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Abstract

We study the generalization of iterative noisy gra-
dient schemes on smooth non-convex losses. For-
mally, we establish time-independent informa-
tion theoretic generalization bounds for Stochas-
tic Gradient Langevin Dynamics (SGLD) that do
not diverge as the iteration count increases. Our
bounds are obtained through a stability argument:
we analyze the difference between two SGLD se-
quences ran in parallel on two datasets sampled
from the same distribution. Our result only re-
quires an isoperimetric inequality to hold, which
is merely a restriction on the tails of the loss. We
relax the assumptions of prior work to establish
that the iterates stay within a bounded KL diver-
gence from each other. Under an additional dis-
sipativity assumption, we show that the stronger
Renyi divergence also stays bounded by establish-
ing a uniform log-Sobolev constant of the iter-
ates. Without dissipativity, we sidestep the need
for local log-Sobolev inequalities and instead ex-
ploit the regularizing properties of Gaussian con-
volution. These techniques allow us to show that
strong convexity is not necessary for finite stabil-
ity bounds and thus for finite generalization and
differential privacy bounds.

1. Introduction
Learning algorithms whose outputs are not highly sensitive
to the specifics of their training data are likely to generalize
well. This is the intuitive idea that undergirds the frame-
work of information-theoretic generalization. The seminal
contributions of Russo & Zou (2016) and Xu & Raginsky
(2017) establish that the expected generalization gap of an
algorithm A can be controlled by the amount of information
the algorithm extracts from its training dataset D of size n.
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Formally, they show under reasonable assumptions that

|generalization gap(A,D)| ≤ O

(√
I(A(D),D)

n

)

where the input-output mutual information I(A(D),D)
measures the dependence of the algorithm’s output on the
observed samples D. Unlike uniform-convergence-based
bounds, information-theoretic bounds depend on the algo-
rithm and the data distribution. This makes them well suited
to assess the performance of models whose complexity ren-
ders vacuous all classic uniform-convergence bounds. More
importantly, they align with the practical observations that
generalization is data distribution dependent, as observed in
experiments contrasting random versus real labels (Zhang
et al., 2021).

For them to be useful however a major difficulty remains in
controlling this input-output mutual information for specific
algorithms. Of particular interest for machine learning are
algorithms obtained as iterative noisy gradient schemes. A
standard template that these possess is the following. For a
given dataset D, a set of weights are randomly initialized
X0 ∈ Rd then updated following the recursion

Xk+1 = Noise(Gradient step(Xk,D)) (1)

The information-theoretic analysis of these algorithms was
initiated in (Pensia et al., 2018) where the gradient step
is assumed to be bounded. Their results, as well as sev-
eral follow-ups, are derived by viewing the algorithm as
composition of individual steps analyzed separately. As a
consequence, after T iterations of the algorithm, the bounds
obtained on I(XT ,D) scale as O(T ) or O(

√
T ) for fixed or

non-vanishing step-sizes. The introduction of well-chosen
analytical tools like data-dependent priors (Haghifam et al.,
2020), or the clever refinements of (Bu et al., 2020) im-
prove the bounds but still fall short of improving the time
dependence.

The step-wise analysis leads to vacuous generalization
bounds as iterations increase even if the recursion in equa-
tion 1 converges to a limit. Even more curious is the fact
that this limit approximates the Gibbs distribution e−Fn ,
where Fn is the optimized training loss, which has been
shown to achieve a finite information-theoretic bound (Xu
& Raginsky, 2017; Pensia et al., 2018). We are faced with
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the strange situation where the iterates have an exploding
bound but converge close to a distribution that has a finite
one. Our aim in this work amend this strange gap to answer
the following question:

Do noisy iterative schemes in non-convex settings admit
generalization bounds that go to zero as n → ∞ without
becoming vacuous as the number of iterations increases?

Our main motivation for tackling this question is to under-
stand whether early-stopping is necessary for generalization.
If generalization gaps indeed diverge as iterations increase,
then long training runs with non-vanishing step sizes are
proscribed, by theory. If the divergence is merely the result
of a loose analysis, then we should be able to establish better
bounds that are more faithful to practice, where long train-
ing runs are common (Power et al., 2022; Nakkiran et al.,
2019).

We thus want to establish properties of noisy iterative
schemes in their most realistic setting, i.e., when they are
run for thousands of iterations with non-vanishing step-
sizes. The algorithm we study as a representative of such
schemes is noisy SGD, or Stochastic Gradient Langevin
Dynamics (SGLD)(Welling & Teh, 2011). To study its
generalization, we show that characterizing its stability is
sufficient. Informally speaking, if SGLD outputs weights
that are close (in a well-defined sense) when ran on two,
different, independently-sampled datasets then it must not
be overfitting. The difference between the outputs of SGLD
measured using the KL and a stronger Rényi divergence re-
lates to the expected generalization of the algorithm. Rényi
stability goes further and also relates to differential privacy,
a notion closely related to generalization. Through these
techniques, we will show that noisy iterative schemes can
have finite generalization and privacy bounds in unbounded
non-convex settings, even when run for a large number of
iterations. We make the following precise contributions.

Contributions:
• Under a structural assumption on the optimized loss,

namely dissipativity, we show that uniform-in-time
bounds can be established for both generalization and
(ϵ, δ)-differential privacy of noisy SGD. Our bound
only involves stability-related quantities and does not
rely on ergodicity. We thus improve over the prior work
in this setting namely (Farghly & Rebeschini, 2021;
Futami & Fujisawa, 2024; Zhu et al., 2024) who either
rely on ergodicity (thus involving non-stability related
constants) or obtain bounds that do not decay to zero
as n → ∞.

• To achieve our result, we resolve in passing an open
question of (Vempala & Wibisono, 2019) on the
isoperimetric properties of the biased limit of discrete
Langevin iterates. We show that under dissipativity,

all the iterates verify a uniform log-Sobolev inequality,
a result which, to date, was only shown under strong
convexity.

• As dissipativity is a crude assumption used control the
log-Sobolev constant that often introduces constants ex-
ponential in dimension, we establish a secondary result
that removes the dissipativity assumption but exploits
ergodicity. Our bound in this case is polynomial in
dimension and in the Gibbs’ distribution’s log-Sobolev
constant. Unlike the analysis of (Futami & Fujisawa,
2024) who use dissipativity and rely on an involved ex-
tension of the parametrix method to unbounded drifts
(Bally & Kohatsu-Higa, 2015), our analysis relaxes dis-
sipativity and only exploits the regularizing properties
of Gaussian convolution.

2. Setup
2.1. Notation

A central object in our analysis will be probability distri-
butions over Rd. All considered distributions are abso-
lutely continuous with respect to the Lebesgue measure
and admit a continuously differentiable density. For a
distribution a over Rd, we will conflate the distribution
and its density and denote ∇ log a as the gradient of its
log-density and Ea the expectation under a. For q > 0,
the q-Rényi divergence of a with respect to b is given by
Dq (a||b) = 1

q−1 log
(
Eb

[(
a
b

)q])
. It is a generalization of

the Kullback-Leibler divergence (or relative entropy) which
is recovered by taking the limit DKL (a||b) := D (a||b) :=
limq→1 Dq (a||b) . For random variables X,Y with distri-
bution a, b, we will denote, with a slight abuse of notation
Dq (X||Y ) := Dq (a||b).

2.2. Empirical loss minimization with SGLD

In supervised learning, the aim is to minimize a popula-
tion risk of the form F (x) := Eν [f(x, Z)] with respect to
x ∈ Rd, where Z ∼ ν is some unknown probability mea-
sure over some set Z . Given access to a dataset D of n in-
dependent, identically distributed samples D = Z1, . . . , Zn

from ν, we optimize the empirical approximation Fn given
by Fn(x,D) = 1

n

∑n
i=1 f(x, Zi). We perform this min-

imization by assuming access to unbiased estimates of
the gradient of ∇Fn of through minibatches of the form
g(x,B) = 1

|B|
∑

i∈B ∇f(x, Zi) where B = i1, . . . , ib ⊂
{1, . . . , n} are i.i.d uniform indices chosen from [n]. We
have that EB [g(x,B)] = ∇Fn(x,D). With this in hand,
the recursion we study to minimize Fn is the following. An
initial set of weights X0 ∈ Rd is randomly sampled, then
updated as follows

Xk+1 = Xk − ηg(Xk, Bk) +

√
2η

β
Nk+1 (SGLD)
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where η > 0 is the stepsize, (Bk)k is a (conditionally)
independent sequences of batches, (Nk)k are independent
N (0, I) random variables, and β > 0 is a temperature
parameter that scales the amount of noise injected. We refer
to this recursion as noisy SGD as it corresponds to the SGD
iterates with additional Gaussian noise added on top.

2.3. Information theoretic generalization

A quantity of interest is how well optimizing the empirical
proxy Fn transfers to F . The SGLD algorithm ran for k
iterations is a randomized algorithm that outputs a random
variable Xk with distribution PXk|D and the gap

gen(PXk|D, ν) := |ED,Xk
[F (Xk)− Fn(Xk,D)] |

where the expectations is taken with respect to D ∼ ν⊗n

and Xk ∼ PXk|D measures how well the algorithm gener-
alizes through the discrepancy between the loss achieved
on the empirical loss versus the population one. Using a
change of measure argument, (Xu & Raginsky, 2017) show
that the following assumption is sufficient to control the
generalization gap.

Assumption 2.1 (Sub-Gaussian loss). There exists csg > 0
such that for any w ∈ Rd, the random variable f(w,Z) is
sub-Gaussian with variance proxy c when Z ∼ ν 1.

