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Higher-order Granger reservoir computing:
simultaneously achieving scalable complex
structures inference and accurate dynamics
prediction

Xin Li1,2, Qunxi Zhu 2,3 , Chengli Zhao 1 , Xiaojun Duan1, Bolin Zhao2,3,
Xue Zhang1, Huanfei Ma 4, Jie Sun2,5 & Wei Lin 2,3,6

Recently, machine learning methods, including reservoir computing (RC),
have been tremendously successful in predicting complex dynamics in
many fields. However, a present challenge lies in pushing for the limit of
prediction accuracy while maintaining the low complexity of the model.
Here, we design a data-driven, model-free framework named higher-order
Granger reservoir computing (HoGRC), which owns two major missions:
The first is to infer the higher-order structures incorporating the idea of
Granger causality with the RC, and, simultaneously, the second is to realize
multi-step prediction by feeding the time series and the inferred higher-
order information into HoGRC. We demonstrate the efficacy and robust-
ness of the HoGRC using several representative systems, including the
classical chaotic systems, the network dynamical systems, and the UK
power grid system. In the era of machine learning and complex systems,
we anticipate a broad application of the HoGRC framework in structure
inference and dynamics prediction.

Machine learning has been recently recognized as a vital engine in
efficiently addressing numerous scientific and real-world pro-
blems that are not easily solvable using traditional methods1–6. To
this end, a significant effort has been devoted to applying model-
free, machine learning methods to those observational data of
time series for analyzing and predicting complex dynamics,
attracting tremendous attention7–13. Despite initial or/and partial
successes, those machine learning methods still meet difficulties
in typical scenarios where the investigated complex systems are
of higher dimensions, replete with different types of interactions,
and even exhibiting highly complex dynamical behaviors14–18.
Thus, it is crucial to develop and implement delicate machine

learning methods for not only uncovering internal interactions in
such complex systems but also predicting their future evolution
by leveraging the discovered interactions.

Compared to classical methods such as auto-regressive models
(ARMA)19 and multi-layer perceptron (MLP)20, machine learning tech-
niques such as the recurrent neural networks (RNNs)21, neural ordinary
differential equations (NODEs)22, and deep residual learning23 offer
several advantages for analyzing time series data generated by non-
linear and complex systems. Specifically, RNNs and their variants,
including long short-term memory (LSTM)24 networks and gated
recurrent units (GRU)25, exhibit excellent performance in predicting
dynamics but require estimation of many parameters. In addition to
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these networks with a huge number of parameters for updating,
reservoir computing (RC), a lightweight RNN, was recently proposed
for predicting temporal-spatial behaviors of chaotic dynamics and
aroused great interest26–31. Actually, in an RC, the hidden states are of
high dimension and only the weights of the output layer require
training. As a result, it possesses a strong modeling ability but needs
less computational cost.

Although the advantages of the RC framework have been
validated in many scenarios32–34, there is still room for improve-
ment so that outstanding endeavors have been paid for recently
and persistently. Examples abound: Lu and Lukoševičius et al.
added nonlinear terms of hidden states and raw data, respectively,
in the output layer to enhance the modeling ability of the RC35,36;
Gauthier et al. introduced some nonlinear combinations of the
original data into the input layer to greatly improve the computa-
tional efficiency37, and Gallicchio et al. extended the RC to its deep
network forms38. While these approaches improve the performance
of RC, they encounter difficulties when the dynamics dimension is
higher, the nonlinearity is stronger and the structure is more
complex. To exceed the ceiling, the latest works in refs. 39,40
proposed a parallel forecasting method, parallel RC (PRC), for
complex dynamical networks, using the local structure of systems.
These pairwise structures used in the PRC method can be obtained
through traditional causal inference methods and their improved
variants41–46; however, they cannot uncover directly the higher-
order structures, a kind of more complex interactions that are
ubiquitous in complex dynamical systems. In fact, recent studies
show that the higher-order structures are vital to the emergence of
complex dynamics47, viz. diffusion48, synchronization49, and evo-
lutionary processes50. It thus is believed that an appropriate
introduction of not only the traditional structural information but
also the higher-order structures into the RC is beneficial to
achieving more accurate and long-term predictions. In addition,
conventional system identification algorithms including SINDy
(sparse identification of the nonlinear dynamics)16,51,52 or entropic
regression53 aim to fit equations using a predefined set of basis
functions in dynamical systems. However, these methods have
certain limitations. They are restricted to a particular set of bases
and necessitate high-quality observational data. When there are
more complex interactions within the system, the risk of producing
an erroneous sparse model increases. Such incorrect identification
of interactions may inevitably lead to catastrophic predictive per-
formance, while a simple RC even without any structure informa-
tion can often yield satisfactory results. Naturally and
consequently, two missions are at hand: 1) the inference of higher-
order structures solely based on observational data, and 2) the
utilization of the inferred optimal structures to make more accu-
rate and long-term predictions.

To address the aforementioned issue, we propose a novel com-
puting paradigm called higher-order RC, which aims to embed struc-
tural information, especially the higher-order structures, into the
reservoir. However, the higher-order structures of the underlying
complex dynamical systems are commonly unknown a priori. To
this end, we incorporate the concept of Granger causality (GC) into
the higher-order RC to identify the system’s underlying higher-
order interactions in an iterative manner, thereby enabling more
accurate dynamical predictions with the inferred optimal higher-
order structures. During this process, GC inference and RC pre-
diction are performed simultaneously and complement each other,
hence named as Higher-Order Granger RC (HoGRC) framework.
This framework is highly scalable, in that, at the node level,
simultaneously achieved are complex structure inference and
accurate dynamics prediction. This therefore makes the devel-
oped framework applicable widely to higher-dimensional and
more intricate dynamical systems.

Results
Classical reservoir computing
We start with a nonlinear dynamical network of N variables of the
following general form,

_xðtÞ= f ½xðtÞ�, ð1Þ

where xðtÞ= ½x1ðtÞ, . . . ,xNðtÞ�> denotes theN-dimensional (N-D) state of
the system at time t, and f ½xðtÞ�= f 1½xðtÞ�,f 2½xðtÞ�, . . . ,f N ½xðtÞ�

� �> is the
N-D nonlinear vector field. In this article, we assume that neither the
vector field f (equivalently, each element fi) nor the underlying com-
plex interaction mechanism among these N variables is partially or
completely unknown a prior. The only available information about the
underlying system is the observational time series x(t) at the discrete
time steps. Here, we choose a regularly sampled time increment Δt.

