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ABSTRACT

Time series anomaly detection (TSAD) progress has been accompanied by a per-
sistent increase in architectural sophistication. In this work, we revisit this trend
and demonstrate that a simple score based on a closed-form solution for an ordi-
nary least squares (OLS) regression model outperforms state-of-the-art deep learn-
ing baselines. Through extensive evaluation on both univariate and multivariate
TSAD benchmarks, we show that linear regression achieves superior accuracy and
robustness while requiring orders of magnitude fewer resources. Our further anal-
ysis identifies the types of anomalies that can and cannot be reliably captured by
linear models, providing insights into their strengths and limitations. Overall find-
ings indicate that current benchmarkings would benefit from inclusion of simple
methods as well as more intricate problems that would do require deep learning-
based solutions. Thus, future research should consistently include strong linear
baselines and, more importantly, develop new benchmarks with richer temporal
structures pinpointing the advantages of deep learning models.

1 INTRODUCTION

Time series anomaly detection (TSAD) emerges in safety- and reliability-critical applications, in-
cluding predictive maintenance in industrial IoT, early warning in healthcare monitoring, fraud de-
tection in finance (Zamanzadeh Darban et al., 2024). Data there are complex: often they are high-
dimensional, non-stationary and noisy. Motivated by this finding, recent research has shifted toward
deep learning methods designed to capture complex temporal patterns.

Early statistical approaches – including autoregressive models (AR) (Rousseeuw & Leroy, 2003),
density-based methods such as Sub-LOF (Breunig et al., 2000), and nearest-neighbor search, ex-
emplified by Matrix Profile (Zhu et al., 2018), laid the foundation for anomaly scoring but were
soon eclipsed by neural architectures capable of richer feature extraction. A more recent method has
introduced deep learning to these core prediction, reconstruction, and density estimation ideas (Za-
manzadeh Darban et al., 2024). Prediction-based approaches leverage recurrent and attention mech-
anisms to forecast future values, e.g., LSTMAD (Malhotra et al., 2015), TimesNet (Wu et al., 2022),
and OFA (Zhou et al., 2023). Transformer-based detectors such as the Anomaly Transformer (Xu
et al., 2021) and TFAD (Zhang et al., 2022) quantify association discrepancies or exploit hybrid
time–frequency features. Reconstruction-based paradigms employ autoencoders (Ng et al., 2011;
Malhotra et al., 2016), variational models such as Donut (Xu et al., 2018c) or FCVAE (Wang et al.,
2024). Recent additions like TShape and KAN-AD (Zhou et al., 2024) incorporate patch-wise at-
tention and parameter-efficient reasoning, respectively. While increasing benchmark scores, the
the growing architectural complexity raises several questions. First, incremental gains on standard
benchmarks often reflect saturation rather than breakthroughs, especially in the absence of strong
baselines. Second, pointwise metrics such as Best-F1 (Xu et al., 2018b; Si et al., 2024) can ob-
scure true event-level quality and reward overfitting. Last but not least, deep detectors are resource-
intensive and highly sensitive to hyperparameters, which complicates practical deployment.

While a similar stock of deep learning methods emerged in long-term time series forecasting, re-
searchers there have reported an interesting phenomenon. (Zeng et al., 2023) showed that a one-
layer linear model outperforms sophisticated Transformer architectures on long-range forecasting
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benchmarks. (Toner & Darlow, 2024) further explore simple models: they tie most of them to an
equivalent OLS regression problem, differing only in minor architectural details, and show, that
using the available closed-form solution OLS solutions helps to further outperform deep models.
However, for anomaly detection, we would expect richer families of possible anomaly types — and
therefore sufficiently complex TSAD problems, deep architectures can be justified.

Our findings explore the heavy reliance on architectural sophistication in the TSAD field and its
necessity. We revisit the field not by introducing another architecture, but by exploring ordinary
least squares (OLS)-based linear regression applied to lagged time-series features for TSAD. The
linear model consistently outperforms state-of-the-art deep detectors across both univariate and mul-
tivariate TSAD benchmarks, widely used in recent studies (Zhou et al., 2024). Beyond accuracy,
OLS-based detection is orders of magnitude more efficient and robust, as it is based on an analytical
solution.

Our analysis extends beyond empirical comparisons to clarify why such a simple model can be
successful. Drawing on Gaussian process (Williams & Rasmussen, 2006) theory and its connection
with the interpolation theory (Zaytsev & Burnaev, 2017), we show that the introduced linear model
enjoys the minimal risk under the assumption that the anomaly corresponds to the low conditional
density of observations. This finding holds for the wide range of functions, which are dense in the
space of continuous functions (Van Der Vaart et al., 2008), and can handle periodicity and noise in
sequential observations. Such an approach can be generalized to cases where change points in the
function are observed (Saatçi et al., 2010).

