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Abstract

Quantization has established itself as the primary approach for decreasing the com-
putational and storage expenses associated with Large Language Models (LLMs)
inference. The majority of current research emphasizes quantizing weights and
activations to enable low-bit general-matrix-multiply (GEMM) operations, with the
remaining non-linear operations executed at higher precision. In our study, we dis-
covered that following the application of these techniques, the primary bottleneck
in LLMs inference lies in the softmax layer. The softmax operation comprises three
phases: exponent calculation, accumulation, and normalization, Our work focuses
on optimizing the first two phases. We propose an analytical approach to determine
the optimal clipping value for the input to the softmax function, enabling sub-4-bit
quantization for LLMs inference. This method accelerates the calculations of
both ex and

∑
(ex) with minimal to no accuracy degradation. For example, in

LLaMA1-30B, we achieve baseline performance with 2-bit quantization on the
well-known "Physical Interaction: Question Answering" (PIQA) dataset evaluation.
This ultra-low bit quantization allows, for the first time, an acceleration of approx-
imately 4x in the accumulation phase. The combination of accelerating both ex

and
∑

(ex) results in a 36.9% acceleration in the softmax operation. A reference
implementation2 is provided.

1 Introduction

In recent years, the landscape of natural language processing (NLP) has been transformed by large
language models (LLMs), showcasing unparalleled capabilities in contextual understanding and
common sense reasoning. These capabilities are particularly evident as models are scaled up, driving
research efforts towards further enlarging model dimensions [5, 23]. However, the substantial size
of modern LLMs imposes considerable computational demands, making them resource-intensive
in terms of training, fine-tuning, and inference processes. Consequently, there has been a surge in
efforts to alleviate memory consumption and computational requirements. Among the promising
approaches is quantization, a technique that involves representing parts of the model with lower bit
widths, thereby reducing resource usage without compromising performance.

The foundation of LLMs lies in the attention mechanism [24], which encompasses intensive general-
matrix-multiply (GEMM) operations, coupled with non-linear operations like softmax. Consequently,
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prior quantization studies have primarily focused on reducing GEMM operations to 8 [18] or 4 [6, 9]
bits with minimal to no degradation, showcasing significant advancements in this area. Additionally,
modern hardware accelerators like Gaudi2 [1] and H100 [2] support accelerated 8-bit (FP8) GEMMs,
further emphasizing advancements in this area of quantization and diminishing the computational
burden of GEMM operations, thus alleviating them from being the primary computational load.

Once the bottleneck of GEMMs has been alleviated, attention has shifted toward reducing the
computational demands of the softmax operation, which can account for more than 30% of the
total inference time. Efforts to accelerate softmax operations within the attention mechanism have
predominantly revolved around quantizing the entire dynamic range of softmax inputs to 16 or 8 bits
[13]. However, this approach underscores the necessity for novel methods to enhance the efficiency
of the softmax layer in terms of runtime, bandwidth, and memory usage, while maintaining accuracy.
Our research indicates that current softmax acceleration via quantization is sub-optimal, suggesting
that substantial performance improvements can be attained by tailoring the quantization optimization
process to the specific properties of the softmax layer.

The softmax operation comprises three main parts: (1) Exponent calculation: This involves taking
the exponent of each input element. (2) Accumulation: The exponentiated values are then summed
together. (3) Normalization: Each exponentiated value is divided by the sum to obtain the final
softmax probabilities. In this work, we are able to accelerate both steps (1) and (2) by quantizing, for
the first time, the input to the exponent to below 4 bits.

First, we analyze the quantization error in the context of the exponential operation, comparing eX

to eXq , where Xq represents the quantized version of the input X . Subsequently, we introduce a
pioneering approach to input quantization, coined "exponent-aware quantization" (EXAQ). This
methodology presents an analytical model that strategically focuses on minimizing the quantization
error after the exponent operation, directly targeting the exponential attributes of the softmax function.
Lastly, we leverage the low-bit characteristics and propose a technique to unite the summation phase
through a lookup table (LUT) operation, facilitating acceleration by approximately 4x. When we
combine EXAQ with the accelerated accumulation we get an acceleration of 36.9 % in the softmax.

