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Abstract
Learning predictors that do not rely on spurious
correlations involves building causal representa-
tions. However, learning such a representation
is very challenging. We, therefore, formulate the
problem of learning a causal representation from
high dimensional data and study causal recov-
ery with synthetic data. This work introduces
a latent variable decoder model, Decoder BCD,
for Bayesian causal discovery and performs ex-
periments in mildly supervised and unsupervised
settings. We present a series of synthetic experi-
ments to characterize important factors for causal
discovery and show that using known intervention
targets as labels helps in unsupervised Bayesian
inference over structure and parameters of linear
Gaussian additive noise latent structural causal
models.

1. Introduction
Exploiting structure in the data to infer latent variables and
capture causal mechanisms is crucial for causal representa-
tion learning (Schölkopf et al., 2021). Such a representation
would allow for counterfactual reasoning in a manner sim-
ilar to that of humans, thereby moving away from models
that rely on exploiting spurious correlations for prediction.

Causal mechanisms are usually modelled as Bayesian Net-
works or Directed Acyclic Graphs (DAG) and given infor-
mation about the causal variables, one can learn the DAG
with structure learning algorithms. Recently, there has been
a flurry of works advancing structure learning algorithms
(Shimizu et al., 2006; Zheng et al., 2018; He et al., 2019;
Pamfil et al., 2020; Lorch et al., 2021; Annadani et al., 2021;
Ng et al., 2021; Cundy et al., 2021; Deleu et al., 2022) that
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learn the structure of a DAG given data samples (of causal
variables). Most of these works cast the discrete optimiza-
tion of learning a DAG into a continuous one that is opti-
mized through gradient descent, thereby sidestepping com-
putational intractability arising from the super-exponential
nature of DAG search in the discrete case. However, all
approaches learn a causal DAG on the premise that one has
full access to the true causal variables which might not be
realistic. A more realistic assumption would be that we have
partial or no access to true causal variables and that one has
to infer the structure along with the causal variables.

Here, we use a fully differentiable latent variable model,
Decoder BCD, to study the problem of Bayesian structure
learning in linear Gaussian additive noise models, from high
dimensional data. We perform synthetic experiments to ana-
lyze why unsupervised causal discovery in latent variable
models is difficult. Section 2 explains preliminaries for the
setup and section 3 gives the problem setup. In section 4,
we introduce Decoder BCD, a decoder model for Bayesian
Causal Discovery in the latent space before discussing ex-
periments and our findings in section 5. We discuss related
work in section 6 before concluding in section 7.

2. Preliminaries
Structural Causal Models (SCM): We operate in the frame-
work of SCM (Pearl, 2009) where node Zi represents a
random causal variable with an independent noise variable
ϵi ∼ N (0, σ2

i ), and parents PaG(Zi) corresponding to a
DAG G. We focus primarily on the family of linear Gaus-
sian additive noise models. However, for a DAG to be iden-
tifiable from data, one either has to observe a non-Gaussian
setting, or, in the case of a Gaussian one, have an equal
noise variance assumption (all σi = σ) (Peters & Buhlmann,
2014). Since we are in the Gaussian setting, we assume the
latter. Thus, we have d causal variables Z = [Z1, ...Zd],
and a joint distribution entailed by the DAG G such that,

P (Z1, ...Zd) =

d∏
i=1

P (Zi|PaG(Zi)) (1)

and the exact values of the d random variables are given
by zi = f(PaG(zi)) + ϵi, where f(.) is a linear function.
In our case, f is the weighted sum of values taken on
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Figure 1. An illustration of the latent variable (decoder) model for Bayesian causal discovery

by random variables PaG(Zi), the weights given by the
weighted adjacency matrix W , such that z = WT z + ϵ.

Bayesian Causal Discovery Nets (BCD Nets): We build
Decoder BCD, our latent variable decoder model, upon
BCD Nets (Cundy et al., 2021). Given samples of true
causal variables, BCD Nets is a Bayesian structure learning
method that obtains a posterior distribution over causal
structures that best explains the data. Similar to other
structure learning works (Lorch et al., 2021), BCD Nets
introduces the problem of structure learning as a continuous
constrained optimization problem. However, the DAG is
parameterized such that one always ends up with a DAG
and is therefore a hard constraint (in contrast to DiBS which
has a soft DAG constraint). This is achieved by formulating
the weighted adjacency matrix as W = (PLPT )

T where
P is a permutation matrix and L is strictly lower triangular.
When P is identity, this is equivalent to having a DAG
of fixed ordering with each node j having its possible
parents only in the node range [j + 1, d]. P allows
one to transition between node orderings by permuting
the rows and columns of L. Apart from estimating
W (via P and L), BCD Nets also infers Σ, the noise
covariance, for the noise variables on each node in the DAG.