In light of these findings, we propose a recalibration of TSAD research: linear baselines must be
included in future evaluations, and new benchmarks should feature richer temporal structures that
expose the advantages of deep models. Furthermore, we have also revisited the linear model and
proposed our small yet effective model, which has achieved SOTA performance on multiple datasets.

Our main claims are the following:

• Our simple linear regression model trained via ordinary least squares (OLS) or reduced-
rank regression (RRR) for the past history as features achieves state-of-the-art results in a
wide range of univariate and multivariate TSAD benchmarks, consistently outperforming
recent deep learning detectors while being orders of magnitude more efficient. Thus, future
evaluations in TSAD should include strong linear baselines and develop benchmarks with
richer temporal structures to pinpoint the advantages of deep models that originate from
the inherent complexity of considered problems.

• The major source of improvement for the introduced model is the use of closed-form ana-
lytical solutions for estimating model parameters, which guarantees optimal solutions and
eliminates the instability associated with gradient-based optimization.

• Despite the model simplicity, we prove that such models can reliably capture a broad
class of anomalies as a conditional density estimator, using a theoretical perspective that
links OLS-based autoregression to Gaussian process realizations, the first time according
to our knowledge.

2 BACKGROUND & LITERATURE REVIEW

Time series anomaly detection (TSAD) is commonly organized into three families: statistical,
prediction-based, and reconstruction-based. Each making distinct assumptions about how normal-
ity is modeled and how deviations should be scored. Statistical methods monitor local density
or neighborhood structure; prediction-based methods forecast the next value and alarm on large
residuals; reconstruction-based methods learn an autoencoding of normal behavior and flag poorly
reconstructed windows.

Statistical. Sub-LOF (Breunig et al., 2000) flags density deviations locally; SAND (Boniol et al.,
2021) clusters subsequences by shape in streaming settings; Matrix Profile (Zhu et al., 2018) scores
each window by its nearest-neighbor distance. They are lightweight but can struggle with high-
dimensional multivariate drift.

Prediction-based. Classical AR (Rousseeuw & Leroy, 2003) models provide robust linear base-
lines; LSTMAD (Malhotra et al., 2015) captures nonlinear dynamics; TimesNet (Wu et al., 2022)
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brings 2D “vision-style” temporal variation; OFA (Zhou et al., 2023) frames many TS tasks under
a pretrained LM; Transformer detectors like Anomaly Transformer (Xu et al., 2021) further quan-
tify association discrepancies; TFAD (Zhang et al., 2022) couples time–frequency decomposition
with detection. Recent works KAN-AD (Zhou et al., 2024) boost detection accuracy with orders-
of-magnitude fewer parameters—both complement linear readouts by clarifying where deviations
arise. Long-horizon forecasters are increasingly repurposed for detection by thresholding forecast
residuals. Autoformer (Wu et al., 2021) introduces an Auto-Correlation mechanism with progressive
decomposition for long-term forecasting, alleviating pointwise attention bottlenecks and improving
periodic pattern capture. ModernTCN (Luo & Wang, 2024) revisits temporal convolutions with a
modern, pure-CNN block that scales receptive fields and cross-variable coupling, yielding state-of-
the-art tradeoffs across forecasting, imputation, classification, and anomaly detection. In contrast,
CATCH (Wu et al., 2024) targets TSAD directly: it patchifies thef requency domain and fuses
channels via masked attention to capture fine-grained spectral characteristics and channel correla-
tions—key for heterogeneous multivariate anomalies.

Reconstruction-based. Autoencoders such as AE (Ng et al., 2011) and EncDecAD (Malhotra et al.,
2016) learn normal reconstructions; TranAD (Tuli et al., 2022) adds adversarial training; Donut (Xu
et al., 2018c) uses a VAE for seasonal KPIs; and FCVAE (Wang et al., 2024) strengthens this line
by decomposing signals into frequency components to model uncertainty. Industrial deployments
such as SRCNN (Ren et al., 2019) blend signal transforms with neural scoring and are widely used
in practice.

3 METHODS

3.1 PROBLEM SETUP

Let {yt}Tt=1 be a univariate (d = 1) or multivariate (d > 1) time series with yt ∈ Rd. We fix an
autoregressive order p ≥ 1, which specifies how many past observations are used as predictors. To
capture temporal dependencies, we define lagged feature vectors

xt =
(
1, y⊤t−1, . . . , y

⊤
t−p

)⊤ ∈ R1+dp,

and collect all T − p samples into feature and response matrices as:

X =

x
⊤
p+1
...
x⊤
T

 ∈ R(T−p)×(1+dp), Y =

y
⊤
p+1
...
y⊤T

 ∈ R(T−p)×d.