Our paper introduces several key contributions:

• We highlight the softmax layer as a significant computational bottleneck in modern NN.
• We propose an analytical approach to quantize the input to the exponent to below 4 bits,

thereby enabling the utilization of a lookup table (LUT) based approach. This method
notably diminishes the cycle consumption for computing ex to a single cycle. In contrast to
FP32/BF16/FP16 formats, where creating a reasonably sized table is impractical.

• We propose a technique to leverage the low-bit quantization of the softmax inputs and con-
solidate 4 consecutive summations into a lookup table (LUT), enabling up to 4x acceleration
of the denominator accumulation process.

• Our method achieves state-of-the-art accuracy for low-bit quantization of the softmax
operation in LLMs. With 2-bit quantization, it reaches baseline accuracy in several tasks
with no degradation, and when averaging across all tasks, it shows an average degradation
of only 1.9%. This exceptional efficiency allows for the creation of an exceedingly compact
LUT with just 4 entries, rendering our approach highly suitable for deployment on edge
devices with extremely limited computational resources.

2 Motivation

This section aims to illustrate the considerable computational demand imposed by the softmax
operation, highlighting the advantages of improving its runtime efficiency. To establish a strong
foundation for our argument, we conduct experiments to measure the runtime consumption using
the "LLaMA-2-7B" LLM model on the Gaudi-2 accelerator, which is equipped with a high-speed
network card for optimal performance.

In Fig.1, we depict the proportion of time allocated to each operation during the model’s execution in
BF16 format. This graphical representation emphasizes the softmax layer as the main computational
bottleneck. With GEMM operations functioning in BF16 format, the softmax layer consumes 39% of
the total runtime, while the GEMM operations contribute to 24% of the runtime. Furthermore, given
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the advancement of modern accelerators supporting FP8 GEMMs acceleration, we anticipate that the
softmax operation will consume an even larger portion of the total runtime.

To conclude, accelerating the softmax operation, particularly through techniques like quantization,
has the potential to significantly increase the runtime efficiency of LLMs.

3 Exponent-Aware Quantization (EXAQ)

In this section, we introduce a novel quantization method, "exponent-aware quantization" (EXAQ),
specifically designed for softmax inputs. The softmax function, defined as softmax(xi) =

exi∑
j exj ,

operates by exponentiating its input logits and normalizing these values to form a probability
distribution. Moreover, usually for numeric stability the maximum of x is subtracted before the
exponent function. Our method focuses on minimizing the quantization error of the exponentiated
outputs, ensuring a more precise representation of the softmax function’s output. We manipulate
the quantization in the input domain but target the mean squared error of the exponentiated outputs,
minimizing MSE(ex, eQ(x)).

Inspired by the ACIQ paper [3], we limit the range of the tensor by clipping its values. While this
introduces some distortion to the original tensor, it significantly reduces the rounding error in the part
of the distribution containing most of the information. Since x < 0, we set a threshold C < 0, so that
if x < C, then x = C. Clipping is particularly useful because it preserves the less negative values,
which after exponentiation become significantly larger compared to very negative values that become
negligible after the exponential function is applied. Values in the range are quantized on a smaller
scale, improving resolution for the more common and important values. The method approximates
the optimal clipping value analytically from the distribution of the tensor by minimizing the MSE
between ex and eQ(x). This analytical threshold is simple to use during run-time and can easily be
integrated with other quantization techniques.

3.1 Problem Formulation

We begin by modifying the inputs for the function ex through the subtraction of the maximum value,
max(x), from these inputs. Thus, it is assumed that x ≤ 0. The MSE due to quantization and
clipping can be expressed as a sum of two integrals: one for the quantization error for x ∈ [C, 0] and
another for the clipping error for x < C. The quantization error integral is given by:

MSEquant =

∫ 0

C

(eQ(x) − ex)2 · f(x) dx, (1)

where f(x) represents the probability density function of x, assumed to be gaussian distributed with
mean µ and standard deviation σ. The clipping error integral is:

MSEclip =

∫ C

−∞
(eC − ex)2 · f(x) dx (2)

