i−1)
, θ(i−1) − θ(i−1)t ⟩ +

1

2
∥θ(i−1) − θ(i−1)t ∥

2

H(i)
θθ,t

+
2ρ
(i)
t

3
∥θ(i−1) − θ(i−1)t ∥

3

Here, H(i)θθ,t is derived from ∂2h(θt)
∂(θ(i−1))2

and depends on zt (see Proposition 1 for details).

The norms in the local losses can be interpreted as regularization terms to control the deviation
of θ(i−1) from θ

(i−1)
t . Proposition 1 is derived in Appendix B and uses a third-order Taylor series

approximation along with Lemma 1 that enables us to decouple the different layers in the neural
network. Lemma 1 can be interpreted as a “matrix” variant of the Fenchel-Young inequality, and
might be of independent interest. We note that Proposition 1 holds for any θ and is thus a global
upper-bound on ℓ(z(m)). Another interpretation of Proposition 1 is that it provides a method to cre-
ate a block-diagonal approximation of ∇2h(θt), the Hessian of the global loss, by only considering
the activations and the weights at each layer separately, thus never working with the full matrix.
To see this, note that ∇2

∑
m
i=1L

(i)
θ,t(zt

(i−1), θ(i−1)t) is a block diagonal matrix with block i equal to

H(i)θθ,t. Unlike other works that form block diagonal approximations of either the Hessian [5, 19, 26]
or the Fisher information matrix [11, 20], the proposed block diagonal approximation is guaranteed
to be an upper-bound on the full Hessian.

Using the concept of majorization-minimization immediately implies an algorithm – minimize
the local losses individually and in parallel for N steps. Since the local losses majorize the function,
the resulting algorithm will guarantee descent on ℓ(z(m)). Hence, SM involves solving multiple non-
convex cubic-regularized problems [22] (one for each layer). These problems can be solved using
standard techniques including gradient descent [6] or Krylov subspace methods such as conjugate
gradient [7]. In Algorithm 1, we outline the pseudo-code for SM that uses GD to minimize the local
losses. During each iterate of SM, a single forward and backward pass is completed to construct
layer-wise local losses. The local losses are then used in parallel to perform N updates in the

4

SURROGATE MINIMIZATION

Algorithm 1 Surrogate Minimization (SM)
Input: θ0 (initialization), T (number of iterations), N (number of inner-loops), α (step-size)
for t = 0→ T − 1 do

Access the gradient oracle to construct L(i)θ,t(zt
(i−1), θ(i−1)) as in Equation (1)

do in parallel ∀i ∈ [1,m]
Initialize inner-loop: ω(i−1)0 = θ

(i−1)
t

for k ← 0 to N − 1 do
ω
(i−1)
k+1 = ω

(i−1)
k − α∇ωL

(i)
θ,t(zt

(i−1), ω(i−1)k)

end
θ
(i−1)
t+1 = ω

(i−1)
N

end
z
(1)
t+1 = f(X,θ

(0)
t+1) ; ∀i ∈ [2,m], z

(i)
t+1 = f(z

(i−1)
t+1 , θ

(i−1)
t+1)

end
Return θT

parametric space, until convergence. Finally, we note that assuming ρ
(i)
t = 0 and upper-bounding

the Hessian by its maximum eigenvalue (corresponding to a second-order Taylor series expansion)
results in a quadratic local loss that can be minimized exactly. In this special case, SM corresponds
to doing a gradient descent update w.r.t the parameters θ with a potentially different step-size for
each layer. In contrast to SM, SSO [18] forms a single upper-bound (across all layers) on ℓ(zm)
and minimizes the resulting surrogate. Hence, SSO cannot be parallelized across layers, and every
parametric update involves an expensive backward pass across the network. Hence, SM can be
interpreted as a parallel multi-layer extension of SSO that can also be used for applications such as
reinforcement learning. Next, we analyze the theoretical convergence of SM. Our main result shows
that if the global loss (ℓ(z(m))) and local losses (L(i)θ,t(zt

(i−1), θ(i−1))) are smooth, SM is guaranteed
to converge to a stationary point in O (1T) iterations.

Theorem 1 Assuming that (i) h(θ) = ℓ(zm) is bounded from below by h∗, (ii) ℓ(z(m)) is L
(m)
z

smooth, (iii) local losses L(i)θ,t are β smooth for all i ∈ [1,m], t ∈ [T], T iterations of SM with η
(m)
z ≤

1

L
(m)
z

and N ≥ 1 inner-loops in each iteration converges as: mint∈[T] ∥∇h(θt)∥
2
2 ≤

2β [h(θ0)−h∗]
T .

Theorem 1 (proved in Appendix B) holds for any number of inner-loops N ≥ 1. Since ℓ corresponds
to a standard loss such as squared loss or cross-entropy, we can easily compute L

(m)
z . In practice,

SM uses GD in conjunction with an Armijo line-search [2] for minimizing each local loss and hence
does not require the knowledge of β to set the step-size α in the inner-loop.