3.2 LINEAR MODELING WITH OLS AND RRR

We use a linear predictor based on lagged features xt:

yt = x⊤
t W + εt, εt ∼ N (0, σ2Id), (1)

where W ∈ R(1+dp)×d denotes the matrix of regression coefficients. Anomalies are scored using
the squared prediction error, a standard practice in time series anomaly detection:

st =
∥∥yt − x⊤

t W
∥∥2
F
. (2)

Ordinary Least Squares (OLS). Under the Gaussian noise assumption, the maximum likelihood
estimate corresponds to minimizing the squared Frobenius norm:

L(W ) = ∥Y −XW∥2F . (3)
The minimizer of L(W ) has a closed form, known as the ordinary least squares estimator:

ŴOLS = argmin
W

∥Y −XW∥2F =
(
X⊤X

)−1
X⊤Y. (4)

In practice, however, the matrix X⊤X may be ill-conditioned or singular. To address this, we use a
small ridge regularization for numerical stability:

Ŵridge = argmin
W

∥Y −XW∥2F + λ∥W∥2F = (X⊤X + λI)−1X⊤Y. (5)
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In our experiments, λ is chosen to be very small, so the method remains effectively OLS, while
ensuring well-conditioned matrix inversion.

Reduced-Rank Regression (RRR). For multivariate outputs, different series often share common
temporal patterns, suggesting that the coefficient matrix W in equation 1 may be effectively low-
rank. To exploit this latent structure and reduce the number of free parameters, we consider reduced-
rank regression (Izenman, 1975):

ŴRRR = arg min
rank(W )≤r

∥Y −XW∥2F .

We can decompose the loss around the OLS solution 4:

∥Y −XW∥2F = ∥Y −XŴOLS∥2F︸ ︷︷ ︸
constant w.r.t. W

+∥XŴOLS −XW∥2F .

Since the first term does not depend on W , minimizing the loss reduces to finding a rank-r approxi-
mation of XŴOLS in Frobenius norm.

Let XŴOLS = UΣV ⊤ be the singular value decomposition (SVD). By the Eckart–Young theo-
rem (Golub & Van Loan, 2013), the best rank-r approximation is UrΣrV

⊤
r , yielding

ŴRRR = ŴOLSVrV
⊤
r ,

where VrV
⊤
r projects onto the r-dimensional subspace capturing the main latent factors. For numer-

ical stability, we replace ŴOLS with the weakly ridge-regularized estimate Ŵridge from equation 5.

3.3 COMPUTATIONAL COMPLEXITY

Assuming T ≫ dp, OLS costs O(T (dp)2), while RRR adds a full-rank (in worst case) SVD of
Ŷ = XŴOLS ∈ R(T−p)×d, costing O(Td2). Both methods scale linearly with T and polynomially
with dp, making them simple, efficient, and practical baselines.

3.4 LINEAR METHOD JUSTIFICATION

A natural question is what kinds of anomalies can linear autoregression detect? To answer this, we
connect it with Gaussian process (GP) modeling and density-based anomaly detection.

Assume the target function is a realization of a stationary GP f(x) ∼ GP(0, k(x, x′)), x ∈ R, so
the covariance function that doesn’t depend on the location of x and x′, but only on their difference
x − x′. We observe this realization at a uniform grid D = {(xi = i, yi)}Ti=1. For any i, the GP
posterior conditional on all other points is

p(yi | D−i) = N (yi | m(i), σ2(i)),

with mean m(i) = k⊤
i K

−1
−i y−i and variance σ2(i) = k(i, i)−k⊤

i K
−1
−i ki, where ki = {k(i, j)}j ̸=i

and K−i = {k(j, j′)}j,j′ ̸=i. A natural anomaly score is the negative log-likelihood

s(yi) = − log p(yi | D−i) =
1
2

[
log(2πσ2(i)) + (yi −m(i))2/σ2(i)

]
. (6)

In anomaly detection we cannot condition on the future. Restricting to the last h lags, Di−h:i−1 =
{(xj = j, yj)}i−h≤j<i, corresponds to marginalizing out all other observations, yielding a Gaus-
sian:

p(yi | Di−h:i−1) =

∫
p(yi | D−i) p(D−i | Di−h:i−1) dD−i = N

(
yi | mh(i), σ

2
h

)
.