The traditional RC, a powerful tool for modeling time series data,
embeds the observational data x(t) into an n-dimensional hidden state
r(t) using an input matrix Win of dimension n ×N. Then the hidden
state r(t) evolves within the reservoirwith aweighted adjacencymatrix
A of dimension n × n, given by

rðt +ΔtÞ= ð1� lÞ � rðtÞ+ l � tanh WinxðtÞ+ArðtÞ+br

� �
, ð2Þ

where l is the leaky rate and br is the bias term. Subsequently, an
additional output layer is employed, typically implemented as a simple
linear transformation using the matrix Wout, mapping the reservoir
state space to the desired output space. Here, the output space is the
original data space,

x̂ðt +ΔtÞ=xðtÞ+Woutrðt +ΔtÞ, ð3Þ

whereWoutr(t +Δt) can be explained as the predicted residue between
x(t +Δt) and x(t), or equivalently the approximated integral operatorR t +Δt
t f ½xðτÞ�dτ. It is important to note that the only trained module is
the output layer, i.e., Wout, which can be solved explicitly via the
Tikhonov regularized regression54 with the loss unction:

LΔt =
X
t

Woutrðt +ΔtÞ � ½xðt +ΔtÞ � xðtÞ�� �2 + λW � k Wout k , ð4Þ

where λW is the regularization coefficient. By leveraging the trainedRC,
one can accurately achieve dynamics prediction.

Higher-order structure in dynamical systems
To establish our framework, we first introduce a few important defi-
nitions about the higher-order structure for any given function of
vector field based on the simplicial complexes summarized in55.

Definition 1. Separable and inseparable functions. Assume that g(s)
is an arbitrarily given scalar functionwith respect to s = {v1, v2, . . . , vk}, a
non-empty set containing k variables. If there are two variable sets
s1, s2∈ {s1, s2∣s1⊄ s2, s2⊄ s1, s1∪ s2 = s}, and two scalar functions g1 and
g2 such that

gðsÞ= g1ðs1Þ+ g2ðs2Þ, ð5Þ

then g(s) is a separable function with respect to s, i.e., g(s) can be
decomposed into the sum of two functions whose variable sets have
no inclusion relationship; otherwise g(s) is an inseparable function.

Definition 2. Higher-order neighbors. Consider the nonlinear scalar
differential equation _u= gðsuÞ, where g(su) is a scalar function with
respect to a set of variables su. We decompose the function g(su) into a
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sum of several inseparable functions gi(su,i) as

gðsuÞ= g1ðsu,1Þ+ g2ðsu,2Þ+ :::+ gDu
ðsu,Du

Þ,
su = su,1 ∪ su,2 ∪ � � � ∪ su,Du

, su,i 6� su,j,
ð6Þ

for all i, j∈ {1, 2, . . . ,Du} with i ≠ j, where Du is the number of terms.
Then, we name the set su,i = fvi1 ,vi2 ,:::,viki g as the (ki-1)-D simplicial
complex, and the i-th higher-order neighbor of node u. Denote by
Su = fsu,1,su,2,:::,su,Du

g the set of the higher-order neighbors of node u.
We construct a hypergraph or a hypernetwork, denoted by

G= ðV ,SÞ, of system (1) under consideration. Here, V = {x1, x2, . . . , xN}
denotes the set of nodes, corresponding to the state variables of the
system. According toDefinitions 1 & 2, we introduce the concept of the
higher-order neighborsSu of an arbitrary node u∈V, yielding the set
of higher-order neighbors for all nodes S= fSx1

,Sx2
,:::,SxN

g. Here-
after, for simplicity of notation’s usage, node u is used as a placeholder
of any element in the set V.

To better elucidate these concepts, we directly utilize the
Lorenz63 system as an illustrative example. As shown in “Explanation
(1)" of Fig. 1, for the third node u = z in system (12), we write out

_z = f 3ðx, y, zÞ= � βz + xy= gðx, y, zÞ= g1ðzÞ+ g2ðx, yÞ, ð7Þ

where g1(z)≜ − βz, g2(x, y)≜ xy, and Dz≜ 2. Consequently, according to
Definitions 1 & 2, the set of the higher-order neighbors of node u = z is

Sz = fsz,1, sz,2g= ffzg,fx,ygg. Similarly, we haveSx = fsx,1, sx,2g= ffxg,fygg
for node u = x and Sy = fsy,1, sy,2g= ffyg,fx,zgg for node u = y. Conse-
quently, we obtain the higher-order structure of the Lorenz63 system
as G= ðV , SÞ= ððx, y, zÞ,ðSx ,Sy,Sz ÞÞ.

A paradigm of reservoir computing with structure input
Despite the tremendous success achieved by the traditional RC in
dynamics predictions inmany fields, a difficulty still lies in pushing for
the limit of prediction accuracy while maintaining the low complexity
of themodel.We attribute this difficulty to a lack of direct utilization of
the structural information from the underlying dynamical system,
since the structure is an important component of the system. Actually,
the PRC, the recent framework40 integrated pairwise structures to
predict dynamics in complex systems.However, they cannot reveal the
higher-order structures, a more precise representation of the complex
interactions in complex dynamical systems.

Thus, we introduce a new computing paradigm into the RC,
termed higher-order RC, to incorporate the time-series data with
the higher-order structure to make accurate dynamics predictions.
Specifically, as shown in Fig. 1b, we model each state variable (i.e.,
node u, as defined above) of the original system independently with
a block of n neurons in a reservoir network. Then we incorporate the
higher-order neighbors of node u into the corresponding RC,
defined as Ru. Subsequently, inspired by but different from the
classical RCmethod (2), the hidden dynamics in the higher-orderRu
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Fig. 1 | Schematic diagrams for illustrating the proposed HoGRC framework.
a The input data consists of time series data and higher-order structure informa-
tion. b The new paradigm Ru using the higher-order structural information. c The
HoGRC framework enables the inference of higher-order structures. d The HoGRC
framework achieves multi-step dynamics prediction using the inferred optimal

structure. The markers “S1”–“S8” correspond to the steps in Table 2. We offer
“Explanation 1” to elucidate the concept of higher-order structures, and use
“Explanation 2” to clarify the notion of the higher-order structure embedding. Due
to the same process and the independently trained Ru for all nodes, it makes the
HoGRC own the scalability or parallel merit40.
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is given by

ruðt +ΔtÞ= ð1� lÞ � ruðtÞ+ l � tanh ~Win,uxðtÞ+ ~AuruðtÞ+br

h i
, ð8Þ

for different u∈V. Thus, we establish a total of ∣V∣ sub-RC networks,
where ∣V∣ denotes the number of the elements in the set V. In contrast
to the traditional RC method (2) that solely relies on a single random
matrixWin and a single randommatrixAwithout including any higher-
order structural information, the framework (8) operates at node level,
notably incorporating the corresponding higher-order structural
information. Specifically for each node u∈V, this framework embeds
the higher-order structural information directly into thematrices ~Win,u

and ~Au in the following forms:

~Win,u = ψ>ðsu,1Þ,ψ>ðsu,2Þ,:::,ψ>ðsu,Du
Þ

h i>
2 Rn×N , ψðsu,iÞ 2 Rbn=Duc ×N ,

~Au =diagfφðsu,1Þ,φðsu,2Þ,:::,φðsu,Du
Þg 2 Rn×n, φðsu,iÞ 2 Rbn=Duc × bn=Duc,

ð9Þ

where ⌊ ⋅ ⌋ is the floor function, and the integer n is selected as a
multiple of Du. Different from Win, a randomly initialized matrix in its
entirety, in the traditional RC framework (2), each ψ(su,i) in ~Win,u is a
random (resp., zero) block submatrix of dimension ⌊n/Du⌋ ×N such
that, if xj∈ (resp.,∉ )su,i for j∈ {1, 2, . . . ,N}, all elements of the j-th
column of ψ(su,i) are set as random values (resp., zeros), and φ(su,i)
represents a random sparse submatrix of dimension ⌊n/Du⌋ × ⌊n/Du⌋.
Actually, these block configurations in the reservoir facilitate a more
precise utilization of the higher-order structural information.

To enhance the transparency of the above configurations, we
provide a visual representation in “Explanation (2)" of Fig. 1, where
depicted is the true higher-order RC structure (i.e., the optimal net-
work finally obtained in the following inference task, see the next
subsection) under consideration of the Lorenz63 system. Specifically,
as mentioned above, for node u = z, the set of the higher-order
neighbors becomes {{z}, {x, y}} with Dz = 2. Thus, we obtain
~Win,z = ½ψ>ðzÞ,ψ>½ðx,yÞ��> according to the notations set in (9), where
the third column of ψ⊤(z) and the first and the second columns of
ψ⊤[(x, y)] are the random sparse submatrices, and the remaining parts
are zero submatrices. Moreover, we obtain ~Az =diagfφðzÞ,φ½ðx,yÞ�g,
which is a block diagonal matrix comprising two random sparse sub-
matrices. Additionally, we provide a simple illustrative example about
the difference between the traditional RC method (2) and the newly
proposed higher-order RC framework (8) in Supplementary Note 1.3.

Now, by embedding the higher-order structural information into
the dynamics of the reservoir in the above manner, we obtain the n-D
hidden state ruðtÞ= ½ru,1,ru,2,:::,ru,n�>ðtÞ for each u∈V. This allows us to
predict the system’s state u in the next time step as

ûðt +ΔtÞ=uðtÞ+ ~Wout,uruðt +ΔtÞ, ð10Þ

where ~Wout,u represents an output matrix of dimension 1 × n,
employed for the prediction of u.

Significantly, our framework fully inherits the parallel merit of the
existing work40. In particular, the above process operates at the node
level, focusing exclusively on every node u, and such a process can be
applied across all nodes in V. Different from the classical RC, we use a
specific higher-order Ru to model each node u, thereby requiring a
smaller reservoir size n or resulting in a lightweight model. Moreover,
since all lightweight reservoirs Ru ðu 2 V Þ are independently trained,
our framework canbe efficiently processed in a parallel manner, which
in turn makes our framework scalable to higher-dimensional systems.

Integration of structure inference and dynamics prediction
In the preceding section, the setup of the higher-orderRu requires the
exact information of the structures. However, in real-world scenarios,
the specific form as well as the higher-order structures of a system are
always unknown before the setup of Ru. So, we design an iterative
algorithm to seek the optimal structure for Ru which is initially
endowed with a structure containing all possible candidates or only
partially known information. To carry out this design, we novelly
integrate the concept of the Granger causality (GC) into the higher-
oderRu (seeTable 1). Subsequently, the inferred structures areutilized
to update Ru, thereby further enhancing its prediction performance.
This iterative procedure is repeated until the model achieves optimal
prediction accuracy. Consequently, we refer to this integrated model
as the HoGRC framework, as depicted in the composite of Fig. 1a-d.

Particularly, wedevelop anefficient greedy strategy, as outlined in
Table 1 of theMethods section, to infer the true higher-order structure
of system (1) solely from the time series data. As shown in Fig. 1c, for
any node u, we employ the one-step prediction error of Ru based on
the concept of the GC (see Definition 3) to iteratively refine the initial
and coarse-grained candidate neighbors into the optimal and fine-
grained higher-order neighbors, until an optimal structure is obtained,
tending to align with the true higher-order structure defined in Defi-
nition 2. In the iterative procedure, the GC inference and the dynamics
prediction usingRu are complementarily andmutually reinforcing. As
depicted by the blue loop in Fig. 1, the structure discovered by the GC
significantly enhances the predictability of Ru, and conversely, the
updated Ru in the iterative procedure makes the GC discover the
structure in a more effective manner.

Furthermore, as indicated by the orange arrows in Fig. 1d, we
obtain the optimalRu for all nodes u based on the input of the optimal
higher-order structure. Then, theseoptimalmodels canperformmulti-
step prediction by continually adding the most recent forecasted
values to the input data, which significantly outperforms the tradi-
tional prediction methods. Therefore, the HoGRC framework, inte-
grating the node-level RC and the GC inference, simultaneously
achieve two functions: (I) structures inference (Fig. 1c) and (II)
dynamics prediction (Fig. 1d). To enhance comprehension of the
HoGRC workflow, we provide a summary of the key execution steps in
Table 2, where the steps correspond to the markers “S1"–"S8" in Fig. 1.

