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Abstract

Long-term Time Series Forecasting (LTSF) tasks, which leverage the current data
sequence as input to predict the future sequence, have become increasingly crucial
in real-world applications such as weather forecasting and planning of electricity
consumption. However, state-of-the-art LTSF models often fail to achieve pre-
diction output alignment for the same timestamps across lagged input sequences.
Instead, these models exhibit low output alignment, resulting in fluctuation in
prediction outputs for the same timestamps, undermining the model’s reliability. To
address this, we propose AliO (Align Outputs), a novel approach designed to im-
prove the output alignment of LTSF models by reducing the discrepancies between
prediction outputs for the same timestamps in both the time and frequency domains.
To measure output alignment, we introduce a new metric, TAM (Time Alignment
Metric), which quantifies the alignment between prediction outputs, whereas ex-
isting metrics such as MSE only capture the distance between prediction outputs
and ground truths. Experimental results show that AliO effectively improves the
output alignment, i.e., up to 58.2% in TAM, while maintaining or enhancing the
forecasting performance (up to 27.5%). This improved output alignment increases
the reliability of the LTSF models, making them more applicable in real-world
scenarios. The code implementation is on the GitHub repositor

1 Introduction

The task of long-term time series forecasting (LTSF) is essential in various fields such as prediction of
electricity demand [13]], weather forecasting [37], health data [20]], and so on. Recently, deep neural
network models [40} 130, |33} 43]] have shown strong performance in predicting long-term time series
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based on historical information, which typically aim to minimize the error between the prediction
output and the ground-truth sequence as a regression task. However, in real-world applications,
merely minimizing the prediction error in LTSF is insufficient. It is equally important to ensure that
the forecasting model generates consistent (aligned) prediction outputs for overlapping timestamps
across lagged input sequences. For example, Fig. [T)illustrates a scenario in which a trained forecasting
model predicts future electricity usage in two instances: (1) for the period from April to November
(Prediction 1, purple), using input data from January to March, and (2) for the period from May to
December (Prediction 2, yellow), using input data from February to April, where the forecasting
periods overlap between May and November. A reliable model should provide consistent predictions
for these overlapping months, regardless of the partially differing input sequences. If the model
produces inconsistent predictions on the electricity usage for the same timestamps (i.e., May to
November) between two input sequences, it could result in significant time and financial costs for
rescheduling budget allocation and undermine the reliability of the predictions.

We refer to this phenomenon as the output alignment problem, which has not been adequately
acknowledged and addressed by existing LTSF studies [25 [7, [18]], despite its significance and
substantial impact on real-world applications. To the best of our knowledge, state-of-the-art LTSF
models [37, 133} [30] often fail to maintain the prediction output consistency, and none of existing
works has explicitly recognized or attempted to address this inconsistency in LTSF tasks.

In this paper, we present AliO (Align Out-
puts), a novel method designed to enhance
output alignment in LTSF models. For
the first time, AliO enables LTSF mod-
els to produce consistent predictions for
overlapping timestamps across lagged in-
put sequences. By aligning predictions for
overlapping timestamps through the min-
imization of discrepancies in both time
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and frequency domains, AliO improves out-
put consistency even when input sequences
lagged. AliO achieves this by directing the
model’s predictions toward the ground-truth
sequences while simultaneously minimiz-
ing discrepancies across multiple predic-
tions obtained from a set of lagged input
sequences. It allows AliO to integrate seam-
lessly with the model’s forecasting objec-
tives, such as regression loss (e.g., MSE),
without adding implementation complexity
or requiring modifications to the model. As
a result, AliO enhances the reliability of
forecasts by improving output alignment
(consistency), while maintaining or even im-
proving overall forecasting performance.
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A First buget decision for Aug Second buget decision for Aug

Figure 1: An example of low output alignment between
two predictions on future electricity usages: (1) Predic-
tion 1 (purple) forecast spanning from Apr to Nov and
(2) Prediction 2 (yellow) forecast spanning from May
to Dec. These two predictions are generated from two
partially overlapping input sequences—(1) one from
Jan to Mar (Input 1), and (2) the other from Feb to
Apr (Input 2). The inconsistency between these two
prediction outputs over the same timestamps (i.e., May
to Nov) leads to differing budget allocation plannings
for electricity power consumption in Aug, resulting in
time and financial waste due to rescheduling resource
allocation.

This represents a significant advancement
over existing methods [37, 40] that focus solely on minimizing the forecasting objective without
considering prediction output alignment.

To quantify output alignment, which represents the consistency of a model’s predictions across lagged
input sequences, we propose a new metric, Time Alignment Metric (TAM). TAM quantitatively as-
sesses the model’s output alignment by measuring discrepancies between predictions for overlapping
timestamps for multiple input sequences. To the best of our knowledge, the proposed TAM is the first
metric designed to measure the output alignment.

We experiment with AliO on representative LTSF tasks, including ETT{h1, h2, m1, m2}, Electricity
(ECL), Traffic, Weather, and ILI dataset [37], using various state-of-the-art LTSF models such
as CycleNet [27], GPT4S [43], iTransformer [30], PatchTST [33]], TimesNet [36], DLinear [40]
and Autoformer [37]. The evaluation results demonstrate that AliO effectively aligns predictions
over overlapping timestamps, i.e., improving TAM up to 58.2%, while maintaining or enhancing
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Figure 2: (Left) Six prediction outputs from the DLinear [40] model trained with regression loss
(MSE) only, forecasting a length-24 sequence for ILI data [37]], where six input sequences (green
dotted line) are lagged one timestamp apart. (Right) Six predicted sequences from DLinear trained
with AliO, under the same conditions. The predicted sequences exhibit improved output alignment,
showing a closer match to the ground truth for all six predictions, which significantly reduces the
prediction shifts observed when using regression loss alone.

forecasting regression accuracy up to 17.4% measured in MSE. The detailed descriptions on additional
datasets and experimental configurations are provided in Secs. |G|to

2 Motivation

A system with low prediction consistency leads to user distrust and increased costs. For instance,
studies on the consistency of weather forecasts have reported cases where consistent forecasts
lead to greater trust in the system, whereas inconsistent forecasts result in user distrust [} 31} |4].
Furthermore, accroding to research in non-weather domains, consumers tend to perceive consistency
among multiple estimates from the same system as a signal of skill [L1} 5, [3]]. The inconsistency in
predictions necessitates replanning, which consumes unnecessary organizational time. The resulting
resource reallocation leads to the investment of more resources, contrary toe th original goal of
Rolling forecasting, which aims for resource savings [16}14]]. This can be described as an additional
sunk cost [35], as frequent fluctuations in predictions can induce irrational decision-making and result
in lost opportunity costs [35} 16]].

While modern Long-Term Times Series Forecasting (LTSF) models demonstrate high accuracy,
research on the aforementioned consistency has been insufficient. Consequently, we examined the
consistency of existing models through rolling forecasting on representative LTSF datasets. The
left panel of Fig. 2] shows the prediction results of DLinear [37] on the ILI dataset [37] using only
regression loss (MSE), revealing a significant lack of consistency. In contrast, the right panel, where
AliO is applied, shows that consistency is improved while accuracy is maintained. As can be seen in
Sec. [} this is a phenomenon observed across other models and datasets.

