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ABSTRACT

Modern recurrent neural networks (RNN) such as Gated Recurrent Units (GRU)
and Long Short-term Memory (LSTM) have demonstrated impressive results on
tasks involving sequential data in practice. Despite continuous efforts on interpret-
ing their behaviors, the exact mechanism underlying their successes in capturing
sequence-level information have not been thoroughly understood. In this work, we
present a study on understanding the essential features captured by GRU/LSTM
cells by mathematically expanding and unrolling the hidden states. Based on the
expanded and unrolled hidden states, we find there was a type of sequence-level
representations brought in by the gating mechanism, which enables the cells to
encode sequence-level features along with token-level features. Specifically, we
show that the cells would consist of such sequence-level features similar to those
of N -grams. Based on such a finding, we also found that replacing the hidden
states of the standard cells with N -gram representations does not necessarily de-
grade performance on the sentiment analysis and language modeling tasks, indi-
cating such features may play a significant role for GRU/LSTM cells.

1 INTRODUCTION

Long Short-term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and Gated Recurrent Unit
(GRU) (Chung et al., 2014) are widely used and investigated for tasks that involve sequential data.
They are generally believed to be capable of capturing long-range dependencies while being able to
alleviate gradient vanishing or explosion issues (Hochreiter & Schmidhuber, 1997; Karpathy et al.,
2015; Sutskever et al., 2014). While such models were empirically shown to be successful across
a range of tasks, certain fundamental questions such as “what essential features are GRU or LSTM
cells able to capture?” have not yet been fully addressed. Lacking answers to them may limit our
ability in designing better architectures.

One obstacle can be attributed to the non-linear activations used in the cells that prevent us from
obtaining explicit closed-form expressions for hidden states. A possible solution is to expand the
non-linear functions using the Taylor series (Arfken & Mullin, 1985) and represent hidden states
with explicit input terms. Literally, each hidden state can be viewed as the combination of con-
stituent terms capturing features of different levels of complexity. However, there is a prohibitively
large number of polynomial terms involved and they can be difficult to manage. But it is possible
that certain terms are more significant than others. Through a series of mathematical transforma-
tion, we found there were sequence-level representations in a form of matrix-vector multiplications
among the expanded and unrolled hidden states of the GRU/LSTM cell. Such representations could
represent sequence-level features that could theoretically be sensitive to the order of tokens and
able to differ from the token-level features of its tokens as well as the sequence-level features of its
sub-sequences, thus making it able to represent N -grams.

We assessed the significance of such sequence-level representations on sentiment analysis and lan-
guage modeling tasks. We observed that the sequence-level representations derived from a GRU or
LSTM cell were able to reflect desired properties on sentiment analysis tasks. Furthermore, in both
the sentiment analysis and language modeling tasks, we replaced the GRU or LSTM cell with cor-
responding sequence-level representations (along with token-level representations) directly during
training, and found that such models behaved similarly to the standard GRU or LSTM based models.
This indicated that the sequence-level features might be significant for GRU or LSTM cells.
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2 RELATED WORK

There have been plenty of prior works aiming to explain the behaviors of RNNs along with the vari-
ants. Early efforts were focused on exploring the empirical behaviors of recurrent neural networks
(RNNs). Li et al. (2015) proposed a visualization approach to analyze intermediate representations
of the LSTM-based models where certain interesting patterns could be observed. However, it might
not be easy to extend to models with high-dimension representations. Greff et al. (2016) explored
the performances of LSTM variants on representative tasks such as speech recognition, handwrit-
ing recognition, and argued that none of the proposed variants could significantly improve upon the
standard LSTM architecture. Karpathy et al. (2015) studied the existence of interpretable cells that
could capture long-range dependencies such as line lengths, quotes and brackets. However, those
works did not involve the internal mechanism of GRUs or LSTMs.

Melis et al. (2020) and Krause et al. (2017) found that creating richer interaction between contexts
and inputs on top of standard LSTMs could result in improvements. Their efforts actually pointed
out the significance of rich interactions between inputs and contexts for LSTMs, but did not study
what possible features such interactions could result in for good performances. Arras et al. (2017)
applied an extended technique Layer-wise Relevance Propagation (LRP) to a bidirectional LSTM for
sentiment analysis and produced reliable explanations of which words are responsible for attributing
sentiment in individual text. Murdoch et al. (2018) leverage contextual decomposition methods to
conduct analysis on the interactions of terms for LSTMS, which could produce importance scores
for words, phrases and word interactions. A RNN unrolling technique was proposed by Sherstin-
sky (2018) based on signal processing concepts, transforming the RNN into the “Vanilla LSTM”
network through a series of logical arguments, and Kanai et al. (2017) discussed the conditions
that could prevent gradient explosions by looking into the dynamics of GRUs. Merrill et al. (2020)
examined the properties of saturated RNNs and linked the update behaviors to weighted finite-state
machines. Their ideas gave inspirations to explore internal behaviors of LSTM or GRU cells further.
In this work, we sought to explore and study such significant underlying features.

3 MODEL DEFINITIONS

Vanilla RNN The representation of a vanilla RNN cell can be written as:
ht = tanh(Wixt +Whht−1), (1)

where ht ∈ Rd, xt ∈ Rdx are the hidden state and input at time step t respectively, ht−1 is the
hidden state of the layer at time (t− 1) or the initial hidden state. Wi andWh are weight matrices.
Bias is suppressed here as well.