Table 1 | The process of inferring higher-order neighbors using Algorithm 1

Algorithm 1: Inferring higher-order neighbors.

Data: Set the initial candidate neighbor set of node u as C0 = fc1,0,:::,cK0,0
g, and denote by x(t) = (x1(t), x2(t), . . . , xN(t)) the time series data.

Result: The higher-order neighbors of node u are inferred asSu = fsu,1,:::,su,Du
g.

Step1: Set a suitable threshold ϵe, and let C=C0;

Step2: Traverse through all the possible complex in C, and delete any non-causal factor that satisfies Definition 3;

Step3: Rearrange the elements in C from high order to low order;

Step4: Reduce the dimensionality of the complex C. Traverse through all the possible complex c in C. If c is a (dc + 1)-D complex and dc≥0, then try to reduce it to
(dc + 2) complexes of dimension dc based on the error threshold ϵe;

Step5: If C has not changed in this iteration, output Su =C; otherwise, return to Step 2.
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For more detailed information about the HoGRC framework, please
refer to Methods section.

Evaluation metrics
Todemonstrate the efficacy of the two tasks achieved by the proposed
framework, we conduct experiments using several representative
systems from different fields. For Task (I), we utilize the one-step
extrapolation prediction error produced by the HoGRC framework to
search the higher-order neighbors of all dimensions in order to iden-
tify the higher-order structure with higher accuracy. For Task (II), we
test the classical RC, the PRC40, and the HoGRC, respectively, on sev-
eral representative dynamical systems and compare their prediction
performances (see Methods section for the differences among these
threemethods). For a clearer illustration,wedefine the valid predictive
steps (VPS) as the predictive time steps when the prediction accuracy
exceeds a certain threshold. Additionally, we adopt the root mean
square error (RMSE) as a metric to quantitatively evaluate the predic-
tion error,

RMSEðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i= 1

x̂iðtÞ � xiðtÞ
σi

	 
2vuut , ð11Þ

where σi is the standard deviation of xi(t). In our work, we use the VPS
to evaluate the prediction performance of the HoGRC, i.e.,
VPS= inffs : RMSEðsΔtÞ> ϵrg, where ϵr is the positive threshold and Δt
is the time step size. In the following numerical simulations, without a
specific statement, we always set ϵr = 0.01.

Performances in representative dynamical systems
Here, we aim to demonstrate the effectiveness of the HoGRC frame-
work using several representative dynamical systems. We take a 3-D
Lorenz63 system and a 15-D coupled Lorenz63 system as examples.
Additional experiments for more systems are included in Supple-
mentary Note 2.

First, we consider the Lorenz63 system56 which is a typical chaotic
model described by the following equations:

_x = f 1ðx,y,zÞ= σðy� xÞ,
_y= f 2ðx,y,zÞ=ρx � y� xz,
_z = f 3ðx,y,zÞ= �βz + xy,

ð12Þ

where σ, β, ρ are system parameters. In the simulations, we take the
first 60% of the data generated by the system as the training set, and
reserve the remaining data for testing purposes.

We begin our analysis by using the proposed method to identify
the higher-order neighbors of the considered system. All the other
hyperparameters of the RC, the PRC, and the HoGRC are specified,
respectively, in Supplementary Note 3. Subsequently, we employ
Algorithm 1 of Table 1 to infer the higher-order neighbors of all nodes

in the Lorenz63 system. Specifically, Fig. 2a presents an inference
process for node z using Algorithm 1 of Table 1, a greedy strategy. At
the beginning, whenno information regarding the network structure is
available, the set of the higher-order neighbors for node z is initially
assigned as Cz =C

0
z = ffx, y, zgg. Thus, ~Win,z and ~Az , the input and the

adjacency matrices, are constructed with C0
z , and R0

z , the corre-
sponding higher-order RC, is utilized to calculate the one-step pre-
diction error e(z), designated as e1. Next, one needs to decide whether
to rectify Cz by reducing the dimensionality based on Algorithm 1 of
Table 1. To do so, set C1

z = ffx, yg,fy, zg,fx, zgg, and then the prediction
error e2 is obtained usingR1

z withC1
z . Here, by setting a small threshold

ϵe (e.g., 10−7), it is found that e1 + ϵe ≥ e2, which implies a prediction
promotion and thus, results in a resetting Cz =C

1
z based on Definition

3. Then, one needs to decide whether to delete any element, e.g. {y, z},
in the current set Cz . To do so, set C2

z = ffx,yg,fx,zgg. Thus, the pre-
diction error e3 is obtained using R2

z with C2
z , which further yields

e2 + ϵe ≥ e3. This prediction promotion leads us to reset Cz =C
2
z . How-

ever, as the sets C3
z = ffx,zgg and C4

z = ffx, zgg are, respectively, taken
into account, e3 + ϵe < e4 and e3 + ϵe < e5 are obtained using R3

z with C3
z

and R4
z with C4

z , respectively. These inequalities indicate that there is
no improvement in prediction and, consequently, no rectification
needed for the set Cz at this stage. Therefore, the set should remain
unaltered asCz =C

2
z . In what follows, one still needs to decide whether

to further rectify Cz by reducing the dimensionality based on Algo-
rithm 1 of Table 1. To do so, set C5

z = ffx,yg,fzgg. Thus, e6 and e3 + ϵe ≥ e6
are obtained, which leads us to further reset Cz =C

5
z . As suggested in

Fig. 2, prediction is not improved by further reducing the dimension-
ality of Cz as C6

z = ffxg,fyg,fzgg. This, with the greedy strategy we use,
indicates an iteration terminal for inferring the higher-order neighbors
with an output Sz =C=C5

z . Here, actually R5
z with Sz =C

5
z after train-

ing is the optimal higher-order RC of dynamics reconstruction and
prediction for the state of node z. In addition, the inferred results of
nodes x and y can be found in Supplementary Note 4.1.

In Task (II), we perform multi-step prediction using different
methods,wefind that theHoGRC framework yields the best prediction
despite utilizing information solely from higher-order neighbors (see
Supplementary Note 4.1). Additionally, in Supplementary Note 2, we
also conduct similar experiments using other classic chaotic systems.
Ourfindings indicate that systemswith stronger nonlinearity andmore
complex structures tend to exhibit better prediction performance
using the HoGRC framework.