Although both consistency and accuracy are crucial for addressing users’ psychological and economic
concerns, our experiments revealed that while modern LTSF models achieve high accuracy, they
fall short in terms of consistency. AliO, as a loss function used in conjunction with regression loss,
aims to achieve two goals: maintaining the high accruacy of existing LTSF models while improving
their prediction consistency. Furthermore, to quantify consistency, we propose the Time Alignment
Metric (TAM). Regression metrics such as MSE, MAE, and DTW [34] represent accuracy, which is
the distance between predictions and ground truth. Therefore, they have limitations in measuring
consistency, which is a measure of performance between predictions. Complementing this, TAM
measures the distance between predictions, serving as an indicator that represents consistency.

Through Sec. [5] and Sec. I} we show that AliO successfully achieves the dual goals of maintain-
ing/improveing the high accuracy of existing models and enhancing consistency. Additionally, in ??,
we experimentally verify the relationship between the inconsistency value (TAM) of existing models
and the MSE improvement in models trained with AliO. To the best our knowledge, this is the first
study to address the improvemnet of consistency in LTSF.

3 Time alignment metric (TAM)

We first define the concept of output alignment and then introduce Time Alignment Metric (TAM),
which enables a quantitative assessment of output alignment.



Definition 3.1. (Qutput Alignment) Output alignment refers to the property wherein the prediction
outputs of a model, derived from a set of lagged input sequences, exhibit consistent alignment,
characterized by uniform patterns across overlapping timestamps in the prediction outputs.

For instance, as illustrated in Fig.[2] the six prediction outputs for the overlapping timestamps (i.e.,
from 25 to 43) in the left figure demonstrate a lower degree of output alignment. Conversely, the six
prediction outputs in the right figure exhibit similar and consistent patterns, demonstrating a high
degree of output alignment. To quantify the output alignment (Theorem [3.1)) in model predictions,
we propose Time Alignment Metric (TAM). We begin by defining the necessary concepts, including
lagged input and output sequences, and overlapping output sequences, as provided below.

Definition 3.2. (Input and Output Sequence) Given a time-series sequence X € R°*¢, where
c is the input channel, and d is the length of the sequence, respectively, the n-th input sequence

X" € R of the length d’ < d is defined as the segment X .oy 4 —1, Where s is the starting
timestamp, and s + d’ — 1 is the ending timestamp.

Then, taking X" € R*? as input, f(X";0) = Y™ € R *" is defined as the prediction outpur
sequence of the length h provided by the forecasting model f, where ¢’ is the output channel, and
6 is the model parameter. Having the input sequence X ™ and the corresponding output sequence
Y™ of the model f, the lagged input and output sequences, X" ™" and Y, are derived by shifting
their timestamps by the lag parameter [, as described below.

Definition 3.3. (Lagged Input and Output Sequence) Given the n-th input sequence X" € Re*4’
of the segment X ;.. 4 _1, the sequence X" e RO of the segment X s .s4q+i—1 is defined
as the lagged input sequence of X" with [ being the lag parameter.

Then, given the lagged input sequence X ntl e R the prediction output of the length £,
f(X"10) = Y™ € RY* s defined as the model f’s lagged output sequence. From Y™ and
Y™, the overlapping output sequences P" and P™ "' are derived to compute TAM, as follows.

Definition 3.4. (Overlapping Output Sequence) Given two output sequences Y € R¢*" and
Yt e RE%" of the model f generated from X" and X" "' as input, respectively, P € R *"’

and P"*! € R¥*"" are defined as the overlapping output sequences between Y™ and Y"1, whose
segments are given by Y7, ;. and Y?:J,gl_ ;» respectively, where b’ = h — [ is the overlapping length.

From these, Time Alignment Metric (TAM) is defined to quantify output alignment by evaluating the
consistency between overlapping output sequences P™ and P, as follows.

Definition 3.5. (TAM; Time Alignment Metric) Given N overlapping output sequences P € R¢ *H
forn =1,2,..., N, where the input and output sequences, X" ! and Y"1, are offset from X"
and Y by the lag I, TAMy (Time Alignment Metric) is calculated as the average of the MAE values
between all pairs of { P", P}, which is given by:

N-1 N
N-1)N P pm
TAMy & % Z Z |}17/‘1 1)
n=1 m=n+1

TAM offers a distinct advantage over traditional forecasting regression metrics, such as the MSE or
MAE between model outputs and ground truth, which only measure forecasting performance and fail
to capture prediction fluctuations across different predictions. Unlike these metrics, TAM evaluates
the distances between overlapping predictions, allowing for an assessment of how predictions evolve
over time. For instance, regression metrics do not determine whether overlapping predictions remain
consistent or exhibit smooth transitions, making it challenging to assess data-model robustness. In
contrast, TAM computes the distance between overlapping predictions, providing a robust measure of
data-model consistency. A lower TAM value reflects improved alignment and data-model robustness.

4 Improving output alignment (AliO)

To enhance the output alignment of LTSF models, we propose AliO (Align Outputs), which minimizes
the discrepancy between overlapping predictions (Theorem [3.4). AliO is designed to simultaneously



lag Overlapping Output Sequence (P ,P}*) lag
> >

Regression Loss Direction

[ |
[ 1
[ 1
| | | AliO Loss Direction
[ 1
: ! 1 : Ground truth
~ I* ﬁ\/l s .
1 1 1 Stop gradient
. [
[ [ -
P o Prediction 1
[ [ -
=P Regression Loss Direction == AliO Loss Direction Prediction 2
== m Ground truth € Stop gradient === Prediction 1 Prediction 2 270°

Figure 3: Output alignments in both time and frequency domains. (Left) In the time domain,
AliO minimizes the difference between two predictions in the overlapping timestamps, i.e., P7. and
P’}H (T means time domain). To preserve the regression loss direction while improving the output
alignment, the regression pulling (Sec. is applied through the stop-gradient operation to each time
point, ensuring that the overall loss is calculated in the direction towards the ground truth. (Right)
In the frequency domain, AliO aligns both the phase and amplitude components of P’ and P;’fl
(the transformed frequency domain of P7. and Pgﬁ“), applied with the stop-gradient operation. The
figure is represented in polar coordinates, where the angle indicates the phase, and the distance from
the center point corresponds to the amplitude

achieve two key objectives: (1) improving output alignment by reducing discrepancies between the
overlapping predictions, and (2) maintaining the model’s forecasting regression performance by align-
ing the model’s prediction outputs with the ground truths. The two objectives are achieved through
the technique that we call regression pulling with the stop-gradient operation, which ensures that the
forecasting regression loss remains unaffected while improving output alignment simultaneously.