with mh(i) = k⊤
hK

−1
h yi−h:i−1, σ2

h = k(i, i) − k⊤
hK

−1
h kh, and blocks kh = {k(i, j)}i−h≤j<i,

Kh = {k(j, j′)}i−h≤j,j′<i. We purposefully used notation for kh,Kh as we don’t have the depen-
dence on i for the stationary Gaussian process assumption for uniform observations. This implies
that the mean can be written as mh(i) = α⊤

h yi−h:i−1, a linear function with coefficients αh that do
not depend on the index i. Hence, estimating αh corresponds exactly to fitting a linear regression

4
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on the lagged features (Eq. 1). The anomaly score (Eq. 6) reduces, up to an additive constant, to the
squared prediction error:

s(yi) ∼ (yi −mh(i))
2,

recovering exactly the linear model-based anomaly score (Eq. 2). A key insight from this derivation
is that the GP-based anomaly score, when restricted to a fixed window, is equivalent to the squared
error of a linear model, regardless of the underlying kernel’s complexity. This means that the rich
class of anomalies detectable by a full density GP is, in the finite-history setting, ultimately captured
by a simple linear form.

4 RESULTS

4.1 EXPERIMENTAL SETTINGS

Datasets: To ensure comprehensive coverage of anomaly distributions, we have integrated a diverse
suite of both univariate and multivariate benchmarks spanning multiple domains.

Univariate. We adopt five meticulously annotated datasets, each emphasizing different anomaly
types and application contexts:

• AIOPS (AIO, 2018): Sourced from five leading Internet firms (Sogou, eBay, Baidu, Ten-
cent, Alibaba), this multidimensional collection comprises system logs, resource metrics,
and event traces. It challenges models with evolving distributions, and heterogeneous
anomalies ranging from hardware faults to security breaches.

• UCR (Wu & Keogh, 2021b): A canonical repository of 203 time-series across domains
(such as power-grid, medical sensors, industrial IoT), each containing a single expert-
verified anomaly interval. UCR measures a model’s generalization across distinct domains
and anomaly types.

• TODS (Lai et al., 2021): A synthetic suite in which anomalies are injected with precise
control over seasonality, trend, and noise parameters. Its ground-truth clarity and tunable
complexity enable incisive analysis of design components.

• NAB (Ahmad et al., 2017): Streaming data from real-world AWS cloud metrics, social
media activity, and IoT sensors, augmented with synthetic sequences. NAB reflects opera-
tional detection scenarios where real-time processing and hybrid anomaly sources coexist.

• Yahoo (Laptev et al., 2015): Yahoo dataset encompasses both real-world time series and
synthetically generated datasets. The real data capture intricate holiday effects and infras-
tructure migrations, while the synthetic subset is designed to rigorously probe the sensitiv-
ity of models to controlled interventions.

Each univariate time series is treated independently: we train a separate model instance per se-
quence and evaluate on its held-out test split. To ensure fairness and comparability, our training and
evaluation protocol follows the EASYTSAD benchmark1.

Multivariate. For the multivariate setting, we rely on five widely used benchmarks covering diverse
domains and anomaly characteristics:

• SMD (Su et al., 2019): A large-scale dataset of server machine logs from an Internet com-
pany. It contains 28 groups of multivariate sensor measurements with annotated anomalies
caused by hardware and software faults.

• MSL and SMAP (Hundman et al., 2018): Both datasets originate from NASA telemetry of
spacecraft components. They include dozens of channels monitoring spacecraft systems,
with anomalies reflecting system failures and sensor malfunctions.

• SWAT (Mathur & Tippenhauer, 2016): Multivariate time series collected from a water
treatment testbed, designed to simulate cyber-physical attacks and equipment faults. It is
widely used to evaluate anomaly detection in industrial control systems.

1https://adeval.cstcloud.cn/
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• PSM (Abdulaal et al., 2021): Real-world server metrics from eBay’s production environ-
ment. It captures performance anomalies related to distributed system operations and large-
scale web services.

For multivariate time series, we follow the standard train-test splits commonly used in the litera-
ture. Models are trained on the training set and evaluated on the held-out test set to assess their
performance.

Baselines: We compare OLS against sixteen state-of-the-art methods: SubLOF (Breunig et al.,
2000), SAND (Boniol et al., 2021), MatrixProfile (Zhu et al., 2018), AR (Rousseeuw & Leroy,
2003), LSTMAD (Malhotra et al., 2015), AE (Ng et al., 2011), EncDecAD (Malhotra et al., 2016),
SRCNN (Ren et al., 2019), AnomalyTransformer (Xu et al., 2021), TFAD (Zhang et al., 2022),
TranAD (Tuli et al., 2022), Donut (Xu et al., 2018c), FCVAE (Wang et al., 2024), TimesNet (Wu
et al., 2022), OFA (Zhou et al., 2023)and FITS (Xu et al., 2023). For multivariate datasets we
compare OLS and RRR against six baselines: Autoformer (Wu et al., 2021), TimesNet (Wu et al.,
2022), OFA (Zhou et al., 2023), ModernTCN (Luo & Wang, 2024), CATCH (Wu et al., 2024) and
KANAD (Zhou et al., 2024). For each baseline, we use recommended hyperparameters from the
original papers.