Next, we investigate the coupled Lorenz63 (CL63) system34 with a
more complex structure and stronger nonlinear interactions, in which
the dynamical behaviors of each subsystem is described by:

_xi = � σ xi � yi + γ
Xm
j = 1

wijgijðyi,yjÞ
" #

,

_yi =ρð1 +hiÞxi � yi � xizi, _zi = xiyi � βzi,

ð13Þ

Table 2 | Main steps of the HoGRC framework

S1: For any node (state variable) u∈V in the considered system (1), set the initial candidate neighbors (possibly containing all or some nodes, depending on the
knowledge about the system’s structure, completely unknown or partially known).

S2: Update the higher-order structure of node u using the results yielded by S5 (using the initial candidate neighbors for the initial iteration).

S3: Input the updated structure and the temporal data into the higher-order Ru.

S4: Train and update Ru using the updated structure and temporal data.

S5: Optimize the candidate neighbors of node u based on the updated higher-orderRu and theGranger-causality-like rule (see Definition 3 andAlgorithm 1 of Table 1
for details).

S6: If the higher-order neighbors of node u no longer change, we obtain the optimal higher-order neighbors (Task I); otherwise, return to S2. Perform the above
process (S1–S6) in a parallel manner for all nodes in V.

S7: Obtain N independently optimal Ru’s using the obtained optimal structure.

S8: Utilize these optimal Ru ’s to perform multi-step dynamics prediction (Task II).
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wherem denotes the number of the subsystems, hi is the scale of the i-
th subsystem, γ represents the coupling strength, wij is the coupling
weight, and gij denotes the coupling function. We consider a 15-
dimensional CL63 systemwith 5 subsystems, and the structure and the
coupling weights are depicted in Fig. 2b. We generate data with the
coupling strength γ =0.5 and the coupling function gij = (yj − yi). Based
on this data, we calculate the Lyapunov Exponents (LE’s) of the system
(see Supplementary Note 4.2), which suggests a higher-degree
complexity emerging in the system, as more than half of the LEs are
positive.

Our HoGRC framework considers complexes {yi} and {yj} as the
higher-order neighbors of xi if subsystem j has a coupling effect on i.
Thus, by virtue of Definition 3, we are able to infer such a coupling
relationship between any two subsystems. As depicted in Fig. 2c, we
initially present the one-step prediction error for any subsystem i,
considering all four other subsystems are treated as neighbors.
Subsequently, we proceed to present the prediction errors when each
neighboring subsystem is individually removed. The experimental
results demonstrate that with the removal of subsystem j, the stronger
the coupling effect of subsystem j on i, the worse the prediction per-
formance of subsystem i is. This enables us to directly infer the

true interaction network among subsystems (marked by the red
pentagrams).

For our second task, we perform multi-step predictions on the
CL63 system using different methods. We randomly select 50 points
from the testing data as startingpoints anduse thepredictable steps to
quantify the prediction performances for the various methods. Fig-
ure 2d displays a boxplot of the predictable steps for various methods
on 50 testing sets. The results clearly indicate that the HoGRC frame-
work outperforms the other two methods, highlighting its superior
ability in the extrapolation prediction. Furthermore, we extend our
analysis by generalizing the linear coupling term gij = (yj − yi) to two
more nonlinear forms, namely sinðyj � yiÞ and ∣yj − yi∣. Correspond-
ingly,we include the complex {yi, yj} in the higher-order neighbors of xi.
The heatmap of the prediction errors along with the time steps for
various methods is illustrated in Fig. 2e. Combining with Fig. 2d, it
becomes apparent that the HoGRC framework maintains its super-
iority in terms of prediction performance.

Investigations on network dynamics
In recent years, network dynamical systems (NDS) have gained sig-
nificant attention for their broad range of applications. As a special

Fig. 2 | Higher-order structure inference and dynamics prediction for the
Lorenz63 system and the CL63 system. a The successively iterative results on
higher-order neighbors inference for node z using Algorithm 1 in Table 1, where the
red pentagram indicates the inferred higher-order neighborsSz . b The underlying
coupling network of the CL63 system. c The inferred coupling neighbors for each
subsystem of the CL63 system. d, e The average number of predictable steps and

average prediction error of different methods for the nonlinear coupling cases,
respectively. The orange line in the middle of the box represents the median, the
upper and lower boundaries of the box represent the upper and lower quartiles,
respectively. The boundaries of the upper and lower whiskers represent the max-
ima andminima, respectively. We set parameters as σ = 10, ρ = 28 and β = 8/3. Here,
we use a time-step size Δt =0.02 and a time-step number T = 5000.
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form of system (1), NDS often exhibits a higher number of dimensions
and more complex structural information. Therefore, our framework
has become an efficient tool for NDS’s structural inference and
dynamic prediction. Generally, NDS’s dynamics are modeled as:

_xi = FðxiÞ+ γ
Xm
j = 1

ωijGðxi,xjÞ, ð14Þ

where xi = ðx1i , . . . ,xN
i Þ

>
denotes the N-D state of the i-th subsystem, F

represents the self-dynamics, G represents the interaction dynamics, γ
is the coupling strength,wij is the interactionweight of subsystem j to i.
Before presenting the results of our numerical investigations, we first
make three remarks. (i) Since the HoGRC framework is a node-level
based method, here we set the coupling network structure between
any two subsystems as depicted in Fig. 2d. (ii) A very small coupling
strength implies a weak coupling effect on the dynamics, while
sufficiently strong coupling tends to increase predictability due to a
high probability of synchronization occurrence (see Supplementary
Note 4.6 for details). Therefore, in our investigations, we selected a
moderate level of coupling strength to increase prediction difficulty.
(iii) In addition to the RC and the PRC methods, we use two recently
proposed powerful methods, namely the Neural Dynamics on
Complex Network (NDCN)15 and the Two-Phase Inference (TPI)16, as
the baseline methods for NDS predictions. The NDCN combines the
graph neural networks with differential equations to learn and predict
complex network dynamics, while the TPI automatically learns some
basis functions to infer dynamic equations of complex system
behavior for network dynamics prediction. Refer to Supplementary
Note 5 for further details.