4. Experiments

Across all experiments, we assume that ρ(i)t = 0 for all local losses, alleviating the need to estimate
these constants. This reduces each local loss to a quadratic (as a function of θ) which we minimize
using N steps of the conjugate gradient (CG) algorithm. Under this setup, we compare SM with
various baselines using 2, 4, and 8 layers of MLP on the MNIST [9] dataset in the deterministic
setting. All optimizers run for 300 epochs and we use torch’s GPipe Pipeline Parallelism [15]

5

SURROGATE MINIMIZATION

library (except for DDG [13]). For DDG [13] we use the paper’s code which utilizes Python’s
multi-processing and dedicates a process for each split handling delayed gradients2. For the 2-
layer experiment, we dedicate one GPU per layer. For the experiments involving 4 and 8 layers
of MLP, we distribute the layers equally among 4 GPUs. All experiments presented here use the
Nvidia Tesla V100 GPU (16 GB memory) and Intel Xeon Gold 6126 CPU (2.60GHz). Although
our theory requires a smooth activation function, we are able to outperform the baselines using the
ReLU activation.

0 1000 2000 3000 4000 5000
Wall Clock Time (Seconds)

1.2 × 100

1.4 × 100

1.6 × 100

1.8 × 100

2 × 100

2.2 × 100

2.4 × 100

2.6 × 100

2.8 × 100

Tr
ai

n
Lo

ss
 (l

og
)

0 1000 2000 3000 4000 5000
Wall Clock Time (Seconds)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 S
co

re

CGBlock-20
DDG
GD+Armijo
SM-20
SSO-20

Table 1: MNIST Classification with 8 layers of MLP for N = 20

Table 1 shows the evolution of training loss and test accuracy for 8 layers of MLP. GD+Armijo
refers to Gradient Descent where the step-size is chosen adaptively using the Armijo line search [2].
We also examined GD with a constant step-size and it consistently resulted in worse performance.
DDG [13] splits a neural network across GPUs and uses delayed gradients for backward unlocking.
We also compare to the parametric Newton method (CGBlock) that forms a block diagonal Hessian
(using finite differences [21], similar to SM) and is minimized with N steps of CG. Note that both
SM and CGBlock form a block diagonal Hessian. However, CGBlock constructs the Hessian using
the global loss h(θ), whereas SM utilizes the per-layer local losses. Finally, we compare SM with
SSO [18]. For SM, CGBlock, and SSO [18], we compare the optimizers for 1, 10, and 20 steps of
parametric updates per iteration (see Tables 2, 3, and 4 in Appendix D). As we increase the num-
ber of parametric updates per iteration, our results consistently indicate that the performance gap
between SM and the baselines increases. Furthermore, as the number of layers increases, the per-
formance gap between SM and the baselines increases dramatically. We also observe that CGBlock
results in poor performance due to the presence of negative curvature and adding regularization
slows down the convergence. For details about other practical considerations, see Appendix A.

5. Discussion

We presented SM, an optimization algorithm that is suitable for training distributed neural networks
using GPipe [12]. In the future, we aim to study other model parallelism frameworks that unlock a
neural network during forward, backward and update phases. For example, we would like to explore
the use of delayed gradients and activations (for backward and forward unlocking of the network)
and its effect on the performance of SM.

2. We were not successful in extending the paper’s code to work with GPipe.

6

SURROGATE MINIMIZATION

References

[1] Ehsan Amid, Rohan Anil, and Manfred Warmuth. Locoprop: Enhancing backprop via local
loss optimization. In International Conference on Artificial Intelligence and Statistics, pages
9626–9642. PMLR, 2022.

[2] Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives.
Pacific Journal of mathematics, 16(1):1–3, 1966.

[3] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of
cnns. In International Conference on Machine Learning, pages 736–745. PMLR, 2020.

[4] Dankmar Böhning and Bruce G Lindsay. Monotonicity of quadratic-approximation algo-
rithms. Annals of the Institute of Statistical Mathematics, 40(4):641–663, 1988.

[5] Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation
for deep learning. In International Conference on Machine Learning, pages 557–565. PMLR,
2017.

[6] Yair Carmon and John Duchi. Gradient descent finds the cubic-regularized nonconvex newton
step. SIAM Journal on Optimization, 29(3):2146–2178, 2019.

[7] Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. Adaptive cubic regularisation meth-
ods for unconstrained optimization. part i: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295, 2011.

[8] Jan De Leeuw. Block-relaxation algorithms in statistics. In Information Systems and Data
Analysis: Prospects—Foundations—Applications, pages 308–324. Springer, 1994.

[9] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[10] Aidan N Gomez, Oscar Key, Kuba Perlin, Stephen Gou, Nick Frosst, Jeff Dean, and Yarin
Gal. Interlocking backpropagation: Improving depthwise model-parallelism. The Journal of
Machine Learning Research, 23(1):7714–7741, 2022.