For losses verifying the assumption above, (Xu & Raginsky,
2017)’s work shows that KL stability of the algorithm con-
trols the expected generalization gap (see Appendix F for a
short proof).

Lemma 2.2 (From KL-stability to generalization). Let
D,D′ be two independent samples from ν⊗n. It holds under
Assumption 2.1 that

gen(PXk|D, ν) ≤

√
2csgED,D′

[
DKL

(
PXk|D||PXk|D′

)]
n

.

To control the generalization gap, it therefore suffices to
control distance between two sets of SGLD iterates ran
on two datasets D and D′ (see figure 1). Formally, by
considering the KL divergence between iterates of

Xk+1 = Xk − ηg(Xk, Bk) +

√
2η

β
Nk+1 and

X ′
k+1 = X ′

k − ηg′(X ′
k, B

′
k) +

√
2η

β
N ′

k+1

(2)

which are two sequences SGLD iterates on two different
independent datasets D and D′, we can obtain upper bounds
on the generalization gap.

1A random variable X is sub-Gaussian with proxy c if for
λ ∈ R, logE [exp(λ(X − E(X))] ≤ λ2c2/2

2.4. Differential privacy

A closely related notion to generalization is differential pri-
vacy. For ϵ, δ > 0, (ϵ, δ)-Differential privacy (Dwork, 2008)
is a standardized formalization of the notion of privacy. A
useful interpretation of it is given by (Wasserman & Zhou,
2010) who show that an (ϵ, δ)-differential privacy guaran-
tee on an algorithm PX|D outputting weights X given a
dataset D, equates to a guarantee that no statistical test (or
null-hypothesis test) on the output can reliably determine
if a specific data point was part of the training set D. The
false-positive and false-negative rates of any such test will
be controlled by ϵ and δ. Algorithms with small ϵ and δ
are those for which no powerful test exists. Remarkably,
as shown below, stability in terms of the stronger Rényi
divergence implies that an algorithm is (ϵ, δ)-differential
private.

Lemma 2.3 (From Rényi stability to (ϵ, δ)-DP (Thm.21
(Balle et al., 2020))). Let PXk|D be a randomized algorithm
outputting weights given a dataset D. Let q > 1, ϵ > 0.
If Dq

(
PXk|D||PXk|D′

)
≤ ϵ for D,D′ adjacent datasets,

then PXk|D is (ϵ+ log 1/δ−log(q)
q−1 + log q−1

q , δ)-differentially
private for any δ > 0.

The study of the privacy properties of noisy iterative
schemes appears in (Minami et al., 2016). A comprehensive
treatment from a perspective of privacy amplification by
iteration in convex setting is provided in (Feldman et al.,
2018) using Rényi differential privacy (Mironov, 2017).
Fundamentally, the technical problem of showing stability
is identical for generalization and privacy, which is why we
mention differential privacy here. The analysis of (Ganesh
& Talwar, 2020; Chourasia et al., 2021; Ye & Shokri, 2022)
establishes time-independent privacy bound for strongly
convex settings with deterministic and stochastic gradients.
Going beyond convexity as noted in (Ganesh et al., 2023)
remained an open question.

2.5. Isoperimetry

In our work, we relax the strong-convexity requirements
to assumptions of dissipativity and isoperimetry. The in-
equality below is referred to as an isoperimetric inequality
since it implies Gaussian (or uniform on the unit sphere)
like concentration properties on the distribution (Gozlan,
2009).

Definition 2.4 (LSI). A distribution b is said to verify the
log-Sobolev inequality (LSI) with constant cb if for any
a ≪ b,

DKL (a||b) ≤
cb
2
Ea

[
∥∇ log a−∇ log b∥2

]
.

Instead of assuming strong convexity of the optimized loss
Fn, we assume in the following that the Gibbs distribution
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with density proportional to e−Fn satisfies the LSI. A pre-
cise discussion on which conditions of Fn yield the LSI is
provided in section 5. Moreover, our main technical tool
will rely on showing that the outputs Xk of equation SGLD
all satisfy the LSI with a constant that is uniform in k. It
was unknown if such a uniform bound held without strong
convexity. (Vempala & Wibisono, 2019) include a proof
under strong-convexity in their last arxiv modification and
(Altschuler & Talwar, 2022) specifically study this question
under convexity. The lack of uniform LSI was the bottle-
neck that prevented analyses from capturing non-convex
settings and required (Vempala & Wibisono, 2019) to state
the uniform LSI as assumption(Assumption 2).

3. Related Work
Several authors have considered the question of time depen-
dence of generalization bounds of noisy iterative schemes.
The work of (Mou et al., 2018) was the first to notice
that each step includes a decay factor that can compen-
sate for step-wise increases derived in previous analyses.
Unfortunately, only a degrading decay factor is established,
making vanishing step-sizes mandatory. (Li et al., 2019)
build on their result to show a time-independent bound for
non-convex losses obtained as bounded perturbations of a
strongly convex loss. Unfortunately, their bounds do not go
to 0 as n → ∞. In bounded settings, where a projection step
follows each noisy gradient update, the work of (Wang et al.,
2023) and (Chien et al., 2024) establish that a uniform decay
factor can be established. They show that if each iteration
of SGLD is followed by a projection on a convex set C, then
a constant decay factor that depends on exp (diam(C)/η)
can be established.

Fewer papers tackle the unbounded setting. Using coupling
techniques, (Farghly & Rebeschini, 2021) establish a time-
uniform bound but incur inelegant step size dependences
and do not obtain a bound going to 0 as n → ∞ for fixed
stepsizes. The recent work (Zhu et al., 2024) considers the
same dissipative setting and exploits Markov chain pertur-
bation results but their Wassertein analysis requires that
Lipschitz losses be used to measure the generalization gap.
The work most closely related to ours is (Futami & Fuji-
sawa, 2024). For dissipative losses, their result involves
dimension-dependent quantities unrelated to stability. We
show that the dissipative setting is friendly enough to not
require such constants, and we improve their analysis to
remove the dissipativity assumption under ergodicity. We
include a table for ease of comparison in Table 1.

Observe that the fast 1/n rate achievable with information
theoretic bounds comes with drawbacks. (Wang et al., 2023)
achieve the fast rate only for k ≤ n. In other words the
result only holds for the first epoch of training. Other bounds
obtaining the fast rate (see (Rodrı́guez-Gálvez et al., 2024))

Xk

X ′
k

Grad
ien

tSt
ep(

Xk
, D)

GradientStep(X ′
k , D ′

)

Xk + 1/2

X ′
k + 1/2

Xk+1

X ′
k+1

Noise

Noise

Expansion Contraction

Figure 1. Analysis template

cannot be readily applied to SGLD to take into account the
algorithm which is the primary goal of our work.

4. Analysis template
In this section, we describe the analysis template depicted
in Figure 1 which will allow us to establish KL and Rényi
stability through a step-wise analysis of each iteration k.
Our central contributions follow in later sections. Earlier
versions of this template appear in (Chourasia et al., 2021)
and (Ye & Shokri, 2022)(appendix D.7), who refined the
Rényi analysis of (Vempala & Wibisono, 2019). Our anal-
ysis relies on showing that, at each iteration, there is an
expansion followed by a contraction.

Before diving into the analysis, we ease the computations
by assuming that the sequences of batches are chosen before
the start of the recursion. In other words, we conduct the
analysis conditioned on B = (Bk)k by using the fact that
conditioning increases Dq (see 7.11 in (Polyanskiy, 2019)).
That is, for any distributions a, b,

Dq (a||b) ≤ EB [Dq (a|B||b|B)]

when q ≥ 1. Consequently, we can conduct the analysis
for a fixed non-random sequence of batches, and then take
the expectation of the final result with respect to the batch
selection. This is the standard simplification for analyzing
stochastic gradients (Wang et al., 2023; Ye & Shokri, 2022).

The first step of our method consists of decomposing the
noise term as follows

Xk+1 = Xk − ηg(Xk, Bk) +

√
2η

β
Nk+1

= Xk − ηg(Xk, Bk) +

√
η

β
N

(1)
k+1︸ ︷︷ ︸

Expansion term

+

√
η

β
N

(2)
k+1︸ ︷︷ ︸

Contraction term

=: Xk+1/2 +

√
η

β
N

(2)
k+1

(3)
where we have split the random variable Nk+1 into two
independent N (0, I) variables N (1)

k+1 and N
(2)
k+1. A single

update therefore corresponds to two consecutive half steps,
the first going from Xk to Xk+1/2 (the gradient update half-
step) and a second going from Xk+1/2 to Xk+1 (the noise
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non-convex un-bounded domain Bound
(Chourasia et al., 2021; Ye & Shokri, 2022) ✗ ✓ O (1/

√
n)

(Raginsky et al., 2017) ✓ ✓ O (ηK + exp−ηK/cπ + 1/n)

(Mou et al., 2018) ✓ ✗ O
(√

logK/n
)

(Farghly & Rebeschini, 2021) ✓ ✓ O
(
1/(n

√
η) +

√
η
)

(Futami & Fujisawa, 2024) ✓ ✓ O
(√

1+C
n

)
with C d, b,m-dependent

(Wang et al., 2023; Chien et al., 2024) ✓ ✗

{
O (1/n) if K ≤ n

O
(√

1/n
)

with (Chien et al., 2024)

Present work ✓ ✓ O
(√

1/n
)

Table 1. Our result matches the strongly-convex bound of (Chourasia et al., 2021; Ye & Shokri, 2022) in the un-bounded, non-convex
setting. Crucially, our techniques avoid the additional non-explicit constants appearing in (Futami & Fujisawa, 2024).

step). We analyze these half-steps in what follows for the
iterates (Xk)k, (X ′

k)k defined in equation 2.