We first consider the coupled FitzHugh–Nagumo system (FHNS)57

that describes the dynamical activities of a group of interacted

neurons with

FðxiÞ= Fðx1
i , x

2
i Þ= x1

i � ðx1i Þ
3 � x2

i ,a+bx1
i + cx

2
i

� �>
,

Gðxi,xjÞ=Gðx1
i , x

1
j Þ=

1

kin
i

ðx1
i � x1j Þ,

ð15Þ

in network dynamics (14). Here, we set γ =0.5, a =0.28, b =0.5,
c = −0.04, andm = 5 to generate experimental data. As shown in Fig. 3a,
the trajectory predicted by our HoGRC framework closely matches
the true trajectory of the FHNS system. In task (I), we begin by
examining the inference of the coupling network among sub-
systems. Figure 3b displays the prediction errors for each subsystem
under different coupling structures. The bar chart above includes
multiple letters indicating the candidate neighbors of the corre-
sponding subsystem. It is evident that the inferred coupling struc-
tures, illustrated with red pentagrams, align with our initial setting.
Furthermore, in Supplementary Note 4.3, we provide the inference
of higher-order neighbors for individual nodes within the subsystem
as well, which further validates the effectiveness of our method. For
task (II), we conduct the multi-step prediction experiments and
compared our results to the baseline methods on 50 testing sets.
The results, depicted in Fig. 3c, demonstrate that our method
outperforms the other methods in terms of the extrapolation
prediction performance.

We also investigate two other network dynamics, namely the
coupled Rossler system (CRoS)58 and the coupled simplified Hodgkin-
Huxley system (CsH2S)59. The CRoS has the form

FðxiÞ= Fðx1i , x2i , x3
i Þ= �hix

2
i � x3

i ,hix
1
i +ax

2
i ,b+ x

3
i ðx1

i + cÞ
� �>

,

Gðxi,xjÞ=Gðx1i , x1j Þ= x1
j � x1

i ,
ð16Þ
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Fig. 3 | Coupling network inference, system reconstruction, and dynamics
prediction for network systems. The corresponding results using the HoGRC
framework and two othermethods for the FHNS (a–c), CRoS (d–f), and CsH2S (g–i)
network systems. The orange line in the middle of the box represents the median,

the upper and lowerboundaries of the box represent the upper and lowerquartiles,
respectively. The boundaries of the upper and lower whiskers represent the max-
ima and minima, respectively. The experimental data for these systems are gen-
erated by setting T = 5000 and using Δt =0.25, 0.1, and 0.04, respectively.
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in network dynamics (14), with hi representing the scale of the i-th
subsystem, and with a =0.2, b =0.2, c = − 6, γ = 1 and m = 5. The CsH2S
has the form

FðxiÞ= Fðx1i ,x2i ,x3i Þ

= x2
i � aðx1i Þ

3
+bðx1

i Þ
2 � x3i + Iext,c� uðx1i Þ

2 � x2
i , r½sðx1i � x0Þ � x3

i �
� �>

,

Gðxi,xjÞ=Gðx1i , x1
j Þ= ðV syn � x1

i Þ � μðx1
j Þ,μðxÞ =

1

1 + e�λðx�Ωsyn Þ
,

ð17Þ

in network dynamics (14), with a = 1, b = 3, c = 1, u = 5, s = 4, r = 0.005,
x0 = − 1.6, γ = 0.1, Vsyn = 2, λ = 10, Ω = 1, Iext = 3.24, and m = 5. The inves-
tigation results, respectively, presented in Fig. 3d–f, g–i, suggest that
our HoGRC framework possesses extraordinary capability in dynamics
reconstructions and predictions using the inferred information of
higher-order structures. It is noted that, in the examples above, the
performances of the NDCN and the TPI are not satisfactory. This is
because the NDCN is a network-level method that may not achieve
good performance in complex nonlinear systems, and because the
interaction function weightswij in front ofG(xi, xj) are different, so the

TPI method cannot learn the accurate basis function (refer to
Supplementary Note 5 for the detailed illustration).

Application to the UK power grid system
Finally, we apply the HoGRC framework to a real power system. We
choose the UK power grid60 as the network structure, which
includes 120 units (10 generators and 110 consumers) and 165
undirected edges, as shown in Fig. 4a. To better describe the
power grid dynamics, we consider a more general Kuramoto
model with higher-order interactions61, which can be represented
as:

_θi =ωi + γ1
XN
j = 1

Aij sinðθj � θiÞ+ γ2
XN
j = 1

XN
k = 1

Bijk sinðθj +θk � 2θiÞ, ð18Þ

where θi and ωi denote the phase and natural frequency of the ith
oscillator respectively, γ1 and γ2 are the coupling strengths, while
pairwise and higher-order interactions are encoded in the adjacency
matrix A and adjacency tensor B. Under specific coupling settings, this
kind of system exhibits extremely complex chaotic dynamics rather
than synchronization.
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Due to the special form of this model and the prediction chal-
lenges posed by higher-order terms, we need to apply a special treat-
ment when using the HoGRC framework. We take the 2-D data
ðsinðθðtÞÞ, cosðθðtÞÞÞ as the input of the HoGRC framework at time t and
Δθ = (θ(t + 1) − θ(t))/Δt as the output. Therefore, the predicted value in
the next step is θ̂ðt + 1Þ=ΔθΔt +θðtÞ. Thus, in multi-step prediction
tasks, we can use the predicted value ðsinðθ̂ðt + 1ÞÞ, cosðθ̂ðt + 1ÞÞÞ as the
input for iterative prediction. For fairness, the RC and PRC methods
also adopt the same treatment in the subsequent comparative tests.

To verify the advantages of our method, we consider the higher-
order interactions which are constructed by identifying each distinct
triangle from the UK power grid and generated data for the experi-
ment, and Fig. 4b shows the local coupling network of node 33 (see
Supplementary Note 4.4 for details of all higher-order interactions).
Figure 4c shows the one-step prediction error for cases with different
neighbors. We observe that the real higher-order neighbors corre-
spond to the lowest prediction error. In the prediction task, our
method outperforms the RC and PRCmethods (see Fig. 4d, e), thanks
to the structural complexity and high nonlinearity of themodel, which
make traditional methods prone to overfitting. Our method can learn
the real dynamics of the system, leading to accurate predictions over a
longer range.

Different role of noise perturbation
Noise perturbation is a major factor that can affect the efficacy of any
method in dealing with data. Hence, to demonstrate the robustness of
our method against noise perturbations, we introduce noises of dif-
ferent intensities into the generated data.

