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Abstract
Recently, continuous diffusion models (CDM)001
have been introduced into non-autoregressive002
(NAR) text-to-text generation. However, the003
discrete nature of text increases the difficulty004
of CDM to generate coherent and fluent texts,005
and also causes the incompatibility problem be-006
tween CDM and advanced NLP techniques, es-007
pecially the popular pre-trained language mod-008
els (PLMs). To solve it, we propose Diffusion-009
NAT, which introduces discrete diffusion mod-010
els (DDM) into NAR text-to-text generation011
and integrates BART to improve the perfor-012
mance. By revising the decoding process of013
BART and the typical settings of DDM, we014
unify the inference process of BART and the015
denoising process of DDM into the same NAR016
masked tokens recovering task. In this way,017
DDM can rely on BART to perform denois-018
ing, which can benefit from both the rich pre-019
learned knowledge of BART and the iterative020
refining paradigm of DDM. Besides, we also021
propose the iterative self-prompting strategy to022
further improve the generation quality. Experi-023
mental results on 7 datasets show that our ap-024
proach can outperform competitive NAR meth-025
ods, and even surpass autoregressive methods.026
Our code and data will be publicly released.027

1 Introduction028

Text-to-text generation (Sutskever et al., 2014;029

Vaswani et al., 2017) is an essential task in nat-030

ural language processing, which aims to gener-031

ate human-like texts satisfying the task demand.032

To efficiently generate high-quality texts, non-033

autoregressive (NAR) models (Gu et al., 2018; Lee034

et al., 2018) are widely explored for text-to-text035

generation by predicting all tokens in the target text036

simultaneously, having a lower inference latency.037

Despite the efficiency, the generation accuracy038

of NAR models generally underperform autore-039

gressive (AR) models with the token-by-token gen-040

eration, since parallel token prediction cannot ef-041

fectively capture the dependency among the to-042

Model Type PLMs Cost NAR T2T
D3PM Dis. ✕ Low ✓ ✕
Diffusion-LM Con. ✕ Low ✓ ✕
SED Con. ✕ Low ✓ ✕
SSD-LM Con. ✓ High ✓ ✕
DiffusionBERT Dis. ✓ High ✓ ✕
LD4LG Con. ✓ Low ✕ ✕
DiffuSeq Con. ✕ Low ✓ ✓
SeqDiffuSeq Con. ✕ Low ✓ ✓
GENIE Con. ✕ High ✓ ✓
Difformer Con. ✕ Low ✓ ✓
Ours Dis. ✓ Low ✓ ✓

Table 1: A comparison of existing diffusion methods
for text generation. Dis. and Con. refer to discrete and
continuous diffusion. PLMs, Cost, NAR and T2T de-
note using PLMs, Training Cost, Non-AutoRegressive
model and Text-to-Text generation, respectively.

kens. To enhance the generation quality, a vari- 043

ety of techniques have been proposed for NAR 044

models, with either improved architectures (Qian 045

et al., 2021) or training methods (Qi et al., 2021). 046

More recently, inspired by the success of diffusion 047

models in computer vision (Ho et al., 2020; Dhari- 048

wal and Nichol, 2021), they have been introduced 049

to improve NAR models for text-to-text genera- 050

tion (Chen et al., 2023; Floto et al., 2023; Lyu et al., 051

2023; Mahabadi et al., 2023). As shown in Ta- 052

ble 1, these studies typically adopt the continuous 053

diffusion method on the latent space of token em- 054

beddings in the NAR manner, and iteratively refine 055

all the target token embeddings via a parameterized 056

denoising process. 057

However, these attempts are highly limited by 058

the discrete nature of text, and thus it is necessary 059

to incorporate special strategies to adapt contin- 060

uous diffusion models for text generation. Typi- 061

cally, they rely on an additional rounding step (Li 062

et al., 2022b) to map the generated embeddings 063

into tokens, and add corresponding loss during 064

training. However, the added step and training 065

loss would burden the diffusion models, causing 066

them hungry for more training steps and data to 067
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capture the mapping relation between input and068