GRU The representation of a GRU cell can be written as 1:
rt = σ(Wirxt +Whrht−1),

zt = σ(Wizxt +Whzht−1),

nt = tanh(Winxt + rt �Whnht−1),

ht = (1− zt)� nt + zt � ht−1,

(2)

where ht ∈ Rd, xt ∈ Rdx are the hidden state and input at time step t respectively, ht−1 is the
hidden state of the layer at time (t − 1) or the initial hidden state. rt ∈ Rd, zt ∈ Rd, nt ∈ Rd are
the reset, update, and the new gates respectively. W?? refers to a weight matrix. σ is the element-
wise sigmoid function, and � is the element-wise Hadamard product.

LSTM The representation of an LSTM cell can be written as:
it = σ(Wiixt +Whiht−1),

ft = σ(Wifxt +Whfht−1),

ot = σ(Wioxt +Whoht−1),

c′t = tanh(Wicxt +Whcht−1),

ct = ft � ct−1 + it � c′t,
ht = ot � tanh(ct),

(3)

1For brevity, we suppressed the bias for both GRU and LSTM cells here.

2



Under review as a conference paper at ICLR 2021

where ht ∈ Rd, xt ∈ Rdx are the hidden state and input at time step t respectively, it, ft, ot ∈ Rd
are the input gate, forget gate, output gate respectively. c′t ∈ Rd is the new memory, ct is the final
memory. W?? refers to a weight matrix.

4 UNROLLING RNNS

Using the Taylor series, the activations tanh(x) and σ(x) can be expanded (at 0) as:

tanh(x) = x+O(x3) (|x| < π

2
), σ(x) =

1

2
+

1

4
x+O(x3) (|x| < π) (4)

In this work, we do not seek to approximate the GRU or LSTM cells precisely, but to explore what
features the cells could capture.

4.1 VANILLA RNN

We can expand the vanilla RNN hidden state using the Taylor series as:

ht = x
n
t +Whht−1 +O(xnt +Whht−1)

3, (5)

where xnt =Wixt. Let us unroll it as:

ht = x
n
t +

t−1∑
i=1

W t−i
h xni + εr(x1,x2, ...,xt), (6)

where εr is the unrolled representation produced by higher-order terms. It can be seen that the
vanilla RNN cell can capture the input information at each time step.

4.2 GRU

Let us write xrt = Wirxt, xzt = Wizxt, xnt = Winxt, hrt−1 = Whrht−1, hzt−1 = Whzht−1,
hnt−1 =Whnht−1. Plugging Equation 4 in Equation 2, we can expand the hidden state at time step
t, then combine like terms with respect to the order of ht−1 and represent them as:

ht =
1

2
xnt −

1

4
xnt � xzt︸ ︷︷ ︸

zeroth−order

+
1

2
ht−1 +

1

4
hnt−1 +

1

4
xzt � ht−1 −

1

4
xnt � hzt−1 +

1

8
(xrt − xzt )� hnt−1 −

1

16
xrt � xzt � hnt−1︸ ︷︷ ︸

first−order

+
1

4
hzt−1 � ht−1 +

1

8
(hrt−1 − hzt−1)� hnt−1 −

1

16
xrt � hzt−1 � hnt−1 −

1

16
xzt � hrt−1 � hnt−1︸ ︷︷ ︸

second−order

− 1

16
hzt−1 � hrt−1 � hnt−1︸ ︷︷ ︸

third−order

+ξ(xt,ht−1),

(7)
where ξ(xt,ht−1) refers to the higher-order terms of xt, ht−1 as well as their interactions.

We will focus on the terms involving zeroth-order and first-order terms of ht−1 and explore the
features they can possibly result in. Then the hidden state at time step t can be written as:

ht =
1

2
xnt −

1

4
xnt � xzt

+
1

2
ht−1 +

1

4
hnt−1 +

1

4
xzt � ht−1 −

1

4
xnt � hzt−1 +

1

8
(xrt − xzt −

1

2
xzt � xrt )� hnt−1

+ ξ′(xt,ht−1),

(8)
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where ξ′(xt,ht−1) refers to the higher-order terms of ht−1 plus ξ(xt,ht−1). Note that the
Hadamard products can be transformed into matrix-vector multiplications (a � b = diag(a)b) and
we can obtain the following :

ht =
1

2
xnt −

1

4
xnt � xzt

+

[
1

2
I +

1

4
Whn +

1

4
diag(xzt )−

1

4
diag(xnt )Whz +

1

8
diag(xrt − xzt −

1

2
xzt � xrt )Whn

]
ht−1

+ ξ′(xt,ht−1).
(9)

For brevity, let us define two functions of xt:

g(xt) =
1

2
xnt −

1

4
xnt � xzt ,

A(xt) =
1

2
I +

1

4
Whn +

1

4
diag(xzt )−

1

4
diag(xnt )Whz +

1

8
diag(xrt − xzt −

1

2
xzt � xrt )Whn.