In particular, we use Gaussian noise with zero mean and standard
deviation σn to introduce noise into the data. Empirically, due to the
presenceof noise, we increase the threshold ϵr to0.03. Figure 5a shows
the prediction performances for cases without and with added noise.
With a certain level of noise intensity, such as σn = 0.2, our method is
able to infer higher-order neighbors for both the Lorenz63 system and
the CL63 system (refer to Supplementary Note 4.5 for specific details).
Figure 5b–e shows the prediction performances when increasing noise
intensity for the Lorenz63 and CL63 systems, while Fig. 5f shows the
results for the hyperchaotic system (see Supplementary Note 2.2).
Clearly, our method works robustly on data with noise intensity in a
certain range.

To be candid, the excessive noise can adversely affect the accu-
racy of predictions across various examples. However, we interestingly
find that in some cases, a moderate amount of noise can promote
predictions, as shown in Fig. 5c–f. This type of noise can enhance the
generalization ability of our method, especially when the HoGRC fra-
mework experiences overfitting issues even after sufficient training. If
the structures or dynamics of the learned dynamical system are not
too complex, the HoGRC framework after training can approximate
the original dynamics with high fidelity. Nevertheless, noise generally
has a negative effect.

Influence of training set sizes and coupling network
Training set sizes and network structures are factors that significantly
influence dynamic predictions. Typically, machine learning methods
learn and predict unknown dynamics better with larger training set
sizes or simpler network structures. Although all methods follow this
general rule, our HoGRC method still has several advantages. To
demonstrate this, we conduct the following numerical experiments.

On one hand, we use CRoS as an example to generate experi-
mental data with different time lengths (other settings are the same as
above). As shown in Fig. 6a, increasing the training data size initially
improves prediction accuracy, which then levels off. Our method
outperforms baseline methods even with a sufficient amount of
training data, suggesting that our method can learn dynamics with
fewer data points and more accurately capture real dynamical
mechanisms. On the other hand, we investigate the impact of different
network structures. We begin by considering regular networks with
varying numbers of subsystems and generate experimental data using
CRoS with a length of 5000 and Δt =0.1. As shown in Fig. 6b, the
network scale does affect the prediction accuracy in that, for a long-
term prediction task, the prediction failure of one subsystem in the
network can impact the prediction of the other subsystems via its
neighbors. Compared to baselinemethods, ourmethod is less affected
by network size and presents better predictability for large-scale sys-
tems. These advantages persist when considering the Erdös–Rényi
(ER) networks62 and the Barabasi-Albert (BA) networks63 containing 30
subsystems, as demonstrated in Fig. 6c, e, f. Here, the average degrees
of the regular, the ER, and the BA networks, respectively, are 2, 2.2, and
1.87. We randomly generate the coupling weights connecting every
two subsystems in these networks.
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Additionally, from Fig. 6e, f, we interestingly find that, under the
same average degrees, predicting the system using the BA network
seems to be more difficult, while using the regular network makes
prediction much easier. This finding is understandable since the
degreedistributionof theBAnetwork follows a power lawdistribution,
which creates more complex structures and more fruitful dynamics in
the system. To further verify this finding, we use the degree of sub-
systems as an indicator to reveal the complexity of subsystems and
depict different negative correlations between the number of pre-
dictable steps and the degree of each subsystem for different network
settings, as shown in Fig. 6d.

Direct and indirect causality
In our framework, the GC inference and the RC prediction are per-
formed simultaneously and complement each other. Notably, the
HoGRC framework does not require precise learning of the system
structure through GC. Instead, our framework focuses on optimiz-
ing the coupling structures to further maximize the prediction
accuracy. As a result, both direct and indirect causality can be
inferred in the inference task. Despite this, our framework con-
sistently and accurately infers the high-order structures in multiple
experiments conducted in this study (see Supplementary Note 1.4
for specific reasons).

To further identify the direct and indirect causality, we can extend
our HoGRC framework by combining it with the existing methods. In
particular, wepropose two strategies: (1) conditional Granger causality
and (2) further causal identification. We provide the details of the
above two strategies and experimental validation in Supplementary
Note 1.4. The experimental results demonstrate the high flexibility and
generality of our framework, enabling it to identify direct and indirect
causality in conjunction with some existing techniques.

Discussion
In this article, we have introduced a scalable HoGRC framework that is
inspired by the classic idea of Granger causality and advances achieved
in dynamics predictions using RC framework. Our proposed method
facilitates accurate system reconstructions and long-term dynamics
predictions by inferring higher-order structures at the node level. The
method comprises of two inseparable tasks: high-order structure
inference andmulti-step dynamics prediction. To close this article, we
provide the concluding remarks as follows.

First, in many complex chaotic systems, the system variables
often lackmutual correlation. As a result, traditionalmethodsmay lead
to false causality and negatively impact prediction accuracy. However,
numerical experiments suggest that stronger coupling weights
between dynamic causes make them more easily inferred. None-
theless, weak coupling weights still have a non-negligible effect on
prediction accuracy and require delicate methods such as the HoGRC
framework. In addition, our framework possesses high flexibility and
generality, allowing for further identification of direct and indirect
causality by incorporating existing techniques.

Second, higher-order neighbors provide richer information than
pairwise structures. This is because they not only eliminate non-causal
signals but also significantly reduce the spurious interaction between
causal signals. Compared to traditional methods, the HoGRC frame-
work is better suited to accurately learning true dynamicmechanisms,
thus avoiding overfitting during long-term predictions of dynamics.
Additionally, the HoGRC’s node-level prediction method allows for
parallel implementation of inference and prediction tasks, making it
ideal for large-scale system data. Particularly for complex coupling
connections, where cause signals of nodes are intricate, the HoGRC
framework shines, whereas traditional methods are prone to
overfitting.
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In terms of the future research topics, there are several areas of
focus that warrant exploration. Firstly, it would be highly valuable to
apply the newly proposed framework to a wider range of general
dynamical systems with muchmore complex higher-order interaction
structures. Additionally, there is a need to develop an efficient algo-
rithm that can effectively eliminate the issue of indirect causality.
Indeed, theoretical interpretations regarding this new framework
would bemuchmoremeaningful, promoting us to further enhance the
framework. Future extensions would combine our framework with the
other advanced neural programming frameworks64 and extend its
application to more real-world complex systems. Overall, these future
research directions will contribute to advancing our understanding of
complex dynamical systems and improving the practicality, scalability,
and robustness of the proposed framework.