Thus, total MSE is given by

MSE = MSEclip + MSEquant =

∫ C

−∞
(eC − ex)2 · f(x) dx+

∫ 0

C

(eQ(x) − ex)2 · f(x) dx. (3)

In Fig. 2 we present an illustration of the distortion of the proposed scheme. Before we get into the
calculation of the mean squared error due to quantization, it is important to define the quantization
process. We approximate the quantized value Q(x) as x+ϵ, where ϵ represents the quantization noise.
This noise is assumed to be drawn from a uniform distribution [16, 3] within the range [−∆/2,∆/2],
where ∆ is the quantization step size. For an M -bit integer quantization, the quantization step size ∆
is defined as ∆ = 0−C

2M−1
, accommodating the range of input values that need to be quantized. Given

this quantization process, the MSE due to quantization can be analyzed as follows (full equations
appears in appendix B):

MSEquant =

∫ 0

C

(eQ(x) − ex)2 · f(x) dx,= ∆2

12

∫ 0

C

e2x · f(x) dx (4)
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Substituting Equation 4 into 3 we conclude that

MSE = MSEquant + MSEclip = − C2

12 · (2M − 1)2

∫ 0

C

e2x · f(x) dx+

∫ C

−∞
(eC − ex)2 · f(x) dx

(5)

Solving equation 5 numerically for bit-widths M = 2, 3 and finding the optimal clipping value that
minimizes MSE yields optimal clipping values as functions of the standard deviation (σ). These
results are visualized in Figure 3 for a normal density function with standard deviation σ.

Finally, we use a linear approximation to estimate the optimal clipping values in the range [0.9, 3.4],
where most standard deviations occur in practice (as seen in Figure 4). This approach allows us
to avoid maintaining a detailed table that maps the standard deviation to optimal clipping values
(C∗). Instead, we focus on keeping only two variables (slope and intercept) to estimate the linear
approximation for the optimal clipping value. This way, once we have the standard deviation, we can
immediately calculate the estimated optimal clipping value using the following table:

Table 1: Linear approximation for optimal clipping value (C∗)
Number of bits (M) C∗

2 −1.66 · σ − 1.85
3 −1.75 · σ − 2.06

39%

12% 12%

37% Operations
Softmax
GEMM
BatchGEMM
Other

Figure 1: Distribution of runtime consumption
by the layer type. The chart illustrates the pro-
portional runtime spent on various layer types
during model execution, highlighting the signifi-
cant computational burden imposed by the soft-
max layer, which accounts for 39% of the total
runtime. The data was measured on Llama2-7B
on Gaudi2 device.

𝑞1 𝑞2 𝑞4𝑞3

C 0
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Figure 2: Illustration of the distortion at the out-
put of ex due to the quantization and clipping of
the inputs. The clipping value C is the threshold
we aim to optimize. A very negative C reduces
clipping error but increases quantization error.
The total mean squared error is the sum of these
two contributions.

4 Algorithm implementation

The computation of the softmax function is typically broken down into three essential steps: (1)
Exponent calculation: this step involves computing ex for each input x (2) Accumulation: this step
involves summing all the exponential values to form the denominator of the softmax function, and
(3) Normalization: this step divides each exponential value by the computed sum to produce the
final softmax output. Our algorithm primarily focuses on steps (1) and (2), leveraging the ultra-low
precision of softmax inputs facilitated by the EXAQ method, to accelerate these two operations.
Fig.5 compares the original softmax algorithm and our optimized 2-bit version, highlighting the
computational efficiencies achieved.