Metrics: To mitigate the inherent threshold selection bias in anomaly detection systems (Xu et al.,
2018b), we employ the Best F1 score as our primary optimization metric. However, prior re-
search (Wu & Keogh, 2021a; Xu et al., 2018a) indicates that this conventional metric is susceptible
to artificial score inflation. This inflation stems from the redundant point-wise counting of consec-
utive anomalies occurring within extended anomalous events. Recognizing that practical anomaly
detection scenarios necessitate identifying coherent anomalous events rather than isolated outlier
points, we utilize the Event F1 score (Si et al., 2024). This metric evaluates segment-level detec-
tion accuracy by treating continuous anomalous intervals as single events, effectively decoupling the
influence of event duration from the assessment of detection capability.

The capability to achieve time-sensitive anomaly detection constitutes a critical requirement for
practical application of anomaly detection systems. Methods capable of immediately triggering
alerts upon anomaly occurrence are inherently more aligned with practical requirements than those
exhibiting delayed detection. To rigorously quantify this critical temporal responsiveness, we em-
ploy the F1 k-delay metric, a stringent evaluation framework that imposes strict temporal constraints
on anomaly recognition. Specifically, this metric considers an anomaly undetected unless identified
within k time steps following its onset, thereby aligning evaluation protocols with operational im-
peratives for immediate response.

4.2 MAIN RESULTS

Table 1: Model F1-based metrics (↑) on six univariate datasets
Method AIOPS NAB TODS UCR WSD Yahoo

F1 B-F-5 E-F-5 F1 B-F-5 E-F-5 F1 B-F-5 E-F-5 F1 B-F-5 E-F-5 F1 B-F-5 E-F-5 F1 B-F-5 E-F-5

SubLOF 0.7273 0.4994 0.2416 0.9787 0.3169 0.0062 0.7997 0.7169 0.5285 0.8811 0.4539 0.5285 0.8683 0.4917 0.3580 0.5720 0.5560 0.4660
SAND 0.2823 0.0893 0.0310 0.6731 0.2561 0.05 0.5336 0.5136 0.2430 0.7467 0.5637 0.2430 0.1822 0.1323 0.0740 0.5646 0.5601 0.4554
MatrixProfile 0.1915 0.0698 0.0125 0.7873 0.3321 0.0079 0.5284 0.4038 0.1288 0.7992 0.2359 0.1288 0.1233 0.0704 0.0134 0.3079 0.2944 0.1926
AR 0.9106 0.8411 0.7262 0.9985 0.5113 0.0881 0.7302 0.6240 0.5462 0.7190 0.2741 0.5462 0.9766 0.6534 0.5702 0.7425 0.7299 0.6810
LSTMAD 0.9395 0.8791 0.7648 0.9907 0.4894 0.0645 0.8295 0.7402 0.6633 0.7763 0.3583 0.6633 0.9875 0.6690 0.6139 0.6096 0.6044 0.5464
AE 0.8934 0.8096 0.6692 0.9896 0.4533 0.0434 0.8472 0.7088 0.5801 0.7157 0.2007 0.5801 0.9742 0.6684 0.5950 0.6847 0.6753 0.6219
EncDecAD 0.9121 0.8328 0.7177 0.9903 0.5432 0.0702 0.7107 0.5504 0.4809 0.6759 0.2059 0.4809 0.9829 0.6620 0.6043 0.5682 0.5601 0.4956
SRCNN 0.4176 0.1583 0.0447 0.8945 0.3340 0.0110 0.6140 0.4221 0.1785 0.7424 0.2349 0.1785 0.4187 0.1999 0.0657 0.2289 0.1996 0.1062
AT 0.5924 0.3500 0.2184 0.9762 0.4263 0.0284 0.4808 0.3184 0.1401 0.6806 0.1368 0.1400 0.3986 0.1323 0.0639 0.2644 0.2517 0.1793
TFAD 0.3486 0.1390 0.0342 0.9543 0.3029 0.0107 0.6131 0.4595 0.2789 0.6317 0.1938 0.2789 0.8462 0.5203 0.4613 0.8134 0.8013 0.7538
TranAD 0.8029 0.6469 0.5786 0.9961 0.4594 0.0332 0.5305 0.3945 0.2174 0.6184 0.1937 0.2174 0.7698 0.4398 0.3813 0.6111 0.6003 0.5417
Donut 0.8588 0.7897 0.6584 0.9829 0.5004 0.1381 0.8648 0.7349 0.5885 0.7619 0.2224 0.5885 0.9642 0.6441 0.5653 0.7302 0.7283 0.6766
FCVAE 0.9220 0.8486 0.7420 0.9922 0.4936 0.1184 0.8559 0.7339 0.6221 0.8291 0.3269 0.6221 0.9640 0.6553 0.5967 0.7409 0.7389 0.6983
TimesNet 0.7853 0.6969 0.5941 0.9901 0.4347 0.0595 0.6602 0.4731 0.3199 0.5999 0.1789 0.3199 0.9015 0.5782 0.5345 0.4976 0.4902 0.4551
OFA 0.8402 0.7643 0.6223 0.9851 0.4761 0.0519 0.7023 0.5716 0.4425 0.6780 0.1642 0.4425 0.9782 0.6580 0.5781 0.7520 0.7327 0.6833
FITS 0.9125 0.8236 0.6575 0.9942 0.4428 0.0478 0.7772 0.5969 0.5071 0.7570 0.3215 0.5071 0.9714 0.6471 0.5483 0.8074 0.7976 0.7424
TShape 0.9263 0.8555 0.7543 0.9982 0.4988 0.1042 0.8434 0.7179 0.6143 0.8494 0.4460 0.6143 0.9829 0.6595 0.5821 0.7685 0.7648 0.7176
KANAD 0.9458 0.8790 0.7848 0.9911 0.5075 0.0618 0.9469 0.8356 0.8456 0.9050 0.5217 0.8356 0.9867 0.6607 0.5997 0.9597 0.9553 0.9439