Thus, overall, BCD Nets formulates the Bayesian Structure
Learning problem as inference of P,L, and Σ with a unique
factorization of the posterior as qϕ(P,L,Σ) = qϕ(P |L,Σ) ·
qϕ(L,Σ). The model is trained on an ELBO loss (eq. 2)
with a horseshoe prior on L, Gumbel Sinkhorn prior (Jang

et al., 2016) on P , and a Gaussian prior on Σ.

E(L,Σ)∼qϕ

[
EP∼qϕ(.|L,Σ)

[
log p(X|P,L,Σ)

− log
qϕ(P |L,Σ)
p(P |L,Σ)

]
− log

qϕ(L,Σ)

p(L,Σ)

] (2)

For finer details, we refer the reader to the original work
(Cundy et al., 2021). Our work focuses more on extending
BCD Nets to the high dimensional setting and studying
unsupervised graph recovery in the latent space.

3. The Problem Setup
This work revolves around the Bayesian inference of causal
variables Z and the causal structure G. Given n samples
of high dimensional data X ∈ Rn×D, we wish to recover
a distribution over graph structures G – the (weighted) ad-
jacency matrix – and the causal variables Z ∈ Rn×d. Our
setup revolves mostly around the recovery in linear isotropic
Gaussian additive noise SCM, which is identifiable. Models
like DiBS (Lorch et al., 2021), VCN (Annadani et al., 2021),
and BCD Nets (Cundy et al., 2021) can recover the Ground
Truth (GT) DAG given only observational and interventional
data. Given observational data, recovery is possible up to a
Markov Equivalence Class (MEC).

We first generate a random ER (Erdös & Rényi, 1959)
DAG — with weighted adjacency matrix WGT with spar-
sity pattern GGT , the adjacency matrix — and consider
this the ground truth and set the noise covariance to be
ΣGT = σ2

GT I , since we have an isotropic Gaussian assump-
tion. In our experiments, σGT is usually set to 0.1.
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Data generation of the true causal variables: The data
generation is done by an ancestral sampling process, com-
pactly given by z = WT z + ϵ. One could also get inter-
ventional data from this setup: (i) Choose the node set N
being intervened upon, (ii) for every node in N , zero out
the particular column in W to get the mutated DAG W̃ and
(iii) perform ancestral sampling using z = W̃T z + ϵ. This
process is repeated multiple times to get n samples of z,
and we will then organize these samples into a (n, d) matrix
and term it zGT , or simply, z 1.

Generating the true high dimensional data: We assume
the observed low level data is a linear projection of the
causal variables given by XGT = zGTP

′ , where P ′ ∈
Rd×D is a projection matrix and we have D >> d in the
real world. For most of the upcoming experiments, we will
study recovery in the (simpler) limiting case where d equal
to D. This work studies recovery in latent space in a case
where direct access to true causal variables is not given, in
contrast to existing structure learning works.

4. Decoder BCD
BCD Nets performs Bayesian inference over P,L,Σ given
samples of true causal variables to best explain the data by
training an ELBO loss (see eq. 2). Decoder BCD tries to
infer the decoder parameters in addition to inferring P,L,Σ.
It is trained over XGT instead of over zGT as in BCD Nets.
Thus, we relax the assumption that we have access to sam-
ples of true causal variables. We can only access the high
dimensional data that has to be explained by (Z,G) and we
have to fit a structure, Ĝ, and estimate edge weights, Ŵ , to
fit our best guess of the causal variables, ẑ. Algorithm 1
summarizes the inference mechanism of Decoder BCD. A
diagrammatic overview is given in Figure 1.