Exponent calculation We replace the traditional direct exponent calculation (line 4 in Algo.2) with
the following two steps: (1) We quantize each element in the normalized tensor into a 2-bit integer
(line 4 in Algo.2). (2) We utilize pre-computed values from a lookup table LUTexp to derive the
exponents of the quantized values (lines 5-6 in Algo.2). This LUTexp maps between all possible
quantized values and their resulting exponents and is notably compact as it needs to store only 4
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values. This approach not only reduces memory usage but also speeds up the algorithm since the
exponential values can be retrieved in a single cycle.3

Accelerated denominator accumulation Originally, the accumulation process within the softmax
layer’s denominator requires summing up N exponential outputs (Algo.1 lines 7-12). In contrast, our
algorithm requires only N/4. Since the input tensor’s values are quantized to 2 bits, each byte can now
represent 4 values. We utilize an additional lookup table, LUTsum, that maps between all possible
combinations of 4 quantized values to the value of the sum of their exponents. We calculate the
denominator using the following steps. First, we divide the quantized tensor xq into N/4 sequences
(s denotes a sequence) of 4 values [s0, s1, . . . sN/4−1] = [xq[0 : 4], xq[4 : 8], . . . xq[N − 4 : N ]].
Next, we apply LUTsum on each si to obtain the sum of the exponents of the corresponding sequence.
Finally, we sum the resulting N/4 values. In Figure 6 we show an illustration of the proposed
accelerated denominator accumulation.

Our algorithm simplifies the accumulation step from 4 separate accumulations (4 cycles) to a single
LUT access (1 cycle), enhancing the speed of the denominator calculation by a factor of 4. A pseudo-
code of the proposed algorithm appears in Algo.2 (lines 10:13). The entire denominator accumulation
process is completed within N/4 iterations, compared to the original algorithm shown in Algo.1
(lines 9:12), which requires N iterations for the same purpose. This algorithm also decouples the
exponential computation from the denominator accumulation, allowing these steps to be executed
concurrently, as opposed to the original softmax algorithm. Moreover, this approach can be extended
to a 4-bit quantization, providing a 2x acceleration, as each byte can accommodate two 4-bit values.

5 Experiments
This section details the experimental framework used to evaluate the performance of our quantization
method. We evaluate the accuracy across various language tasks, comparing our softmax quantization
method (EXAQ) to the quantization implemented in A3[12]. Our method achieves state-of-the-art
accuracy scores in almost all experiments.

5.1 Accuracy experiments

Experimental settings Our accuracy experiments focus on the inference setting and are conducted
on 8 RTX A6000 GPUs, utilizing a batch size of 4 for all evaluations. We use the LLaMA-1 models
[22], specifically the 7B, 13B, 30B and 70B variants, and assess these models on a variety of question-
answering and reasoning tasks, such as BoolQ [7] and WinoGrande [19]. The experiments are
implemented using modifications to the lm-evaluation-harness [10], an open-source framework that
utilizes pre-trained models from the HuggingFace Project 4.

Quantization settings. The softmax input quantization function parameters need to be tuned based
on tensor statistics collected from a calibration set. In our experiments, we run a calibration set of
size 100 by running 25 iterations each with a batch size of 4.

Inference accuracy evaluation Table 2 provides an insightful visual comparison of inference
accuracy using different scales of LLaMA models (7B, 13B, 30B and 70B parameters) across 7
NLP tasks: BoolQ [7], HellaSwag [27], PIQA [4], WinoGrande [19], ARC Challenge [8], ARC
Easy [8] and OpenBookQA [17]. All models have their softmax inputs quantized to 2-bit and 3-bit
precision using our method EXAQ and the our implementation of A3 method. EXAQ calculates the
optimal clipping parameter using the standard deviation (σ) of the input tensor, as detailed in Table.1,
while A3 sets the clipping parameters by the entire range. Our method achieves state-of-the-art
accuracy scores in almost all experiments (noted with bold marks in Table.2). With 3-bit softmax
inputs, EXAQ reaches the baseline within 0.65% on average, with 43% of the results either meeting
or exceeding the baseline accuracy (noted with green color in Table.2). With 2-bit softmax inputs,
EXAQ approaches the baseline within 1.9% on average and reaches the baseline without degradation
in several tasks. Additional experiments appear in section D.