Given two overlapping predictions, P" = f(X"™;0)1.; and prtt = f(X”H; 0)1.;,_; defined in
Theorem AliO aligns these predictions such that P™ ~ P" ! forn = 1,2,..., N by minimizing
the following objective with respect to the model f’s parameter 0, as:

mgnD(f(X";0)1+z:h7f(X"“;9)1:h—l) @

where D denotes a distance function and subscripts denote the segment ranges of the model f’s
prediction output sequences, i.e., 1 +1[ : hand 1 : h — [ correspond to the same timestamps for
X" and X", respectively. Eq. (2) can be easily extended to handle non-consecutive overlapping
output sequences, enabling its application to TAM (Theorem [3.5). AliO aligns the overlapping
predictions P™ and P! in both time and frequency domains, as illustrated in Fig.|3| with further
details provided in the following subsections. The algorithmic procedure of AliO is summarized in

Alg.[1]
4.1 Time domain alignment

To enhance the temporal alignment, AliO aligns the overlapping predictions, P’ and P7 for n,m =
1,2,..., N, in the time domain, where the subscript T" denotes the time domain. This alignment can
be achieved using a distance function, D, such as MSE or Dynamic Time Warping (DTW) [34]. The
computed distance is back-propagated to encourage the model f to produce overlapping predictions
that align with each other. However, solely aligning the overlapping predictions by minimizing the
time domain alignment loss L = D7 (P, P7') may lead to both prediction outputs deviating from
the ground truth, degrading the forecasting regression performance of the model f.

4.2 Regression pulling (RegPull)

To maintain forecasting regression performance while aligning predictions, we propose Regression
Pulling (RegPull), which identifies which prediction output points of P7. and P7 are relatively
further from the ground truth than the other at the same timestamp, indicated by the index variable
tdxr, as shown on line (1) in Alg. [I} By applying the stop-gradient operation, denoted as sg(-), to the
prediction output points farther from the ground truth, the time domain alignment loss L7 pulls these
distant points closer to the ground truth, aligning its optimization direction with that of the forecasting
regression loss and reinforcing to minimize the regression loss. Consequently, regression pulling



Algorithm 1 The procedure of AliO. ® denotes element-wise multiplication. F'F'T(-, -, -) returns the frequency
domain representation of each signal sequences, sg(-) is stop-gradient operator.

Input: The number of predictions IV, consecutive predictions Y™ with at time lag of I, and their

ground truth ¥, where n € [1, N], and distance function D7 and D for the time and frequency
domain, respectively. The subscript T" and F' denotes the time and frequency domain, respectively.
Output: The time domain alignment loss L7 and frequency domain alignment loss Lp.
Initialize £; = 0, Ly = 0, count =0
forn=1to N —1do
form =n +1to N do
gap =|m —n| x1
( %7 ?1GTT) - (Y;ap:7Y’:nigap7Ygap:)

idey = Index(|P} — GT'r| > |PT — GT'r|) (1)
Ly =L+ Dr(Pticiduy, 39(PTiciaey)) + Dr(s9(PTigides ), Plligiae,) [RegPulll - (2)
( %‘7 ’%‘n?GTF) :FFT( %7 ¥L7GTT) (3)
ider = Index(|P% — GTr| > |P% — GTr|) 4)

Ly=Ls+Dr(Pricider,39(PFicidey)) + Dr(s9(Phigidge, ), Pligiaz,) [RegPulll  (5)
count = count + 1
end for
end for
(L1, Lr) = (Lt/count, Lt [count)
Return: L1 and L

effectively reduces the misalignment between prediction outputs with the forecasting regression
performance being unaffected, inducing overall predictions closely aligned with the ground truths.

For each prediction output point i € [1,4'] in Alg. 1} Dr(P7 icigry 59(PT icide,)) ON line
(2) encourages the prediction P7. to move closer to the prediction P7'. On the other hand,
Dr(s9(PT i¢iazr)s PT igidz,) On the same line (2) promotes the alignment of P77 towards P7.
The direction of alignment is determined by the index variable, ¢dz. These two distance values are
combined into the time domain alignment loss L7, which is expressed as:

L= DT(P?“,ieidvasg( %eime)) + Dr(sg( %igidw): Q},igida:T) 3)

Consequently, Eq. (3) aligns the direction of the time domain alignment loss L7 with the forecasting
regression loss while improving output alignment. The regression pulling can also be applied in the
same way to the frequency domain; Fig. [3]shows a visual illustration of output alignment in the time
(left) and frequency domain (right) using regression pulling (red cross marks).

4.3 Frequency domain alignment

In addition to the time domain alignment, we propose frequency domain alignment as a complemen-
tary approach that supports and enhances time-domain alignment by aligning overlapping predictions
in the frequency representation. It promotes the alignment of both the phase and the amplitude
components, improving overall consistency in the time domain.

As shown in Alg. |1} the time domain overlapping predictions, P’ and P77, along with the ground
truths GT'r, are first transformed into frequency domain representations, resulting in P%, P, and
GT r on line (3), where the subscript F' denotes the frequency domain. Subsequently, the index
variable idz i is determined by identifying output points further from GT r between P% and P’
on line (4). The distance function D is then applied with regression pulling to facilitate alignment
in the frequency domain on lines (5) in the same manner to the time domain. From this, the frequency
domain alignment loss L is obtained as:

Lp= DF(Pg,ieidxFasg( Z},ieidzp)) + Dr(sg( T},igidzp)apﬁieidzp) 4)

We use MSE (mean squared error) as the main distance function for the frequency domain alignment,
i, Dp = ||P% — P7||3/h'. The following Theoremdemonstrates that applying MSE in the
frequency domain facilitates phase alignment between prediction outputs.

. . . . . !
Theorem 4.1. Given two frequency domain prediction vectors, p'w and pp in CM, where C means the
set of complex numbers, minimizing their MSE, ||p% — p"||3, results in a reduction of the difference




in the phase components, Zp'% and Zp, as shown below (the proof is provided in Sec. .'
1
wlPE =PRI = 0 = |£p} — ZpF| =0 )

Fig. 3] (Right) shows a polar-coordinate depiction of frequency alignment conducted through Eq. (3
in the frequency domain. Theorem [4.2] shows that minimizing MSE, i.e., D = || P — P72, also
reduces the differences in amplitude once the phase components Z P7% and /P have been aligned.

Theorem 4.2. Once the phases of two frequency domain prediction vectors, pl and p'y in CV, are
aligned, i.e., /p'y ~ Zp', the minimization of MSE between the two prediction outputs, ||p% — D% %,
leads to a reduction in the amplitude difference, as shown below (the proof is provided in Sec.|[B.2):

1 T m T m
ﬁHpF_pF”§_>O = |p%|—IpFl—0 (6)

4.4 AlO loss

By combining the time L7 in Eq. (3) and frequency domain alignment loss £ in Eq. @), we derive
the AliO loss, £ 41,0, which is incorporated with the forecasting regression loss, £,.4 as shown below,
where A\ and A\r control the extent of alignment in the time and frequency domain, respectively.