output. Although large-scale pre-trained language069

models (PLMs) (Devlin et al., 2019; Lewis et al.,070

2020) seem to be a promising solution to alleviate071

this hunger problem, due to the large model discrep-072

ancy, it is difficult to use existing PLMs for improv-073

ing the text generation models when integrating074

with continuous diffusion models, even leading to075

performance degradation (Li et al., 2022b).076

To address these issues, we aim to develop a077

more effective approach to integrating diffusion078

models and PLMs for NAR text-to-text generation.079

Instead of using continuous diffusion, we utilize080

discrete diffusion (Austin et al., 2021; Gu et al.,081

2022) for text generation, which performs denois-082

ing on discrete states (e.g., vocabulary) to recover083

the original tokens. It is more suitable for model-084

ing discrete text data, making it feasible to develop085

more unified and compatible solutions to integrate086

diffusion models and well-trained PLMs for im-087

proving NAR text generation. However, both dis-088

crete diffusion models and PLMs neither naturally089

fit with each other nor the NAR text-to-text gener-090

ation manner, making it hard to directly combine091

them for improving the NAR generation quality.092

In this paper, we propose Diffusion-NAT, a self-093

prompting discrete diffusion model using PLMs for094

NAR text-to-text generation. The core contribution095

lies in that we unify the inference process of PLMs096

and denoising process of discrete diffusion models097

into the same masked token recovering task in the098

NAR manner. In this way, PLMs can play the role099

of the parameterized denoiser in discrete diffusion100

models, hence we can combine the merits of both101

diffusion models (using iterative refining genera-102

tion) and PLMs (with rich semantic knowledge) for103

improving NAR text generation. Specifically, we104

select the Seq2Seq PLM, BART (Lewis et al., 2020)105

as our backbone by revising its decoding process106

into the NAR masked tokens recovering task. Then,107

we adjust the typical discrete diffusion method to108

better fit the PLM by adding mask tokens as noise,109

revising the learning objective and removing the110

time step embeddings. Further, as our approach111

performs the denoising process fully based on the112

PLM, we devise an iterative self-prompting strategy113

to guide the PLM performing multi-turn delibera-114

tion and refinement on the intermediate generated115

results, to enhance the quality of the final output.116

To demonstrate the effectiveness of our ap-117

proach, we conduct extensive experiments on seven118

text-to-text generation datasets. Experimental re- 119

sults show that our approach can outperform com- 120

petitive NAR text generation methods, e.g., improv- 121

ing the best NAR models by +2.48 BLEU-2 on 122

PersonaChat, +4.33 Distinct-2 on DailyDialog.Our 123

approach even surpasses state-of-the-art autoregres- 124

sive PLMs, e.g., Ours (62.68) v.s. BART (49.59) on 125

BLEU-2 in DailyDialog, and Our (44.2) v.s. BART 126

(38.3) on ROUGE-L in MSNews.Besides, our ap- 127

proach also supports DDIM (Song et al., 2021a) for 128

fast inference, which also provides a way to trade 129

off the time cost and the generation quality during 130

inference. By setting proper diffusion steps (e.g., 131

100 and 2), our approach can outperform compet- 132

itive AR and NAR models with similar inference 133

latency, respectively. 134

2 Related Work 135

Non-Autoregressive Text Generation. Com- 136

pared with autoregressive (AR) methods (Lewis 137

et al., 2020) that need to predict the target text in a 138

token-by-token manner, Non-autoregressive (NAR) 139

methods can generate all tokens in parallel, which 140

can greatly reduce the inference latency (Gu et al., 141

2018; Ghazvininejad et al., 2019). However, in 142

this way, NAT methods can not fully capture the 143

dependency relations among tokens during decod- 144

ing, leading to the sacrifice of accuracy. To address 145

it, existing works adopt several training and in- 146

ference strategies to improve the performance of 147

NAR methods, e.g., knowledge distillation (Zhou 148

et al., 2020), glancing sampling (Qian et al., 2021), 149

iterative decoding (Geng et al., 2021) and large- 150

scale pre-training (Qi et al., 2021; Li et al., 2022a). 151

In this work, we introduce the discrete diffusion 152

model into NAR text generation, narrowing the 153

performance gap with AR methods. 154

PLMs for Text Generation. Pre-trained lan- 155

guage models (PLMs) have shown remarkable 156

performance in generating human-like texts (Li 157

et al., 2021). After pre-training, most existing 158

PLMs (Raffel et al., 2020) are fine-tuned follow- 159

ing the AR paradigm for text generation. In this 160

way, they either reformulate generation tasks into 161

the language model format (e.g., GPT (Radford 162

et al., 2019)), or leverage the sequence-to-sequence 163

manner to generate the text using an autoregressive 164

decoder (e.g., BART (Lewis et al., 2020)). How- 165

ever, as these PLMs only focus on fine-tuning un- 166

der the AR paradigm, they can not be directly used 167

for NAR text generation. Recently, BANG (Qi 168
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et al., 2021) and ELMER (Li et al., 2022a) rely169