(10)
Both g(xt) andA(xt) are only functions of xt. Then we can rewrite Equation 9 as:

ht = g(xt) +A(xt)ht−1 + ξ
′(xt,ht−1). (11)

Throughout all the previous time steps (assuming the initial state are 0s), the hidden state at time
step t can be finally unrolled as:

ht = g(xt) +

t−1∑
i=1

A(xt)A(xt−1)...A(xi+1)︸ ︷︷ ︸
M(i+1):t

g(xi) + εg(x1,x2, ...,xt)

= g(xt) +

t−1∑
i=1

M(i+1):tg(xi)︸ ︷︷ ︸
Φi:t

+εg(x1,x2, ...,xt),

(12)

where M(i+1):t =
∏i+1
k=tA(xk) ∈ Rd×d is the matrix-matrix product from time step t to i + 1,

εg(x1,x2, ...,xt) are the unrolled representations from the higher-order terms in Equation 11. The
function g(xt) solely encodes current input, namely token-level features and thus we call it token-
level representation. The matrix-vector product Φi:t = M(i+1):tg(xi) encodes the tokens starting
from time step i and ending at time step t. If the matrices are different and not diagonal, any change
of the order will result in a different product. Therefore, Φi:t is able to capture the feature of the
token sequence between time step i and t in an order-sensitive manner. We call it a sequence-level
representation. Such representations are calculated sequentially from the left to the right through a
sequence of vector/matrix multiplications, leading to features reminiscent of the classical N -grams
commonly used in natural language processing (NLP). Let us use ĥt to denote the first two terms in
Equation 12 as:

ĥt = g(xt) +

t−1∑
i=1

Φi:t. (13)

ĥt can be called as N -gram representations (N ≥ 1). At time step t, it is able to encode current
token input and all the token sequences starting from time step i ∈ {1, 2, ..., t − 1} and ending at
time step t given an instance. In other words, it is a linear combination of current token-level input
feature (can be understood as the unigram feature) and sequence-level features of all the possible
N -grams ending at time step t. Bidirectional GRUs would be able to capture sequence-level features
from both directions.

If we make a comparison with the unrolled vanilla RNN cell as discussed above, we can see
that the sequence-level representation A(xt)A(xt−1)...A(xi+1)g(xi) is more expressive than
W t−i

h xni (i = 1, ..., t − 1) when capturing the sequence level features. Specifically, the sequence
level representation in GRU explicitly models interactions among input tokens, while capturing the
useful order information conveyed by them. This may also be a reason why gating mechanism can
bring in improved effectiveness over vanilla RNNs apart from alleviating the gradient vanishing or
explosion problems.
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4.3 LSTM

Let us write xit =Wiixt, x
f
t =Wifxt, xot =Wioxt, xct =Wicxt . Similarly, for an LSTM cell,

we can expand the memory cell and the hidden state in a similar way. We also focus on the terms
that involve the zeroth-order and first-order ct−1 as well as ht−1, and write the final memory cell
and hidden state together as:[

ct
ht

]
=

[
gc(xt)
gh(xt)

]
+

[
B(xt) D(xt)
E(xt) F (xt)

] [
ct−1
ht−1

]
+

[
ξ′c(xt,ht−1, ct−1)
ξ′h(xt,ht−1, ct−1)

]
. (14)

where:
gc(xt) =

1

4
(xit + 2)� xct , B(xt) =

1

4
diag(xft + 2),

D(xt) =
1

4
diag(xit + 2)Whc +

1

4
diag(xct)Whi,

gh(xt) =
1

4
(xot + 2)� gc(xt), E(xt) =

1

4
diag(xot + 2)B(xt),

F (xt) =
1

4
diag(xot + 2)D(xt) +

1

4
diag(gc(xt))Who.

(15)

ξ′c(xt,ht−1, ct−1) and ξ′h(xt,ht−1, ct−1) are the higher-order terms.

Let us use the matrix A(xt) ∈ R2d×2d to denote
[
B(xt) D(xt)
E(xt) F (xt)

]
, then the equation above can

be written as: [
ct
ht

]
=

[
gc(xt)
gh(xt)

]
+A(xt)

[
ct−1
ht−1

]
+

[
ξ′c(xt,ht−1, ct−1)
ξ′h(xt,ht−1, ct−1)

]
. (16)

And the final memory cell and hidden state can be unrolled as:[
ct
ht

]
=

[
gc(xt)
gt(xt)

]
+

t−1∑
i=1

[
i+1∏
k=t

A(xk)

] [
gc(xi)
gh(xi)

]
︸ ︷︷ ︸

Φi:t

+εl(x1,x2, ...,xt), (17)

where εl(x1,x2, ...,xt) are the unrolled representations from the higher-order terms. The matrix-
vector product Φi:t ∈ R2d for the token sequence between time step i and t will be viewed as the
sequence-level representation. Similar properties can be inferred. Analogously, we will use ĉt and
ĥt to denote the first two terms in Equation 17 respectively.

5 EXPERIMENTS

We would assess the significance of the sequence-level representations on downstream tasks. For
N -grams, negation is a common linguistic phenomenon that negates part or all of the meaning of
a linguistic unit with negation words or phrases. Particularly in sentiment analysis, the polarity of
certain N -grams can be negated by adding negation words or phrases. This task is a good testing
ground for us to verify the effectiveness of the learned sequence-level features. Thus, we would like
to examine whether the sequence-level representations could capture the negation information for
N -grams, which is crucial for the sentiment analysis tasks. Language modeling tasks are often used
in examining how capable an encoder is when extracting features from texts. We would use them
to verify whether the sequence-level representations along with token-level representations could
capture sufficient features during training and produce performances on par with standard GRU or
LSTM cells. The statistics of the datasets are shown in Appendix A.1.