Laiio =ArLr + ApLp " Liotal = Lreg + Latio @)

5 Experiment

We evaluate AliO on representative LTSF models and datasets. In model training, MSE is employed
as the regression loss. The model performance is assessed using both MSE and T'A M for output
alignment evaluation, with N = 2. To reproduce experimental results of baselines and ensure a fair
evaluation, we follow the same hyper-parameters presented in each model papers [37, 27, 140, 43, 30,
33,136]. For AliO, we set N = 2 and [ = 1, covering a wide prediction range. The search space for
Ar and Ap are {1.0,2.0,5.0} and {0.0, 0.5, 1.0, 2.0}, respectively, and we report the best results in
the main results. All results are reported as the average performance across all prediction lengths.
Detailed descriptions of the experiment and results are provided in Secs. (G| to

Models. We apply AliO to various LTSF architectures, experimenting it with a diverse range of
LTSF approaches, categorized into four groups: (1) Transformer-based models, i.e., Autoformer [37],
PatchTST [33]], and iTransformer [30], (2) Linear-based models, i.e., DLinear [40] and CycleNet [27],
(3) CNN-based models, i.e., TimesNet [36], and (4) LLM-based models, i.e., GPT4TS [43].

Datasets. On the main text of the paper, we report results on representative LTSF datasets, i.e.,
Electricity (ECL) [13]], ETT {hl, h2, m1, and m2} [42], Traffic, [37], Weather [37], and National-
Illness (ILI) dataset [37]]. The experiments results on full datasets can be found in Sec. m

Context Length Following the official settings for each model, we set the context length to 336 for
PatchTST and DLinear, and 96 for the other models. For the ILI dataset specifically, the context
lengths were set to 104 for PatchTST and DLinear, and 36 for TimesNet.

Prediction Length Furthermore, as per the official settings, the prediction lengths were set
to {96,192, 336,720} for most datasets. The exceptions were the PEMS-related datasets with
{12,24,48,96}, the ILI dataset with {24, 36, 48, 60}, and the Autoformer model on the ETT datasets,
for which we used {24, 48, 168, 336, 720}.

5.1 Output alignment and forecasting performance

Tab. [[|summarizes the performance of LTSF models on seven datasets (excluding ILI) for multivariate
LTSF tasks, comparing baselines (without AliO) and AliO-integrated models in terms of MSE
and TAM. As shown in the table, integrating AliO with the regression loss substantially improves
alignment performance (TAM), achieving gains of up to 70.5% for CycleNet, 45.8% for GPT4TS,
45.8% for iTransformer, 36.8% for PatchTST, 45.6% for TimesNet, 64.0% for DLinear, and 39.0%
for Autoformer. Simultaneously, forecasting performance (MSE) also improves by up to 11.5%.
As summarized in Tab. 2] for the ILI dataset exhibiting insufficient initial output alignment, AliO
achieves up to a 17.4% higher MSE improvement compared to other benchmarks.



Table 1: The forecasting and alignment performance, measured by MSE and TAMs, respectively, are
compared between the baseline (MSE only) and AliO, with best results indicated in bold. The results
are averaged over three random seeds and prediction lengths. The more metrics (MAE, MAPE, and
RMSE) with standard deviations are provided in Sec.

Models CycleNet GPT4TS  iTransformer  PatchTST TimesNet DLinear Autoformer

Metric MSE TAM; MSE TAM, MSE TAM, MSE TAM; MSE TAM; MSE TAM; MSE TAM,

ECL baseline 0.171 0.016 0.167 0.036 0.176 0.050 0.162 0.037 0.196 0.040 0.166 0.013 0.229 0.041
AliO 0.170 0.014 0.167 0.025 0.172 0.031 0.161 0.024 0.191 0.028 0.166 0.010 0.221 0.036
ETTh1 basqline 0.432 0.044 0.424 0.056 0.455 0.088 0.418 0.076 0.476 0.05 0.422 0.025 0.477 0.05
AlIO  0.429 0.013 0.417 0.039 0.438 0.052 0.415 0.048 0.468 0.032 0.419 0.014 0.444 0.046
ETTh2 basqline 0.385 0.047 0.363 0.048 0.382 0.074 0.341 0.061 0.416 0.079 0.449 0.054 0.401 0.041
AliO  0.381 0.025 0.354 0.033 0.377 0.052 0.341 0.050 0.402 0.043 0.446 0.033 0.377 0.025
ETTml base_line 0.386 0.032 0.351 0.044 0.407 0.060 0.352 0.050 0.412 0.045 0.358 0.024 0.488 0.070
AliO  0.383 0.014 0.346 0.031 0.396 0.033 0.349 0.032 0.398 0.026 0.354 0.010 0.448 0.053
ETTm2 base_line 0.272 0.027 0.27(_) 0.042 0.292 0.048 0.252 0.059 0.29? 0.036 0.289 0.037 0.271 0.052
AliO  0.271 0.019 0.265 0.028 0.289 0.026 0.255 0.039 0.295 0.022 0.268 0.020 0.254 0.032
baseline 0.487 0.021 0.411 0.059 0.422 0.061 0.389 0.041 0.626 0.040 0.436 0.025 0.634 0.048
AliO 0.481 0.008 0.405 0.032 0.423 0.044 0388 0.027 0.554 0.030 0.434 0.009 0.624 0.045
Weather base_line 0.255 0.010 0.222 0.024 0.260 0.024 0.229 0.018 0.262 0.018 0.245 0.007 0.342 0.056
AliO 0.255 0.008 0.225 0.011 0.259 0.017 0.228 0.012 0.262 0.014 0.244 0.005 0.311 0.042

Traffic

5.2 How AliO maintains or improves regression performance

Tab. 2] shows AliO’s effectiveness in improving both forecasting accuracy and alignment performance
on the ILI dataset [37], which exhibits poor output alignment in the absence of AliO. The proposed
regression pulling enhances model training by analyzing prediction distances at each timestamp,
adaptively strengthening the effect of regression loss to align predictions with each other and ground
truth. On ILI, which exhibits poor initial alignment, AliO achieves 17.4% MSE and 58.1% TAM
improvement. Conversely, datasets with better initial alignment, presented in Tab.[I} achieve com-
paratively smaller MSE improvements. Figs. ] and[I3]shows this trend; higher initial TAM (poor
alignment) correlates with greater MSE gains, demonstrating AliO’s efficacy in suboptimal alignment
conditions.

Figs. 2] and [5] visualize DLinear predic- . i )
tions on the ILI dataset. The left fig- Table 2: The forecasting regression and alignment per-

ures (without AliO) exhibit prediction formance on ILI [37], measgred in.MSE, aqd TAM,, are
shifts [[18] in both time (Fig. IZD and fre- compared between thf: ba'sehne ('w1thout AliO) and AliO.
quency (Fig. [f) domains, reflected in The best results are highlighted in bold. For robust eval-
high TAM values. In contrast, the right uation, we conduct experiments with three random seeds.
figures (with AliO) show improved align- Results are rounded to three decimal places for simplicity.

ment in both domains, which reduces

. Models GPT4TS PatchTST TimesNet DLinear
TAM value and enhances regression per- e
formance (MSE). etric 2 ) : )

base 1.898 0.117 1.813 0.110 2.176 0.322 2.247 0.152
AlIO 1.755 0.098 1.497 0.046 1.963 0.258 2.187 0.119