5.2 Runtime experiments

We conducted runtime experiments to evaluate the overall performance of our algorithm, isolating
the softmax operation to measure its runtime. Results are shown in Table.3. Our optimized algorithm

3While direct exponent calculation typically takes 5-12 cycles, depending on the hardware design.
4https://huggingface.co/docs/transformers/main/en/model_doc/llama
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Table 2: Inference accuracy evaluation for different LLaMA-1 models across various tasks.
Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA avg score

NONE BF16 75.1 76.2 79.2 69.6 45.1 73.2 44.4 66.1

A3

INT2 46.6 54.5 69.0 55.6 30.5 55.9 36.8 49.8
EXAQ 73.0 72.9 79.2 69.6 43.9 72.4 41.4 64.6

A3

INT3 71.3 73.7 78.5 67.2 42.8 71.0 43.4 63.9
EXAQ 75.1 74.8 79.3 69.7 44.2 72.9 43.8 65.7

(a) LLaMA-1-7B

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA avg score

NONE BF16 84.9 84.2 82.3 77.2 55.5 79.9 47.4 73.0

A3

INT2 39.2 61.7 68.6 55.0 32.9 64.2 39.8 51.6
EXAQ 72.3 79.4 81.6 76.7 53.9 78.9 47.2 70.0

A3

INT3 82.5 82.5 81.5 76.2 53.8 79.2 46.6 71.8
EXAQ 77.7 82.7 82.5 77.0 54.7 79.9 47.6 71.7

(b) LLaMA-1-65B

demonstrates a significant improvement in runtime performance for the softmax operation, achieving
an enhancement of 36.9%.

6 Related work
In the quest to optimize neural networks for practical deployment, particularly LLMs, studies
like [14, 26] have introduced innovative approaches to reduce computational demands. [14], for
example, implements an integer-only quantization scheme for Transformers that conducts all inference
operations with integer arithmetic, using INT32 for softmax inputs. Similarly, [26] applies selective
quantization to Transformers, focusing specifically on GEMM layers while keeping softmax in FP32.

Other works focus on softmax acceleration as it has become a bottleneck in recent years for LLMs.
[21] proposes to use basic-split calculation method, which allows to split the exponentiation calcu-
lation of the softmax into several specific basics which are implemented by LUTs and multipliers.
[15, 11, 20, 28] compute the exponential operations of integer and fractional parts separately using
a combination of LUTs and piecewise linear (PWL) function fitting. [15, 11] also accelerate the
division operation by replacing the divider with shifter units. The most closely related works to ours
are [12] and [25], both of which aim to accelerate the softmax operation and, like our method, do not
require a fine-tuning phase. [12] addresses only the exponent calculation acceleration, disregarding
the denominator. A detailed comparison is in C.1. [25] introduces two methods for softmax accel-
eration: one using two 1D-LUTs combined with a multiplier, and another using a combination of
1D-LUT and 2D-LUT, without a multiplier. A detailed comparison is in C.2

7 Discussion
Summary This study analyzes the execution time of various operations during LLMs inference and
demonstrates that the softmax operation emerges as one of the primary bottlenecks, likely to become
even more critical with advances in GEMM acceleration.

Based on this conclusion, we introduce EXAQ - an analytical approach aimed at reducing the dynamic
range of the exponent input, thereby enabling sub-4-bit quantization and accelerating the exponent
calculation. Additionally, leveraging ultra-low quantization, we propose a method to accelerate the
accumulation step by up to 4 times. The proposed full solution is able to get 36.9% acceleration in the
softmax operation. We demonstrate that our proposed method achieves minimal to no degradation for
the first time, in 2-bit and 3-bit quantization across various LLM sizes and a range of evaluated tasks.

Limitations We focused on minimizing the quantization error of the exponential output. A more
precise approach, however, would involve minimizing the quantization error of the softmax outputs
or the entire attention block. This alternative approach was not explored in the current research and is
identified as an important avenue for future work. Additionally, our methodology was tested only
during the inference stage of the model’s lifecycle. Exploring its effects during the training phase
remains an area for future investigation.
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Appendix
A Further discussion

A.1 Broader impacts

The acceleration of large language model (LLM) runtime significantly impacts modern life, particularly as
tools like ChatGPT and Gemini become more integrated into daily use. Speeding up these models is essential
for ongoing development and growth in this area, as it tackles a critical bottleneck: the processing speed and
efficiency of the algorithms. Moreover, enhancing these models’ speed and reducing their memory footprint not
only improves their performance but also makes them more accessible to a wider audience. This allows more
users to customize and advance these models for their specific needs and developments.