[11] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor
optimization. In International Conference on Machine Learning, pages 1842–1850. PMLR,
2018.

[12] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of
giant neural networks using pipeline parallelism. Advances in neural information processing
systems, 32, 2019.

[13] Zhouyuan Huo, Bin Gu, Heng Huang, et al. Decoupled parallel backpropagation with con-
vergence guarantee. In International Conference on Machine Learning, pages 2098–2106.
PMLR, 2018.

7

SURROGATE MINIMIZATION

[14] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves,
David Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients.
In International conference on machine learning, pages 1627–1635. PMLR, 2017.

[15] Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon Yoon, Ildoo
Kim, Sungbin Lim, and Sungwoong Kim. torchgpipe: On-the-fly pipeline parallelism for
training giant models. 2020.

[16] Kenneth Lange. MM optimization algorithms. SIAM, 2016.

[17] Michael Laskin, Luke Metz, Seth Nabarro, Mark Saroufim, Badreddine Noune, Carlo Luschi,
Jascha Sohl-Dickstein, and Pieter Abbeel. Parallel training of deep networks with local up-
dates. arXiv preprint arXiv:2012.03837, 2020.

[18] Jonathan Wilder Lavington, Sharan Vaswani, Reza Babanezhad, Mark Schmidt, and Nico-
las Le Roux. Target-based surrogates for stochastic optimization. ICML, 2023.

[19] Nicolas Le Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural
gradient algorithm. Advances in neural information processing systems, 20, 2007.

[20] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored ap-
proximate curvature. In International conference on machine learning, pages 2408–2417.
PMLR, 2015.

[21] James Martens et al. Deep learning via hessian-free optimization. In ICML, volume 27, pages
735–742, 2010.

[22] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[23] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein.
Training neural networks without gradients: A scalable admm approach. In International
conference on machine learning, pages 2722–2731. PMLR, 2016.

[24] Junxiang Wang, Fuxun Yu, Xiang Chen, and Liang Zhao. Admm for efficient deep learning
with global convergence. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 111–119, 2019.

[25] Junxiang Wang, Zheng Chai, Yue Cheng, and Liang Zhao. Tunable subnetwork splitting for
model-parallelism of neural network training. arXiv preprint arXiv:2009.04053, 2020.

[26] Huishuai Zhang, Caiming Xiong, James Bradbury, and Richard Socher. Block-diagonal
hessian-free optimization for training neural networks. arXiv preprint arXiv:1712.07296,
2017.

[27] Huiping Zhuang, Yi Wang, Qinglai Liu, and Zhiping Lin. Fully decoupled neural network
learning using delayed gradients. IEEE transactions on neural networks and learning systems,
33(10):6013–6020, 2021.

8

SURROGATE MINIMIZATION

Supplementary Material

Organization of the Appendix

A Practical Considerations

B Proofs

C Helper Lemmas

D Additional Quantitative Results

Appendix A. Practical Considerations

Notice that the construction of H involves a matrix inversion. To avoid this, we use another upper-
bound as follows: For i ∈ [2,m]

⎡
⎢
⎢
⎢
⎢
⎣

H
(i)
zz,t H

(i)
zθ,t

HT(i)
zθ,t H

(i)
θθ,t

⎤
⎥
⎥
⎥
⎥
⎦

⪯

⎡
⎢
⎢
⎢
⎢
⎣

L
(i)
z,tI H

(i)
zθ,t

HT(i)
zθ,t H

(i)
θθ,t

⎤
⎥
⎥
⎥
⎥
⎦

,

where L
(i)
z,t = λmax[H

(i)
zz,t]. To compute L

(i)
z,t we use a few iterations of the power method (using

finite differences [21], without storing the Hessian). We further upper-bound this matrix by using
the decoupling Lemma 1 resulting in the conditions:

(1) ∶ H(i)zz,t ⪰ L
(i)
z,tI ; (2) ∶ H(i)θθ,t ⪰H

(i)
θθ,t +H

T(i)
zθ,t[H

(i)
zz,t −L

(i)
z,tI]

−1H(i)zθ,t

We now choose H(i)zz,t = L̃
(i)
z,t s.t. L̃

(i)
z,t − L

(i)
z,t = δ > 0, where δ is a tunable hyper-parameter. This

ensures condition (1) is satisfied. In order to guarantee that condition (2) is satisfied, we set H(i)θθ,t
as follows:

H(i)θθ,t =H
(i)
θθ,t +

HT(i)
zθ,tH

(i)
zθ,t

δ
,

which can be easily computed.