OLS 0.9418 0.8716 0.7927 0.9979 0.5016 0.1173 0.9100 0.8322 0.8266 0.8332 0.5020 0.8266 0.9877 0.7284 0.6613 0.9695 0.9648 0.9534

Table 1 presents a rigorous comparison of OLS against 16 state-of-the-art baselines across five di-
verse anomaly detection datasets. OLS achieves the highest average F1 score of 0.9330 and Event
F1 score of 0.8610. This demonstrates accuracy of OLS in detecting anomalous events. Our method
with a single window size hyperparameter sets a new state-of-the-art in time series anomaly de-
tection, particularly for dynamic systems with complex local shapes. The consistent gains across
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Table 2: Model F1-based metrics (↑) on five multivariate datasets
Method SMD MSL SMAP SWAT PSM

F1 B-F-5 E-F-5 F1 B-F-5 E-F-5 F1 B-F-5 E-F-5 F1 B-F-5 E-F-5 F1 B-F-5 E-F-5

Autoformer 0.5449 0.1149 0.0061 0.8549 0.3260 0.0218 0.9516 0.3366 0.0147 0.8520 0.2634 0.0073 0.9037 0.5504 0.0193
TimesNet 0.7137 0.1630 0.0070 0.8475 0.2893 0.0203 0.9368 0.3068 0.0101 0.8823 0.3840 0.0047 0.9540 0.6571 0.0162
OFA 0.7181 0.1498 0.0092 0.8749 0.3854 0.0273 0.9472 0.2947 0.0107 0.8936 0.3887 0.0065 0.9699 0.6473 0.0310
ModernTCN 0.6999 0.1840 0.0079 0.8627 0.3274 0.0195 0.9163 0.2920 0.0064 0.8875 0.3814 0.0037 0.9650 0.6761 0.0221
CATCH 0.7520 0.3918 0.0781 0.7403 0.3350 0.0873 0.8054 0.3294 0.1075 0.9138 0.7669 0.0471 0.9232 0.8050 0.1357
KANAD 0.6657 0.1564 0.0069 0.8424 0.2732 0.0162 0.9254 0.3027 0.0142 0.9309 0.4263 0.0048 0.9527 0.5417 0.0133

OLS 0.8991 0.5231 0.3194 0.9096 0.3968 0.0581 0.7716 0.2843 0.1094 0.9707 0.8188 0.1551 0.9840 0.5767 0.3537
RRR 0.8995 0.4859 0.3226 0.9154 0.3970 0.0665 0.7719 0.2707 0.1094 0.9733 0.8647 0.1359 0.9840 0.5767 0.3537

