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Abstract

We consider a Latent Bandit problem where the latent state keeps changing in time according
to an underlying Markov Chain and every state is represented by a specific Bandit instance.
At each step, the agent chooses an arm and observes a random reward but is unaware of
which MAB he is currently pulling. As typical in Latent Bandits, we assume to know the
reward distribution of the arms of all the Bandit instances. Within this setting, our goal
is to learn the transition matrix determined by the Markov process, so as to minimize the
cumulative regret. We propose a technique to solve this estimation problem that exploits
the properties of Markov Chains and results in solving a system of linear equations. We
present an offline method that chooses the best subset of possible arms that can be used
for matrix estimation, and we ultimately introduce the SL-EC learning algorithm based on
an Explore Then Commit strategy that builds a belief representation of the current state
and optimizes the instantaneous regret at each step. This algorithm achieves a regret of the
order Õ(T 2/3) with T being the considered horizon. Finally, we illustrate the effectiveness
of the approach and compare it with state-of-the-art algorithms for non-stationary bandits.

1 Introduction

The Multi-Armed Bandit (MAB) framework is a well-known model used for sequential decision-making with
little or no information. This framework has been successfully applied in a large number of fields, such as
recommender systems, advertising, and networking. In the general MAB formulation, a learner sequentially
selects an action among a finite set of different ones. The choice over the arm to select is made by properly
balancing the exploration-exploitation trade-off with the goal of maximizing the expected total reward over
a horizon T and guaranteeing the no-regret property, thus meaning that the loss incurred by not knowing the
best arm is increasing sublinearly over time. Standard MAB literature requires the payoff of the available
actions to be stationary (i.e., rewards come from a fixed distribution) in order to design efficient no-regret
algorithms.
However, in many real-life applications, the stationarity assumption may not necessarily hold as data may be
subjected to changes over time. In some applications, it is also possible to identify different data distributions
each one corresponding to a specific working regime. In cases of large availability of historical data appearing
in the form of past user interactions, it is possible to learn offline the observation models associated with
the different arms for each working regime. Exploiting the knowledge on observation models leads to many
advantages over the fully online exploration setting where no prior information is available at the beginning
and a massive number of interactions is required to learn the observation models associated with each working
regime. Even if the latent regime is not directly observable, by knowing the observation distributions, it can
be inferred from the interaction process. Identifying the latent state accelerates the adaptation of the agent
to the environment leading to improved performances over time.
Assuming the existence of a finite set of discrete latent states is a relevant choice when approaching the
modeling of complex real-life problems characterized by different and recurrent working regimes. These
regimes can be typically observed in domains such as the financial market and online advertising, typically
marked by high volatility and specific seasonality patterns (M. et al., 2022; Heston & Sadka, 2008; Guo
et al., 2021). Introducing a more practical example, in the stock exchange market where different models
are available, typically one for each regime, it is relevant to choose the best stock to exchange based on the
unknown market condition. The different regimes may be identified through the availability of past data by
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either considering some seasonality patterns or specific indicators of the market conditions using the domain
knowledge of experts. In this case, inferring the current state of the market, associating a duration with it,
and predicting future transitions allows taking fairer decisions and bringing higher outcomes.
Past works focused on this state identification problem under the assumption of knowing the conditional
observation models (Maillard & Mannor, 2014; Zhou & Brunskill, 2016) and defined theoretically optimal
UCB algorithms. Follow-up work of Hong et al. (2020a) provided more practical Thompson Sampling
algorithms also considering the problem of model misspecification and came up with an analysis on the
Bayes regret.
The works cited above assume that the latent state does not change during the interaction process: once
the real state is identified, the agent can act optimally. Differently, in this work, we embrace a more realistic
scenario and assume that the latent state can change through time. In accordance with the latent bandits
setting, we assume that the learning agent is aware of the observation models of the arms conditioned
on each latent state. A setting similar to ours has been considered also in Hong et al. (2020b), the key
difference is that they assume to have either full or partial knowledge of both the observation model and
the transition model. We instead focus on the more challenging problem of learning the transition model
given the knowledge of the observation models and maximizing the cumulative reward over T interaction
steps. More specifically, our problem is modeled by assuming the existence of a set S of different MABs all
sharing the same set of finite arms I, each generating rewards (observations) in a finite set V. Each state
s ∈ S = {s1, . . . , sS} represents a different instance of a MAB. At each time step t, there is a transition from
latent state st−1 to the new latent state st according to the transition matrix governing the process. The
action at selected in t will thus generate a reward conditioned on the latent state st. Assuming the transition
dynamics to be described using a Markov Chain can be advantageous for modeling durations of states that
can be represented with geometric distributions.