on large-scale pre-training for improving the NAR170

text generation. Considering the pre-training cost,171

we aim to efficiently adapt BART into an effective172

NAR model with diffusion models.173

Diffusion Models for Text Generation. Diffu-174

sion models (DM) (Ho et al., 2020; Song et al.,175

2021b) are a class of latent variable models that can176

progressively denoise a random Gaussian noise into177

a data example. Existing DMs can be roughly cate-178

gorized into continuous diffusion models (Ho et al.,179

2020; Tang et al., 2023a; Nikolaidou et al., 2023)180

and discrete diffusion models (Austin et al., 2021;181

Zheng et al., 2023; Qian et al., 2022), which per-182

form diffusion on continuous signals and discrete183

states, respectively. Recently, DMs have been uti-184

lized for text generation and have demonstrated su-185

periority in controllable text generation tasks (Tang186

et al., 2023b; Li et al., 2022b). For text-to-text187

generation tasks, existing works generally follow188

the continuous diffusion paradigm, and improve189

the performance by refining the model architec-190

ture (Yuan et al., 2022), adding regularization (Gao191

et al., 2022) and large-scale pre-training (Lin et al.,192

2022). In this work, we introduce discrete diffu-193

sion models into text-to-text generation tasks, and194

utilize a PLM to improve it.195

3 Preliminary196

Problem Statement. This work focuses on text-197

to-text generation tasks using non-autoregressive198

(NAR) models. Generally, text-to-text genera-199

tion tasks (Sutskever et al., 2014; Vaswani et al.,200

2017) (e.g., dialog and summarization) can be201

formulated as modeling the conditional probabil-202

ity P (Y |C), where C = {c1, c2, · · · , cm} and203

Y = {y1, y2, · · · , yn} denote the input text and204

output text respectively, both consisting of a se-205

quence of tokens from a vocabulary V .206

Different from AR models with the left-to-right207

token-by-token generation manner, NAR mod-208

els (Gu et al., 2018; Lee et al., 2018) predict all209

tokens of the output text Y simultaneously, where210

each token yi is predicted only based on the input211

text C. Thus, the conditional probability can be212

factorized as213

P (Y |C) =

n∏
i=1

P (yi|C), (1)214

Diffusion Models. Diffusion models (DM) (Ho215

et al., 2020; Song et al., 2021b) sample an exam-216

ple from a data distribution p(x) by gradually de- 217

noising a random noise. Typically, starting from 218

a noise xT , the denoising process (also so-called 219

reverse process) can be regarded as a Markov pro- 220

cess, where the noises at T − 1, T − 2, · · · , 0 steps 221

are progressively predicted and removed to obtain 222

the latent variables xT−1, xT−2, · · · , until reaching 223

the final sample x0. Conversely, given the sample 224

x0, we can generate x1, x2, · · · , xT as a Markov 225

chain, denoted as the forward process: 226

q(xt|xt−1) = N (
√

1− βtxt−1, βtI), (2) 227

where βt ∈ (0, 1) is the pre-defined scaling of 228

noise variance at the t-th step. Given the above 229

forward process as prior, DMs are trained to reverse 230

it following the denoising process for recovering 231

x0, where each step is parameterized as: 232

p(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)), (3) 233

where µθ(·) and Σθ(·) can be implemented by 234

a U-Net (Ronneberger et al., 2015) or Trans- 235

former (Vaswani et al., 2017), and time step em- 236

beddings are adopted to represent t. 237

Discrete Diffusion Models. Discrete diffusion 238

models (Austin et al., 2021; Gu et al., 2022) per- 239

form the forward and denoising processes in dis- 240

crete random variables with K categories, where 241

K = |V| for text data. For a sentence, x0 is the 242

vector consisting of the indexes of its contained 243

tokens, and the forward process of adding noise is 244

q(xt|xt−1) = v⊤(xt)Qtv(xt−1), (4) 245

where v(xt) maps each token index from xt into 246

K-dimension one-hot vector, Qt is the probability 247

transition matrix and [Qt]i,j denotes the probability 248

of the token i to be replaced by the token j. In this 249

way, according to Bayes’ theorem, the denoising 250

process q(xt−1|xt, x0) can be deduced as: 251

q(xt−1|xt, x0) =
(v⊤(xt)Qtv(xt−1))(v

⊤(xt−1)Q̄t−1v(x0))

v⊤(xt)Q̄tv(x0)
(5) 252

where Q̄t = Q1Q2 · · ·Qt. Based on the 253

above prior, we can use a parameterized model 254

pθ(xt−1|xt, t) to learn the denoising process. 255

4 Approach 256

In this section, we introduce Diffusion-NAT, an 257

effective approach to integrating the discrete diffu- 258

sion model and the Seq2Seq PLM BART, for im- 259

proving NAR text-to-text generation. The overview 260

of our approach is shown in Figure 1. 261
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Figure 1: The overview of our Diffusion-NAT. We show an example that generates a response in the t-th step using
K-turn self-prompting. The given dialog context and the K-turn prompt (i.e., estimated Ŷ0) are fed into BART
encoder, and the response in the t-th Yt is fed into BART decoder for estimating the original tokens.

4.1 Overview262

Since discrete diffusion models (DDM) and BART263

adopt different ways for training (i.e., noise pre-264

diction and masked text infilling respectively), it265

is hard to directly integrate both for NAR text-266

to-text generation. Our solution is to regard the267

mask token [MASK] of BART as the noise in DDM,268

and incorporate an absorbing state [MASK] into the269

Markov transition matrices. In this way, the for-270

ward process of DDM gradually replaces all the271

tokens by [MASK], and the denoising process can272

be reformulated as a NAR Masked Tokens Recover-273

ing (NMTR) task:274

fNMTR([M], · · · , [M]) = {y1, · · · , yn}, (6)275

where [M] denotes the [MASK] token of BART. To276

apply this framework for NAR text generation, we277

further make adaptations for BART and DDM. For278

BART, its pre-training task of masked text infilling279

is similar to the above objective except that it is in280

a NAR manner, and thus we revise the decoding281

process of BART to support the NAR inference282

in Section 4.2. For DDM, we learn to predict the283

original tokens instead of noise and remove the284

time step embeddings in Section 4.3, for better285

adaptation to BART. In this way, we can unify286

the inference process of BART and the denoising287

process of discrete diffusion models with the same288

formulation of NAR masked tokens recovering.289

With this unified formulation, DDM can fully290

rely on BART to conduct the denoising process,291

with no need for additional parameters or specific292

training. In this way, the generated results based293

on BART can be iteratively refined via the denois-294

ing process, leading to improved generation text. 295

Since BART is employed as the backbone of our 296

approach, we can naturally leverage advanced tech- 297

niques of PLMs to improve the diffusion process, 298

e.g., prompt learning (Liu et al., 2021b). Thus, 299

we propose the iterative self-prompting strategy to 300

perform multi-turn deliberation and refinement on 301

the intermediate generated results in Section 4.4, 302

further enhancing the quality of the output. 303

4.2 Adapting BART for NAR Generation 304

Since BART utilizes a token-by-token autoregres- 305

sive mechanism for decoding, this part discusses 306

how to revise its decoding process to fit the NAR 307

generation framework. 308

BART. BART (Lewis et al., 2020) is a Seq2Seq 309

PLM that has been widely used on various text-to- 310

text generation tasks. It adopts the encoder-decoder 311

Transformer architecture. Given the input text C, 312

the encoder produces its representation vectors E, 313

and the decoder performs cross-attention with E 314

to inject the condition from the input text. Dur- 315

ing pre-training, the masked text infilling task is 316

mainly adopted to learn the model parameters on a 317

large-scale corpus, aiming to recover the masked 318

span from the input text. During inference, using a 319

special start token as the initial input of the decoder, 320

the output text will be generated token by token. 321

Revised NAR Decoding Process. In the denois- 322

ing process of our approach, BART is employed to 323

recover the masked tokens from the noised target 324

text at each time step. Thus, we revise the decoding 325

process of BART into the NAR manner that can 326
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recover all masked tokens simultaneously. Con-327

cretely, at the t-step, given the condition text C328

and the noised target text Yt containing [MASK] to-329

kens, we feed them into the encoder and decoder330

of BART respectively, and simultaneously recover331

all the [MASK] tokens into the target tokens as:332

BART({y(t)1 · · · [M]}, C) = {y(t−1)
1 · · · y(t−1)