Table 3: Average ranks (↓) across F1-based
metrics for univariate datasets

Method F1 B-F-5 E-F-5

SubLOF 9.83 11.00 12.17
SAND 15.00 12.67 15.33
MatrixProfile 15.17 15.33 17.33
AR 6.67 6.33 6.33
LSTMADalpha 5.67 4.67 4.50
AE 8.50 8.33 7.50
EncDecAD 9.33 7.83 7.67
SRCNN 14.50 14.50 15.83
AnomalyTransformer 15.33 16.17 15.83
TFAD 12.83 12.67 12.00
TranAD 11.83 13.00 13.00
Donut 8.00 7.83 6.00
FCVAE 5.67 5.50 4.00
TimesNet 12.83 13.00 11.50
OFA 9.33 9.50 9.00
FITS 6.17 7.83 8.50
KANAD 2.33 2.50 2.83

OLS 2.00 2.33 1.67

Table 4: Average ranks (↓) across F1-based
metrics for multivariate datasets

Method F1 B-F-5 E-F-5

Autoformer 6.00 6.00 5.40
TimesNet 5.20 4.80 6.60
OFA 3.40 4.80 4.60
ModernTCN 5.00 4.80 6.60
CATCH 5.60 2.60 2.60
KANAD 5.40 6.00 6.80

OLS 3.10 3.50 1.80
RRR 2.30 3.50 1.60

metrics and datasets affirm its suitability for operational deployments. An important observation
here is the comparison between AR and OLS. AR also considers a simple linear model discrepancy
score for anomaly detection, but uses a gradient method to find the linear model parameters. This
decision leads to inferior performance for AR compared to the analytical OLS solution.

The same observation persists for mutltivariate TSAD problems. There we consider OLS and RRR
methods as a more robust alternative. Even OLS shows superior results compared to others with
RRR providing further improvements.

Time series

Anomaly Transformer

TimesNet

OFA

TranAD

OLS

Transformer based Foundationmodel based

Figure 1: Anomaly detection case study in time series. The original time series is the first black
curve, with pink-shaded regions indicating expert-labeled anomaly intervals. Red curves represent
the anomaly scores generated by different detection methods using temporal modeling
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Figure 2: RRR performance across datasets for different window sizes and ranks. Full rank (right-
most value) corresponds to OLS baseline

4.3 RANK SELECTION FOR RRR-BASED APPROACH

Figure 2 shows that the optimal configuration of reduced-rank regression (RRR) is highly dataset-
dependent. For example, MSL and SMAP achieve their best F1 scores with relatively low ranks,
while SMD and SWAT benefit from higher-rank projections before performance saturates. Similarly,
the effect of the temporal window size varies: smaller windows often yield competitive results on
datasets with short-range dependencies (e.g., MSL, SMAP), whereas longer histories help capture
the broader context required by SMD, PSM, and SWAT. These trends highlight that both the latent
rank and the input window must be tuned to the temporal complexity of each dataset rather than
treated as universal hyper-parameters.

Table 5: F1 scores (↑) on univariate datasets across anomaly types

Method
Point-global Point-context Pattern-shape Pattern-seasonal Pattern-trend

F1 B-F-5 E-F-5 F1 B-F-5 E-F-5 F1 B-F-5 E-F-5 F1 B-F-5 E-F-5 F1 B-F-5 E-F-5

AR 0.6822 0.3863 0.3374 0.5411 0.5283 0.4222 0.7615 0.4686 0.1384 0.9478 0.6525 0.3731 0.8496 0.2416 0.1727
LSTMADalpha 0.7183 0.4167 0.3675 0.5347 0.5347 0.4311 0.6639 0.4338 0.1422 0.9679 0.6878 0.2926 0.9276 0.2263 0.0931
AE 0.7562 0.4591 0.4063 0.3719 0.3603 0.2616 0.7319 0.1750 0.0907 0.8022 0.4847 0.0710 0.7061 0.0908 0.0071
EncDecAD 0.6236 0.3246 0.2501 0.3810 0.2788 0.1906 0.4624 0.1306 0.0081 0.8133 0.3604 0.0965 0.7088 0.0876 0.0075
SRCNN 0.2399 0.1759 0.0865 0.2819 0.2763 0.1696 0.6076 0.1852 0.0147 0.9436 0.4058 0.0577 0.3892 0.2754 0.1105
AT 0.1875 0.1341 0.0815 0.2657 0.1621 0.0988 0.5385 0.1061 0.0083 0.8472 0.3038 0.0400 0.6947 0.0946 0.0058
TranAD 0.5910 0.2893 0.1972 0.3154 0.3053 0.2028 0.0658 0.0420 0.0025 0.7032 0.3000 0.0156 0.5519 0.0212 0.0008
Donut 0.7064 0.4060 0.3800 0.3733 0.3733 0.2790 0.7846 0.2777 0.1763 0.8627 0.4520 0.0613 0.8336 0.0578 0.0065
FCVAE 0.7399 0.4400 0.3650 0.3718 0.3573 0.2613 0.4971 0.1951 0.0189 0.7926 0.3815 0.1551 0.7415 0.0986 0.0109
TimesNet 0.7273 0.4299 0.4132 0.3946 0.3946 0.3478 0.6395 0.0710 0.0037 0.7598 0.2502 0.0182 0.6782 0.0446 0.0037
FITS 0.7716 0.4744 0.4490 0.7275 0.6104 0.5091 0.8220 0.5841 0.3999 0.9668 0.5232 0.3281 0.8080 0.2654 0.1209
KANAD 0.9004 0.6131 0.5926 0.9374 0.9360 0.9094 0.9817 0.7342 0.7713 0.9947 0.7187 0.3649 0.9871 0.4444 0.3063
OLS 0.9297 0.6325 0.6086 0.9447 0.9431 0.9178 0.9666 0.6796 0.4790 0.9968 0.8027 0.3826 0.8066 0.3770 0.2533