Our Contribution We summarize here the main aspects and contributions related to this work:

• we design a procedure for the estimation of the transition matrix that converges to the true value
under some mild assumptions. In order to obtain this result, we exploit the information derived
from the conditional reward models, and we use some properties of Markov Chains;

• we provide high-probability confidence bounds for the proposed procedure using known results from
statistical theory and novel estimation bounds of samples coming from Markov Chains;

• we propose the Switching Latent Explore then Commit (SL-EC) algorithm that uses the presented
estimation method and then exploits the learned information achieving a Õ(T 2/3) regret bound on
a finite horizon T ;

• we illustrate the effectiveness of the approach and compare it with state-of-the-art algorithms for
the non-stationary bandits setting.

2 Related Works

Non-stationary Bandits Non-stationary behaviors are closer to real-world scenarios, and this has induced
a vast interest in the scientific community leading to the formulation of different methods that consider ei-
ther abruptly changing environments (Garivier & Moulines, 2011), smoothly changing environments (Trovò
et al., 2020), or settings with a bounded variation of the rewards (Besbes et al., 2014). It is known that when
rewards may arbitrarily change over time, the problem of Non-Stationary Bandits is intractable, meaning
that only trivial bounds can be derived on the dynamic pseudo-regret. That is the main reason why in the
literature there is a large focus on non-stationary settings enjoying some specific structure in order to design
algorithms with better guarantees. Non-stationary MAB approaches typically include both passive methods
in which arm selection is mainly driven by the most recent feedback (Auer et al., 2019; Besbes et al., 2014;
Trovò et al., 2020) and active methods where a change detection layer is used to actively perceive a drift in
the rewards and to discard old information (Liu et al., 2017; Cao et al., 2018). Works such as Garivier &
Moulines (2011) provide a O(

√
T ) regret guarantee under the assumption of knowing the number of abrupt

changes. Other works, such as Besbes et al. (2014), employ a fixed budget to bound the total variation of
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expected rewards over the time horizon. They are able to provide a near-optimal frequentist algorithm with
pseudo-regret O(T 2/3) and a distribution-independent lower bound. All the above methods are not suited
for environments that switch between different regimes as they do not keep in memory past interactions but
rather tend to forget or discard the past.
A particular type of non-stationary Bandit problem related to our work includes the restless Markov set-
ting (Ortner et al., 2014; Slivkins & Upfal, 2008) where each arm is associated with a different Markov
process and the state of each arm evolves independently of the learner’s actions. Differently, Fiez et al.
(2018) investigate MAB problems with rewards determined by an unobserved Markov Chain where the tran-
sition to the next state depends on the action selected at each time step, while Zhou et al. (2021) focus on
MAB problems where the state transition dynamics evolves independently of the chosen action. This last
work has many similarities with our setting. The main difference lies in the fact that they do not assume
to know the conditional reward models and learn them jointly with the transition matrix. They make use
of spectral decomposition techniques (Anandkumar et al., 2014) and use this tool in a regret minimization
algorithm achieving a O(T 2/3) regret bound. Their setting is more complex than ours but involves stronger
assumptions, like the invertibility of the transition matrix that defines the Chain. Furthermore, spectral
methods need a vast amount of samples in order to provide reasonable estimation errors and can hardly be
used in large problems.