5.1 INTERPRET SEQUENCE-LEVEL REPRESENTATIONS

We first trained the model with the standard GRU or LSTM cell with Adagrad optimizers (Duchi
et al., 2011), then used the learned parameters to calculate and examine the token-level and
sequence-level features on sentiment analysis tasks. Final hidden states were used for classifica-
tion. L-2 regularization was adopted. There were three layers in the model: an embedding layer, a
GRU/LSTM layer,and fully-connected layer with a sigmoid/softmax function for binary/multi-class
sentiment analysis.
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5.1.1 POLARITY SCORE

We would like to use the metric polarity score (Sun & Lu, 2020) to help us understand the properties
of the token-level features and sequence-level features. We followed the work of Sun & Lu (2020),
and defined two types of “polarity scores” to quantify such polarity information, token-level polarity
score and sequence-level polarity score. Such scores are able to capture the degree of association
between a token (a sequence) and a specific label. For binary sentiment analysis, each polarity score
is a scalar. For multi-class sentiment analysis, each polarity score is a vector corresponding to labels.

For a GRU cell, the two types of scores will be calculated as:

sgt = w
>g(xt), s

Φ
i:t = w

>Φi:t. (18)

For an LSTM cell, the sequence-level representation can be split into two parts: Φi:t = [Φc
i:t,Φ

h
i:t]

(Φc
i:t,Φ

h
i:t ∈ Rd). The polarity scores will be calculated as:

sgt = w
>gh(xt), s

Φ
i:t = w

>Φh
i:t. (19)

And the overall polarity score at time step t can be viewed as the sum of the token-level polarity
score, sequence-level polarity scores and other polarity scores:

st = w
>ht = sgt +

t−1∑
i=1

sΦi:t + sεt. (20)

where w is the fully-connected layer weight, sgt is the token-level polarity score at time step t and
sΦi:t is the sequence-level polarity score for the sequence between time step i and t, sεt is the polarity
score produced by ε(x1,x2, ...,xt). For binary sentiment analysis, w ∈ Rd, sgt ∈ R, sΦi:t ∈ R. For
multi-class sentiment analysis, w ∈ Rd×k, sgt ∈ Rk, sΦi:t ∈ Rk, and k is the label size. The overall
polarity scores will be used to make decisions for sentiment analysis.

We examined sequence-level representations on the binary and 3-class Stanford Sentiment Treebank
(SST) dataset with subphrase labels (Socher et al., 2013) respectively. Final models were selected
based on validation performances with embeddings randomly initialized. The embedding size and
hidden size were set as 300 and 1024 respectively.

5.1.2 SEPARATING PHRASES

We extracted all the short labeled phrases (2-5 words, 18490 positive/12199 negative) from the bi-
nary training set, and calculated the sum of the token-level polarity score and sequence-level polarity
scores for each phrase using the first two terms in Equation 20. We call the sum phrase polar-
ity score. Figure 1 shows that the two types of phrases can be generally separated by the phrase
polarity scores. This set of experiments show that the learned sequence-level features can capture
information useful in making discrimination between positive and negative phrases.

100 75 50 25 0 25 50 75 100
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Positive Phrase
Negative Phrase

100 75 50 25 0 25 50 75 100
0.00
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0.05
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Negative Phrase

Figure 1: Phrase polarity score distribution for short phrases in binary SST. Left, GRU; right, LSTM.
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5.1.3 NEGATING ADJECTIVES

We extracted 65 positive adjectives and 42 negative adjectives2 following the criterion in the work
of Sun & Lu (2020) from the vocabulary of the binary SST training set. We calculated the token-
level polarity scores for those adjectives and sequence-level polarity scores for their corresponding
negation bigrams (adding the negation word “not” and “never”). It can be seen from Table 1 that
the model could likely learn to infer negations with respect to sequence-level polarity scores: the
negation bigrams generally have sequence-level polarity scores of opposite signs to the correspond-
ing adjectives. For example, “outstanding” has a large positive token-level polarity score while “not
outstanding” has a large negative sequence-level polarity score.

Table 1: Statistics of token-level polarity scores for positive and negative adjectives and sequence-
level polarity scores for negation bigrams. Negation words are “not” and “never”. Models trained
on the binary SST dataset.

Cell Adjective Polarity Score Remarkmean std

LSTM

positive adjectives
word 8.7 4.3 token-level

negation bigram (not + word) -46.5 13.9 sequence-level
negation bigram (never + word) -39.3 13.9 sequence-level

negative adjectives
word -8.4 3.6 token-level

negation bigram (not + word) 14.3 11.8 sequence-level
negation bigram (never + word) 22.3 11.8 sequence-level

GRU

positive adjectives
word 8.2 3.8 token-level

negation bigram (not + word) -33.6 8.7 sequence-level
negation bigram (never + word) -27.1 7.9 sequence-level

negative adjectives
word -7.7 3.2 token-level

negation bigram (not + word) 9.2 9.5 sequence-level
negation bigram (never + word) 11.0 8.0 sequence-level

5.1.4 DISSENTING SUB-PHRASES

We also examined whether the sequence-level representations could play a dissenting role in negat-
ing the polarity of sub-phrases. We searched for labeled phrases (3-6 tokens) that start with negation
words “not”, “never” and “hardly” and have corresponding labeled sub-phrases without negation
words (those sub-phrases have opposite labels). For example, the phrase “hardly seems worth the
effort” was labeled as “negative” while the sub-phrase “seems worth the effort” was labeled as “pos-
itive”. Based on such conditions, we automatically extracted 14 positive phrases and 36 negative
phrases along with their corresponding sub-phrases, then we calculated the polarity scores with pre-
trained models. We would like to see if the polarity scores assigned to such linguistic units by our
models are consistent with the labels.