Methods
Here, we formulate the HoGRC framework by incorporating the
higher-order structures that are possibly present in complex systems
into the conventional RC method. To utilize higher-order neighbors
precisely, we develop an algorithm inspired by the Granger causality.
This renders the HoGRC framework applicable to both structure
inference and dynamics prediction.

From RC to higher-order RC
The traditional RC method comprises three parts, namely the input
layer, hidden layer, and output layer. The N-D data x is embedded into
a high-dimensional reservoir network at the input layer. Then, the n-D
state sequence {r(t)} is obtainedby specific ruleswithin the reservoir as
Eq. (2). Here,Win and A are randomly generated and fixed, so we only
need to train the parameter matrixWout in the output layer. To better
present our framework, we introduce an equivalent transformation
here where we predict the difference instead of the next step value,
given by Eq. (3). The ridge regression technique is generally used to
obtain optimal Wout with the loss function as Eq. (4). However, the
single RCmethod discussed above disregards the intrinsic correlation
of theN-D input data and instead predicts the entire dynamics through
training as a black box. This approach makes it challenging to unveil
underlying dynamical structures in high-dimensional complex
systems.

To address this limitation, a parallel local strategy PRC based on
entropy causality was later proposed39,40. In the PRC approach, a
directed edge from node v to u is connected and deemed a dynamic
causal link if the dynamic equation of node u contains v. However, this
approach only incorporates the pairwise structures at the most ele-
mentary level for characterizing complex systems. Instead, we inte-
grate u and all its different order of neighbors as inputs into the input
layer, thereby enhancing the prediction of node u.

In order to enhance the accuracy of reconstructing andpredicting
complex dynamics from the observational data, it is crucial to inte-
grate the higher-order structures into our model. In light of this, we
propose the HoGRC framework that integrates these structures. Spe-
cifically, for any node u within the system, analogous to Eq. (2), the
hidden dynamic at the node-level in the HoGRC framework is given by
(8), where the key of the structure input lies in encoding the higher-
order neighbors into the input and the adjacency matrices of the
hidden dynamics, denoted as ~Win,u and ~Au (see settings in (9)). In
addition, the higher sparsity in ~Win,u and ~Au in the HoGRC framework
eases the learning task and minimizes overfitting. We provide theo-
retical explanations through the following proposition, assuming that
different RC methods share the same hyperparameters (see Supple-
mentary Note 1.1 for its proof).

Proposition 1. Assuming that the input matrix and the adjacency
matrix in different RC models are generated by the same random

method. Then,

HHoGRC � HRC, ð19Þ

where HRC and HHoGRC denote the sets of the hidden dynamical
systemsmodeledbyEq. (2) inRCandby Eq. (8) inHoGRC, respectively.
Furthermore, if the dataset has an upper bound, denoted by B, on its
potential distribution D, i.e.,

max
x∼D

k x k1 ≤B, ð20Þ

where x is the N-D data. Then, the HoGRC framework has a smaller
upper bound of the generalization error, that is,

GEuðhHoGRCÞ≤GEuðhRCÞ, ð21Þ

where hHoGRC 2 HHoGRC, hRC 2 HRC , and GEu(h) denotes the upper
bound on the generalization error when reconstructing the original
dimension u using the hidden dynamical system h.

Structures inference and dynamics prediction
As mentioned earlier, our framework aims to leverage information
from higher-order neighbors for prediction. However, in practice, the
structure information is often unknown a priori, necessitating the
inferenceof higher-order causal links connecting nodes beforemaking
predictions. Consequently, the HoGRC possesses a two-folded mis-
sion: Higher-order neighbors inference and dynamics prediction using
the inferred higher-order structures.

Task (I): Inferring higher-order neighbors. Since higher-order
interactions are inherently complex and nonlinear, the classic Gran-
ger causality method cannot be directly applied but brings us some
inspiration. To this end, we consider the case where node u∈V awaits
prediction, so we have

uðtÞ=q fc1,c2,:::,cK gð≤tÞ
� �

+ et , ð22Þ

where q is the prediction function represented by the HoGRCmethod,
C= fc1,:::,cK g is the candidate complex set containing higher-order
neighbors of node u, and qðCð≤ tÞÞ represents the one-step prediction
result obtained by inputting higher-order structure C and the
observed data x before time t. Thenwe candefine themean prediction
error as

efc1 ,:::,cK gðuÞ=
1
T

X
t

jq fc1,c2,:::,cK gð≤tÞ
� �� uðt +ΔtÞj, ð23Þ

where T denotes the length of the data. In this context, excluding the
Granger causality from ck to u implies that the function q does not
depend on ck. We formally define this concept as follows.

Definition 3. Assume that all the higher-order causal links for node u
are included in the candidate set {c1, . . . , cK}. Also, assume that ck is not
a subcomplex of any other candidate simplicial complex and further
that the inequality

efc1 ,:::,cK gðuÞ+ ϵe ≥ efc1 ,:::,ck�1 ,ck + 1,:::,cK gðuÞ ð24Þ

is satisfied. Then, the simplicial complex ck is not the causal factor in
Granger’s sense for node u, where ϵe is a threshold taking positive
value. That is, the complex ck is not a higher-order neighbor of node u.

In truth, other metrics may also be used to evaluate prediction
performance.Wepropose a greedy strategy that searches for the exact
higher-order neighbors and filters candidate complexes in order of
decreasing dimension and importance. The algorithmic process is
briefly outlined in Algorithm 1 of Table 1, with additional details about
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the algorithm and the selection of the threshold ϵe provided in Sup-
plementary Note 1.2.

Task (II): Predicting dynamics using the HoGRC framework. Using
the inferred higher-order interactions, we provide data for each node
and its higher-order neighbors to the HoGRC, which then predicts
subsequent values over time. By continually adding the most recent
forecasted values to the input data, we can make multistep-ahead
predictions.

Data availability
All the datasets generated in this study have been deposited in the
Githubdatabase under the accession code in “dataset” folder inGitHub
repository: https://github.com/CsnowyLstar/HoGRC[https://doi.org/
10.5281/zenodo.10685733]65.

Code availability
The code used in this study is freely available in the public GitHub
repository: https://github.com/CsnowyLstar/HoGRC[https://doi.org/
10.5281/zenodo.10685733]65.
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