B Full MSE equation

MSEquant =

∫ 0

C

(eQ(x) − ex)2 · f(x) dx, (6)

=
1

∆

∫ ∆/2

−∆/2

∫ 0

C

(ex+ϵ − ex)2 · f(x) dϵ dx, (7)

≈ 1

∆

∫ ∆/2

−∆/2

∫ 0

C

(ex + ϵex − ex)2 · f(x) dϵ dx, (ex+ϵ ≈ ex + ϵex) (8)

=
1

∆

∫ ∆/2

−∆/2

∫ 0

C

(ϵex)2 · f(x) dϵ dx, (9)

=
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ϵ2 dϵ

∫ 0

C

(ex)2 · f(x) dx (10)

=
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[
ϵ3

3

]∆/2
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∫ 0
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e2x · f(x) dx (11)

=
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Figure 3: Optimal clipping value vs. standard deviation of softmax input for different bit widths. The
analysis (Equation 5) and simulation (grid-search) results agree, demonstrating the accuracy of the
analytical model. The simulation was conducted from Llama2 7b dumps.

C Comparing our algorithm to the latest algorithms

C.1 A competitive comparison against [12]

A key advantage of our approach is its significant improvement in denominator accumulation, reducing the
number of required accumulations by a factor of 4, a notable acceleration, as the method proposed in [12] does
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Figure 4: Standard deviation of softmax input collected across different layers and iterations.

Algorithm 1 Original softmax algorithm

1: Input: input tensor x

2: Output: softmax tensor out(x)
3: Normalize input tensor: x = x−max(x)

4: for i = 1 to size(x) do
5: e[i] = ex[i] ▷ multi cycle op
6: end for

Denominator accumulation:
7: sum = 0
8: i = 1
9: while i ≤ size(x) do

10: sum = sum+ e[i]
11: i+ = 1
12: end while
13: for i = 1 to size(x) do
14: out(x[i]) = e[i]/sum
15: end for

Algorithm 2 2-bit softmax algorithm

1: Input: input tensor x, LUTexp, LUTsum,
scale, offset, clip

2: Output: softmax tensor out(x)
3: Normalize input tensor: x = x−max(x)
4: quantize x: ▷ 3 cycles op

xq = Q(x, scale, offset, clip)
5: for i = 1 to size(x) do
6: e[i] = LUTexp[xq[i]] ▷ 1 cycle op
7: end for

Denominator accumulation:
8: sum = 0
9: i = 1

10: while i ≤ size(x) do
11: sum = sum+LUTsum[xq[i : i+ 3]]
12: i+ = 4
13: end while
14: for i = 1 to size(x) do
15: out(x[i]) = e[i]/sum
16: end for

Figure 5: Comparison of softmax algorithms: Algorithm 1 details the original softmax computation
method, involving multiple cycle exponential operations and N accumulations in the denominator.
Algorithm 2 introduces a 2-bit optimized version using lookup tables (LUTs), which involves a single
cycle exponential operation and N/4 accumulations in the denominator.

not address this aspect. The method in [12] quantizes FP16 inputs to 16-bit fixed-point and calculates exponents
using two separate 256-entry LUTs, followed by a multiplication. This process requires 3 cycles for the two
LUT accesses and the subsequent multiplication. In contrast, our algorithm quantizes inputs to 2-bit integers and
uses a single ultra-small LUT with only 4 entries. This streamlined approach reduces the process to just one
cycle for the single LUT access, significantly enhancing both runtime and memory efficiency compared to the
method in [12].
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Figure 6: Illustration of the proposed accelerated denominator accumulation. The LUTsum lookup
table contains pre-computed values of sums of the exponents of 4 consecutive quantized tensor
elements. In the left example, the integer representations of the quantized values are Xq[0 : 4] =
[0, 3, 0, 3], and their corresponding floating-point representations are [q[0], q[3], q[0], q[3]]. The
lookup key is constructed by concatenating the 2-bit counterparts of the 4 integer representations into
a single byte.