4.1. Expansion half-step

The control of the divergence along the first half-step will
result from the analog of the chain rule for q-Rényi diver-
gence. We can show that the following bounded expansion
holds.

Theorem 4.1 (Bounded expansion). Let Xk+1/2 and
X ′

k+1/2 be the gradient update half-steps in equation 3,
then

Dq

(
Xk+1/2||X ′

k+1/2

)
≤ Dq (Xk||X ′

k)

+ q
βη

2
Ẽk,q[∥g(X ′

k, Bk)− g′(X ′
k, B

′
k)∥22].

where the tilted expectation Ẽk,q is an expectation under a
modified density defined in Definition A.1.

The result above tells us that the expansion (or over-fitting)
induced by the gradient step can be controlled by the term

Sk := Ẽk,q[∥g(X ′
k, Bk)− g′(X ′

k, B
′
k)∥22] (4)

which is a quantity that measures how sensitive gradients
are with respect to changes in the dataset.
Remark 4.2. Observe that since Sk ≤
2Ẽk,q[∥g(X ′

k, Bk)∥2] + 2Ẽk,q[∥g′(X ′
k, Bk)∥2], upper

bounds involving Sk can be transformed to upper bounds
involving gradient norms (or gradient variance) along the
trajectory.

4.2. Contraction half-step

After the expansion half-step, the next iterates are obtained
by simply adding the remaining half of the Gaussian noise.
In other words, the next iterates are obtained after simulta-
neous Gaussian convolution (or diffusion along heat flow).
This parallel addition of independent Gaussian noise (or

Additive Gaussian noise channels) has been well explored
in the sampling literature (Wibisono & Jog, 2018; Vempala
& Wibisono, 2019; Chewi et al., 2021). In particular, (Chen
et al., 2022) generalize a result of (Vempala & Wibisono,
2019) to derive the following contraction theorem.

Theorem 4.3 (Adapted from (Chen et al., 2022) Theorem
3). Let Xk+1/2 and X ′

k+1/2 be the gradient half-steps as
defined in equation 3. If (X ′

k+1/2)k all verify the LSI with
constant α, then after simultaneous heat flow Xk+1/2 +√

η/βN and X ′
k+1/2 +

√
η/βN ′, with N,N ′ ∼ N (0, I),

we have that

Dq

(
Xk+1||X ′

k+1

)
≤ γDq

(
Xk+1/2||X ′

k+1/2

)
.

where γ =
(

βα
βα+η

)1/q
< 1.

If a uniform LSI can be established, the addition of noise
after each gradient step corrects the overfitting and brings
the distributions back to being closer as shown in Figure 1.
The proofs for this template can be found in A.

4.3. Combining the steps

With the bounded expansion and approximate contraction
results, it suffices to unroll the recurrence to obtain time-
independent bounds. By combining theorems 4.1 and 4.3,
we obtain the following single-step result.

Theorem 4.4 (Single step bound). Let k ∈ N, (Xk) and
(X ′

k) the two sets of SGLD iterates defined equation 2. If
(X ′

k+1/2)k all verify the LSI with contant α, we have that

Dq

(
Xk+1||X ′

k+1

)
≤ γDq (Xk||X ′

k) + γq
βη

2
Sk

where Sk is the gradient sensitivity in equation 4 and γ =(
βα

βα+η

)1/q
< 1.

Under bounded gradient sensitivity (equation 4), this geo-
metric recurrence given above remains bounded for k →
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Strongly
convex Convex

Dissipative
lower bounded Hessian

Log-Sobolev inequality

Poincare inequality

Figure 2. A diagram of the commonly used assumptions. A proof
that strongly convex functions are dissipative can be derived from
the quadratic lower bound at 0. Corollary 2.1.(2) of (Cattiaux
et al., 2010) shows that dissipativity and lower bounded Hessians
imply LSI. The fact that Poincaré inequalities hold for log-concave
measures is shown in Corollary 1.9 of (Bakry et al., 2008). The
proof that LSI implies Poincaré can be found in (Bakry et al.,
2014)(Proposition 5.1.3).

∞. Indeed a simple unrolling yields Dq (Xk||X ′
k) ≤

q βη
2

∑k
t=0 γ

k−tSt. The results thus all hinge on finding
a constant α such that all iterates of equation SGLD verify
the LSI inequality with constant α.

5. Uniform LSI under dissipativity
In this section, we show that the iterates of equation SGLD
all verify the LSI under a dissipativity assumption on f .
For a target distribution π ∝ e−f , a set of increasingly re-
laxed structural assumptions can be made on f to guarantee
that π admits an LSI constant. A hierarchy of the com-
monly used assumptions is given in Figure 2. The iterates
of equation SGLD however are evolving distributions so
establishing that the structural assumptions hold uniformly
for the distribution of the iterates Xk can be burdensome.
Luckily the log-Sobolev constant is stable through Lipschitz
mappings and convolutions as shown below.

Theorem 5.1 (Operations preserving LSI (Chafaı̈, 2004)).
If the distribution of a random variable A is LSI(ca), then
the distribution of T (A) is LSI

(
Lip(T )2ca

)
and if B is in-

dependent from A and LSI(cb), then A+B is LSI(ca + cb).

By leveraging these stability results, structural assumptions
on the gradient mapping T : x 7→ x − η∇f(x) in SGLD
can lead to uniform LSI constants. The following minimal
assumption is necessary to show that the gradient mapping
is Lipschitz.

Assumption 5.2 (Smoothness). For any z ∈ Z , the func-
tion x 7→ f(x, z) is continuously twice differentiable and
there exists L > 0 such that for any z ∈ Z , ∥∇f(x, z) −
∇f(y, z)∥ ≤ L∥x− y∥.

With the above, we can track the log-Sobolev constant
throughout the iterations and additional assumptions are
then added to ensure boundedness of the constant.

5.1. Strongly convex setting

In the literature, uniform LSI constants have only been
established in strongly convex settings (Ganesh & Talwar,
2020; Ye & Shokri, 2022; Chourasia et al., 2021; Vempala
& Wibisono, 2019). The uniform constants are obtained
by noticing that if f(·, z) is m-strongly convex for all z,
then Xk+1 is obtained by applying a (1 − ηm)-Lipschitz
gradient mapping to Xk and adding independent Gaussian
noise. Using the stability properties of the LSI constant, it
can be shown that

cLSI(Xk+1) ≤ (1− ηm)2cLSI(Xk) +
η

β
.

The geometric sequence stays bounded and yields the de-
sired uniform bound on the LSI of Xk. Without strong
convexity, the gradient cannot have a Lipschitz constant
less than 1 for all η ≤ 1

L . Consequently, the geometric se-
quence derived by considering successive gradient updates
and noise gives cLSI(Xk+1) ≤ (1 + ηL)2cLS(Xk) +

η
β .

which can only diverge exponentially as the iterate count
increases. We will show that using different techniques, a
finite bound can be established under a relaxation of strong
convexity.

5.2. Dissipative functions

The standard way of relaxing strong convexity is by adding
perturbations. A classic result establishes that bounded per-
turbations of strongly convex functions still satisfy the LSI,
albeit with an exponential degradation (Holley & Stroock,
1988). More recent results show that other types of perturba-
tions can preserve the LSI. For instance, if V is strongly con-
vex and H a Lipschtiz function, then e−V+H still verifies
the LSI (Brigati & Pedrotti, 2024). This setting corresponds
precisely to Lipschitz losses with weight decay analyzed by
(Farghly & Rebeschini, 2021).

Another seemingly different relaxation is the requirement
that f be strongly convex outside of a bounded region. In
other words, the gradient of f is strongly monotone outside
of some ball. This can be expressed by adding a slack b > 0
to the gradient monotonicity condition to yield

⟨x− y,∇f(x)−∇f(y)⟩ ≥ m∥x− y∥2 − b (5)

for all pairs x, y. The above condition is known as strong-
dissipativity (Erdogdu et al., 2022). We note here that
strongly dissipative functions are equivalent to bounded
or Lipschitz perturbations of strongly convex functions (see
Lem.1 of (Ma et al., 2019) or Lem.2.4 of (Brigati & Pedrotti,
2024)).

A step further can be achieved by only requiring one point
strong convexity and dropping the y in equation 5. This
is akin to the relaxations of strong convexity analyzed in
(Karimi et al., 2016) (see their appendix A for a hierarchy).
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By relaxing equation 5, we obtain the set of dissipative
functions defined as below.
Definition 5.3 (Dissipativity). A function f is (m, b) dis-
sipative if for any x ∈ Rd, we have that ⟨x,∇f(x)⟩ ≥
m∥x∥2 − b.

The condition appeared in (Cattiaux et al., 2010) as a simple
criterion to ensure the existence of a finite LSI constant. It
has then become the standard relaxation of strong-convexity
in the sampling and noisy optimization literature (Raginsky
et al., 2017; Erdogdu et al., 2022). Indeed, when F is dissi-
pative, then e−βF can be shown to admit an LSI constant of
the order O (exp(β + d)).

Our result hinges on the fact that, despite being the broadest
relaxation of strong convexity, dissipative functions still
admit well-behaved gradient updates.
Lemma 5.4 (Dissipative gradient updates are approximately
contractive). Let f be an L-smooth, (m, b)-dissipative func-
tion, then for any η ≤

√
m

2L ,

∥x− η∇f(x)∥2 ≤ ω∥x∥2 +
(
2η2L2R2 + 2ηb

)
with ω = (1− ηm) and R =

√
b
m .