Point-global Point-context Pattern-shape Pattern-seasonal Pattern-trend

Figure 3: Divide the dataset according to different types of anomalies.

4.4 DISCUSSION ON OLS AND DEEP LEARNING METHODS

Table 5 slices evaluation by anomaly types, including point classes (global and context), and three
pattern classes (shape, seasonal and trend) shown in Fig.3 . There are two consistent observa-
tions emerge. First, linear autoregression (OLS) dominates point-type anomalies, achieving the best
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scores across all three metrics for both point-global and point-context, with sizeable gaps in event-
aware scoring. Second, deep models excel on shape-type phenomena, where non-linear deforma-
tions within a contiguous event matter most; here KANAD attains the highest event level detection,
while OLS remains competitive on pointwise metrics but lags markedly on E-F-5. Pattern-seasonal
is mixed, whereas pattern-trend favors KAN AD on all three metrics, suggesting trend-coupled
intra-window nonlinearity where parameterized priors over smooth, long-range dynamics help.

Why linear models win where they do. OLS-based lag regression estimates the conditional mean
of the next observation from a finite history and scores squared residuals, with a small ridge only
for numerical stability. This closed form estimator is the maximum likelihood estimation under
Gaussian noise and avoids the optimization instabilities that often plague deep detectors. In our
pipeline, this simplicity translates to both robustness and speed. When restricting attention to an
h-lag window, OLS on lagged features is equivalent to the finite-history posterior mean of a broad
family of stationary Gaussian processes; the squared residual is the negative log likelihood under
that posterior. Thus, any anomaly that is a low conditional density event under such processes is
well captured by a linear predictor with finite memory. Point-global and point-context deviations
abrupt spikes, local level shifts, and simple contextual departures fit precisely into this regime, hence
the strong linear performance.

Where deep models buy headroom. Event level success on pattern–shape and pattern–trend in-
dicates situations where (i) the relevant evidence is distributed across a window or a shpae, (ii) the
anomaly is partly invariant to time warps or frequency localized deformations, which looking at only
a part of it does not constitute an anomaly, (iii) long range interactions and cross channel couplings
fuel non linear effects that exceed finite order linear memory. Architectures that encode patch level
nonlinearity, cross channel attention, or frequency aware reasoning can shape a decision surface that
better aggregates weak, temporally spread cues into a single event hence KANAD’s higher E-F-5 in
Pattern-shape and its lead in Pattern-trend .

5 CONCLUSION

We revisited time series anomaly detection (TSAD) through the lens of simplicity and showed
that ordinary least squares (OLS) regression and reduced-rank regression (RRR) establish a strong
new baseline. Across diverse univariate and multivariate benchmarks, OLS consistently surpassed
state-of-the-art deep detectors while being vastly more efficient, highlighting that progress in TSAD
should be measured against principled baselines rather than architectural novelty.

Our analysis traced these gains to the use of closed-form solutions, which guarantee optimal param-
eters and avoid the instability of gradient-based methods. Extending to multivariate settings, RRR
further improved robustness, with rank and window size tuning reflecting the temporal complexity
of each dataset. From a theoretical perspective, we linked OLS-based autoregression to Gaussian
process-based conditional density, showing why linear models capture many anomaly types while
clarifying where deep models may still be needed.

These findings naturally lead to two imperatives: strong linear baselines must be included in future
evaluations, and new benchmarks should feature richer temporal structures that expose when deep
architectures truly provide benefits due to their ability to model complex interdependices.
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