Table 2: Dissenting Sub-phrases: “Polarity score” refers to the sequence-level polarity scores for the
longest N -gram in the phrases. “>0” and “<0”refers to the number of positive polarity scores and
number of negative polarity scores respectively. “$ Ph” refers to the number of phrases. “Example”
refers to the example phrase (with sequence-level polarity score) for each type of extracted phrases.
The sub-phrases have opposite labels to the phrases. Models trained on the binary SST dataset.

Type # Ph Polarity score Example
>0 <0 Phrase Polarity score

LSTM positive phrases 14 7 7 never becomes claustrophobic 32.3
negative phrases 36 0 36 hardly an objective documentary -115.7

GRU positive phrases 14 8 6 never becomes claustrophobic 10.8
negative phrases 36 0 36 hardly an objective documentary -48.1

Ideally, based on our analysis the longest N -grams for the phrases will be assigned polarity scores
consist with their labels to offset the impact of their sub-phrases. Table 2 shows that the sequence-
level representations of the N -grams could be generally assigned polarity scores with the signs
opposite to the sub-phrases, likely playing a dissenting role. Figure 2 shows the sequence-level

2The adjectives are listed in Table 7 in the appendix.
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polarity score of the four-gram “hardly an objective documentary” was negatively large that could
help reverse the polarity of the sub-phrase “an objective documentary” and make the overall polarity
of the phrase negative. Such negation can be also observed on models with bidirectional GRU or
LSTM cells in A.2.

hardly an objective documentary

-48.1

6.7

4.2

2.1

hardly an objective documentary

-115.7

0.8

8.1

6.7

Figure 2: Example of dissenting a sub-phrase. Polarity scores are listed for N -grams in the phrase
“hardly an objective documentary”. Each vertical bar represents either a token or a sequence that
starts from its left side and ends with its right side. Left, GRU; right, LSTM.

We noticed that in order for such cells as GRU/LSTM to learn complex compositional language
structures, it may be essential for the model to have enough exposure to relevant structures during
the training phase. We did a simple controlled experiment on two sets of labeled instances. In the
first set, the six training instances are “good”, “not good”, “not not good”, “not not not good”, “not
not not not good” and “not not not not not good” with alternating labels “positive” and “negative”.
In the second set, the training set only consists two labeled instances, the positive phrase “good”
and the negative phrase “not not not not not good”. We then trained the GRU model on these two
training sets, and then applied these models on a dataset by extending the first training set with two
additional phrases “not not not not not not good” and “not not not not not not not good”. As we
can see from Figure 3, the model can infer the multiple negation correctly for the given cases when
trained on the first set, and is able to generalize to unseen phrases well. However, it fails to do so
for the second. This indicates that proper supervision would be needed for the models to capture the
compositional nature of the semantics as conveyed by N -grams.

good 1-not 2-not 3-not 4-not 5-not 6-not 7-not

200

150

100

50

0

50

100

150

good 1-not 2-not 3-not 4-not 5-not 6-not 7-not

40

30

20

10

0

10

Figure 3: Distributions of polarity scores for negation N -grams (N = 1− 8) in the phrase “not not
not not not good”. Each box represents a polarity score distribution for either the token “good” or
the i times negation N -grams (e.g., “3-not” refers to “not not not good”). Circles refer to outliers.
Left, model trained on six labeled phrases. Right, model trained on two labeled phrases. Results
from 30 trials with random initializations. A GRU cell is used.

5.2 TRAINING WITH SEQUENCE-LEVEL REPRESENTATIONS

We examined whether the sequence-level representations along with the token-level representations
could capture sufficient features during training and perform on par with the standard cells. We
trained models by replacing the standard GRU or LSTM cell with the corresponding N -gram rep-
resentations (ĥt for a GRU or LSTM cell). We evaluated them on both sentiment analysis and
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language modeling tasks and compared them with the standard models. Additionally, we created a
baseline model named “Simplified” by removing all the terms involving xt fromA(xt) in Equation
11 and 16. The resulting representations do not capture sequence-level information. On the binary
SST dataset (with sub-phrases) and Movie Review dataset (Pang & Lee, 2004), we found both the
standard cells and our N -gram representations behaved similarly, as shown in Table 3. But the
“Simplified” models did not perform well. Glove (Pennington et al., 2014) embeddings were used.

We ran language modeling tasks on the Penn Treebank (PTB) dataset (Marcus et al., 1993), Wikitext-
2 dataset and Wikitext-103 dataset (Merity et al., 2016) respectively3. The embedding size and
hidden size were both set as 128 for PTB and Wikitext-2, and 256 for Wikitext-103. Adaptive
softmax (Joulin et al., 2017) was used for Wikitext-103.