This approximate contraction property gives control of the
norms of the iterates of equation SGLD. This allows to show
that the gradient mapping under dissipativity ensures that the
iterates remain sub-Gaussian. A remarkable result of (Chen
et al., 2021) then allows us to upgrade this sub-Gaussianity
to a log-Sobolev inequality.

Theorem 5.5 (Uniform LSI). Let X0 ∼ N (0,
√

η
βdI),

and let f be (m, b)-dissipative, 31
32m < η ≤

m
2L2 the iterates of equation SGLD all verify a
Poincare and log-Sobolev inequality with constants
CP ≤ 4η

β exp
(
32
(
b+ d+ ηβ(LR)2

))
and CLSI ≤

6CP

(
32
(
b+ d+ ηβ(LR)2

))
where R =

√
b/m.

The proof of this result can be found in appendix B. The
bound on the log-Sobolev inequality of the iterates is ex-
ponential in dimension, but is of the same order as the LSI
constant of the target distribution e−βf (Raginsky et al.,
2017). It is thus unlikely that the bound can be improved
without additional assumptions. The constant factors in
bounds on η are loose and can be improved with clever uses
of Young’s inequality (see appendix C).

5.3. Corollaries under dissipativity

The results on dissipative functions allow us to derive the
following immediate corollaries of Theorem 4.4. We first
state our assumptions.
Assumption 5.6 (Uniform dissipativity). For all z ∈ Z , the
function x 7→ f(x, z) is (m, b)-dissipative and L-smooth.

This ensures that the mini-batches are gradients of dissipa-
tive functions. The next assumption is a mild requirement
needed to ensure that the sensitivity terms Sk equation 4
can be controlled.

Assumption 5.7 (Pseudo-Lipschitz). There exists θ,D > 0
such that for any z, z′ ∈ Z , ∥∇f(x, z) − ∇f(x, z′)∥ ≤
θ∥x∥+D

Corollary 5.8 (Bounded KL stability). For q = 1, under
Assumptions 5.6 and 5.7, for any k ≥ 1 and 31

32m < η ≤
m
2L2 , we have that the iterates Xk and X ′

k of SGLD with
stay within a bounded KL divergence from each other given
by

D (Xk||X ′
k) ≤

βη(θ2M +D2)

(1− γ)

(
1− γk+1

)
with γ =

(
βα

βα+η

)
, M = 2ηL2R2+2b

m + 2d
mβ and with α =

(1 + ηL)2CLSI +
η
β , where CLSI is the uniform LSI given

in Theorem 5.5.

Remark 5.9. Note that our result readily transfers to sub-
exponential losses using the same argument as (Futami &
Fujisawa, 2024) Theorem 7.

The pseudo-Lipschitz assumption which appears in (Zhu
et al., 2024) is merely an alternative way of bounding the
sensitivity terms Sk in equation 4, without requiring a uni-
form sensitivity bound when q = 1. For other divergences,
the pseudo-Lipschitz assumption is insufficient, we need a
more stringent L∞-bounded sensitivity assumption (which
can be ensured by clipping gradients (Ye & Shokri, 2022)).

Assumption 5.10 (L∞-bounded sensitivity). For any
z, z′ ∈ Z , ∥∇f(x, z)−∇f(x, z′)∥2 ≤ S∞

Corollary 5.11 (Rényi-differential privacy under dissipativ-
ity). For q ≥ 1, under Assumptions 5.6 and 5.10, for any
k ≥ 1 and 31

32m < η ≤ m
2L2 , we have that the iterates Xk

and X ′
k of SGLD stay within a bounded Rényi divergence

from each other given by

Dq (Xk||X ′
k) ≤ q

βηS∞

2(1− γ)

(
1− γk+1

)
with γ =

(
βα

βα+η

)1/q
< 1 and α = (1 + ηL)2CLSI +

η
β ,

where CLSI is given in Theorem 5.5.

Our corollaries above imply a time-independent bound for
the expected generalization gap (Lemma 2.2) and the privacy
loss (Lemma 2.3) under dissipativity. Our bounds solely
involve stability-related constants, just like the strongly-
convex bound of (Chourasia et al., 2021)[Thm 3] and they
decay to zero as n → ∞. Fundamentally the real tool we
used was the upgrading behavior of Gaussian convolution.
In the next section, we show this is sufficient to remove
dissipativity.

7
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6. Without dissipativity but with ergodicity
In this section, we show that dissipativity is not needed to
establish time-uniform generalization bounds as long as the
SGLD iterates converge towards a target distribution that
verifies the LSI. It is possible to make milder requirements
on f at the cost of introducing quantities unrelated to stabil-
ity: unlike Theorems 5.8 and 5.11, the result in this section
will no longer match the strongly-convex lower-bound as it
will include additional terms but its dimension dependence
is improved. We significantly relax the analysis of (Futami &
Fujisawa, 2024) which needlessly requires dissipativity and
the parametrix method. We instead rely on simple tools to
show that an approximate contraction result (Theorem 6.3)
can replace Theorem 4.3. Instead of requiring a per-iterate
LSI, Theorem 6.3 only requires the target to be LSI.

6.1. Gaussian convolution and log-Hessian lower bounds

The core of our result in this section relies on relaxing
Theorem 4.3 in the analysis template. To do so, we must
exchange distributions: we need to swap the per-iterate
distribution with the target distribution. The swap is only
possible if the distribution is sufficiently smooth. The fol-
lowing Lemma shows that Gaussian convolution enforces a
lower bound on the Hessian of log-densities.

Lemma 6.1 (Hessian lower bound). Let ν be a distribution
that results from a Gaussian convolution, i.e, ν = ν̃ ⋆
N (0, ηI) for some distribution ν̃, then ∇2 log ν ⪰ − 1

η Id.

This simple result follows from straightforward computa-
tions. Moreover, Gaussian convolution can only improve
the log-Hessian lower bound of a distribution (see Lemma
E.3). Functions with a Hessian lower bound are convenient
as they allow for simple changes of measure:

Lemma 6.2 (Change of measure). Let g : Rd → R be a
twice-differentiable function such that ∇2g ⪰ −KId for
some K ∈ R. Then, for any random variables X,Y over
Rd, we have E[−g(Y )] ≤ E[−g(X)] + 1

2E [∥∇g(X)∥]
+ K+1

2 E[∥X − Y ∥22].

The lemma above gives us the ability to change an expec-
tation under Y to an expectation under X , and leaves open
the choice of coupling between X and Y .

6.2. Approximate contraction along simultaneous heat
flow

We now have all the tools in hand to show that that if the
SGLD chains converge to a well-behaved limit, then ap-
proximate contraction can be established. We begin by
observing that the contraction step is applied to a half step
Xk+1/2 that itself results from a Gaussian convolution since
we split the noise in two. Consequently, we know that
∇2 logPXk+1/2

⪰ β
η Id by Lemma E.2. The following theo-

rem can then be established.

Theorem 6.3 (Approximate Contraction). Let π ∼ e−βFn

be a distribution verifying the LSI with constant cπ ≥ 1,
whose potential Fn is L-smooth and lower bounded by
F ⋆. For any distribution π′ and at = a0 ⋆ N (0, t), bt =
b0 ⋆N (0, t) with ∇ log b0 ⪰ −β

η I , we have that

DKL

(
a η

β
||b η

β

)
≤ e−η/4cπDKL (a0||b0)

+ erg(aη, bη, π, π′) + ProbConst

where the ergodicity error term gathers quantities related to
convergence of aη, bη towards π, π′ and ProbConst gathers
problem-dependent constants (explicitly given in equation 8
and equation 9).

The approximate contraction established in Theorem 6.3,
can be instantiated for our two parallel chains of SGLD to
yield the following corollary under the following assump-
tions.

Assumption 6.4 (Reasonable loss). For any dataset D, the
function Fn is L-smooth and lower bounded by F ⋆ ∈ R.
The distribution π ∼ e−βFn verifies the LSI with constant
cπ and has bounded second moments Eπ

[
∥X∥2

]
< ∞.

Assumption 6.5 (Bounded variance). The
stochastic gradients are unbiased and satisfy
EB

[
∥g(X,B)− Fn(X)∥2

]
≤ σ2.

Corollary 6.6 (KL stability under isoperimetry). Under
assumption 6.4, 6.5, and assuming cπ ≥ 1. We have for
η ≤ β

cπL2 , the iterates of equation SGLD Xk and X ′
k ran

on datasets D and D′ satisfy

DKL (Xk||X ′
k) ≤

poly
(

η
β , L, d, σ, dinit, d

′
init

)
1− γ

+
CF + c2πSGibbs

1− γ

where SGibbs = Eπ

[
∥∇Fn(X)−∇F ′

n(X)∥2
]
, CF =

Eπ′
[
∥X∥2

]
− 2F ⋆, dinit = DKL (X

′
0||π), d′init =

DKL (X
′
0||π′), and γ = e−η/4βcπ .

We prove this Corollary in Appendix D.1. We are able to
show KL stability while making the fewest assumptions on
the structure of the optimized loss Fn. Our result shows
that merely knowing that e−βFn verifies an isoperimetric
inequality is sufficient to establish a generalization bound
that does not degrade as the iteration count increases.