9

SURROGATE MINIMIZATION

Appendix B. Proofs

Proposition 1 Consider using an m-layer neural network model where z = [z(1), z(2), . . . z(m)]
represents the post-activations across the m layers with z0 = X , θ = [θ(0), θ(1), . . . , θ(m−1)] corre-
spond to the parameters of the m layers, f represents the activation functions of the m layers such
that z(i) = f(z(i−1), θ(i−1)). Consider minimizing the loss h(θ) = ℓ(z(m)) where ℓ corresponds to
a standard loss function. For an arbitrary, but fixed zt and θt, the loss ℓ(zm) can be upper-bounded
as follows:

ℓ(z(m)) ≤ ℓ(zt
(m)
) +

m

∑
i=1
L
(i)
θ,t(zt

(i−1), θ(i−1)) ,

L
(i)
θ,t(zt

(i−1), θ(i−1)) ∶= ⟨g(i)θ,t , θ
(i−1)

− θ
(i−1)
t ⟩ +

1

2
∥θ(i−1) − θ(i−1)t ∥

2

H(i)
θθ,t

+
2ρ
(i)
t

3
∥θ(i−1) − θ(i−1)t ∥

3
For i ∈ [1,m]

(1)

Ψ
(m)
t (z(m−1), θ(m−1)) ∶= ⟨∇ℓ(zt

(m)
), f(z(m−1), θ(m−1)) − f(zt

(m−1), θ(m−1)t)⟩

+
1

2η
(m)
z

∥f(z(m−1), θ(m−1)) − f(zt
(m−1), θ(m−1)t)∥

2

2

Ψ
(i−1)
t (z(i−2), θ(i−2)) ∶= ⟨g(i)z,t , f(z

(i−2), θ(i−2)) − f(zt
(i−2), θ(i−2)t)⟩

+
1

2
∥f(z(i−2), θ(i−2)) − f(zt

(i−2), θ(i−2)t)∥
2

H(i)zz,t

+
2ρ
(i)
t

3
∥f(z(i−2), θ(i−2)) − f(zt

(i−2), θ(i−2)t)∥
3

(For i ∈ [2,m])

g
(i)
z,t ∶=

∂Ψ
(i)
t (zt

(i−1), θ(i−1)t)

∂z(i−1)
=

∂ℓ(zt)

∂z(i−1)
; g

(i)
θ,t ∶=

∂Ψ
(i)
t (zt

(i−1), θ(i−1)t)

∂θ(i−1)
=
∂h(θt)

∂θ(i−1)
;

H
(i)
t = ∇

2Ψ
(i)
t (zt

(i−1), θ(i−1)t) =

⎡
⎢
⎢
⎢
⎢
⎣

H
(i−1)
zz,t H

(i−1)
zθ,t

HT(i−1)
zθ,t H

(i−1)
θθ,t

⎤
⎥
⎥
⎥
⎥
⎦

H
(i)
zz,t ∶=

∂2Ψ
(i)
t (zt

(i−1), θ(i−1)t)

∂(z(i−1))
2

=
∂2ℓ(zt)

∂(z(i−1))
2

H
(i)
θθ,t ∶=

∂2Ψ
(i)
t (zt

(i−1), θ(i−1)t)

∂(θ(i−1))
2

=
∂2h(θt)

∂(θ(i−1))
2

;

H
(i)
zθ,t ∶=

∂2Ψ
(i)
t (zt

(i−1), θ(i−1)t)

∂z(i−1) ∂θ(i−1)
=

∂2ℓ(zt)

∂(z(i−1))∂(θ(i−1))

∥∇
3Ψ
(i)
t (zt

(i−1), θ(i−1)t)∥ ≤ ρ
(i)
t ; ∥∇

2ℓ(z(m))∥ ≤ L(m)z

10

SURROGATE MINIMIZATION

Matrices H(i)zz,t and H(i)θθ,t are constructed such that,

(1) ∶ H(i)zz,t ⪰H
(i)
zz,t ; (2) ∶ H(i)θθ,t ⪰H

(i)
θθ,t +H

T(i)
zθ,t[H

(i)
zz,t −H

(i)
zz,t]

−1H(i)zθ,t

Proof Using the L
(m)
z -smoothness of ℓ w.r.t z(m), for a fixed zt

(m),

ℓ(z(m)) ≤ ℓ(zt
(m)
) + ⟨∇ℓ(zt

(m)
), z(m) − zt

(m)
⟩ +

L
(m)
z

2
∥z(m) − zt

(m)
∥
2

2
(2)

For η(m)z ≤ 1

L
(m)
z

, since z(m) = f(z(m−1), θ(m−1)) and zt
(m) = f(zt(m−1), θ

(m−1)
t),

Ψ
(m)
t (z(m−1), θ(m−1)) ∶= ⟨∇ℓ(zt

(m)
), f(z(m−1), θ(m−1)) − f(zt

(m−1), θ(m−1)t)⟩

+
1

2η
(m)
z

∥f(z(m−1), θ(m−1)) − f(zt
(m−1), θ(m−1)t)∥

2

2

(3)

Ô⇒ ℓ(z(m)) ≤ ℓ(zt
(m)
) +Ψ

(m)
t (z(m−1), θ(m−1)) (4)

Now, we will upper-bound Ψ
(m)
t (z(m−1), θ(m−1)) using a 3rd-order Taylor series approximation

around (zt(m−1), θ
(m−1)
t).