5.3 Hyper-parameter Analysis

Time and Frequency Domain Coefficients. AliO utilizes the two coefficients, Ay and Ar in Eq. ,
to balance the regression performance and output alignment by adjusting the alignment strengths
over the time and frequency domains, respectively. To evaluate AliO with respect to these two
coefficients, we provide Fig.[6] which presents heatmaps of the normalized MSE and TAM for various
coefficient values. The x-axis represents A in {0.0,0.5,1.0,2.0}, and the y-axis corresponds to
Ar in {1.0,2.0,5.0}. The left heatmap shows normalized MSE, where the maximum MSE in each
dataset is scaled to 1.0 and the minimum to 0, followed by averaging across all models. The right
heatmap presents normalized TAM in the same manner. Additional results are in Sec. [F]

As AliO is designed to enhance alignment, a clear trend is observed in TAM where increasing the time
domain alignment coefficient Ay from 1.0 to 5.0 leads to a consistent improvement. Interestingly, the
normalized MSE also shows a general improvement as A increases, suggesting that the regression
pulling effectively aligns the directions of the AliO loss with those of the regression loss. The
influence of the frequency domain alignment coefficient A is less pronounced compared to the time
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Figure 6: Comparison of the normalized MSE  Figure 7: Comparison of the normalized MSE (left)
(left) and TAM (right) over different settings and TAM (right) over different settings of the over-
of Ay and Ap. The x-axis represents Arp lapping predictions N and the lag [. The x-axis
({0.0,0.5,1.0,2.0}), and the y-axis represents  represents the lag /, and the y-axis represents the
Ar ({1.0,2.0,5.0}). Increasing Ar consis- number of overlapping predictions N. Increasing
tently improves TAM performance, while A\r N improves TAM, while increasing [ degrades the
shows its impact depending on the value of Ax. performance. No distinct tendencies are observed
Blue represents better performance. regarding MSE. Blue represents better performance.

coefficient Ap. However, in cases where Ap alone cannot improve performance, Ar shows its impact
on both the MSE and TAM metrics, as exemplified by values of 0.28 and 0.50, respectively. This
demonstrates the significance of the frequency domain alignment to overcome limitations in the time
domain alignment, indicating that both phase and amplitude contribute to performance enhancements.

Number of Overlapping Output Sequences and Lag Size. We investigate how the model’s MSE
and TAM vary with different numbers of overlapping output sequences N and the lag [. Fig.
shows the normalized MSE and TAM with a range between 0 and 1.0. TAM is improved as the
lag decreases, which can be attributed to an increased length of overlapping timestamps at smaller
lag value. This allows AliO to align longer overlapping sequence effectively. Additionally, the
model performance improves as N increases. As shown in Alg. [T} a higher NV enables AliO to align
predictions from distant timestamps, significantly enhancing TAM. In contrast, no clear trend is
observed for MSE, since the window size increases as both N and [ grow. Prior studies [12} 2|17 [32]
suggest that large window sizes can cause overfitting, whereas an optimal window size leads to better
performance. As shown in Fig. [/, when both N and [ are large, MSE tends to increase, indicating
degraded performance. Conversely, lower MSE values (0.29,0.37,0.20) are observed along the
diagonal elements, representing proper window sizes, such as (I, N) = (1, 8), (2,4), (8, 2), which
indicates that balanced combinations of [ and N yield better performance.

6 Related works

To the best of our knowledge, no prior work has adequately identified the output alignment problem
and provided a solution for it, as AliO proposed in this paper.

Data-Model Robustness. While existing research [30] primarily focuses on model initialization
robustness, i.e., the consistency of model performance across randomly initialized weights [30]], the
output alignment emphasizes data-model robustness. This aspect underscores the model’s ability



to produce consistent prediction outputs for lagged input sequences. The data-model robustness is
equally critical for practical applications as discussed in this paper and can be quantified using the
proposed TAM, which can be enhanced through the proposed time and frequency domain alignment.
We anticipate this aspect of LTSF study will inspire further active research in the field.

Contrastive Learning. Contrastive learning [41] 8] [1,[9}, 38| [22]] employ pretraining strategies that
encourage augmented positive pairs to be closely aligned in the representation space. However, they
differ from AliO in several key aspects. First, they operate in the representation space rather than in
the output space where AliO functions. Second, they minimize the distance between whole vectors
rather than focusing on overlapping timestamps. Third, they do not incorporate regression-aware
algorithms like regression pulling. These differences highlight the distinctive approach of AliO in
output alignment, operating independently of existing methodes and can thus be integrated with
them.

7 Limitations and discussions

On Volatile Datasets. TAM is a metric designed to assess the output alignment of LTSF models.
However, its application should be approached with caution on highly volatile datasets that fall
outside the typical scope of LTSF tasks, as model predictions may experience considerable volatility.
Nevertheless, as demonstrated in Sec. [I], the results on the Exchange Rate dataset [37], which is
influenced by abrupt external shocks, suggest that TAM retains potential applicability even in volatile
settings. Designing more robust metrics for inherently volatile data is our next research objective.

Distance Functions. AliO improves regression performance under high initial TAM conditions (a
low degree of output alignment). This is likely attributable to its use of MSE as the distance function,
which is consistent with the regression loss employed during model training. To further enhance per-
formance, alternative distance functions such as [25 29} [15,[7]], which capture different characteristics
of time series data (e.g., shape), may serve as promising directions for future exploration.

8 Conclusion

In this paper, we investigate the output alignment problem, which can commonly arise in LTSF tasks
and propose Time Alignment Metric (TAM) as a quantitative measure for this problem. To solve the
output alignment problem, we propose AliO (Output Alignment) applied in both time and frequency
domains. AliO achieves up to 27.5% improvement in MSE across various LTSF models and datasets,
and up to 58.2% improvement in TAM, effectively addressing the output alignment problem.
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A Exemplar illustrations on importance of output alignment

Budget Budget
allocation allocation

in March 27 in April

Figure 8: A simple example illustrating the importance of output alignment in electricity power
demand forecasting. The two predictions differ, causing confusion among people, and they realize
that the budget allocated in March was a waste.

B Proof

B.1 Proof of Theorem 4.1

Proof. Rewriting the equation on the left side of the theorem, we can express it form the perspective
of individual elements:

h/

|P%*P%|§ 1 1 2 12 8

T*EZ@FJ*I)F,J (8)
i

The squared magnitude of the difference between two complex numbers p};’i and p%’i are given as
follows:
‘P}m‘ - p2F,i|2 = (P%m - P%z)(am - ?FZ) )

Where p' ,; and p? -, are the complex conjugate of p}, ; and p%, ;. Now, expressing pj,; and p3;
including the complex conjugate in polar form:

701 X 2 2 70,2 X
€ Pri, pp; = |pEle T (10)

1 _ g1
Pr; = |pF,i
—j0

o —iy, 3 2,
Plpi=IPEsle " TR, pPp, = |phgle T PR (11)

where j = 1/—1 and 0 is the angle (phase) for the corresponding complex number. We substitute
into the expression and simplify the expression:

JO,1 JOy2 =301 =302
|P}7,i - P%,i 2= (|P}7,i|€ PR — |p%‘,i|e pF’l)(|p;1i|6 PR — |P%,z‘|e Pri) (12)
(0,1 —0 2 ) —j§(0,1 —0,2 )
= [Pl + D3 — [Phsllphl(e) e R b e TR TRS)  (13)

Using Euler’s formula e/ = cos(6) + jsin(6) [10], we can convert the exponential expressions to
trigonometric expressions:

|P}«“,i - p%,¢|2 = |p11f«“,i|2 + |p2Fz - |p}?,i||p%7i|{005(9p}w,i - 917%,1-) + jsm(azﬁm,i - ep’j;,i) (14)

+ COS(—(GP}M - 91’%@)) +j8in(—(9p}w - 91,%1))} (15)
PFilcos(Opr  —Op2. ) (16)
Utilizing the angle (phase) notation £, we can express the equation as:

‘p}m - p%,i|2 = |p}w >+ |p%z 2 - 2|P}7,¢||P%,i|005(4p}w,i - 41’%«11’) (17

| 2

= |ppil? + 1pF* — 2Pk,
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Reducing the final equation implies increasing the cosine term, which in turn signifies aligning the
two phases, since one of predictions is constant by stop-gradient sg(-) operator in Alg.