7. Conclusion
Our Rényi and KL stability bounds directly imply general-
ization and differential privacy guarantees for disspativite
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objectives, extending results only available for strongly con-
vex settings. Noisy iterative algorithms can be run ad infini-
tum with non-vanishing step sizes without early-stopping
in non-convex settings. This is an improvement over the
previously infinite bounds and is in accordance with the
practical observations that long training runs do not always
harm generalization and in fact can sometimes improve it
(Olmin & Lindsten, 2024).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here..
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Mironov, I. Rényi differential privacy. In 2017 IEEE 30th
computer security foundations symposium (CSF), pp. 263–
275. IEEE, 2017.

Mou, W., Wang, L., Zhai, X., and Zheng, K. Generalization
bounds of sgld for non-convex learning: Two theoretical
viewpoints. In Conference on Learning Theory, pp. 605–
638. PMLR, 2018.

Nakkiran, P., Kaplun, G., Bansal, Y., et al. Deep double
descent: Where bigger models and more data hurt. arxiv:
191202292 [cs, stat]. 2019.

Olmin, A. and Lindsten, F. Towards understanding epoch-
wise double descent in two-layer linear neural networks.
arXiv preprint arXiv:2407.09845, 2024.

Pensia, A., Jog, V., and Loh, P.-L. Generalization error
bounds for noisy, iterative algorithms. In 2018 IEEE
International Symposium on Information Theory (ISIT),
pp. 546–550. IEEE, 2018.

Polyanskiy, Y. Information Theoretic Methods in
Statistics and Computer Science, 2019. URL
https://people.lids.mit.edu/yp/
homepage/data/LN_fdiv.pdf.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization beyond overfit-
ting on small algorithmic datasets. arXiv preprint
arXiv:2201.02177, 2022.

Raginsky, M., Rakhlin, A., and Telgarsky, M. Non-convex
learning via Stochastic Gradient Langevin Dynamics: a
nonasymptotic analysis. In Conference on Learning The-
ory, pp. 1674–1703. PMLR, June 2017. ISSN: 2640-
3498.

Rodrı́guez-Gálvez, B., Thobaben, R., and Skoglund, M. An
information-theoretic approach to generalization theory.
arXiv preprint arXiv:2408.13275, 2024.

Russo, D. and Zou, J. Controlling bias in adaptive data anal-
ysis using information theory. In Artificial Intelligence
and Statistics, pp. 1232–1240. PMLR, 2016.

Vempala, S. and Wibisono, A. Rapid convergence of the
unadjusted langevin algorithm: Isoperimetry suffices. Ad-
vances in neural information processing systems, 32,
2019.

Wang, H., Gao, R., and Calmon, F. P. Generalization bounds
for noisy iterative algorithms using properties of additive
noise channels. Journal of Machine Learning Research,
24(26):1–43, 2023.

10

https://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf
https://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf


Generalization of Noisy SGD in Unbounded Non-convex Settings

Wasserman, L. and Zhou, S. A statistical framework for
differential privacy. Journal of the American Statistical
Association, 105(489):375–389, 2010.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
international conference on machine learning (ICML-11),
pp. 681–688. Citeseer, 2011.

Wibisono, A. and Jog, V. Convexity of mutual information
along the heat flow. In 2018 IEEE International Sympo-
sium on Information Theory (ISIT), pp. 1615–1619. IEEE,
2018.

Xu, A. and Raginsky, M. Information-theoretic analy-
sis of generalization capability of learning algorithms.
Advances in neural information processing systems, 30,
2017.

Ye, J. and Shokri, R. Differentially private learning needs
hidden state (or much faster convergence). Advances
in Neural Information Processing Systems, 35:703–715,
2022.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021.

Zhu, L., Gurbuzbalaban, M., Raj, A., and Simsekli, U.
Uniform-in-time wasserstein stability bounds for (noisy)
stochastic gradient descent. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Zozor, S. and Brossier, J.-M. debruijn identities: From
shannon, kullback-leibler and fisher to generalized φ-
entropies, φ-divergences and φ-fisher informations. In
AIP Conference Proceedings, volume 1641, pp. 522–529.
American Institute of Physics, 2015.

11



Generalization of Noisy SGD in Unbounded Non-convex Settings

A. Analysis template proofs
In this section we provide proofs for the results in the expansion-contraction template. The first result we prove is the
bounded expansion result. We first define the tilted expectation.

Definition A.1 (q-tilted Expectation). For any function h, the tilted expectation Ẽk,q is an expectation under a modified
density and is defined by

Ẽk,q [h(X
′
k)] = EX′

k
[ϕq(X

′
k)h(X

′
k)]

with tilting function is the ratio ϕq := 1
Λq

(
pXk

pX′
k

)q

where the normalization is given by Λq = EX′
k

[(
pXk

pX′
k

)q]
. If q = 1,

the tilted expectation simplifies to
Ẽk,q [h(X

′
k)] = EXk

[h(Xk)] .

We can show that the over-fitting induced at each step is controlled by this tilted expectation as shown in the following
theorem.

Theorem 4.1 (Bounded expansion). Let Xk+1/2 and X ′
k+1/2 be the gradient update half-steps in equation 3, then

Dq

(
Xk+1/2||X ′

k+1/2

)
≤ Dq (Xk||X ′

k)

+ q
βη

2
Ẽk,q[∥g(X ′

k, Bk)− g′(X ′
k, B

′
k)∥22].

where the tilted expectation Ẽk,q is an expectation under a modified density defined in Definition A.1.

Proof. We first apply the data processing inequality to obtain that

Dq

(
Xk+1/2||X ′

k+1/2

)
≤ Dq

(
(Xk+1/2, Xk)||(X ′

k+1/2, X
′
k)
)

The q-tilted chain rule for q-Rényi divergences ( (7.59) in (Polyanskiy, 2019)) then gives us

Dq

(
(Xk+1/2, Xk)||(X ′

k+1/2, X
′
k)
)
≤ Dq (Xk||X ′

k) + ẼX̃k
Dq

(
Xk+1/2|Xk = X̃k||X ′

k+1/2|X
′
k = X̃k

)
where the tilted expectation is given by

ẼX̃′
k

[
h(X̃ ′

k)
]
= EX′

k
[ϕq(X

′
k)h(X

′
k)]

where ϕq(x) = 1
Λq

(
pXk

pX′
k

)q

pX′
k

where the normalization constant is given by Λq = EX′k

[(
pXk

pX′
k

)q]
. This tilted

expectation is a little complicated but what is inside the expectation is a simple term.

Observe that Xk+1/2|Xk = x is a N (x − g(x,Bk),
√

η
β . We obtained the result by using closed form results for the

q-Rényi divergence between Gaussians ((Mironov, 2017) Proposition 7).

The second element is the contraction component. The contraction theorem 4.3 is a direct application of the forward step in
Theorem 3 of (Chen et al., 2022) with t = η/β.

B. Uniform LSI under dissipativity
In this section we prove that the iterates of equation SGLD verify a uniform log-Sobolev inequality under assumption 5.3.

B.1. Properties of dissipative functions

We first begin by showing approximative contraction property of dissipative functions.
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Lemma B.1 (Dissipative gradient updates are approximately contractive). Let f be an L-smooth, (m, b)-dissipative function,
then for any η ≤

√
m

2L ,
∥x− η∇f(x)∥2 ≤ ω∥x∥2 +

(
2η2L2R2 + 2ηb

)
with ω = (1− ηm) and R =

√
b
m .

Proof. Let η ≤
√
m

2L , let x ∈ Rd,

∥x− η∇f(x)∥2 = ∥x∥2 − 2η ⟨x,∇f(x)⟩+ η2∥∇f(x)∥2

≤ ∥x∥2 − 2ηm∥x∥2 + 2η2L2∥x∥2 + 2η2L2 b

m
+ 2ηb (using Ass. 5.3 and Lemma B.2)

≤ (1− ηm)∥x∥2 + 2η2L2 b

m
+ 2ηb (using that η ≤ m

2L2
)

≤ ω∥x∥2 + 2η2L2R2 + 2ηb

with ω = (1− ηm) and R =
√

b
m .

Lemma B.2 (Gradients of dissipative and smooth functions). Let f be an L-smooth, (m, b)-dissipative function, then

∥∇f(x)∥ ≤ L∥x∥+ L

√
b

m

Proof. Let x⋆ be a stationary point of f , then

∥∇f(x)∥ = ∥∇f(x)−∇f(x⋆)∥ ≤ L∥x− x⋆∥ ≤ L∥x∥+ L∥x⋆∥

The result follows from Lemma B.3.

Lemma B.3 (Stationary points of dissipative functions). Let f be an (m, b)-dissipative function, then for any x ∈ Rd,

∇f(x) = 0 =⇒ ∥x∥2 ≤ b

m

Proof. The result follows from the definition of dissipativity in 5.3.

Dissipative functions therefore roughly keep the iterates in a bounded region of size R =
√

b
m . This will have implications

for their exponential integrability.

B.2. Exponential integrability

Given that each gradient update is contracting, we can show that the iterates of SGLD are sub-Gaussian. In other words, we
can show exponential integrability as given by the following lemma.