Table 3: Accuracy (%) on sentiment analysis
datasets

Cell Type SST MR
Valid Test Valid Test

LSTM
Standard 85.8 87.9 81.6 78.7
N -gram 86.9 87.9 82.4 78.4

Simplified 83.0 84.8 81.0 76.2

GRU
Standard 85.9 88.1 81.2 76.7
N -gram 86.4 88.3 82.6 77.6

Simplified 82.9 83.7 80.6 76.1

It can be seen that using such representations
can yield comparable results as the standard
GRU or LSTM cells, as shown in Table 4.
However, for the “simplified” representations,
their performances dropped sharply which im-
plies the significance of sequence-level repre-
sentations. We noticed the intermediate outputs
could grow to very large values on Wikitext-
103, therefore, we clamped the elements in the
hidden states to the range (-3, 3) at each time
step. This demonstrated that the sequence-level
features might be a significant contributor to the performances of a GRU or LSTM cell apart from
the token-level features.

Although using the N -gram representations perform well on both tasks, we cannot rule out the
contributions of other underlying complex features possibly captured by the standard cells. This
can be observed from the test perplexities obtained from the N -gram representations, which are
generally slightly higher than those obtained from the standard GRU or LSTM cells. However, the
N -gram representations even outperformed the standard GRU cell on Wikitext-103.

Table 4: Perplexities on language modeling datasets. All parameters were initialized randomly.

Cell Variants PTB Wikitext-2 Wikitext-103
Valid Test Valid Test Valid Test

GRU
Standard 89.08 77.19 91.79 80.68 121.77 116.70
N -gram 90.46 78.32 94.53 82.69 109.95 106.23

Simplified 100.30 85.58 105.50 92.28 137.00 130.65

LSTM
Standard 89.22 77.11 92.23 80.74 105.25 101.08
N -gram 90.21 77.82 94.35 81.21 107.1 103.34

Simplified 101.06 85.64 105.67 92.13 135.69 130.07

6 CONCLUSION

In this work, we explored the underlying features captured by GRU and LSTM cells. We expanded
and unrolled the internal states of a GRU or LSTM cell, and found there were special representations
among the terms through a series of mathematical transformations. Theoretically, we found those
representations were able to encode sequence-level features, and found their close connection with
the N -gram information captured by classical sequence models. Empirically, we examined the use
of such representations based on our finding, and showed that they can be used to construct linguistic
phenomenons such as negations on sentiment analysis tasks. We also found that models using
such representations only can behave similarly to the standard GRU or LSTM models on both the
sentiment analysis and language modeling tasks. Our results confirm the importance of sequence-
level features as captured by GRU or LSTM, but at the same time, we also note that we could not
rule out the contributions of other more complex features captured by the standard models. There
are some future directions that are worth exploring. One of them is to explore possible significant
features captured by higher-order terms in a GRU/LSTM cell, and understand how they contribute
to the performances.

3Our model is a word-level language model, we used the torchtext package to obtain and process the data.
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A APPENDIX

A.1 DATASET STATISTICS

We listed the statistics of the datasets used in our experiments.

Table 5: Statistics of sentiment analysis datasets. “Label” refers to the size of the positive la-
bels and negative labels in the training set, “positive/negative” for binary classification, “posi-
tive/neutral/negative” for 3-class classification.

Data Train/Valid/Test Label Vocab Max.len Remark
SST 98,794/872/1,821 56,187 /42,607 17404 54 sub-phrase labels

SST-Sampled 320/-/- 110/86/124 248 7 3-class
MR 9,500/500/662 4,729/4,771 18584 59

Synthetic 4,120/230/200 2,060/2,060 85 6 negation cases

Table 6: Statistics of language modeling dataset, quoted from Einstein.ai
PTB Wikitext-2 Wikitext-103

Train Valid Test Train Valid Test Train Valid Test
Article Num - - - 600 60 60 28,475 60 60
Token Num 887,521 70,390 78,669 2,088,628 217,646 245,569 103,227,021 217,646 245,569
Vocab Size 10,000 33,278 267,735

A.2 SST DATASET

We extracted adjectives (shown in Table 7) based on their frequency ratio in the positive and negative
instances. If an adjective appeared mostly in positive (negative) instances, we would regard it as a
positive (negative) adjective. The textblob package 4 was used to detect adjectives. The labeled
phrases (shown in Table 8) would be selected from the SST dataset if they had labeled sub-phrases
of opposite signs by removing the negation words.

Table 7: Extracted adjectives from the SST dataset
Type Adjectives Size

Positive

outstanding, ecological, inventive, comfortable, nice, authentic, spontaneous, sympathetic, lovable,
unadulterated, controversial, suitable, grand, happy, enthusiastic, adventurous, successful, noble,
true, detailed, sophisticated, sensational, exotic, fantastic, remarkable, impressive, charismatic,
good, effective, rich, popular, unforgettable, famous, comical, energetic, ingenious, extraordinary,
pleased, tremendous, marvelous, believable, artistic, expressive, exceptional, fabulous, strong,
humorous, gorgeous, available, incredible, memorable, likable, delicious, attractive, impeccable,
accessible, delighted, hilarious, inspirational, thoughtful, affable, creative, great, imaginative, enjoyable