Algorithm 1 Decoder BCD for causal discovery from high
dimensional data
1. Initialize random distributions for P , L, Σ
2. For train steps:
(i) Sample P̂ , L̂, Σ̂ ∼ qϕ(P,L,Σ)

(ii) Ŵ = (P̂ L̂P̂T )T

(iii) Perform ancestral sampling: ẑ = ŴT ẑ + ϵ; ϵ ∼
N (0, σ̂2) and Σ̂ = σ̂2I
(iv) Decode ẑ to obtain X̂
(v) Update parameters of the distribution P (P,L,Σ) with
loss as MSE(X, X̂)
(vi) For supervised experiments, add an additional KL
loss between true and posterior observational joint:
KL(q(z1, ...zd)||p(z1, ...zd))

1These variables will also be referred to, at times, as samples
of true causal variables

5. Experiments and Findings
For all our experiments, for simplicity, we will stick to just
learning the decoder and inferring the edge matrix L since
this makes the optimization simpler for our studies. Such
an assumption of fixing the permutation P to the GT, and
thereby, the node orderings, is not unreasonable (He et al.,
2019). Here, the focus is solely on inferring the edges L in
latent space whilst learning a decoder. In all experiments,
we train the model for 5000 steps across 20 random seeds,
with a learning rate of 0.002 on ER-2 DAGs. We consider
the case of the higher dimensional data being D = 10
dimensions that is generated by data from a d = 6 node
underlying SCM.

Metrics: In our experiments, we refer to the expected Struc-
tural Hamming Distance across 64 samples of the inferred
DAG as SHD, MSE(L, L̂) is the MSE between predicted
L̂ and LGT , AUROC (a value of 0.5 denotes a random base-
line with null edges), and KL(true || learned) refers to the
KL divergence between the posterior observational joint and
the GT observational joint distributions.

5.1. Learning edge matrix L with supervision

For the supervised experiments, we add an additional
KL loss on the inferred posterior observational joint
q(z1, ...zd) and the prior observational GT joint distribu-
tion, p(z1, ...zd) ∼ N (µz,Σz), where Σz is calculated with
WGT instead of with Ŵ . The estimation of the prior and
posterior observational joint distribution is detailed in A.1.
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Figure 2. Supervised learning of L on 600 observational data
points with d = 6, D = 10

Finding 1: From figure 2, we can see the expected SHD
approaching 0 as KL(true || learned) and MSE(L, L̂) ap-
proach 0. Using a KL over the observational joint distribu-
tion results in complete graph recovery in the supervised
case. This is expected since we provide a mild signal for
the model to uncover the true causal variables. Instead of
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providing prior over the samples of true causal variables,
we use the true observational joint distribution as a signal.

5.2. Unsupervised learning of a single edge weight

For this setting, instead of inferring the whole lower trian-
gular edge matrix L, we infer only the last edge at position
(d, d − 1). The other elements of the matrix are fixed to
the GT and we observe graph recovery in this case. This
subsection is split into two parts to study recovery with (i)
observational data and (ii) a mix of observational and in-
terventional data, to analyze the effects of interventional
data.
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Figure 3. Unsupervised learning of a single edge weight with 1800
observational data points

We use 1800 observational data points for case (i) and 1800
data points (50-50 split of observational and interventional
data) for case (ii). The interventional data generation pro-
cess for single node and multi node interventions is detailed
in A.2. The interventional values are fixed to 100.
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Figure 4. Unsupervised learning of a single edge weight with 900
observational and 900 interventional data points

Finding 2: Figures 3 and 4 reveal that using observational

and/or interventional data with single node or multi node
interventions with fixed intervention values is not sufficient
to learn to orient a single edge in the unsupervised case.

5.3. Unsupervised learning of edge weight L

In this experiment and in the next, we explore the problem
of learning the entire lower triangular edge matrix L in an
unsupervised setting. First, we consider the learning prob-
lem with various amounts of observational data to analyze
its effect on edge recovery in the latent space, which is
shown in figure 5.
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Figure 5. Unsupervised learning of the edge weight matrix with
various amounts of observational data

Figure 5 shows that all metrics diverge with training but
there is no trend with respect to the amount of observational
data that the model is given.
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Figure 6. Unsupervised learning of edge weights with random sin-
gle node and multi node interventions

We now consider learning L using interventional targets as
labels to learn the structure in the latent space with a mix
of 300 observational data points and 3300 interventional
data points. For this experiment, we retrain Decoder BCD
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multiple times from scratch — each time with the same
300 observational data points but with more interventional
data than the previous run. This helps us understand the
usefulness of interventional data for graph recovery. This
result is illustrated in figure 6. For the interventional data
points, we chose to use a fixed intervention value of 100.0.
The reason for this particular value was that we had to
choose a value that is far from 0 – the mean of all the nodes
in the causal graph. Note that in a linear gaussian additive
noise SCM, if one has 0 mean of the error variables ϵ, then
all nodes in the graph have 0 mean.
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Figure 7. Unsupervised learning of edge weights with uniform
single node and multi node interventions

Finally, other than learning from randomly (single or multi)
intervened nodes, we also performed an experiment to ob-
serve the effect of randomly chosen interventional values,
rather than a fixed interventional value. Thus, instead of an
intervention value of 100, we randomly sampled interven-
tional values in Uniform(−10.0, 10.0) for each data point
and repeated our previous experiment for the same amount
of observational (300) and interventional (3300) data points.
We summarize our findings for this experiment in figure 7.