n },
(7)333

where y(t)1 is the token of the first position at the t-th334

step. In this way, the decoding process follows the335

unified formulation in Eq. 6. Thus, we can employ336

BART in the denoising process by leveraging its337

pre-learned knowledge and generation capacity.338

4.3 Adapting DDM for NAR Generation339

In this part, we discuss how to adapt the discrete340

diffusion model (DDM) to NAR masked tokens341

recovering for text generation.342

Markov Transition Matrices with [MASK]. As343

introduced in Section 3, discrete diffusion models344

rely on the probability transition matrix Qt to per-345

form the forward and denoising processes over the346

state space. To align DDM with the NAR decoding347

process of BART (Section 4.2), we incorporate the348

[MASK] token as the absorbing state of the Markov349

transition matrices. Concretely, at the t-th step of350

the forward process, if token i is not the [MASK]351

token, it has the probabilities of αt and γt being un-352

changed and replaced by the [MASK] token respec-353

tively, leaving the probability of βt = 1− αt − γt354

transiting to other tokens in V as:355

[Qt]i,j =


αt, if j = i,

γt, if j = [M],

1− αt − γt, otherwise,

(8)356

where αt and γt are determined by the pre-defined357

noise schedule, e.g., cosine schedule (Nichol and358

Dhariwal, 2021). While, if token i is the [MASK]359

token, it will be unchanged. Based on such a for-360

ward process, all tokens in the output text would361

become [MASK] after a sufficient number of steps,362

corresponding to the all-[MASK] input in Eq. 6. In363

the denoising process, we adopt BART to gradually364

recover the all-[MASK] sequence into output text365

in the NAR manner, where each denoising step is366

equivalent to the decoding of BART in Section 4.2.367

Training with NAR Masked Tokens Recovering.368

During training, existing diffusion models mostly369

learn to predict the noise in the current time step.370

However, such training objective is not consistent 371

with PLMs. Inspired by existing works (Li et al., 372

2022b; Gong et al., 2022), we predict all the orig- 373

inal tokens Y0 = {y(0)1 , · · · , y(0)n } using BART in 374

the NAR manner at each time step as: 375

BART({y(t)1 · · · [M]}, C) = {y(0)1 · · · y(0)n }. (9) 376

As Yt usually contains several [MASK] tokens, the 377

above process can be regarded as recovering all the 378

masked tokens into the original ones, which is actu- 379

ally similar to the pre-training objective of BART. 380

In this way, the training objective is formulated as: 381

LY = −
n∑

i=1

log pθ(y
(0)
i |Yt, C) (10) 382

where Yt denotes the intermediate recovered text in 383

the t-th step. During inference, given Yt, our model 384

first estimates Ŷ0, and then adds the (t − 1)-step 385

noise into it for producing Yt−1. The above process 386

will iterate for multiple steps, until the final results 387

of Y0 are obtained. 388

Removing Time Step Embeddings. As another 389

difference in architecture, diffusion models typi- 390

cally incorporate time step embeddings to repre- 391

sent the time information (Ho et al., 2020; Song 392

et al., 2021a), while BART has never set up corre- 393

sponding time step embeddings. To reduce such 394

discrepancy, we directly remove the time step em- 395

beddings from our diffusion process, so as to adapt 396

DDM to reusing the whole architecture and all pre- 397

trained parameters of BART. Actually, as the dis- 398

crete diffusion process is to progressively recover 399

the all-[MASK] sequence, the PLM can directly ac- 400

quire the time information by counting the number 401

of [MASK] tokens. Further, by removing the time 402

step embeddings, our diffusion approach can bet- 403

ter integrate with other improvement techniques, 404

e.g., DDIM method (Song et al., 2021a) with the 405

non-Markov process for fast inference. 406

4.4 Iterative Self-Prompting 407

In a typical denoising process, the denoising net- 408

work relies on the condition C and Yt to estimate 409

Ŷ0. However, at early steps, [MASK] tokens gener- 410

ally occupy the majority of Yt, causing the estima- 411

tion to be more difficult. To reduce the inference 412

difficulty at an early stage, we propose the itera- 413

tive self-prompting strategy that endows our model 414

with deliberation capacity via prefixed prompts. 415
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Training with Self-Prompting. Inspired by the416

self-conditioning strategy (Chen et al., 2022), our417

self-prompting strategy focuses on improving the418

quality of Ŷ0 through multi-round checking and re-419

vision. Concretely, given Yt and C, we first utilize420

the PLM to produce the estimated Ŷ0. Then, as421

Ŷ0 and C are two sequences of tokens, we regard422

Ŷ0 as the prompt of the PLM and prefix it with C423

to compose the new input condition C ′ = [Ŷ0;C].424

Next, the new condition C ′ and Yt are further fed425

into the encoder and decoder of the PLM respec-426

tively, where cross-attention in the decoder is em-427

ployed to generate Ŷ0 by considering the previous428

estimation. During training, with a certain proba-429

bility (e.g., 50%), we do not use the self-prompting430

strategy and only optimize the model parameter431

using Eq. 10. When integrated with this strategy,432

we first produce Ŷ0 and then construct C ′ for self-433

prompting, where the training objective becomes:434

LY = −
n∑

i=1

log pθ(y
(0)
i |Yt, Ŷ0, C). (11)435

Inference with Iterative Self-Prompting. To ob-436

tain a well-estimated Ŷ0, we repeat the following437

self-prompting process for K times: we first es-438

timate the original tokens Ŷ0 = {ŷ(0)1 , · · · , ŷ(0)n }439

based on the constructed new condition C ′ and then440

utilize it to replace the original prompt within C ′.441

Each iterative process can be denoted as:442

BART
(
{y(t)

1 · · · y(t)
n }, {ŷ(0)

1 · · · ŷ(0)
n }, C

)
= {y(0)