Ψ
(m)
t (z(m−1), θ(m−1)) ≤ Ψ(m)t (zt

(m−1), θ(m−1)t)

+ ⟨

⎡
⎢
⎢
⎢
⎢
⎣

g
(m)
z,t

g
(m)
θ,t

⎤
⎥
⎥
⎥
⎥
⎦

, [
z(m−1) − zt(m−1)

θ(m−1) − θ(m−1)t

]⟩

+
1

2
[
z(m−1) − zt(m−1)

θ(m−1) − θ(m−1)t

]

T ⎡
⎢
⎢
⎢
⎢
⎣

H
(m)
zz,t H

(m)
zθ,t

HT(m)
zθ,t H

(m)
θθ,t

⎤
⎥
⎥
⎥
⎥
⎦

[
z(m−1) − zt(m−1)

θ(m−1) − θ(m−1)t

]

+
ρ
(m)
t

6
∥[

z(m−1) − zt(m−1)

θ(m−1) − θ(m−1)t

]∥

3

Using Lemma 1, we can upper-bound the above term as:

Ψ
(m)
t (z(m−1), θ(m−1)) ≤ Ψ(m)t (zt

(m−1), θ(m−1)t) + L
(m)
z,t (z

(m−1), θ(m−1)t)

+ L
(m)
θ,t (zt

(m−1), θ(m−1))
(5)

L
(m)
z,t (z

(m−1), θ(m−1)t) = ⟨g
(m)
z,t , z(m−1) − zt

(m−1)
⟩ +

1

2
∥z(m−1) − zt

(m−1)
∥
2

H(m)zz,t

+
2ρ
(m)
t

3
∥z(m−1) − zt

(m−1)
∥
3

(6)

11

SURROGATE MINIMIZATION

L
(m)
θ,t (zt

(m−1), θ(m−1)) = ⟨g(m)θ,t , θ(m−1) − θ(m−1)t ⟩ +
1

2
∥θ(m−1) − θ(m−1)t ∥

2

H(m)
θθ,t

+
2ρ
(m)
t

3
∥θ(m−1) − θ(m−1)t ∥

3
(7)

Since z(m−1) = f(zm−2, θ(m−2)), we can express L(m)z,t (z
(m−1), θ(m−1)t) in terms of z(m−2) and

θ(m−2), i.e.
L
(m)
z,t (z

(m−1), θ(m−1)t) = Ψ
(m−1)
t (z(m−2), θ(m−2)) where Ψ

(m−1)
t (z(m−2), θ(m−2)) is defined as:

Ψ
(m−1)
t (z(m−2), θ(m−2)) = ⟨g(m)z,t , f(z(m−2), θ(m−2)) − f(zt

(m−2), θ(m−2)t)⟩

+
1

2
∥f(z(m−2), θ(m−2)) − f(zt

(m−2), θ(m−2)t)∥
2

H(m)zz,t

+
2ρ
(m)
t

3
∥f(z(m−2), θ(m−2)) − f(zt

(m−2), θ(m−2)t)∥
3

Putting together the above inequalities, we can express Ψ(m)t in terms of Ψ(m−1)t as follows:

Ψ
(m)
t (z(m−1), θ(m−1)) ≤ Ψ(m)t (zt

(m−1), θ(m−1)t) + L
(m)
θ,t (zt

(m−1), θ(m−1))

+Ψ
(m−1)
t (z(m−2), θ(m−2))

(8)

Similarly, using the decoupling lemma, we can relate consecutive layers (i) and (i−1) for i ∈ [2,m],

Ψ
(i)
t (z

(i−1), θ(i−1)) ≤ Ψ(i)t (zt
(i−1), θ(i−1)t) + L

(i)
θ,t(zt

(i−1), θ(i−1)) +Ψ(i−1)t (z(i−2), θ(i−2)) (9)

Recursing over i ∈ [2,m],

Ψ
(m)
t (z(m−1), θ(m−1)) ≤

m

∑
i=2
[Ψ
(i)
t (zt

(i−1), θ(i−1)t) + L
(i)
θ,t(zt

(i−1), θ(i−1))] +Ψ(1)t (z
(0), θ(0)) (10)

For bounding Ψ
(1)
t (z

(0), θ(0)), recall that z(0) =X . Using the third-order Taylor series w.r.t θ(0),

Ψ
(1)
t (X,θ(0)) ≤ Ψ(1)t (X,θ

(0)
t)

+ ⟨g
(1)
θ,t , θ

(0)
− θ
(0)
t ⟩ +

1

2
∥θ(0) − θ(0)t ∥

2

Hθθ,1

+
ρ
(1)
t

6
∥θ(0) − θ(0)t ∥

3

´¹¹¸¹¹¹¶
=L(1)t (θ(0))

= Ψ
(1)
t (X,θ

(0)
t) + L

(1)
t (θ

(0)
)

(11)