Latent Bandits More similar lines of work are related to bandit studies where latent variables determine
the distribution of rewards (Maillard & Mannor, 2014; Zhou & Brunskill, 2016). In these works, the
unobserved state is fixed across different rounds and the conditional rewards depend on the latent state.
Maillard & Mannor (2014) developed UCB algorithms without context considering the two different cases in
which the conditional rewards are either known or need to be estimated. This line of work has been extended
to the contextual bandit case in Zhou & Brunskill (2016) where there is an offline procedure to learn the
policies and a selection strategy to use them online. Hong et al. (2020a) proposed a TS procedure in the
contextual case that updates a prior probability over the set of states in order to give a higher probability to
the real latent state. A non-stationary variant of this setting is proposed in Hong et al. (2020b) where the
latent states are assumed to change according to a Markov Chain. They develop TS algorithms under different
cases when both the reward and transition models are completely known and when partial information about
them is available. For the partial information case, they provide an algorithm based on particle filter which
will be used for comparison in the experimental section. Differently from Hong et al. (2020b), we do not
assume any prior information about the transition matrix and we learn it through interactions with the
environment using the information about the reward models.
Another interesting work associated with latent bandits is the one from Kwon et al. (2022) where, differently
from previously cited works, they assume an episodic setting with a fixed horizon H. At the beginning of
each episode, a specific MAB instance is sampled from a fixed mixing distribution and the agent interacts
with the sample MAB until the end of the episode, without being aware of the MAB she is interacting with.
The goal is to learn both the mixture weights and the reward distributions associated with each MAB. The
relevant differences with our work rely on the episodic setting, while we assume a non-episodic one, and
on the fact that in Kwon et al. (2022), MABs are sampled independently at the beginning of each episode,
while in our case there is a dependence between MABs that switch potentially at every time step based on
the underlying Markov process. Another main difference with the previously considered works is that they
provide results in terms of sample complexity needed in order to learn a near-optimal policy, not taking into
account the suffered regret.

3 Switching Latent Bandits

3.1 Preliminaries

Markov Chains A Markov Chain (or Markov Process) (Feller, 1968) over the state space S is a stochastic
process (St)∞

t=1 satisfying the Markov property, meaning that for all si, sj ∈ S and t > 0:

P (St+1 = sj |St = si, . . . , S0 = s0) = P (St+1 = sj |St = si).
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More formally, a Markov chain is identified by a tuple ⟨S, P , ν⟩ with S = {s1, . . . , sS} being a (finite) set of
states, P is a state transition probability matrix with element Pss′ = P (St+1 = s′|St = s) and ν ∈ ∆S−1

is the initial state distribution with νs = P (S0 = s). Given the starting distribution ν and the transition
matrix P , we can define the probability distribution over the state space after n steps as:

ν(n) = νP n.

We can classify Markov Chains according to the different properties they satisfy. In particular, a Markov
Chain is Regular if some power n of the transition matrix P n has only positive elements (Puterman, 1994).
If a Markov Chain is Regular, it admits a unique stationary distribution, as can be seen in the following:
Proposition 3.1. Let P be the transition matrix of a Regular Markov Chain and v an arbitrary probability
vector. Then:

lim
n→∞

vP n = π,

where π is the unique stationary distribution of the chain, and the components of the vector π are all strictly
positive.

Having established the concept of stationary distribution, we give now another core definition, the one of
spectral gap, that will be useful for what will follow. Before that, we define the set (λi)i∈[S] of ordered
eigenvalues of P , with 1 ≥ |λ1| ≥ |λ2| ≥ · · · ≥ |λS |. Assuming to consider a Regular Markov Chain, the
system has a unique stationary distribution, and an eigenvalue λ1 = 1.
Definition 3.1. The spectral gap β of a Markov Process defined by transition matrix P is 1− |λ2|.

The spectral gap provides valuable information about the process. For Regular Markov Chains, the spectral
gap controls the rate of exponential decay to the stationary distribution (Saloff-Coste, 1997).