1 · · · y(0)
n }.
(12)443

In this way, by setting proper hyper-parameter K,444

we can balance the accuracy of the estimated Ŷ0445

and the time cost during inference. Note that such446

a manner also supports the explicit control in the447

intermediate prompts for guiding the generation,448

e.g., correcting grammar errors in Ŷ0. We leave it449

as our future work.450

5 Experiments451

5.1 Experimental Settings452

More details about the datasets, evaluation met-453

rics, baselines, and implementations are shown in454

Appendix A, B, C and D, respectively.455

5.2 Experimental Results456

Dialog Generation. As shown in Table 2, for457

the coherence metrics (i.e., BLEU-1/2), the perfor-458

mance order of aforementioned baselines in the two459

dialog generation datasets is mostly consistently as:460

AR models > Semi-NAR models > NAR models. It 461

indicates that AR models are more capable of gen- 462

erating coherent and fluent responses than NAR 463

ones. A major reason is that AR models can better 464

capture the dependency of tokens. Whereas, for 465

the diversity metrics, AR models mostly underper- 466

form NAR models. The reason may be that AR 467

models are easy to overfit into the frequently co- 468

occurring tokens (e.g., I am OK.) in the training 469

data, causing the “safe response” problem. Besides, 470

the NAR methods using pre-training techniques 471

(i.e., BANG and ELMER) can better balance the 472

coherence and diversity metrics, and greatly out- 473

perform other NAR models. It demonstrates the 474

effectiveness of large-scale pre-training in improv- 475

ing the NAR generation performance. 476

Finally, Diffusion-NAT mostly outperforms 477

Semi-NAR and NAR models on all metrics. Dif- 478

ferent from these baselines, our approach is based 479

on the discrete diffusion model that can iteratively 480

refine the generated results using a PLM BART. As 481

we have adapted them to better fit with each other 482

by a set of revisions, we can combine the merits 483

of the rich knowledge from BART and the itera- 484

tive refining mechanism of the diffusion model. In 485

this way, we can improve both the coherence and 486

diversity of the generated responses. Furthermore, 487

our approach outperforms AR models in the av- 488

erage value of all metrics, e.g., Ours (27.90) VS. 489

BART (23.54) in PersonaChat. The reason is that 490

our approach achieves much higher values in the 491

Distinct-1,2 metrics. It shows the effectiveness of 492

our approach for generating diverse responses. 493

Text Summarization and Question Generation. 494

As shown in Table 3 and Table 4, AR models out- 495

perform NAR models in a large margin. The reason 496

is that the two types of tasks mainly require the 497

model to accurately generate proper texts, which 498

is more suitable for AR models due to their supe- 499

riority in capturing the token dependency. Despite 500

this, our approach mostly outperforms all the NAR 501

and Semi-NAR methods, and even surpasses AR 502

models on part of datasets (e.g., MSNews). It is 503

because our approach can effectively combine the 504

merits of the PLM that has pre-learned rich seman- 505

tic knowledge and the diffusion models that can 506

iteratively refine the produced results, leading to 507

higher-quality generated texts. 508

Conversational Question Answering. The con- 509

versational question answering task is to evaluate 510
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Type Models
PersonaChat DailyDialog

B-1↑ B-2↑ D-1↑ D-2↑ Overall↑ B-1↑ B-2↑ D-1↑ D-2↑ Overall↑

AR

Transformer 41.56 32.95 0.30 0.80 18.90 45.95 40.60 0.91 4.68 23.04
MASS 41.06 35.75 1.40 6.90 21.28 51.77 45.09 3.99 23.38 31.06
ProphetNet 46.00 38.40 1.30 7.30 23.25 - - - - -
BART 47.60 39.36 1.10 6.10 23.54 56.18 49.59 5.04 27.72 34.63

Semi-NAR

InsT 12.63 9.43 0.10 0.30 5.62 - - - - -
iNAT 41.17 32.13 0.10 1.10 18.63 - - - - -
LevT 24.89 18.94 0.10 0.60 11.13 - - - - -
CMLM 44.38 35.18 0.10 0.80 20.12 - - - - -
BANG 39.82 30.72 1.90 14.20 21.66 41.47 35.71 1.76 13.98 23.23

NAR

NAT 31.53 24.17 0.10 0.80 14.15 - - - - -
iNAT 30.56 23.38 0.10 0.70 13.69 - - - - -
CMLM 31.44 24.06 0.10 0.60 14.05 - - - - -
LevT 26.92 20.47 0.00 0.40 11.95 - - - - -
BANG 31.11 23.90 2.50 22.70 20.05 35.50 30.15 1.90 15.13 20.67
ELMER 31.45 23.99 3.66 24.96 21.02 68.32 61.14 5.30 35.64 42.60

Diffusion Ours 44.55 37.66 3.19 26.20 27.90 68.79 62.68 6.67 39.97 44.53

Table 2: The comparison between our approach and baselines on two dialog generation tasks. B-1/2 and D-1/2
denote BLEU-1/2 and Distinct-1/2. Bold and underline fonts denote the best and second best methods within NAR
and Semi-NAR models, respectively. The baseline results on PersonaChat are collected from (Li et al., 2022a).