Finding 4: Figures 6 and 7 show that both single node
and multi node interventions help in recovering the edge
weights, measured across all the 4 metrics. However, multi
node interventions with uniformly sampled intervention
values results in the better inference of the structure and
parameters of the latent SCM.

6. Related Works
To address the challenges of causal discovery, a variety of
methods have been proposed. Some of these methods are
based on structure learning using observational data and
some take in to account interventional data (Lorch et al.,
2021; Scherrer et al., 2021; Ke et al., 2019; Brouillard et al.,
2020).

There has been an increasing focus on Bayesian structure
learning (Yu et al., 2019; Annadani et al., 2021; Lorch et al.,
2021; Cundy et al., 2021; Deleu et al., 2022) to quantify
epistemic uncertainty that is crucial for reinforcement learn-
ing and active learning settings. Charpentier et al. (2022)
follow almost exactly the same approach as Cundy et al.
(2021) except that they operate on nonlinear Gaussian SCM
instead of a linear one. There also exist many maximum
likelihood based methods, one such example is (He et al.,
2019). It is one of the few works that learn a structure in the
latent space but they do not operate in a causality-based or
SCM framework.

Markov Chain Monte Carlo (MCMC) is a popular technique
for sampling from complex high dimensional probability
distributions, such as the posterior distribution of DAGs.
(Madigan et al., 1995) uses Metropolis-Hastings (Metropo-
lis et al., 1953) to predict the posterior distribution through
Markov space to perform single edge addition or deletion.
(Eaton & Murphy, 2007) propose a hybrid MCMC algo-
rithm that uses an exact score based algorithm. (Kuipers
et al., 2022) and (Viinikka et al., 2020) use more efficient
MCMC samplers. (Deleu et al., 2022) uses a novel class
of probabilistic models, GFlowNets (Bengio et al., 2021),
which model distribution over discrete entities like DAGs
to approximate the posterior in place of MCMC algorithms.
Section A.3 discusses related work in more detail. Finally,
our work involved randomly selecting nodes to intervene
on while also randomly selecting the values for the inter-
ventions. (Tigas et al., 2022) uses a mutual information
objective to learn where (which nodes) and how (with what
values) to perform interventions in an active learning sce-
nario to recover the edges more efficiently. However, unlike
ours, their SCM is not in the latent space.

7. Conclusion
In this work, we introduced our latent variable model, De-
coder BCD, and studied the causal representation learning
problem. We explored the cases where edge recovery fails –
learning to orient a single edge or learning with only observa-
tional data. To address this, we propose using interventional
targets as labels to allow recovery of edges and edge weights
in an SCM. Our experiments show that this is a promising
direction for the unsupervised Bayesian causal discovery
in latent space. However, our hypothesis of the observed
data having a latent linear SCM and linear projection of
the latent causal variables to higher dimension is a limita-
tion (refer A.5) when it comes to mechanisms in the real
world. Future work should explore nonlinear projections of
the causal variables as well as nonlinear and non-Gaussian
SCMs. Finally, we discuss some key challenges for future
study in Appendix A.4.
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Deleu, T., Góis, A., Emezue, C., Rankawat, M., Lacoste-
Julien, S., Bauer, S., and Bengio, Y. Bayesian struc-
ture learning with generative flow networks, 2022. URL
https://arxiv.org/abs/2202.13903.

Eaton, D. and Murphy, K. Exact bayesian structure learning
from uncertain interventions. In Artificial intelligence
and statistics, pp. 107–114. PMLR, 2007.
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A. Appendix
A.1. KL Loss for the mildly supervised experiments

Given Ŵ = (PL̂PT )T , from inferred L̂, one can obtain the mean and covariance of the observational joint distribution
q(z1, ...zd) as follows:

z = ŴT z + ϵ; ϵ ∼ N (0, σ) (3)

z = (I − Ŵ )−T ϵ (4)

q(z1, ...zd) ∼ N (µ̂z, Σ̂z) (5)

µ̂z = 0 and Σ̂z = (I − Ŵ )−TΣ(I − Ŵ )−1 (6)

To estimate the prior GT observational joint distribution, one would use W in place of Ŵ in equation 6.