65

Negative

bad, tedious, miserable, psychotic, didactic, inexplicable, feeble, sloppy, disastrous, stupid,
amateurish, false, cynical, farcical, terrible, unhappy, horrible, atrocious, idiotic, wrong, pathetic,
angry, uninspired, vicious, unfocused, unnecessary, artificial, troubled, questionable, arduous,
stereotypical, poor, unpleasant, forgettable, ridiculous, laughable, indecipherable, grievous, impassive,
gratuitous, weak, simplistic

42

A.2.1 BIDIRECTIONAL GRU/LSTM MODELS

We also conducted experiments using bidirectional GRU and LSTM cells on the binary SST dataset.
Figures 4 and 5 show that the models can capture such negation from both directions. For exam-
ple, the four-gram “to feel contradictory things” has a negative sequence-level polarity score while
the five-gram “freedom to feel contradictory things” has a positive one. Similarly, in the backward
direction, the bigram “to freedom” has a positive sequence-level polarity score while the five-gram
“things contradictory feel to freedom” has a negative one. Glove (Pennington et al., 2014) embed-
dings were used. Embedding size and hidden size were set as 300 and 1024 respectively.

4https://textblob.readthedocs.io/en/dev/
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Table 8: Selected labeled phrases from the SST dataset
Type Phrase

positive

never fails him, never fails to fascinate ., not a bad way, never wanted to leave .,
never feels derivative, not to be dismissed, never becomes claustrophobic,
never fails to entertain, never feels draggy, never veers from its comic course,
never growing old, not a bad premise, not without merit, not mean - spirited

negative

not life - affirming, not for every taste, hardly an objective documentary,
not a must - own, never takes hold ., not a classic, not the best herzog,
never rises to a higher level, not exactly assured in its execution,
not as good as the original, not be a breakthrough in filmmaking,
not always for the better, not well - acted, not very compelling or much fun,
never reach satisfying conclusions, not as sharp, never rises above superficiality .,
never seems fresh and vital ., not a good movie, not a movie make,
not the great american comedy, not smart and, hardly seems worth the effort .,
not enough of interest onscreen, not funny performers, not well enough,
not in a good way, hardly a nuanced portrait, not good enough, not number 1,
not very amusing, never gaining much momentum, not well enough,
not one clever line, not a good movie, never comes together

freedom to feel contradictory things
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0.4

freedom to feel contradictory things

-0.4

-1.2

0.3

1.0

4.9

Figure 4: Polarity scores for N -grams (N = 1 − 5) in the phrase “freedom to feel contradictory
things” from bidrectional GRU cells. Left, forward cell; right, backward cell. Each bar represents a
N -gram. Red refers to negative polarity scores while blue refers to positive ones.

A.2.2 3-CLASS SST DATASET

We also considered the dissenting scenarios for 3-class sentiment analysis. We extracted 160 pairs
of labeled phrases starting with negation words and their sub-phrases with different labels from the
3-class SST dataset. We trained the model on the extracted pairs directly until all the instances
were classified correctly. Table 9 showed that the sequence-level polarity scores of the longest N -
grams in the phrases could generally capture the differences between the pairs, and dominate in the
dimensions corresponding to the labels.

Table 9: Results on the sampled 3-class SST dataset. “neu”, “pos” and “neg” refer to that the
sequence-level polarity scores have the largest value in the dimension corresponding to the label
“neutral”, “positive” and “negative”.

Type LSTM GRU Num Exampleneu pos neg neu pos neg
Neutral N -gram 30 2 5 37 0 0 37 not ultimate blame
Positive N -gram 0 23 5 6 18 4 28 never feels derivative
Negative N -gram 1 2 92 6 0 89 95 not to see it
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Figure 5: Polarity scores for N -grams (N = 1 − 5) in the phrase “freedom to feel contradictory
things” from bidrectional LSTM cells. Each bar represents aN -gram. Red refers to negative polarity
scores while blue refers to positive ones.

A.2.3 IMPACT OF N -GRAM LENGTHS

To understand the impact of sequences with different lengths, we selected positive and negative N -
grams (N=1-4) ending with the last token of the instances based on their association with positive
and negative labels respectively. It appears that the token-level polarity scores for unigrams and
sequence-level polarity scores for bigrams can reflect their association with labels better than that for
trigrams and four-grams as shown in Figure 6. This demonstrates that although the sequence-level
features can be well captured and are important for sentiment analysis tasks, the shorter sequences
in general may be playing more crucial roles than the longer ones.
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Figure 6: Polarity score distribution for the N -grams (N=1-4) that have strong association with a
specific label. Result from a GRU cell on the SST dataset.

A.3 SYNTHETIC DATASET

Few real-world datasets provide sufficient exposures for tokens, phrases and their negation expres-
sions. Therefore, we synthesized instances with binary labels based on adjectives and negation
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Table 10: Polarity score distribution for tokens, negation phrases and double negation phrases. Re-
sults from 10 trials with random initializations.