both the generative capacity and the world knowl-511

edge of the model. As shown in Table 4, our ap-512

proach also performs well in this task, even slightly513

outperforming the AR model BART by 0.8 on F1514

metric. A possible reason is that our approach can515

make use of the pre-learned world knowledge from516

BART. Besides, as our model can also leverage the517

iterative refining paradigm of the diffusion model,518

it may also fix the wrong answers in the generated519

text, leading to more accurate answers.520

Human Evaluation. In addition to the automatic521

metrics, human evaluation is also critical for text522

generation. Considering the expensive annota-523

tion cost, we only focus on the dialog genera-524

tion task and compare our approach with two best-525

performing baselines, i.e., BART and ELMER. Fol-526

lowing existing works (Li et al., 2022a), we ran-527

domly select 500 examples from the test set of the528

PersonaChat dataset, and invite three annotators529

to evaluate the quality of the generated responses530

from the two baselines and ours from the perspec-531

tives of Fluency, Informativeness and Relevance.532

The scoring range is from 1 to 5. As shown in533

Table 5, we can see that the AR method BART per-534

forms better on the Fluency and Relevance metrics535

while the NAR method ELMER performs well on536

informativeness. Such results show a similar ten-537

dency as the automatic metrics, and indicate the538

different superiority of AR and NAR models. As539

a comparison, our approach can well balance the540

three metrics, with the comparable performance 541

on Fluency as BART and the best performance on 542

Informativeness. It shows the great potentiality 543

of discrete diffusion models with PLMs in NAR 544

text-to-text generation tasks. 545

Inference Latency. By using DDIM (Song et al., 546

2021a) or other acceleration strategies, we can also 547

reduce the inference latency of our approach. To 548

verify it, we test the inference latency and perfor- 549

mance of our approach using different diffusion 550

steps by using DDIM, and compare them with 551

two best-performing NAR and AR baselines (i.e., 552

ELMER and BART) on PersonaChat dataset. The 553

above experiments are conducted on a NVIDIA 554

3090-24G GPU with a batch size of 1. As shown in 555

Table 10, we can see that our approach can provide 556

a way to trade off the time cost and the generation 557

quality during inference. By setting proper diffu- 558

sion steps (100 and 2), our approach can outper- 559

form BART and ELMER on average with similar 560

inference latency, respectively. 561

6 Conclusion 562

In this paper, we proposed Diffusion-NAT, a self- 563

prompting discrete diffusion model (DDM) using 564

a PLM BART for non-autoregressive (NAR) text 565

generation. In our approach, we unified the infer- 566

ence process of BART and the denoising process 567

of DDM into the same masked tokens recovering 568

task, to combine the merits of both the rich pre- 569
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Type Models
XSUM SQuAD v1.1

ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ ROUGE-L↑ BLEU-4↑ METEOR↑

AR

Transformer 30.66 10.80 24.48 29.43 4.61 9.86
MASS 39.70 17.24 31.91 49.48 20.16 24.41
ProphetNet 39.89 17.12 32.07 48.00 19.58 23.94
BART 38.79 16.16 30.61 42.55 17.08 23.19

Semi-NAR

InsT 17.65 5.18 16.05 29.98 2.34 8.15
iNAT 26.95 6.88 22.43 32.34 3.16 9.18
LevT 25.33 7.40 21.48 30.81 2.68 9.40
CMLM 29.12 7.70 23.04 29.60 3.89 9.70
BANG 34.71 11.71 29.16 47.39 17.62 21.69

NAR

NAT 24.04 3.88 20.32 31.51 2.46 8.86
iNAT 24.02 3.99 20.36 32.44 2.33 8.84
CMLM 23.82 3.60 20.15 31.58 2.51 8.85
LevT 24.75 4.18 20.87 31.38 2.27 9.14
BANG 32.59 8.98 27.41 44.07 12.75 18.99
ELMER 38.30 14.17 29.92 40.22 13.49 20.08

Diffusion
GENIE 29.3 8.3 21.9 - - -
AR-DIFFUSION 32.2 10.6 25.2 - - -
Ours 38.84 15.30 30.88 46.64 16.19 21.99

Table 3: The comparison between different methods on XSUM and SQuAD v1.1 datasets. Bold and underline fonts
denote the best and second best methods within NAR and Semi-NAR models, respectively. The baseline results are
collected from (Qi et al., 2021) and (Li et al., 2022a).

Models
MSNews MSQG CoQA

ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ ROUGE-L↑ BLEU-4↑ METEOR↑ F1↑

LSTM 30.0 14.6 27.7 25.3 3.5 14.1 15.1
Transformer 33.0 15.4 30.0 29.3 5.1 16.6 15.7
BART 41.8 23.1 38.3 38.1 10.2 22.1 64.6

BANG 32.7 16.1 30.3 33.1 11.0 18.4 31.4
ELMER 35.6 16.1 32.5 26.6 5.00 15.7 63.1

Ours 46.8 31.6 44.2 33.3 6.6 19.3 65.4

Table 4: The comparison between different methods on MSNews, MSQG and CoQA datasets. Bold and underline
fonts denote the best and second best methods within NAR models, respectively.

Models
PersonaChat

Fluency Informativeness Relevance

BART 4.32 4.31 3.47
ELMER 3.88 4.49 2.90
Ours 4.29 4.57 3.19

Table 5: Human evaluation scores of different methods
about the generated responses on PersonaChat.

learned knowledge of BART and the iterative refin-570

ing paradigm of DDM. Concretely, we revised the571

decoding process of BART into the NAR manner,572

and adapted the typical settings of DDM to better573

fit with BART, including Markov transition ma-574

trix, training objective and time step embeddings.575

Besides, we devised an iterative self-prompting576

strategy to guide the PLM to deliberate and refine577

the intermediate generated results, to further im-578

ELMER Diffusion-NAT BART

Steps - 2 20 100 -
Latency 13.8ms 19.1ms 76.4ms 267.5ms 253.6ms

BLEU-2 23.99 30.82 36.19 37.66 39.36
Dist-2 24.96 23.68 26.93 26.20 6.10

Table 6: Performance and inference latency changes of
two baselines and our approach w.r.t. the diffusion steps
using DDIM during inference on PersonaChat dataset.

prove the quality of final produced texts. Extensive 579

experiments on seven datasets have shown that our 580

approach can outperform competitive NAR and 581

Semi-NAR models, and even surpass AR models. 582

In future work, we will investigate more effective 583

and efficient way to combine LLMs and DDM for 584

NAR text generation, e.g., prompt learning. 585

8



Limitations586

This work is to investigate discrete diffusion mod-587

els with pre-trained language models for non-588

autoregressive text-to-text generation. An impor-589

tant limitation is the relatively higher inference590

latency of diffusion models. In this work, we have591

adopted DDIM to accelerate the inference process592

by reducing the diffusion steps, and we also con-593

duct experiments to investigate the performance594

changes w.r.t. different steps in Appendix H. We595

can see that fewer steps using DDIM would lead to596

the performance degradation. Fortunately, there are597

several recent works that have shown effectiveness598

in solving this problem (Lu et al., 2022). As these599

methods are general to all diffusion models, they600

may be able to be utilized in our approach. Besides,601

as we have adopted a PLM, BART in our approach,602

it may present biases learned from the pre-training603

corpus in the generated texts.604
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Task Datasets #Train #Valid #Test

Dialog DailyDialog 76,052 7,069 6,740
PersonaChat 122,499 14,602 14,056

Sum. XSUM 204,045 11,332 11,334
MSNews 136,082 7,496 7,562

QG MSQG 198,058 11,008 11,022
SQUAD v1.1 75,722 10,570 11,877

CQA CoQA 108,647 3,935 4,048

Table 7: Statistics of the datasets, where Dialog, Sum.,
QG and CQA denote Dialog Generation, Text Summ-
rization, Question Generation and Conversational Ques-
tion Answering, respectively.