Lemma B.4 (Exponential integrability). Let X0 ∼ N (0,
√

η
dβ I), and let f be (m, b)-dissipative with contraction constant

ω = (1− ηm). For any p ≥ 1 such that pω < 1/8, we have for any k ≥ 1, the iterate Xk of equation SGLD verifies

1

p
logE

[
exp

(
2p

β

2η
∥Xk − η∇f(Xk)∥2

)]
≤ 16

(
d+ ηβ(LR)2

)
p

Proof. We show the result by expressing the norm of the gradient update as a sum of Gaussian norms. Let k ≥ 1, we have
that

∥Xk − η∇f(Xk)∥2 ≤ ω∥Xk∥2 + 2η2L2R2 + 2ηb

≤ 2ω∥Xk−1 − η∇f(Xk−1)∥2 + 2ω
2η

β
∥Nk∥2 + 2η2L2R2 + 2ηb

≤ (2ω)k∥X0∥2 +
2η

β

k∑
i=0

(2ω)i+1∥Nk−i∥2 +
2η2L2R2 + 2ηb

1− 2ω

13
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Since X0 ∼ N (0,
√

η
dβ I), we have that

β

2η
∥Xk − η∇f(Xk)∥2 ≤ 1

d
(2ω)k∥N0∥2 +

k∑
i=0

(2ω)i+1∥Nk−i∥2 +
ηβ(LR)2 + b

2ηm− 1

where each Ni is an independent N (0, I) variable. Norms of Gaussians are exponentially integrable. Consequently, for
p ≥ 1, such that 2p(2ω) < 1/4, we can invoke Lemma B.5 to find that

logE
[
exp

(
2p

β

2η
∥Xk − η∇f(Xk)∥2

)]
≤

(
4p(2ω)k + 4

k∑
i=0

(2ω)idp+
ηβ(LR)2 + b

2ηm− 1

)
≤ 16

(
b+ d+ ηβ(LR)2

)
p

where we used the fact that ω < 1/4 implies that 2ηm− 1 ≥ 1/2.

Lemma B.5 (Square Gaussian moment generating function). Let Z ∼ N (0, Id), we have that, for any λ < 1/4,

logE
[
eλ∥Z∥2

]
≤ 2dλ

Proof. The random variable ∥Z∥2 is a sum of d standard Gaussians squared. Using elementary computations we can derive
its moment generating function

E[eλ∥Z∥2

] =

(
1

1− 2λ

)d/2

We obtain the result using the inequality − ln (1− 2λ) ≤ 4λ for λ < 1/4.

With the Exponential integrability, we simply exploit the fact that Gaussian convolution upgrades sub-Gaussianity to an LSI
to show the following result.

Theorem 5.5 (Uniform LSI). Let X0 ∼ N (0,
√

η
βdI), and let f be (m, b)-dissipative, 31

32m < η ≤ m
2L2 the iterates of

equation SGLD all verify a Poincare and log-Sobolev inequality with constants CP ≤ 4η
β exp

(
32
(
b+ d+ ηβ(LR)2

))
and

CLSI ≤ 6CP

(
32
(
b+ d+ ηβ(LR)2

))
where R =

√
b/m.

Proof. Thanks to our Lemma B.4, the proof will follow from the fact that Gaussian convolution upgrades sub-Gaussianity
to a log-Sobolev inequality which was shown in (Chen et al., 2021). For any k ≥ 1, we have that

Xk = Xk − ηg(Xk, Bk)︸ ︷︷ ︸
Exponentially integral gradient step

+
√
ηNk+1︸ ︷︷ ︸

Independent noise

We cast our result in their notation. We can express the equation above as the mixture of Gaussians. Indeed if µ denotes
the distribution of the gradient step and Px is the Gaussian distribution centered at X , then the distribution of Xk is the
mixture µP :=

∫
Pxdµ(x) . We can thus apply Theorem 1 (Chen et al., 2021) which bounds the LSI of mixtures. Using the

exponential integrability bound established in Lemma B.4 and taking p = 2, we have, following their notation, that,

Kp,χ2(P, µ) := EX∼µ,X∼µ′
[
1 + χ2 (PX ||P ′

X)
]
≤ E

[
exp

(
4
β

2η
∥Xk − η∇f(Xk)∥2

)]
By combining our bound in Lemma B.4 and Theorem 1 (Chen et al., 2021) yields the result since KP = η

β .

B.3. Corollaries under dissipativity

Here we provide proofs for the corollaries derived under dissipativity.

14
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Corollary B.6 (Bounded KL stability). For q = 1, under Assumptions 5.6 and 5.7, for any k ≥ 1 and 31
32m < η ≤ m

2L2 , we
have that the iterates Xk and X ′

k of SGLD with stay within a bounded KL divergence from each other given by

D (Xk||X ′
k) ≤

βη(θ2M +D2)

(1− γ)

(
1− γk+1

)
with γ =

(
βα

βα+η

)
, M = 2ηL2R2+2b

m + 2d
mβ and with α = (1 + ηL)2CLSI +

η
β , where CLSI is the uniform LSI given in

Theorem 5.5.

Proof. To establish the corollary, it suffices to control the sensitivity terms Sk given in equation 4. Thanks to assumption
5.7, we have that

Sk ≤ 2θ2Ẽ
[
∥X ′

k∥2
]
+ 2D2

Since we have chosen q = 1, the tilted expectation is actually an expectation under Xk according to Definition A.1.
Consequently,

Ẽ
[
∥X ′

k∥2
]
= E

[
∥Xk∥2

]
≤ ωE

[
∥Xk−1∥2

]
+
(
2η2L2R2 + 2ηb

)
+

2dη

β

where the second inequality follows from the approximate contractions of dissipative gradient updates Lemma 5.4 and the
last term is the expected norm of Gaussian noise Nk. By unrolling the geometric sequence above, we have that

E
[
∥Xk∥2

]
≤ 1

1− ω

[(
2η2L2R2 + 2ηb

)
+

2dη

β

]
Using the fact that 1− ω = ηm, we find that

E
[
∥Xk∥2

]
≤
(
2ηL2R2 + 2b

m
+

2d

mβ

)
Defining M := 2ηL2R2+2b

m + 2d
mβ yields the result.

C. Optimizing constants
With regards to optimizing the constant 31/32, we first observe that for any x ∈ Rd, and ι > 0, we have thanks to Lemma
B.2,

η2|∇f(x)|2 ≤ η2

(
L|x|+ L

√
b

m

)2

= η2

(
L2|x|22 + 2(L|x|)(L

√
b

m
) + L2 b

m

)

= η2

(
L2|x|22 + 2(

√
ιL|x|)( 1√

ι
L

√
b

m
) + L2 b

m

)

≤ (1 + ι)η2L2|x|22 + (1 +
1

ι
)η2L2 b

m

where we have used Young’s inequality in the last inequality. Now here, notice that we have (1 + ι) instead of 2 in the proof
of Lemma 5.4. So we can choose η ≤ m

(1+ι)L2 , to have that

η2|∇f(x)|2 ≤ ηm|x|22 + (1 +
1

ι
)η2L2 b

m

By having a larger constant term, we can allow ourselves a larger choice of η. We can combine this result with dissipativity
to obtain the following gradient contraction

|x− η∇f(x)|22 ≤ (1− ηm)|x|2 + 2η2L2(1 +
1

ι
)
b

m
+ 2ηb

which tightened version of Lemma 5.4.
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D. Approximate contraction proofs
In this section, we prove the approximate contraction along heat flow theorem established in section.

Theorem 6.3 (Approximate Contraction). Let π ∼ e−βFn be a distribution verifying the LSI with constant cπ ≥ 1, whose
potential Fn is L-smooth and lower bounded by F ⋆. For any distribution π′ and at = a0 ⋆N (0, t), bt = b0 ⋆N (0, t) with
∇ log b0 ⪰ −β

η I , we have that

DKL

(
a η

β
||b η

β

)
≤ e−η/4cπDKL (a0||b0)

+ erg(aη, bη, π, π′) + ProbConst

where the ergodicity error term gathers quantities related to convergence of aη, bη towards π, π′ and ProbConst gathers
problem-dependent constants (explicitly given in equation 8 and equation 9).

Proof. From Lemma F.2, we know that

d

dt
DKL (at||bt) ≤ −1

2
E
[
∥∇ log at(At)−∇ log bt(At)∥2

]
Expanding the square, we find that

d

dt
DKL (At||Bt) ≤ −1

2
Eat

[
∥∇ log at∥2

]
− 1

2
E
[
∥∇ log bt(At)∥2

]
+ Eat

[⟨∇ log at,∇ log bt⟩]

Now making the same observation as (Futami & Fujisawa, 2024) that −∥u− v∥2 ≤ − 1
2∥u∥

2 + ∥v∥2, we have that

d

dt
DKL (At||Bt) ≤ −1

4
Eat

[
∥∇ log at −∇ log π∥2

]
+

1

2
Eat [∥∇ log π∥]− 1

2
Eat

[
∥∇ log bt∥2

]
+Eat [⟨∇ log at,∇ log bt⟩]

Invoking the LSI for π, we can write

d

dt
DKL (At||Bt) ≤ − 1

4cπ
Eat

[
log

at
π

]
+

1

2
Eat

[
∥∇ log π∥2

]
− 1

2
Eat

[
∥∇ log bt∥2

]
+ Eat

[⟨∇ log at,∇ log bt⟩]

Introducing bt back into the first term, we find that

d

dt
DKL (At||Bt) ≤ − 1

4cπ
Eat

[
log

at
bt

]
+ Err(π) + Err(b) (6)

where we define
Err(π) :=

1

4cπ
Eat

[log π] +
1

2
Eat

[
∥∇ log π∥2

]
and

Err(b) :=
1

4cπ
Eat [− log bt]−

1

2
Eat

[
∥∇ log bt∥2

]
+ Eat [⟨∇ log at,∇ log bt⟩]

We will establish time-independent upper bounds for both these error terms. Using Grónwall’s lemma, we can then deduce
from equation 6, by integrating from 0 to t = η

β that

DKL

(
a η

β
||b η

β

)
≤ e−η/4βcπDKL (a0||b0) +

η

β
(Err(π) + Err(b)) (7)