Ipr; — phil> = 0 = cos(Lpp; — £pFh;) — 1 (18)
cos(Lpp; — £ph,) = 1 = |4pp — £ph| — 0 (19)
Pk — PEI? = 0 = |4pp — ZP%| =0 (20)

O

B.2 Proof of Theorem 4.2]

Proof. Since the two phases, i.e., Zp}w and Lp%vi, are aligned, the Eq. in Sec. m is modified
as follows:

|P}7,i - p%,i|2 = |P}7,i|2 + |P%,z‘|2 - 2|p1Fz||P%*z| (2D

By factoring, it can be expressed in the following perfect square form.
|P}7,i - P%,z‘|2 = (|P}M|2 - |P%,i|2)2 (22)
2

Since one of predictions is constant by stop-gradient sg(-) operator in Alg. minimizing |pk ,—p%;
leads to a reduction in the amplitude difference

C Visualization of alignment

In this section, we visualize the model’s prediction outputs and alignment differences when trained
solely with regression loss versus with both regression loss and AliO. Each figure is arranged in a
2x2 grid: the top row shows results using regression loss alone, while the bottom row presents results
incorporating AliO; the left column illustrates the time domain, and the right column displays the
frequency domain visualized in a polar coordinate system, where the azimuth angle represents the
phase and the radial distance from the origin corresponds to the amplitude. Overlapping timestamps
of prediction outputs for five lagged inputs are shown, with the ground truth indicated by black
dashed lines. Figs.[9]to[T2]show the results from DLinear [40]], PatchTST [33]], TimesNet [36]], and
iTransformer [30].
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Figure 9: Visualization: Upper shows the prediction of DLinear [40] using only the regression loss
on the ECL dataset [13]], while Bottom shows the result under the same conditions when AliO is also
applied. It is observed that AliO improves alignment performance for overlapping timestamps.
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Figure 10: Visualization: Upper shows the prediction of PatchTST [33]] using only the regression
loss on the ETTm1 dataset [42]], while Bottom shows the result under the same conditions when AliO
is also applied. It is observed that AliO improves alignment performance for overlapping timestamps.

o1

00

1800

e

== Ground Truth
—— Prediction 0
Prediction |
—— Prediction 2 ko

00

=== Prediction 3 60
Prediction 4

== Ground Truth —— Prediction 2
4|~ Prediction 0 —— Prediction 3

n

|

—— Prediction | —— Prediction 4 y yoen
I} [ T

[ ) — e
Timestamp

Figure 11: Visualization: Upper shows the prediction of TimesNet [36] using only the regression
loss on the ETTm?2 dataset [42], while Bottom shows the result under the same conditions when AliO
is also applied. It is observed that AliO improves alignment performance for overlapping timestamps.
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Figure 12: Visualization: Upper shows the prediction of iTransformer [30] using only the regression
loss on the Solar dataset [24]], while Bottom shows the result under the same conditions when ALIO
is also applied. It is observed that AliO improves alignment performance for overlapping timestamps.
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D On sudden event

This section expands on the sudden events mentioned in Sec. [7]

Definition D.1. The sudden event refers to an anomalous data point in the input sequence that can be
interpreted as out-of-distribution (OOD), causing perturbations in the output sequence. Such event
occur when input-level perturbations lead to unpredictable output patterns.

These scenarios deviate from the core objective of Long-term Time Series Forecasting (LTSF), which
focuses on predictable sequences. Instead, they align more closely with:

* Domain Adaptation [[19]
* Anomaly Detection [39]
* Test-Time Adaptation [21]

The TAM metric is specifically designed for LTSF tasks with predictable, stable output sequences
(i.e., non-perturbed scenarios). In contexts involving sudden events or OOD (out-of-distribution)
data, the inherent assumptions of TAM-particularly its reliance on sequence stability-may not hold,
necessitating cautious application. However, if a sudden event includes precursor signals (i.e.,
detectable input patterns) and the model can sufficiently predict the output sequence using this
information, TAM remains valid even under such conditions.

E Initial TAM vs. MSE improvement

Fig.|4{may be difficult to interpret as there is no explicit distinction between models and datasets. In
this section [Fig.[T3]], to facilitate easier interpretation, models are represented by different shapes
and datasets are represented by different colors.
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Figure 13: The relationship between initial TAM and MSE improvement (%).
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F Zero coefficient of time domain alignment (\7)

By default, AliO operates in the time domain, so scenarios where the time-scaling coefficient is
zero were excluded from the main context. However, we conducted experiments on CycleNet [27],
iTransformer [30]], TimesNet [36] under conditions with a zero time-scaling coefficient. The results,
shown in Figs. |E| to@ are normalized between 0 and 1. Since the condition (A = 0, A = 0)
implies that AliO is not used, so it is empty. As demonstrated in Fig. [6]increasing A concsistently
improves TAM performance. When it comes to MSE performance, there’s a general trend for it to
improve as the coefficient increases, similar to what’s seen with TAM (I’m assuming this refers to a
specific model or method you’re using). However, in some environments, the coefficient can become
excessively large, dominating the regression loss and causing performance to degrade. Despite this,
our experiments confirmed that an appropriate, non-zero coefficient leads to improved performance.
The tables show the results where the lag is 1 and the number of sequences is 2 (default).
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Figure 14: Comparison of the normalized MSE
(left) and TAM (right) of CycleNet trained
on ETTml dataset. The x-axis represents Ap
({0.0,0.5,1.0,2.0}), and the y-axis represents
Ar ({0.0,1.0,2.0,5.0}).
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Figure 16: Comparison of the normalized MSE
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Figure 18: Comparison of the normalized MSE
(left) and TAM (right) of iTransformer trained
on ETTh2 dataset. The x-axis represents A\g
({0.0,0.5,1.0,2.0}), and the y-axis represents
Ar ({0.0,1.0,2.0,5.0}).
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Figure 15: Comparison of the normalized MSE
(left) and TAM (right) of CycleNet trained
on ETTm?2 dataset. The x-axis represents \p
({0.0,0.5,1.0,2.0}), and the y-axis represents
Ar ({0.0,1.0,2.0,5.0}).
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Figure 17: Comparison of the normalized MSE
(left) and TAM (right) of iTransformer trained
on ETThl dataset. The x-axis represents \p
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Figure 19: Comparison of the normalized MSE
(left) and TAM (right) of iTransformer trained
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Figure 22: Comparison of the normalized MSE
(left) and TAM (right) of iTransformer trained
on Weather dataset. The x-axis represents Ag
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Ar ({0.0,1.0,2.0,5.0}).
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Figure 24: Comparison of the normalized MSE
(left) and TAM (right) of TimesNet trained
on ETTml dataset. The x-axis represents A\g
({0.0,0.5,1.0,2.0}), and the y-axis represents
Ar ({0.0,1.0,2.0,5.0}).
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Figure 21: Comparison of the normalized MSE
(left) and TAM (right) of iTransformer trained
on Traffic dataset. The x-axis represents Ag
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Figure 23: Comparison of the normalized MSE
(left) and TAM (right) of TimesNet trained
on ETThl dataset. The x-axis represents Ag
({0.0,0.5,1.0,2.0}), and the y-axis represents
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Figure 25: Comparison of the normalized MSE
(left) and TAM (right) of TimesNet trained
on ETTm?2 dataset. The x-axis represents A\g
({0.0,0.5,1.0,2.0}), and the y-axis represents
Ar ({0.0,1.0,2.0,5.0}).