A.2. Generating interventional data for experiments that use single node and multi node interventions

Suppose we have to generate i interventional data points. We split the data generation process into s = 20 sets, each set
generating i/s interventional data points. For single node interventions, we randomly choose a node and sample i/s data
points. The process is repeated s times randomly to generate the i data points. For multi node interventions, we randomly
choose a number between [2, d] to decide on the number of nodes to intervene on (call this x). We then choose x nodes
without replacement and perform the interventions on these nodes and sample i/s data points. The process is repeated s
times randomly to generate the i data points.

A.3. More Related Work

Since discrete optimization is hard and often involves enumeration of possible structures, the super-exponential nature of
structure learning has resulted in the community resorting to relaxing the discrete optimization problem into a continuous
one (Lorch et al., 2021; Cundy et al., 2021; Annadani et al., 2021; Scherrer et al., 2021; Ke et al., 2019; Zheng et al.,
2018) and learning the parameters using gradient descent. (Loh & Bühlmann, 2013) propose a scalable, scoring-based
DAG learning approach to recover high dimensional, sparse causal graphs in a non-Gaussian setting where only some but
not all exogenous noise variables are expected to be non-Gaussian. (Ghoshal & Honorio, 2017) learns a linear structural
equation model in polynomial time. (Ke et al., 2019) learns the causal structure from unknown interventions but operates
on the Bernoulli distribution while (Scherrer et al., 2021) is in an active learning framework and the system determines
the intervention that will be most useful in gaining knowledge about the graph structure. (Yang et al., 2020) proposes a
variational autoencoder parameterised by exogenous variables to learn causal semantics of the data. Another family of
works introduce assumptions to functional and parametric form of the data-generation structure. They exploit symmetries to
learn the causal structure (Peters et al., 2017; Mooij et al., 2016).

Approaches to the problem are mostly employ score-based or constraint-based optimization. Most modern methods use
some sort of a scoring function to rank estimated structure and use it to rank structures and optimizing for the score is
expected to return the ground truth DAG. Popular scoring functions include Bayesian Information Criterion (BIC) and
Bayesian Gaussian Equivalent marginal likelihood score (Geiger & Heckerman, 1994). These methods typically use a
regularization over the structure to induce sparsity and/or acyclicity. Some methods impose hard constraints as well that
ensure the search is done only over the space of DAGs. (Shah & Peters, 2020) is a constraint based approach that tests for
conditional independence.

A.4. Key challenges for future study

One of the most important scientific questions of causal representation learning is regarding the relationship between high
dimensional, observed variables and the low dimensional, causal variables: In this work, we perform synthetic data
generation of z and project it to higher dimensions by using a random projection matrix P ′. We begin on the premise that
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real-world, high dimensional data can be explained by a few causal variables and the inferring these variables and their
structure is the problem of causal inference that the brain solves for performing intelligent tasks. Thus, there must exist an
operation that maps the low dimensional causal variables to the high dimensional, observed variables (eg. images, videos).
For our problem setting, we assume this is true and try to generate high dimensional samples that are ”causally consistent”
by performing a linear projection X = zP ′. However, we do not know how this process of projection to higher dimensions
might happen in reality.

What’s the right loss function for unsupervised causal discovery? In all experiments, we found that the MSE over
high dimensional data, X , goes down but this does not necessarily mean that graph recovery in the latent space gets better.
Therefore, we need to look for alternative losses with a property such that reduction in loss over X guarantees a better
recovery in the latent space (i.e., better graph structure recovery or better estimates of edge weight matrix L). Ideally, such a
loss should result in a reduction in the KL divergence between the inferred posterior observational joint distribution and the
GT observational joint distribution. We propose that this a better metric to measure since in the supervised experiments,
getting a low enough value of this metric results in the SHD dropping steeply to 0.

A.5. Limitations

A limitation of this work is that we do not know if it is practical to assume a linear projection – it is just a formulation
that we explore. Additionally, if it is a linear operation, are there any properties that the projection matrix P ′ must hold to
maintain this ”causal consistency” in higher dimensions? If P ′ needs to hold some properties for causal inference to be
performed from high dimensions, what exactly are these properties? It is easy to see that a random projection matrix (which
transforms a d-dimensional vector to D-dimensional vector) can be random enough to completely destroy the encoded
information due to the causal generation process that occurred in the lower dimensions, and thus the high dimensional data
could no longer be ”causally consistent” for us to perform inference. And finally, one needs to focus on the question of
whether the projection operation could be nonlinear.