Combining Equation (10) with Equation (11),

Ψ
(m)
t (z(m−1), θ(m−1)) ≤

m

∑
i=1
[Ψ
(i)
t (zt

(i−1), θ(i−1)t) + L
(i)
θ,t(zt

(i−1), θ(i−1))] (12)

12

SURROGATE MINIMIZATION

Combining with Equation (4)

ℓ(z(m)) ≤ ℓ(zt
(m)
) +

m

∑
i=1
[Ψ
(i)
t (zt

(i−1), θ(i−1)t) + L
(i)
θ,t(zt

(i−1), θ(i−1))] (13)

Noting that Ψ(i)t (zt
(i−1), θ(i−1)t) = 0 for all i ∈ [1,m] gives the desired upper-bound. Now we prove

that g(i)z,t =
∂ℓ(zt)
∂z(i−1)

for i ∈ [2,m]. We will prove this by induction starting from i =m,
Base Case: For i =m,

g
(m)
z,t =

∂Ψ
(m)
t (zt

(m−1), θ(m−1)t)

∂z(m−1)
=
∂ℓ(zt

(m))

∂z(m)
∂f(z(m−1), θ(m−1))

∂z(m−1)

=
∂ℓ(zt

(m))

∂z(m)
∂zt
(m)

∂z(m−1)
=
∂ℓ(zt

(m))

∂z(m−1)

Inductive Hypothesis: Assuming the statement is true for i + 1 i.e. g(i+1)z,t =
∂ℓ(zt)
∂z(i)

, let us prove it
for i.

g
(i)
z,t =

∂Ψ
(i)
t (zt

(i−1), θ(i−1)t)

∂z(i−1)
= g
(i+1)
z,t

∂f(z(i−1), θ(i−1))

∂z(i−1)
= g
(i+1)
z,t

∂zt
(i)

∂z(i−1)

=
∂ℓ(zt)

∂z(i)
∂zt
(i)

∂z(i−1)
=

∂ℓ(zt)

∂z(i−1)

which completes the induction.
It remains to be proven that g(i)θ,t =

∂h(θt)
∂θ(i−1)

for i ∈ [2,m]. Given that we proved g
(i)
z,t =

∂ℓ(zt)
∂z(i−1)

for
each i,

g
(i)
θ,t =

∂Ψ
(i)
t (zt

(i−1), θ(i−1)t)

∂θ(i−1)
= g
(i+1)
z,t

∂f(z(i−1), θ(i−1))

∂θ(i−1)
= g
(i+1)
z,t

∂zt
(i)

∂θ(i−1)
=
∂ℓ(zt)

∂z(i)
∂zt
(i)

∂θ(i−1)

=
∂ℓ(zt)

∂θ(i−1)
=
∂h(θt))

∂θ(i−1)

Theorem 1 Assuming that (i) h(θ) = ℓ(zm) is bounded from below, (ii) ℓ(z(m)) is L(m)z smooth,
(iii) local losses L(i)θ,t are β smooth for all i ∈ [1,m], t ∈ [T], T iterations of SM with η

(m)
z ≤ 1

L
(m)
z

and N inner-loops in each iteration results in the following convergence rate,

min
t∈[T]
∥∇h(θt)∥

2
2 ≤

2β [h(θ0) − h(θ
∗)]

T

Proof Using the same notation as in Theorem 1, since L(i)θ,t(zt
(i−1), θ(i−1)) is β smooth for all i ∈

[1,m], using GD with step-size equal to 1
β results in the descent at iteration k ∈ [N−1]. Specifically,

for layer i, for iterates ωk and ωk+1 in the inner-loop, where ω0 = θ
(i−1)
t and θ

(i−1)
t+1 = ωN ,

L
(i)
θ,t(zt

(i−1), ωk+1) ≤ L
(i)
θ,t(zt

(i−1), ωk) −
1

2β
∥∇L

(i)
θ,t(zt

(i−1), ωk)∥
2

2

13

SURROGATE MINIMIZATION

After N steps, for all i ∈ [1,m]

L
(i)
θ,t(zt

(i−1), ωN) ≤ L
(i)
θ,t(zt

(i−1), ω0) −
1

2β

N−1
∑
k=0
∥∇L

(i)
θ,t(zt

(i−1), ωk)∥
2

2

Ô⇒ L
(i)
θ,t(zt

(i−1), θ(i−1)t+1) ≤ L
(i)
θ,t(zt

(i−1), θ(i−1)t) −
1

2β
∥∇L

(i)
θ,t(zt

(i−1), θ(i−1)t)∥
2

2

−
N−1
∑
k=1
∥∇L

(i)
θ,t(zt

(i−1), ωk)∥
2

2

Ô⇒ L
(i)
θ,t(zt

(i−1), θ(i−1)t+1) ≤ L
(i)
θ,t(zt

(i−1), θ(i−1)t) −
1

2β
∥∇L

(i)
θ,t(zt

(i−1), θ(i−1)t)∥
2

2

Recall that,

L
(i)
θ,t(zt

(i−1), θ(i−1)) = ⟨g(i)θ,t , θ
(i−1) − θ

(i−1)
t ⟩ + 1

2 ∥θ
(i−1) − θ(i−1)t ∥

2

H(i)
θθ,t

+
2ρ
(i)
t

3 ∥θ(i−1) − θ(i−1)t ∥
3
.