Table 3: Softmax layer runtime performance for INT2 experiments
Implementation Average Runtime (ms)

Original algorithm (Algo.1) 3.274
Our algorithm (Algo.2) 2.066

C.2 A competitive comparison against [25]

This work supports softmax inputs in integer format and introduces two methods to accelerate the softmax opera-
tion via approximation. The first method employs two 1-dimensional lookup tables (1D-LUTs) to approximate
ex and 1

x
, combining these outputs with a multiplier to produce the final result. The second method combines a

1D-LUT and a 2D-LUT (2-dimensional lookup table). In this approach, the output from the 1D-LUT and the
results from the accumulated denominator are used as the indices [i, j] for the 2D-LUT, which directly contains
the final softmax result, thereby eliminating the need for multiplication or division. However, this approach has
been noted to cause an additional drop in accuracy. Additionally, a de-quantization phase is conducted if the next
layer requires an FP format. To conclude, assuming the softmax inputs are in floating-point format, both our
method and that of [25] require an initial quantization phase. Each approach utilizes LUTs to approximate ex,
with each requiring just one cycle for LUT access. However, our work significantly accelerates the denominator
accumulation phase by a factor of 4. In contrast, [25] enhances the normalization phase efficiency by combining
a 1D-LUT with a multiplier or a direct use of a 2D-LUT. The distinct enhancements made by each method
suggest a potential synergy if integrated. Our improvements in denominator accumulation could complement the
division optimizations made by [25], offering a complete enhancement to the softmax function. Additionally,
while [25]’s process concludes with a de-quantization phase that requires additional computational steps, our
method eliminates the need for this phase, reducing overall cycles, thereby providing an advantage to our
approach.

D Additional Experiments
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Table 4: The standard deviation (σ) over multiple runs of LLaMA-1. The mean values of these runs
are presented in Table 2 in the main paper.

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA

NONE FP16 0.76 0.43 0.95 1.29 1.45 0.91 2.22

A3

INT2 0.87 0.50 1.08 1.40 1.34 1.02 2.16
EXAQ 0.78 0.44 0.95 1.29 1.45 0.92 2.20

A3

INT3 0.79 0.44 0.96 1.32 1.45 0.93 2.22
EXAQ 0.76 0.43 0.95 1.29 1.45 0.91 2.22

(a) LLaMA-1-7B

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA

NONE FP16 0.73 0.41 0.93 1.25 1.46 0.89 2.23

A3

INT2 0.87 0.50 1.13 1.40 1.29 1.03 2.18
EXAQ 0.77 0.43 0.94 1.27 1.46 0.90 2.23

A3

INT3 0.77 0.42 0.95 1.26 1.46 0.91 2.23
EXAQ 0.75 0.41 0.93 1.27 1.46 0.89 2.22

(b) LLaMA-1-13B

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA

NONE FP16 0.66 0.38 0.90 1.21 1.46 0.84 2.24

A3

INT2 0.87 0.48 1.05 1.38 1.38 0.98 2.21
EXAQ 0.69 0.41 0.91 1.23 1.46 0.85 2.24

A3

INT3 0.69 0.39 0.91 1.21 1.46 0.84 2.23
EXAQ 0.69 0.39 0.91 1.21 1.46 0.84 2.24

(c) LLaMA-1-30B

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA

NONE FP16 0.63 0.36 0.89 1.18 1.45 0.82 2.24

A3

INT2 0.85 0.49 1.08 1.40 1.37 0.98 2.19
EXAQ 0.78 0.40 0.90 1.19 1.46 0.84 2.23

A3

INT3 0.66 0.38 0.91 1.20 1.46 0.83 2.23
EXAQ 0.73 0.38 0.89 1.18 1.45 0.82 2.23

(d) LLaMA-1-65B
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Table 5: Inference accuracy evaluation for different LLaMA-1 and LLama-2 models across various
tasks