We control each term individually. First, observe that Err(π) is a sum of a negative Shannon entropy and a log-gradient
norm measured through a distribution at instead of π. We bound each summand in Lemmas D.4 and D.5 respectively to
obtain that

Err(π) ≤ −2βF ⋆ +
d

2
log(

βL

2π
) + 2β2L2W2

2

(
a η

β
, π
)
+ 2β2L2η + Ld

The other error term is where the regularizing properties of Gaussian convolution are fully exploited and it is here that we
differ most sharply with the analysis of (Futami & Fujisawa, 2024). The first term in Err(b) is an expectation of − log bt
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and we have established that thanks to Gaussian convolution, the log-Hessian of log bt is lower bounded. This induced
smoothness allows us to perform a change of measure in Lemma D.2 to control the first two terms of Err(b). The last term is
again controlled using the properties of Gaussian convolution and simple integration by parts in Lemma D.1. We obtain that

Err(b) ≤ max
t≤ η

β

Ebt [− log bt] +
K + 1

2

(
W2

2

(
a η

β
, b η

β

)
+ 8

η

β
d

)
+Kd

Using the density bound in equation D.3, we can control the Shannon entropy, which gives for any π′,

Err(b) ≤ 4β

η
W2

2

(
b η

β
, π′
)
+

4β

η
Eπ′

[
∥X∥2

]
+ 2d+

K + 1

2

(
W2

2

(
a η

β
, b η

β

)
+ 8

η

β
d

)
+Kd

Putting everything together in equation 7, with K = β
η , we find that

DKL

(
a η

β
||b η

β

)
≤ e−η/4cπDKL (a0||b0) + erg(a η

β
, b η

β
, π, π′) + ProbConst

where the ergodicity error term gathers quantities related to the convergence of the processes

erg(a η
β
, b η

β
, π, π′) = 2ηβ2L2W2

2

(
a η

β
, π
)
+ (1 +

η

2β
)W2

2

(
a η

β
, b η

β

)
+ 4W2

2

(
b η

β
, π′
)

(8)

and the problem constants intervene in ProbConst with

ProbConst = Eπ′
[
∥X∥2

]
− 2F ⋆ +

ηd

2
log(

βL

2π
) +

d

2
log(2π

η

β
) + d

(
η2L2 + Ld+ d+ 2

η

β

)
(9)

Lemma D.1 (Inner product bound). Let at, bt as in Theorem 6.3 with ∇2 log b0 ⪰ −K,

Eat
[⟨∇ log at,∇ log bt⟩] = −Eat

[∆ log bt] ≤ Kd

Proof. The result follows from integration by parts (Lemma F.3) which gives

Eat
[⟨∇ log at,∇ log bt⟩] = −Eat

[∆ log bt]

Since Gaussian convolution only improves log-Hessian lower bounds, we find that

−Eat
[∆ log bt] ≤ Kd

Lemma D.2 (Change of measure). Let at, bt as in Theorem 6.3, then for cπ ≥ 1

1

4cπ
Eat [− log bt]−

1

2
Eat

[
∥∇ log bt∥2

]
≤ Ebt [− log bt] +

K + 1

2

(
W2

2

(
A η

β
, B η

β

)
+ 8

η

β
d

)
Proof. Since −∇2 log bt ⪯ K, we can apply the change of measure Lemma 6.2 to the function − log bt to find that for
cπ ≥ 1, we have

1

4cπ
Eat [− log bt]−

1

2
Eat

[
∥∇ log bt∥2

]
≤ Ebt [− log bt] +

K + 1

8
E
[
∥At −Bt∥2

]
The crucial feature of the change of measure lemma is that we can choose the coupling between (At, Bt) freely. Let
((A0, N), ((B0, N

′)) be coupled such that

W2
2

(
A0 +

√
η

β
N,B0 +

√
η

β
N ′
)

= E
[
∥A0 +

√
ηN − (B0 +

√
ηN ′)∥2

]
17
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With this coupling in hand, we define At = A0 +
√
tZ and Bt = B0 +

√
tZ ′ with Z,Z ′ independent N (0, I) variables.

We then compute

E
[
∥At −Bt∥2

]
≤ 2E

[
∥A0 +

√
η

β
N − (B0 +

√
η

β
N ′)∥2

]
+ 4td+ 4

η

β
d

= W2
2

(
A η

β
, B η

β

)
+ 4(t+

η

β
)d

Lemma D.3 (Density bound). Let t ≤ η ≤ 1, let B be a random variable with density b. Let us define the half step density2

as b1/2 = (b ⋆N (0, η/βI)). Let bt = b1/2 ⋆N (0, tI) be the result of a Gaussian convolution applied to the half step b1/2,
then for any π′, we have that

Ebt [− log bt] ≤
4β

η
W2

2

(
b η

β
, π′
)
+

4β

η
Eπ′

[
∥X∥2

]
+

d

2
log(2π

η

β
) + 2d

Proof. By definition of Gaussian convolution, the following equalities hold

bt(x) = EN

[
b1/2(x−

√
tN)

]
and b1/2(x) = Eb [N (x−B, ηI)]

A repeated application of Jensen’s inequality yields

− log bt(x) ≤ EN

[
− log b1/2(x−

√
tN)

]
≤ β

2η
ENEb

[
∥x−

√
tN −B∥2

]
+

d

2
log(2π

η

β
)

≤ β

2η
ENEb

[
∥x−

√
tN −B∥2

]
+

d

2
log(2π

η

β
)

Now taking expectation with respect to bt, we find that

Ebt [− log bt(Bt)] ≤
β

2η
E
[
∥Bt −

√
tN −B∥2

]
+

d

2
log(2π

η

β
) (10)

We then add some noise terms to look forward in the heat flow. Let N ′, N ′′ ∼ N (0, I) be independent Gaussians, then

E
[
∥Bt −

√
tN −B∥2

]
≤ E

[
∥(Bt +

√
η

β
− tN ′)− (B +

√
2ηN ′′)∥2

]
+ (

η

β
− t)d+ td+ 2ηd

≤ 2E
[
∥B η

β
∥2
]
+ 2E

[
∥B +

√
2ηN ′′∥2

]
+ 3

η

β
d

Recall that both B η
β

and B +
√
2 η
βN

′′ have the same law. Indeed B η
β

has distribution b η
β

= b1/2 ⋆ N (0, η
β I) (i.e bt

with t = η
β ) which adds variance η

β gaussian noise to the half step which already adds variance η
β gaussian noise to B,

consequently it corresponds to adding 2 η
β variance gaussian noise to B. By plugging the above into 10 that,

Ebt [− log bt(Bt)] ≤
2β

η
E
[
∥B η

β
∥2
]
+

d

2
log(2π

η

β
) +

3

2
d

From this we deduce that,

Ebt [− log bt(Bt)] ≤
4β

η
W2

2

(
b η

β
, π′
)
+

4β

η
Eπ′

[
∥X∥2

]
+

d

2
log(2π

η

β
) + 2d.

2(i.e akin to the density of Xk+1/2)
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Lemma D.4 (Entropy bound lower bound). Let π ∝ e−βF with F an L-smooth, lower bounded function such that
F (x) ≥ F ⋆ for some real value F ⋆ ∈ R, then for any ν

Eν [log π] ≤ −2βF ⋆ +
d

2
log(

βL

2π
)

Proof. We denote by Λ the normalization constant of π defined as

Λ =

∫
Rd

e−βF (x)dx.

Observe that
log π = −βF − log(Λ) ≤ βF ⋆ − log(Λ)

We therefore need only to lower bound log(Λ), which, as performed in (Raginsky et al., 2017) Propostion 3.4, can be
achieved using a Laplace integral approximation to yield

log Λ ≥ βF ⋆ +
d

2
log(

2π

βL
)

As a consequence, we obtain that

Eat [log π] ≤ −2βF ⋆ +
d

2
log(

βL

2π
)

Lemma D.5 (log-Gradient bound). Let π ∝ e−βF with F an L-smooth potential, then for t ≤ η
β ,

1

2
Eat

[
∥∇ log π∥2

]
≤ 2β2L2W2

2

(
a η

β
, π
)
+ 2βL2ηd+ Ld

Proof. Recall from (Vempala & Wibisono, 2019) Lemma 11 that

Eπ [∥∇F∥] ≤ dL.

To control the gradients under a different measure, it suffices to do a simple change of measure as is done in Lemma 12
of (Vempala & Wibisono, 2019). Since gradients of F are L-Lipscthiz, we have that for any y ∈ Rd and independent
N ′ ∼ N (0, I)

1

2
Eat

[
∥∇ log π∥2

]
≤ β2Eat

[
∥∇F (At)−∇F (y)∥2

]
+ ∥∇F (y)∥2

≤ β2L2Eat

[
∥At − y∥2

]
+ ∥∇F (y)∥2

≤ 2β2L2Eat

[
∥At +

√
η

β
− tN ′ − y∥2

]
+ 2β2L2(

η

β
− t)d+ ∥∇F (y)∥2

≤ 2β2L2W2
2 (Aη, π) + 2βL2ηd+ Ld,

where the last inequality is obtained by having y ∼ π with an optimal coupling.