We provide a brief description of each dataset used in our experiments, as referenced in Secs. [5]and [}

* Electricity transformer temperature (ETT) [42]]: This dataset consists of two years of
data collected from two counties in China. It is divided into four subsets: ETThl and
ETTh2 (sampled hourly), and ETTm1 and ETTm?2 (sampled every 15 minutes). Each record
contains six power load features and one target variable representing the oil temperature.

» Exchange [37]]: Contains daily exchange rates from eight countries, spanning from 1990 to

2016.

¢ Electricity (ECL) [13]: Comprises electric power consumption data sampled every minute

over four years for a single household.



o ILI (https: // github.com / thuml / Autoformer): Weekly records from 2002 to 2021,
provided by the US Centers for Disease Control and Prevention, representing the number of
influenza-like illness patients.

* PEMS: Contains traffic information measured at 5-minute intervals on California highways.
The subsets PEMS03, PEMS04, PEMS07, and PEMSO08 correspond to different regions and
time spans, with varying numbers of sensors [28]].

* Solar-Energy [24]: Includes solar energy production data from 137 plants in 2006, measured
at 10-minute intervals.

* Traffic [37]]: Consists of hourly traffic congestion data collected by 862 sensors on San
Francisco freeways from January 2015 to December 2016.

To ensure fair performance evaluation, we adopted the sequence length, prediction length, and label
length settings used in recent LTSF models, such as Autoformer [37]], DLinear [40]], PatchTST [33]],
TimesNet [36], iTransformer [30], GPT4TS [43]], CycleNet [27]]. Following previous works [37}
30, 28]]. Tab. E] shows the descriptions of datasets including the number of variate in each dataset,
prediction length, dataset size, sampling frequency, and domain. Since the official Autoformer
implementation provides the results in different prediction length (24, 48, 168, 336, 720), we follow
their implementation and show the results on Sec.

Table 3: Descriptions of datasets. # of vars means the number of variate in each dataset.

Dataset size

Dataset # of vars Prediction Length (Train / Validation / Test) Frequency Domain
24,48, 168, 336, 720 (Autoformer)

ETThl1 7 96, 192, 336, 720 (other models) 8545 /2881 /2881 Hourly Temperature
24,48, 168, 336, 720 (Autoformer)

ETTh2 7 96. 192, 336, 720 (other models) 8545 /2881 /2881 Hourly Temperature
24,48, 168, 336, 720 (Autoformer) .

ETTml1 7 96. 192, 336, 720 (other models) 34465 /11521 /11521 15 min Temperature
24,48, 168, 336, 720 (Autoformer) .

ETTm2 7 96. 192, 336, 720 (other models) 34465/ 11521/ 11521 15 min Temperature
Weather 21 96, 192, 336, 720 36792 /5271 /10540 10 min Weather
El(egg}f;ty 321 96, 192, 336, 720 18317 /2633 /5261 Hourly  Electricity

Traffic 862 96, 192, 336, 720 12185/ 1757 1 3509 Hourly  Transportation
ILI 7 24, 36, 48, 60 617/74/170 Weekly Health
Exchange Rate| ¢ 96, 192, 336, 720 5120/ 665 / 1422 Daily Economy
(Exchange)

Solar 137 96, 192, 336, 720 36601 /5161/10417 10 min Energy
PEMSO03 358 12,24, 48, 96 15617 /513575135 5min  Transportation
PEMS04 307 12,24, 48, 96 10172 /3375 /3375 Smin  Transportation
PEMS07 333 12,24, 48,96 16911 /5622 /5622 Smin  Transportation
PEMS08 170 12,24, 48,96 10690 / 3548 / 3548 Smin  Transportation

H Experiment configurations

To ensure fair model evaluation, we utilized the official GitHub codes provided by six benchmark mod-
els: Autoformer [37], DLinear [40], PatchTST [33]], TimesNet [36], iTransformer [30], GPT4TS [43],
CycleNet [27]. For all experiments, we adopted the same prediction length, label length, and sequence
length as the official implementations, and maintained the original architecture of each model.

Context lengths. According to the papers [37, 140l 33} 1361130, 43| [27]], the used context lenghts are
followed by:

* CycleNet, Autoformer, iTransformer: 96
* TimesNet: 96 (36 for the ILI dataset)
e PatchTST, DLinear: 336 (104 for the ILI dataset)
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Prediction lengths. We primarily used prediction lengths of {96,192, 336,720}. For the ILI
dataset [(https://github.com/thuml/Autoformer), we followed prior works and used {24, 36, 48, 60}.
As an exception, for the ETT{h1, h2, m1, m2} datasets, we followed the Autoformer paper and used
{24, 48,168, 336, 720} (for Autoformer) and {96, 192, 336, 720} (for other models).

Optimization. The optimizer and scheduler were used under the same conditions as specified in
the official codes for each model.

Our method. For our method (AliO), the hyperparameters—the number of samples NV in Alg. [T]
and lag [ in Alg. [T[}—were set to their default values of 2 and 1, respectively. The Mean Squared
Error (MSE) function was used as the distance function for both the time and frequency domains.
The coefficients for the time domain (A7) and frequency domain (Ar) were selected from the ranges
{1.0,2.0,5.0} and {0.0, 0.5, 1.0, 2.0}, respectively (default values are A7 = 1 and Ap = 0 since the
frequency domain is optional). Additionally, the AWL [26]] technique was employed to automatically
tune these coefficients and report the best performance.

Evaluation. We used Mean Squared Error (MSE) as our baseline loss function and reported
forecasting performance using MSE, Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Root Mean Squared Error (RMSE), and TAM. For all these metrics, lower values indicate
better performance.

Robustness. To ensure robust results, we used three random seeds (2023, 2024, 2025) for initializa-
tion and report the standard deviation using +. All experiments were conducted on NVIDIA RTX
3090 and A6000 GPUs. We conducted all experiments using the same GPU when comparing the
baseline and AliO under the same conditions.