3.2 Problem Formulation

Consider a set S of S = |S| different MAB problems. Each MAB has a finite set of discrete arms I :=
{a1, . . . , aI} with cardinality I = |I| and, by pulling an arm a, it is possible to get a reward r taken from the
set V = {r1, . . . , rV } of possible rewards. In our setting, we assume to have a finite set of rewards V = |V|
with each reward r ∈ V bounded for simplicity in the range [0, 1]. All the considered MABs share the same
sets of arms I and rewards V. At each step, the MABs alternate according to an underlying Markov Chain
having transition probability P with size S × S.
The interaction process is as follows: at each time instant t, the agent chooses an arm It = a and observes
a reward Rt = r that is determined by the underlying state St = s of the process. More formally, the
distribution associated with the revealed observation is

Q(r|s, a) := P (Rt = r|St = s, It = a). (1)

For the moment, we will stick with the assumption that the distribution Q(·|s, i) is categorical. In
Section 5.1, we will see how continuous distributions can also be handled in this setting. Given all the
MABs, the actions and possible observations, we can define the three-dimensional observation tensor O
with size S × I × V where the element Os,a,r represents the probability of observing the reward r being in
state s and pulling arm a.
In particular, by fixing a state s and an action a, the vector Os,a,: contains the parameters of the categorical
distribution associated with state s and action a. Motivated by the realistic scenario of massive availability
of past interaction data in domains such as recommender systems that allows learning the reward models
during an offline phase, we make the assumption of knowing the observation tensor O while our objective is
to learn the transition matrix P that governs the Chain.

3.3 Reference Matrix Definition

We will introduce here some elements whose utility will be clarified in Section 4.
Let’s consider the set CS := {(si, sj)|si, sj ∈ S} with |CS| = S2 of all the ordered combinations of pairs of
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states. These combinations identify all the possible state transitions that can be seen from a generic time
step t to the successive one t+1. Analogously, we can define the sets CI := {(ai, aj)|ai, aj ∈ I} with |CI| = I2

and CV := {(ri, rj)|ri, rj ∈ V} with |CV| = V 2 which are respectively the ordered combinations of pairs of
all consecutive arms and of consecutive rewards that can be seen in two contiguous time intervals. From the
knowledge of the observation tensor O and for each (si, sj) ∈ CS, (ai, aj) ∈ CI, (ri, rj) ∈ CV, we are able to
compute the following probabilities:

P (Rt = ri, Rt+1 = rj |St = si, St+1 = sj , It = ai, It+1 = aj) = Osi,ai,ri
Osj ,aj ,rj

. (2)

Equation 2 basically allows us to define the probability associated to each possible couple of rewards, actions
and states that can occur in consecutive time steps. Hence, by fixing a specific combination of arms (ah, ak)
from CI and by leveraging Equation 2, we can build matrix Hah,ak ∈ RV 2×S2 where the elements along the
rows are associated to combinations in CV and the elements along the columns are associated to combinations
in CS. The element Hah,ak

d,e contains the value computed in Equation 2 associated to the d-th combination
of rewards in CV and the e-th combination of states in CS assuming to have pulled actions (ah, ak). Having
established this procedure to build matrix Hah,ak for the couple of actions (ah, ak), we can now build similar
matrices associated with each of the other combinations of arms. By stacking all these matrices together,
we get the matrix A ∈ RI2V 2×S2 .
This matrix is a reformulation of the observation tensor O that expresses the relation between pairs of
different elements. The definition of matrix A will be relevant for the proposed estimation method. In the
following, we will refer to the matrix A also with the name reference matrix.