Type Number GRU LSTM
Polarity Score Polarity Score

positive adjectives
words 15 4.06 ± 0.62 3.91 ± 0.86

negation 31 -5.85 ± 4.81 -14.36 ± 8.32
double negation 10 12.75 ± 5.66 21.17 ± 21.00

negative adjectives
tokens 18 -4.17 ± 0.75 -3.75± 0.90

negation 37 6.59± 5.11 15.05± 9.61
double negation 10 -11.27 ± 8.08 -22.13± 18.50

Table 11: Adjectives, negation and double negation examples for the synthetic dataset
Adjectives Negation Example Double Negation Example

Positive

good, nice, charming,
awesome, fascinating, impressive,

excellent, wonderful, attractive,
interesting, inspiring, stunning,

amazing, terrific, incredible

not charming, not good
not incredible, not wonderful

not nice, not amazing
never charming, never amazing

never incredible, never attractive
never look wonderful, never look charming

never seemed good

not not attractive
not not inspiring
not not awesome

never never awesome
never never wonderful

never never seemed incredible

Negative

awful, bad, uninspiring,
dull, boring, tedious,

horrible, terrible, pathetic,
mediocre, shallow, pointless,

unfunny, gross, poor,
dreadful, dire, useless

not horrible, not pointless
not dire, not mediocre

not terrible, not unfunny
not bad, not dull

never boring, never horrible
never seem terrible, never seem pointless

never seemed unfunny

not not gross
not not mediocre
not not unfunny
never never bad

never never seemed dire
never never seemed shallow

words following simple grammatical rules. We created a vocabulary of 85 words including nouns,
verbs, adjectives, adverbs, articles and negation words. Negation phrases and double negation
phrases are also incorporated in those instances. We let positive adjectives such as “inspiring” and
the double negation expression “not not inspiring” appear in the instances labeled as positive, e.g.,
“her dramas were indeed inspiring”, “her movies are not not inspiring” .Let the negation expression
“not inspiring” appear in the instances labeled as negative, e.g., “his movie is not inspiring”. We did
similarly for negative adjectives.

Table 10 shows that the sequence-level representations could generally have polarity scores match-
ing the roles of the negation and double negation N -grams. For the positive (negative) adjectives,
their negation N -grams have negative (positive) sequence-level polarity scores while their double
negationN -grams have positive (negative) ones. The negation tokens are “not” and “never”. Models
were trained until all the negation expressions have been classified correctly.

The key tokens, negation and double negation phrases are shown in Table 11.

A.4 PERFORMANCE DURING TRAINING

We make comparisons between the performances of the standard GRU/LSTM cell and the N -gram
representations during training. It can be seen from Figure 7 and 8 that the N -gram representa-
tions perform similarly to the standard GRU/LSTM cell on the PTB, Wikitext-2 and Wikitext-103
datasets. Adam optimizers (Kingma & Ba, 2014) were used.

A.5 MULTIPLE NEGATION ON A SIMPLE SET

To scrutinize the sequence-level features under controlled conditions, we created a training set con-
sisting of the phrases: “good”, “not good”, “not not good”, “not not not good”, “not not not not
good” and “not not not not not good” with alternating labels “positive” and “negative”. We trained
a standard GRU or LSTM cell on the training set until the loss converged (less than 10e-6) with
the embedding size 256, hidden size 1024, then calculated the corresponding polarity scores for
N -grams.

15



Under review as a conference paper at ICLR 2021

0 10 20 30 40 50
Epoch

4.5

5.0

5.5

6.0

6.5

Lo
ss

train
valid

0 10 20 30 40 50
Epoch

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

Lo
ss

train
valid

0 10 20 30 40 50
Epoch

5.0

5.5

6.0

6.5

7.0

Lo
ss

train
valid

0 10 20 30 40 50
Epoch

4.5

5.0

5.5

6.0

6.5

Lo
ss

train
valid

0 10 20 30 40 50
Epoch

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

Lo
ss

train
valid

0 10 20 30 40 50
Epoch

5.0

5.5

6.0

6.5

7.0

Lo
ss

train
valid

Figure 7: Top, standard GRU Cell; bottom, approximate hidden state representation. From left to
right: PTB, Wikitext-2, Wikitext-103. Training and validation losses for language modeling tasks.
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Figure 8: Top, standard LSTM Cell; bottom, approximate hidden state representation. From left to
right: PTB, Wikitext-2, Wikitext-103. Training and validation losses for language modeling tasks.

Figure 9 shows the sequence-level features derived from the pre-trained GRU or LSTM cell were
able to detect multiple negation, implying those features were likely to be significant for classi-
fication decisions. For example, the four-gram “not not not good” generally has a large negative
sequence-level polarity score while the five-gram “not not not not good” generally has a large posi-
tive one, and the six-gram “not not not not not good” has a large negative one again. These polarity
scores could help the phrases reverse the polarity of their sub-phrases with opposite labels. Figure
10 shows examples from a pre-trained GRU and an LSTM cell with random initializations. We can
see with each “not”, the sequence-level polarity score will reverse the polarity. Based on aforemen-
tioned analysis, it may be essential for the models to have enough exposure to relevant structures
during the training phase.
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Figure 9: Distributions of polarity scores for negation N -grams (N = 1 − 6). Each box represents
a polarity score distribution for either the token “good” or the i times negation N -grams (shown as
i-not, i = 1, 2...5). Circles refer to outliers. Results from 30 trials with random initializations. An
LSTM cell is used.
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Figure 10: Polarity scores for N -grams (N = 1 − 6) in “not not not not not good”. Left, GRU;
right, LSTM. Each vertical bar represents the polarity score (token-level or sequence-level) for the
N -gram that it covers. Red bars refer to negative polarity scores and blue bars refer to positive
scores.
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