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA avg score

NONE BF16 77.7 79.1 80.1 72.8 47.9 74.8 44.6 68.2

A3

INT2 56.1 48.5 62.3 55.6 26.6 51.7 38.4 48.5
EXAQ 73.9 75.8 79.4 71.7 47.9 73.7 44.6 66.7

A3

INT3 73.7 77.3 79.1 71.8 45.1 72.6 44.6 66.3
EXAQ 76.1 78.0 80.3 71.7 47.9 74.6 45.8 67.8

(a) LLaMA-1-13B

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA avg score

NONE BF16 82.8 82.6 81.2 75.3 53.0 78.9 48.4 71.9

A3

INT2 54.0 64.9 72.1 60.0 33.8 64.4 42.6 56.0
EXAQ 80.6 78.1 81.3 74.3 51.9 77.9 47.8 70.3

A3

INT3 81.0 81.4 81.2 75.1 51.8 78.5 47.0 70.9
EXAQ 80.6 80.7 82.2 75.3 54.0 78.8 48.0 71.4

(b) LLaMA-1-30B

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA avg score

NONE BF16 77.9 76.0 78.9 69.1 46.2 74.8 44.2 66.7

A3

INT2 58.6 33.5 61.4 51.3 25.2 40.0 29.6 42.8
EXAQ 73.7 74.4 78.0 68.4 44.5 72.3 42.2 64.8

A3

INT3 69.9 72.5 77.6 66.9 43.4 70.2 42.8 63.3
EXAQ 75.9 75.5 78.9 68.8 46.4 74.8 44.0 66.3

(c) LLaMA-2-7B

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA avg score

NONE BF16 80.7 79.3 80.6 72.5 49.4 77.3 45.6 69.3

A3

INT2 54.9 35.6 58.4 51.2 24.9 41.4 33.4 42.8
EXAQ 77.5 77.7 79.4 70.0 48.5 76.9 46.6 68.1

A3

INT3 72.1 77.0 79.1 70.2 48.2 74.8 44.8 66.6
EXAQ 79.7 78.9 80.0 71.7 48.5 77.5 44.4 68.7

(d) LLaMA-2-13B

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA avg score

NONE BF16 83.6 83.8 82.8 77.9 57.5 80.9 48.4 73.6

A3

INT2 51.1 46.5 69.3 55.5 30.3 64.9 45.4 51.9
EXAQ 74.8 73.3 82.4 76.2 54.8 79.4 48.2 69.9

A3

INT3 79.0 83.2 82.6 75.7 57.0 80.7 48.6 72.4
EXAQ 77.9 78.9 82.9 77.0 56.9 80.0 49.0 71.8

(e) LLaMA-2-70B
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Table 6: The standard deviation (σ) over multiple runs of LLaMA-2 models. The mean values of
these runs are presented above in Table.5 in the appendix.

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA

NONE FP16 0.73 0.43 0.95 1.30 1.46 0.89 2.22

A3

INT2 0.86 0.47 1.14 1.40 1.27 1.01 2.04
EXAQ 0.77 0.44 0.97 1.31 1.45 0.92 2.21

A3

INT3 0.80 0.45 0.97 1.32 1.45 0.94 2.21
EXAQ 0.75 0.43 0.95 1.30 1.46 0.89 2.22

(a) LLaMA-2-7B

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA

NONE FP16 0.69 0.40 0.92 1.26 1.46 0.86 2.23

A3

INT2 0.87 0.48 1.15 1.40 1.26 1.01 2.11
EXAQ 0.73 0.42 0.94 1.29 1.46 0.87 2.23

A3

INT3 0.78 0.42 0.95 1.29 1.46 0.89 2.23
EXAQ 0.70 0.41 0.93 1.27 1.46 0.86 2.22

(b) LLaMA-2-13B

Q method Prec. BoolQ HellaSwag PIQA WinoGrande ARC Challenge ARC Easy OpenBookQA

NONE FP16 0.65 0.37 0.88 1.17 1.44 0.81 2.24

A3

INT2 0.87 0.50 1.08 1.40 1.34 0.98 2.23
EXAQ 0.76 0.44 0.89 1.20 1.45 0.83 2.24

A3

INT3 0.71 0.37 0.88 1.21 1.45 0.81 2.24
EXAQ 0.73 0.41 0.88 1.18 1.45 0.82 2.24

(c) LLaMA-2-70B
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