Hence,

∇L
(i)
θ,t(zt

(i−1), θ(i−1)t) = g
(i)
θ,t =

∂h(θt)

∂θ(i−1)

Ô⇒ L
(i)
θ,t(zt

(i−1), θ(i−1)t+1) ≤ L
(i)
θ,t(zt

(i−1), θ(i−1)t) −
1

2β
∥
∂h(θt)

∂θ(i−1)
∥

2

2

= −
1

2β
∥
∂h(θt)

∂θ(i−1)
∥

2

2

(Since L(i)θ,t(zt
(i−1), θ(i−1)t) = 0)

Setting z = zt+1, θ = θt+1 in the upper-bound from Theorem 1.

ℓ(z
(m)
t+1) ≤ ℓ(zt

(m)
) +

m

∑
i=1
L
(i)
θ,t(zt

(i−1), θ(i−1)t+1)

= ℓ(zt
(m)
) −

1

2β

m

∑
i=1
∥
∂h(θt)

∂θ(i−1)
∥

2

2

= ℓ(zt
(m)
) −

1

2β
∥∇h(θt)∥

2
2

Ô⇒ ∥∇h(θt)∥
2
2 ≤ 2β [h(θt) − h(θt+1)]

Summing from t = 0 to T − 1 and telescoping

T−1
∑
t=0
∥∇h(θt)∥

2
2 ≤ 2β [h(θ0) − h(θT+1)] ≤ 2β [h(θ0) − h(θ

∗
)]

Dividing by T , and using that mint∈[T] ∥∇h(θt)∥
2
2 ≤

∑T−1
t=0 ∥∇h(θt)∥

2
2

T concludes the proof.

14

SURROGATE MINIMIZATION

Appendix C. Helper Lemmas

Lemma 1 For any vector b = [bubv] and matrix A = [
Auu Auv

AT
uv Avv

] and coefficients c1, c2, c3, func-

tion

Ψ(u, v) ∶= c1 ⟨[
bu
bv
] , [

u
v
]⟩ + c2 [

u
v
]

T

[
Auu Auv

AT
uv Avv

] [
u
v
] + c3 ∥[

u
v
]∥

3

,

that is dependent on both u, v can be upper-bounded in terms of functions L(u) and L(u).

Ψ(u, v) ≤ L(u) + L(v) where, L(u) ∶= c1⟨bu, u⟩ + c2 ∥u∥
2
Buu
+ 4c3 ∥u∥

3

L(v) ∶= c1⟨bv, v⟩ + c2 ∥v∥
2
Bvv
+ 4c3 ∥v∥

3 ,

where B = [
Buu 0
0 Bvv

] such that (i) Buu ⪰ Auu ; Bvv ⪰ Avv +A
T
uv [Buu −Auu]

−1Auv .

Proof Note that we can easily split the first-order and third-order terms, i.e.

⟨[
bu
bv
] , [

u
v
]⟩ = ⟨bu, u⟩ + ⟨bv, v⟩ ; c∥[

u
v
]∥

3

= (

√

∥u∥22 + ∥v∥
2
2)

3

≤ (∥u∥ + ∥v∥)3 ≤ 4 ∥u∥3 + 4 ∥v∥3

(For a, b ≥ 0, (a + b)p ≤ 2p−1(ap + bp))

In order to split the second-order term, we will find a block-diagonal matrix B = [
Buu 0
0 Bvv

] such

that A ⪯ B. Hence, we want that B −A ⪰ 0, implying that we want that,

[
Buu −Auu −Auv

−AT
uv Bvv −Avv

] ⪰ 0

Note that a block matrix X = [
X11 X21

XT
21 X22

] is positive semi-definite, iff (i) X11 ⪰ 0 and (ii) its Schur

complement equal to X22 −X
T
21X

−1
11X21 ⪰ 0. Hence, we want that,

Buu ⪰ Auu ; Bvv ⪰ Avv +A
T
uv [Buu −Auu]

−1Auv

Given such a B, we can now split and upper-bound the second-order term as follows:

[
u
v
]

T

[
Auu Auv

AT
uv Avv

] [
u
v
] ≤ [

u
v
]

T

[
Buu 0
0 Bvv

] [
u
v
] = ∥u∥2Buu

+ ∥v∥2Bvv

Putting everything together,

Ψ(u, v) ∶= ⟨[
bu
bv
] , [

u
v
]⟩ + [

u
v
]

T

[
Auu Auv

AT
uv Avv

] [
u
v
] + ∥[

u
v
]∥

3

≤ ⟨bu, u⟩ + ∥u∥
2
Buu
+ 4 ∥u∥3

´¹¹¸¹¹¹¶
∶=L(u)