Training hyper-parameters. We used the same learning rate, batch size, and epoch as the official
implementation of each model for reproducibility and fair comparison. The implementation code for
each model is as follows.

* Autoformer: https://github.com/thuml/Autoformer

* DLinear: https://github.com/vivva/DLinear

PatchTST: https://github.com/yuqinie98/PatchTST
» TimesNet: https://github.com/thuml/TimesNet

e iTransformer: https://github.com/thuml/iTransformer

GPT4TS: https://github.com/DAMO-DI-ML/NeurIPS2023-0ne-Fits-All

* CycleNet: https://github.com/ACAT-SCUT/CycleNet

We followed the implementation code listed above (GitHub) and used the same learning rate, batch
size, and number of epochs as shown in Tabs.[d]to[TT]} The optimizer we used is Adam [23].

Table 4: Learning rate and batch size of Autoformer used in each datasets.

Dataset | ECL  ETThl ETTh2 ETTml ETTm2 Exchange Traffic Weather
Learning rate | 0.0001 0.0001 0.0001  0.0001  0.0001 0.0001 0.0001  0.0001
batch size 32 32 32 32 32 32 32 32
Epoch 10 10 10 10 10 10 3 10
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Table 5: Learning rate and batch size of DLinear used in each datasets.

Dataset ‘ ECL ETThl ETTh2 ETTml ETTm2 Exchange ILI  Traffic Weather
. 0.001 0.0005

Learning rate | 0.001  0.0001 0.05 0.0001 0.01 0.005 0.05 0.05 0.0001

batch size 16 8 32 8 32 382 32 16 16

Epoch 10 10 10 10 10 10 10 10 10

Table 6: Learning rate and batch size of PatchTST used in each datasets.

Dataset \ ECL ETThl ETTh2 ETTml ETTm2 ILI Traffic  Weather
Learning rate | 0.0001 0.0001 0.0001 0.0001 0.0001  0.0025 0.0001 0.0001
batch size 32 128 128 128 128 16 6 128
Epoch 100 100 100 100 100 100 100 100

Table 7: Learning rate and batch size of TimesNet used in each datasets.

Dataset \ ECL ETThl ETTh2 ETTml ETTm2 ILI Exchange Traffic ~ Weather
Learning rate | 0.0001 0.0001 0.0001  0.0001 0.0001  0.0001 0.0001 0.0001  0.0001
batch size 32 32 32 32 32 32 32 16 32
Epoch 10 10 10 10 10 10 10 10 10

Table 8: Learning rate and batch size of iTransformer used in each datasets (excluding PEMS and
Solar).

Dataset \ ECL  ETThl ETTh2 ETTml ETTm2 ILI Exchange Traffic Weather
Learning rate | 0.0005 0.0001 0.0001 0.0001  0.0001 0.0001 0.0001 0.001 0.0001
batch size 16 32 32 32 32 32 32 16 32
Epoch 10 10 10 10 10 10 10 10 10

Table 9: Learning rate and batch size of iTransformer used in each datasets (including PEMS and
Solar.

Dataset | PEMS03 PEMS04 PEMS07 PEMSO08  Solar

Learning rate 0.001 0.0005 0.001 00'00%01] 0.0005
. 32 32

batch size 32 32 16 16 32

Epoch 10 10 10 10 10

Table 10: Learning rate and batch size of GPT4TS used in each datasets.

Dataset \ ECL ETThl ETTh2 ETTml ETTm2 ILI Traffic  Weather
Learning rate | 0.0001 0.0001 0.0001 0.0001 0.0001  0.0001  0.001 0.0001
batch size 512 256 256 256 256 16 256 512
Epoch 10 10 10 10 10 10 10 10
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Table 11: Learning rate and batch size of CycleNet used in each datasets.

Dataset ‘ ECL ETThl ETTh2 ETTml ETTm2 Traffic Weather Solar
Learning rate | 0.0001 0.0001  0.0001 0.0001 0.0001  0.0001 0.0001 0.0001
batch size 128 128 128 128 128 128 128 128
Epoch 30 30 30 30 30 30 30 30

I Full experimental results

This section presents the comprehensive results of each Long-Term Series Forecasting (LTSF) models,
Autoformer [37] (Tabs.[T12]and [T3), DLinear [40] (Tabs.[T4]and [13), PatchTST [33] (Tabs.[I6]and[T7),
TimesNet [36] (Tabs. [I8|and[19), iTransformer [30] (Tabs.[20[to[22), GPT4TS [43]| (Tabs. 23]and 24),
and CycleNet [27] (Tabs. and . The evaluation metrics include Mean Squared Error (MSE),
Temporal Alignment Metric (TAM), Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and Root Mean Squared Error (RMSE). The 4 symbol denotes the standard deviation
across multiple seeds (we used three random seeds for robust experiment). AVG represents the
average value across all prediction lengths, with the best performance highlighted in bold.
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J Pronunciationof a.1i.o

To prevent confusion regarding the pronunciation, this section explicitly describes how to pronounce
a.li.o.

[a.li.0]
The pronunciation consists of three syllables:

 a: Pronounced like the ‘a’ in father (ah).
e li: Pronounced with a clear ‘L’ sound, as in Lee (lee).
* 0: Pronounced like the ‘0’ in go (oh).

Consequently, it is pronounced as “Ah-Lee-Oh”, ensuring the ‘L’ is clearly articulated.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We briefly described our methodology in the Abstract and stated its effects
accordingly.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitations in Sec.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the proofs of our theorems in Secs.[B.T]and [B.2]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the experimental settings in Sec. [H] with the proper code references.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the anonymous GitHub link.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the data splits, hyper-parameters, and type of optimizer in Secs.
and [Hl

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report error in Sec.[l]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the GPUs information in Sec.[H] (RTX A6000, RTX 3090).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes] .

Justification: All the data and models we used are open source, and there are no potential
risks, adverse outcomes, or ethical concerns associated with their use.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: We discussed the positive aspects that our technology can bring in Sec. [2]
Specifically, by using our technology, the predictive stability of time series forecasting
models can be improved, which in turn can reduce the social time and resource costs
associated with potential budget reallocations.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper does not pose no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have included descriptions of all datasets and models used in the paper
(see Appendix).

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide our method using Anonymous GitHub repository.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: We did not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: We did not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification: We did not use LLMs for core development.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

46


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Motivation
	Time alignment metric (TAM)
	Improving output alignment (AliO)
	Time domain alignment
	Regression pulling (RegPull)
	Frequency domain alignment
	AliO loss

	Experiment
	Output alignment and forecasting performance
	How AliO maintains or improves regression performance
	Hyper-parameter Analysis

	Related works
	Limitations and discussions
	Conclusion
	Exemplar illustrations on importance of output alignment
	Proof
	Proof of thm:frequency-domain
	Proof of thm:frequency-domain-amplitude

	Visualization of alignment
	On sudden event
	Initial TAM vs. MSE improvement
	Zero coefficient of time domain alignment (T)
	Dataset explanation
	Experiment configurations
	Full experimental results
	Pronunciation of a.li.o