D.1. Proof of the Corollary

Here we show how to use our approximate contraction result to obtain a bound on the generalization of SGLD.
Corollary D.6 (KL stability under isoperimetry). Under assumption 6.4, 6.5, and assuming cπ ≥ 1. We have for η ≤ β

cπL2 ,
the iterates of equation SGLD Xk and X ′

k ran on datasets D and D′ satisfy

DKL (Xk||X ′
k) ≤

poly
(

η
β , L, d, σ, dinit, d

′
init

)
1− γ

+
CF + c2πSGibbs

1− γ

where SGibbs = Eπ

[
∥∇Fn(X)−∇F ′

n(X)∥2
]
, CF = Eπ′

[
∥X∥2

]
− 2F ⋆, dinit = DKL (X

′
0||π), d′init = DKL (X

′
0||π′),

and γ = e−η/4βcπ .
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Proof. Our goal is to apply Theorem 6.3 to the iterates Xk and X ′
k. Let us first look at the additive error term erg 8. The

additive error term erg(a η
β
, b η

β
, π, π′) is a sum of Wassertein distances between a η

β
and π and b η

β
and π′. Indeed, we have

that

erg(a η
β
, b η

β
, π, π′) = 2ηβ2L2W 2

2 (a η
β
, π) + (1 +

η

2β
)W 2

2 (a η
β
, b η

β
) + 4W 2

2 (b η
β
, π′)

≤ 2ηβ2L2W 2
2 (a η

β
, π) + 2(1 +

η

2β
)W 2

2 (a η
β
, π)

+ 4(1 +
η

2β
)W 2

2 (π, π
′) + 8(1 +

η

2β
)W 2

2 (b η
β
, π′)

where we use the triangle inequality for Wassertein distances to obtain the above. We thus have the following three
Wassertein distances we need to control: W 2

2 (a η
β
, π), W 2

2 (b η
β
, π′) and W 2

2 (π, π
′).

When applied to the iterates of SGLD, the Wassertein distances of interest become W 2
2 (Xk+1, π) and W 2

2 (X
′
k+1, π

′) and
W 2

2 (π, π
′). To bound these terms, we therefore need to show that the iterates of SGLD converge in Wassertein distance

to their respective target measures π and π′. This was shown in (Kinoshita & Suzuki, 2022) and we restate their result in
Lemma D.7. The distances W 2

2 (Xk+1, π) and W 2
2 (X

′
k+1, π

′) are thus given by Lemma D.7. Now we also know from the
log-Sobolev inequality that

W 2
2 (π, π

′) ≤ 2cπDKL (π||π′) ≤ c2πEπ′ [|∇Fn(X)−∇F ′
n(X)|2]

The first inequality follows from Talagrand’s inequality which is implied by the LSI (see 2.2.1 in (Vempala & Wibisono,
2019). The second inequality is the LSI. We define the stability quantity denoted SGibbs := Eπ′ [|∇Fn(X)−∇F ′

n(X)|2] to
control the right hand side.

Combining the upper bounds given in equation 11 for Xk and X ′
k, with the above we find that

erg(a η
β
, b η

β
, π, π′) ≤ poly

(
η

β
, L, d, σ,DKL (X0||π) ,DKL (X

′
0||π′)

)
+ c2πSGibbs.

Adding in the second constant ProbConst 9 and un-rolling the geometric recursion for the iterates Xk, X
′
k in Theorem 6.3

yields the result.

Lemma D.7 (W2 convergence of SGLD (Vempala & Wibisono, 2019; Kinoshita & Suzuki, 2022)). Under assumptions 6.4
and 6.5, for η < 1

cπL2 the iterates of Xk of SGLD satisfy

W 2
2 (Xk, π) ≤ cπKL(X0, π) +

η

β
(8dL2 + 2σ2) (11)

Proof. The analysis of (Vempala & Wibisono, 2019) is sufficient to show this result. As shown in Lemma 3 of (Vempala
& Wibisono, 2019), convergence is established by comparing a single step to the continuous Langevin diffusion with the
discrete iterates. Here, in our case, in addition to a discretization error, we further have a stochastic gradient error. In other
words, the gap between the drift of the continuous time Langevin diffusion and the discretized SGLD iterates compounds
two errors: one for discretization, one for stochasticity. For a continuous Langevin diffusion (X)t with drift ∇Fn started at
X0, the expected gap between the continuous Langevin drift and the gradient step of SGLD is given by

E[∥∇Fn(Xt)− g(X0, B)∥22] ≤ 2E[∥∇Fn(Xt)−∇F (X0)∥22] + 2E[∥∇Fn(X0)− g(X0, B)∥22]
≤ 2E[∥∇Fn(Xt)−∇Fn(X0)∥22] + 2σ2

Consequently, the same analysis as in (Vempala & Wibisono, 2019) holds, with an additional 2σ2 term appearing in addition
to the discretization error. According to equation 13 in (Vempala & Wibisono, 2019) it follows that

KL(Xk, π) ≤ KL(X0, π) +
η(8dL2 + 2σ2)

βcπ

20



Generalization of Noisy SGD in Unbounded Non-convex Settings

Since π verifies the LSI, and the LSI implies Talagrand’s T2 inequality (Gozlan, 2009) the inequality above also gives

W 2
2 (Xk, π) ≤ cπKL(X0, π) +

η

β
(8dL2 + 2σ2).

E. Properties of Gaussian convolution
In this section, we prove the two fundamental properties of Gaussian convolution which enable our analysis. We first provide
expressions of the log-Hessian, from which both properties of interest follow.
Lemma E.1 (Lemma E.3 of (Chen et al., 2022)). Let pη = p ∗ N (0, ηI), we have that

1. ∇2 log pt(x) = Varp0|η (
Y
η )−

Id
η

2. ∇2 log pt(x) = Ep0|η

[
∇2 log p(Y )

]
+ Varp0|η (∇ log p(Y ))

Both the following lemmas follow immediately from the characterization given above. Indeed since Variance terms are
p.s.d, we can deduce both the lemmas below. The next Lemma follows from point 1. in E.1.
Lemma E.2 (log-Hessian lower bound). Let ν be a distribution that results from a Gaussian convolution, i.e, ν = ν̃⋆N (0, ηI)
for some distribution ν̃, then

∇2 log ν ⪰ −1

η
Id.

The next lemma follows from point 2. in E.1.
Lemma E.3 (Only upwards). For any distribution ν be a distribution, it holds that

∇2 log (ν ⋆N (0, ηI)) ⪰ ∇2 log ν.

A direct application of the lemmas allows us to also establish that
Lemma E.4 (Bounded Laplacian). Let b be a distribution such that ∇2 log b ⪰ −K, with K ≥ 0, let bt = b ⋆N (0, tI)

Ebt [∥∇ log bt∥] = −Ebt [tr
(
∇2 log bt

)
] ≤ Kd

Finally the change of measure lemma is a simple consequence of analysis.
Lemma E.5 (Change of measure). Let g : Rd → R be a twice-differentiable function such that ∇2g ⪰ −KId for some
K ∈ R. Then, for any random variables X,Y over Rd, we have E[−g(Y )] ≤ E[−g(X)] + 1

2E [∥∇g(X)∥]
+ K+1

2 E[∥X − Y ∥22].

Proof. From classic results in analysis, we know that

g(y) ≥ g(x) + ⟨∇g(x), y − x⟩ − K

2
∥x− y∥2

We apply Young’s inequality and integrate to obtain the result.

F. Technical Lemmas
In this section, we include the small technical lemmas that can be found in the literature.

We first show the link between our Lemma 2.2 and the result of (Xu & Raginsky, 2017). We first recall their result.
Lemma F.1 (Expected generalization of subgaussian losses, Thm 1 (Xu & Raginsky, 2017)). Let f(w,Z) be a loss function
that verifies assumption 2.1. Then, for any k ≥ 1,

gen(PXk|D,D) ≤
√

2cI(Xk;D)

n
.

where I denotes the mutual information.
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Let Xk be the output of SGLD ran on a dataset D with distribution PXk|D. Recall that the mutual information is given by

I(PXk|D;D) = DKL ((Xk,D)||(X ′
k,D))

where X ′
k is an independent output of SGLD ran on an independent dataset D′. Conditioning on the second coordinate we

have that
I(PXk|D;D) ≤ ED

[
DKL

(
PXk|D||PX′

k

)]
since PX′

k
=
∫
PX′

k|D′PD′ , we can invoke Jensen and convexity of the KL divergence to find that

I(PXk|D;D) ≤ ED,D′

[
DKL

(
PXk|D||PX′

k|D′

)]
.

Which leads to the KL stability characterization of generalization.

Lemma F.2 (DeBruijn’s Identity (Zozor & Brossier, 2015)). Let A,B be two random variables over Rd, for t > 0, let
At = A+

√
tN and B = B +

√
tN . Denoting by at and bt the densities of At and Bt respectively, we have that

d

dt
DKL (at||bt) ≤ −1

2
E
[
∥∇ log at −∇ log bt∥2

]
Lemma F.3 (Integration by parts). For any two functions h, g : Rd 7→ R∫

Rd

⟨∇h(x),∇g(x)⟩ dx = −
∫
Rd

h(x)∆g(x)dx

Lemma F.4 (DeBruijn’s Identity (Zozor & Brossier, 2015)). Let A,B be two random variables over Rd, for t > 0, let
At = A+

√
tN and B = B +

√
tN . Denoting by at and bt the densities of At and Bt respectively, we have that

d

dt
DKL (at||bt) ≤ −1

2
E
[
∥∇ log at −∇ log bt∥2

]
Proof. Since at, bt are undergoing simultaneous heat flow we know that

∂at
∂t

= ∆at
∂bt
∂t

= ∆bt

It follows from straightforward computations that

∂DKL (at||bt)
∂t

=

∫
Rd

∂at
∂t

(x) log
at(x)

bt(x)
−
∫
Rd

∂bt
∂t

(x)
at(x)

bt(x)

= −1

2
Eat

[
∥∇ log at −∇ log bt∥22

]
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