+⟨bv, v⟩ + ∥v∥
2
Bvv
+ 4 ∥v∥3

´¹¹¸¹¹¶
∶=L(v)

15

SURROGATE MINIMIZATION

Appendix D. Additional Quantitative Results

0 500 1000 1500 2000
Wall Clock Time (Seconds)

100

Tr
ai

n
Lo

ss
 (l

og
)

0 500 1000 1500 2000
Wall Clock Time (Seconds)

0.2

0.4

0.6

0.8

Te
st

 S
co

re

CGBlock-1
DDG
GD+Armijo
SM-1
SSO-1

0 500 1000 1500 2000 2500
Wall Clock Time (Seconds)

100

Tr
ai

n
Lo

ss
 (l

og
)

0 500 1000 1500 2000 2500
Wall Clock Time (Seconds)

0.2

0.4

0.6

0.8
Te

st
 S

co
re

CGBlock-10
DDG
GD+Armijo
SM-10
SSO-10

0 500 1000 1500 2000 2500 3000
Wall Clock Time (Seconds)

100

Tr
ai

n
Lo

ss
 (l

og
)

0 500 1000 1500 2000 2500 3000
Wall Clock Time (Seconds)

0.2

0.4

0.6

0.8

1.0

Te
st

 S
co

re

CGBlock-20
DDG
GD+Armijo
SM-20
SSO-20

Table 2: Comparing classification results on MNIST for SM vs baselines using 2 layers of MLP.
The rows correspond to 1, 10, and 20 iterations.

16

SURROGATE MINIMIZATION

0 500 1000 1500 2000
Wall Clock Time (Seconds)

100

6 × 10 1

2 × 100

3 × 100

Tr
ai

n
Lo

ss
 (l

og
)

0 500 1000 1500 2000
Wall Clock Time (Seconds)

0.0

0.2

0.4

0.6

0.8

Te
st

 S
co

re

CGBlock-1
DDG
GD+Armijo
SM-1
SSO-1

0 500 1000 1500 2000 2500 3000
Wall Clock Time (Seconds)

100

4 × 10 1

6 × 10 1

2 × 100

3 × 100

Tr
ai

n
Lo

ss
 (l

og
)

0 500 1000 1500 2000 2500 3000
Wall Clock Time (Seconds)

0.0

0.2

0.4

0.6

0.8
Te

st
 S

co
re

CGBlock-10
DDG
GD+Armijo
SM-10
SSO-10

0 1000 2000 3000 4000
Wall Clock Time (Seconds)

100

Tr
ai

n
Lo

ss
 (l

og
)

0 1000 2000 3000 4000
Wall Clock Time (Seconds)

0.0

0.2

0.4

0.6

0.8

Te
st

 S
co

re

CGBlock-20
DDG
GD+Armijo
SM-20
SSO-20

Table 3: Comparing classification results on MNIST for SM vs baselines using 4 layers of MLP.
The rows correspond to 1, 10, and 20 iterations.

17

SURROGATE MINIMIZATION

0 500 1000 1500 2000
Wall Clock Time (Seconds)

1.6 × 100

1.8 × 100

2 × 100

2.2 × 100

2.4 × 100

2.6 × 100

Tr
ai

n
Lo

ss
 (l

og
)

0 500 1000 1500 2000
Wall Clock Time (Seconds)

0.1

0.2

0.3

0.4

0.5

Te
st

 S
co

re

CGBlock-1
DDG
GD+Armijo
SM-1
SSO-1

0 500 1000 1500 2000 2500 3000 3500
Wall Clock Time (Seconds)

1.2 × 100

1.4 × 100

1.6 × 100

1.8 × 100

2 × 100

2.2 × 100

2.4 × 100

2.6 × 100

2.8 × 100

Tr
ai

n
Lo

ss
 (l

og
)

0 500 1000 1500 2000 2500 3000 3500
Wall Clock Time (Seconds)

0.1

0.2

0.3

0.4

0.5

0.6
Te

st
 S

co
re

CGBlock-10
DDG
GD+Armijo
SM-10
SSO-10

0 1000 2000 3000 4000 5000
Wall Clock Time (Seconds)

1.2 × 100

1.4 × 100

1.6 × 100

1.8 × 100

2 × 100

2.2 × 100

2.4 × 100

2.6 × 100

2.8 × 100

Tr
ai

n
Lo

ss
 (l

og
)

0 1000 2000 3000 4000 5000
Wall Clock Time (Seconds)

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 S
co

re

CGBlock-20
DDG
GD+Armijo
SM-20
SSO-20

Table 4: Comparing classification results on MNIST for SM vs baselines using 8 layers of MLP.
The rows correspond to 1, 10, and 20 iterations.

18

	Introduction
	Problem Formulation
	Surrogate Minimization
	Experiments
	Discussion
	Practical Considerations
	Proofs
	Helper Lemmas
	Additional Quantitative Results