A Details of Datasets 945

We conduct experiments on seven datasets, cor- 946

responding to four representative text generation 947

tasks. The statistics of these datasets are shown in 948

table 7. 949

• Dialog Generation aims to predict responses 950

according to the dialog history. We select Dai- 951

lyDialog (Li et al., 2017) and PersonaChat 952

(Zhang et al., 2018) datasets. 953

• Text Summarization is to summarize the doc- 954

ument into a sentence. We choose XSUM 955

(Narayan et al., 2018) and MSNews (Liu et al., 956

2021a), two news summarization datasets. 957

• Question Generation aims to generate ques- 958

tions based on given passages and answers. 959

We use MSQG (Liu et al., 2021a) and 960

SQUAD v1.1 (Rajpurkar et al., 2016) datasets. 961

• Conversational Question Answering is to 962

answer the question based on a conversation. 963

We select CoQA (Reddy et al., 2019) dataset. 964

B Details of Evaluation Metrics. 965

Following existing works (Li et al., 2022a; Qi et al., 966

2021), we employ corresponding metrics to evalu- 967

ate model performances on different tasks. 968

• For dialog generation, we adopt BLEU- 969

1/2 (Papineni et al., 2002) to measure the co- 970

herence between the generated and real re- 971

sponses based on the co-occurrence ratio of 972

n-grams, and Distinct-1/2 (Li et al., 2016) to 973

measure the n-gram diversity of the generated 974

texts. 975

• For text summarization, we utilize ROUGE- 976

1/2/L (Lin, 2004) to compute the overlapping 977

ratio of n-grams between the generated and 978
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ground-truth summarizations for estimating979

the quality.980

• For question generation, we use ROUGE-L,981

BLEU-4 and METEOR (Banerjee and Lavie,982

2005) to assess the generation consistency.983

• For conversational question answering, we984

adopt F1-Score (Rajpurkar et al., 2016) to985

measure the prediction accuracy.986

C Details of Baselines987

We mainly compare our Diffusion-NAT with a vari-988

ety of Semi-NAR and NAR models. NAT (Gu et al.,989

2018), iNAT (Lee et al., 2018), InsT (Stern et al.,990

2019), CMLM (Ghazvininejad et al., 2019) and991

LevT (Gu et al., 2019) are five Transformer-based992

NAR models with special generation strategies, i.e.,993

iterative refinement, conditional masked language994

modeling and insertion-deletion operation. BANG995

(Qi et al., 2021) and ELMER (Li et al., 2022a)996

adopt the pre-training technique based on Trans-997

former to further improve the NAR generation per-998

formance. Note that InsT, iNAT, LevT, CMLM999

and BANG also support the semi-NAR manner1000

that can rely on partially generated results for im-1001

proving the inference. We also compare our ap-1002

proach with two recently proposed diffusion-based1003

methods, i.e., GENIE (Lin et al., 2022) and AR-1004

DIFFUSION (Wu et al., 2023), which incorporate1005

the pre-training strategy and auto-regressive de-1006

coding to improve the generation performance of1007

continuous diffusion models.1008

We also compare our approach with AR models1009

which have shown better accuracy than NAR ones.1010

LSTM (Hochreiter and Schmidhuber, 1997) and1011

Transformer (Vaswani et al., 2017) are two clas-1012

sic Seq2Seq models. MASS (Song et al., 2019),1013

BART (Lewis et al., 2020) and ProphetNet (Qi1014

et al., 2020) are PLMs specially for text generation1015

and we use their base version for fair comparison.1016

D Implementation Details1017

For all baselines, we use the source code provided1018

by their authors, and all hyper-parameters are set1019

following the suggestions from the original paper.1020

For our Diffusion-NAT, we use the checkpoint of1021

BART-base with 110M parameters for initializa-1022

tion, and do not add any other parameters. We use1023

the linear noise schedule (Ho et al., 2020) for the1024

diffusion process. During training, the diffusion1025

step is set to 1000. During inference, we utilize1026

Models
PersonaChat

B-1 B-2 D-1 D-2

ELMER 31.11 23.99 3.66 24.96

Ours 44.55 37.66 3.19 26.20

-w/o self-prompting 43.93 37.19 2.62 22.22
-w/o PLM 41.39 35.33 1.74 17.31
+Time step Embedding 40.03 33.80 1.75 16.80
BART=>RoBERTa 38.07 32.17 2.99 18.32

Table 8: Ablation study on PersonaChat dataset.

Models
PersonaChat XSUM SQuAD

B-1 B-2 R-L R-L MT

DiffuSeq 37.79 32.50 20.29 29.29 12.57

Ours 44.55 37.66 30.88 46.64 21.99

Table 9: Performance comparison of continuous dif-
fusion method DiffuSeq (Gong et al., 2022) and our
approach on PersonaChat, XSUM and SQuAD datasets.

DDIM (Song et al., 2021a) for fast sampling and 1027

reduce the diffusion step into 100. The number of 1028

self-prompting turns is set to 2. We use AdamW 1029

as the optimizer, and set learning rate to 5e-5. We 1030

set the training step for XSUM and SQuAD v1.1 1031

to 120k, and 80k for other datasets. The batch size 1032

is set to 512. All experiments are conducted on 8 1033

NVIDIA Tesla V100 GPUs. The training process 1034

of each task requires less than 24 hours. 1035

E Ablation and Variation Study 1036

Our Diffusion-NAT includes several key designs, 1037

i.e., the usage of BART, self-prompting strategy, 1038

removing time step embeddings. Here, we con- 1039

duct the ablation and variation study on our ap- 1040

proach to verify their effectiveness. Concretely, 1041

we propose four variations of our approach as 1042

shown in Table 8, where -w/o self-prompting and 1043

-w/o PLM refer to the variations removing the 1044

corresponding component, +Time step Embed- 1045

dings and BART=>RoBERTa are the variations 1046

that add the time step embeddings as continuous 1047

diffusion methods (Li et al., 2021) and replaces 1048

BART by RoBERTa in our approach, respectively. 1049

We can see that all the variations underperform 1050

our approach, it demonstrates the effectiveness 1051

of the above designs. Among them, we can see 1052

that adding time step embeddings cause the per- 1053

formance degrading a lot. The reason is that the 1054

additional embeddings may disturb the original se- 1055

mantic representations of BART. 1056
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Figure 2: Performance changes of our approach w.r.t.
the training steps on PersonaChat dataset.

F Discrete Diffusion V.S. Continuous1057

Diffusion1058

For the NAR text-to-text generation, existing1059

works (Gong et al., 2022) also have incorporated1060

the continuous diffusion method. In this part, we1061

aim to compare our approach with a recently pro-1062

posed work, DiffuSeq (Gong et al., 2022) that per-1063

forms continuous diffusion on the latent space of1064

token embeddings and leverages the KNN round-1065

ing step to map the embeddings into discrete to-1066

kens. We conduct the experiments on PersonaChat,1067

XSUM and SQuAD datasets. As shown in Table 9,1068

we can see that our approach outperforms DiffuSeq1069

in all metrics by a large margin. It shows the effec-1070

tiveness of our proposed method that utilizes the1071

discrete diffusion method in NAR text-to-text gen-1072

eration tasks. Besides, compared with DiffuSeq,1073

our approach can also benefit from the PLM BART,1074

which also helps generate higher-quality texts.1075

G Performance w.r.t. Training Steps1076

As our approach adopts the pre-trained BART for1077

parameters initialization, it is also helpful to faster1078

and better convergence. To verify it, we report the1079

BLEU-2 and Distinct-2 performance changes of1080

our approach w.r.t. the training steps during train-1081

ing. As show in Figure 2, we observe that with1082

the increasing of training steps, the performance1083

of our approach is consistently improving, gradu-1084

ally approaching or surpassing competitive models.1085

It shows the stabilization of our convergence pro-1086

cess. Besides, for BLEU-2, with just 10k training1087

steps, our approach can outperform competitive1088

Semi-NAR model CMLM. The reason may be that1089

BART provides a good starting point of the training1090

process, making our approach converge faster.1091

PersonaChat

Diff. Steps 2 10 20 100 200 1000

BLEU-2 30.82 35.88 36.19 37.66 37.63 37.65

Distinct-2 23.68 27.54 26.93 26.20 26.35 26.39

Table 10: Performance changes w.r.t. the diffusion steps
(abbreviated as Diff. Steps) on PersonaChat dataset.

PersonaChat

SP Turns 0 1 2 3 4 5

BLEU-2 35.00 36.50 37.66 37.69 37.77 37.77

Distinct-2 26.01 26.22 26.20 26.34 26.29 26.30

Table 11: Performance changes w.r.t. the self-prompting
turns (abbreviated as SP Turns) on PersonaChat dataset.

H Hyper-parameter Tuning. 1092

Our approach also requires some parameters to 1093

tune, i.e., the diffusion steps during decoding and 1094

the turns of self-prompting. Generally, more dif- 1095

fusion steps and self-prompting turns would lead 1096

to better performance but larger inference latency, 1097

hence we can tune their values to balance the infer- 1098

ence time cost and quality. In this part, we conduct 1099

experiments on the PersonaChat dataset to validate 1100

it. As shown in Table 10 and Table 11, we can see 1101

that more diffusion steps and more self-prompting 1102

turns are able to improve the model performance, 1103

while the improvement seems to be saturated after 1104

a certain number, i.e., 100 for diffusion steps and 2 1105

for self-prompting turns. Such results can provide 1106

a reference for tuning the two hyper-parameters 1107

to match the requirement of model performance 1108

and inference latency. Besides, we can see that 1109

with very few diffusion steps (e.g., 2 steps), our 1110

approach can also achieve a decent performance on 1111

BLEU-2 and Distinct-2. It demonstrates the poten- 1112

tiality of further reducing the inference latency in 1113

our approach. 1114

I Case Study 1115

To provide the qualitative analysis on our ap- 1116

proach, we show two generated examples on the 1117

PersonaChat dataset in Table 12. We can see that 1118

with the help of BART and the diffusion model, our 1119

approach can generate relevant and informative re- 1120

sponses based on the given dialog context. Besides, 1121

the left example shows that our approach is able 1122

to generate interesting phrases such as “as healthy 1123

as american lifestyle”, which makes the response 1124
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Personal Profile i enjoy cross stitch and quilting. my father
served in our military in the war. i am proud
to be an american. i am what people call a
baby boomer. my parents were proud immi-
grants to america.

my father was a police officer. my favorite
band is nirvana. i like running. i work at pet
smart. i am a musician.

Context hello, how is your day going hi. my day
is good. i am hanging out with both of my
sons. cool, sounds like fun. just as much
fun as cross stitch and quilts i love those
crafts! right now i am into my aquarium
filled with exotic fish. i am what you would
call a baby boomer, explains the quilting
passion you might like my collection of dec-
orations. they are 50s vintage! sure, it would
bring back old memories. especially when
my dad served in the military that is awe-
some. what do you eat for breakfast? mine
is granola every day. oatmeal fan over here.
my parents were immigrants, they raised me
on oats everyday. that is very healthy. i like
it. do you eat fish?

hey. want to chat? i am just listening to my
favorite music, nirvana. i was just reading
a biography. i love those. i work too much
overtime at pet smart to read. what do you
do? i just got out of college.

Real Response yes i do eat fish. i love it what did you study. i work at pet smart but
really like music.

Ours fish is almost as healthy as american
lifestyle, love fish too

i am a musician. and i play music all the
time.

Table 12: Examples of generated responses on PersonaChat by our approach.

more humorous and also well reflects the speaker’s1125

personal characteristics.1126
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