3.4 Belief Update

As previously said, at each time step t, we only observe the reward realization, but we are unaware of the
Bandit instance from which the arm has been pulled. However, it is possible to define a belief representation
over the current state by using the information derived from the observation tensor O and the transition
matrix P defining the Chain.
We need to introduce a belief vector bt ∈ ∆S−1 representing the probability distribution over the current
state at time t. The belief update formulation will follow the typical correction and update step, where
the correction step adjusts the current belief bt using the reward rt obtained by pulling arm at and the
prediction step computes the new belief bt+1 simulating a transition step. The overall update is as follows:

bs,t+1 =
∑

s′ bs′,tQ(Rt = rt|St = s′, It = at)P (s|s′)∑
s′′ Q(Rt = rt|St = s′′, It = at)bs′′,t

. (3)

The choice of the arm to pull is driven, at each step t, by

It = arg max
a∈I

∑
s∈S

∑
r∈V

rQ(r|s, a)bs,t. (4)

In this case, the goal is to pull the arm that provides the highest instantaneous expected reward, given the
belief representation bt of the states.

3.5 Assumptions

We need now to introduce some assumptions that should hold in our setting:
Assumption 3.1. The smallest element of the transition matrix ϵ := mini,j∈S Pi,j > 0.

Assumption 3.2. The reference matrix A ∈ RI2V 2×S2 is full column rank.

Basically, the first assumption gives a non-null probability of transitioning from any state to any other. It
is needed for two main reasons. The former is that this assumption implies the regularity of the Chain and,
consequently, the presence of a unique stationary distribution, as shown in Proposition 3.1, the latter is
mainly a theoretical reason as in our regret analysis we use a result from De Castro et al. (2017) that builds
on this condition.
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The second assumption, instead, guarantees that the joint distribution of pairs of rewards and pairs of actions
given a specific state transition is not the result of a linear combination of the distributions over other state
transitions. In the following, we will show that this is a sufficient condition to recover the matrix P since
it makes all state transitions distinguishable from the joint pairs of rewards and actions, and it also implies
that I2V 2 ≥ S2.

4 Proposed Approach

4.1 Markov Chain Estimation

As previously stated, the objective is to learn the transition matrix P using the observations we get from the
different pulled arms assuming to know the tensor O ∈ RS×I×V . First of all, we start with a consideration
about the transition matrix that defines the chain. Building on Assumption 3.1 and following Proposition 3.1,
we can say that exists a unique stationary distribution. This distribution can be easily found by solving the
equation below:

πP = π.

From the stationary distribution π, we can define the diagonal matrix Π = diag(π) having the values of the
stationary distribution along its diagonal, and we can define the matrix W = ΠP satisfying

∑
i,j∈S Wi,j = 1.

We can see matrix W as the transition matrix P where the transition probabilities from each state (reported
along the rows of the transition matrix) are scaled by the probability of the state, given by the stationary
distribution. Having defined the matrix W , we can interpret the element Wi,j as the probability of seeing
the transition from state si to state sj when the two consecutive pairs of states are sampled from the mixed
Chain. We will also refer to W as the stationary transition distribution matrix. Our objective will be to
build an estimate Ŵ of the W matrix from which we will derive P̂ .
Let’s now define an exploration policy θ that selects pairs of arms to be played in successive
rounds. We use this policy for T0 episodes on MABs that switch according to the underlying Markov
Chain, and we obtain a sequence D = {(a1, r1), (a2, r2), . . . , (aT0 , rT0)}. This sequence can also be
represented by combining non-overlapping pairs of consecutive elements, thus obtaining Pairs(D) =
{(a1, a2, r1, r2), . . . , (aT0−1, aT0 , rT0−1, rT0)}.
We introduce now the vector nT0 ∈ NI2V 2 that counts the number of occurrences of elements in Pairs(D).
More formally, for each cell of the vector nT0 , we have:

nT0(ai, aj , ri, rj) =
T0/2∑
t=0

1{I2t = ai, I2t+1 = aj , R2t = ri, R2t+1 = rj}.

Given the previous considerations, we are now ready to state a core result that links the stationary transition
distribution matrix W and the count vector nT0 as follows:

E[nT0(ai, aj , ri, rj)] =
∑
si,sj

Wsi,sj

T0/2∑
t=0

θ(I2t = ai, I2t+1 = aj)P ((R2t = ri, R2t+1 = rj)|(ai, aj), (si, sj)). (5)

This equation basically states that a specific couple of rewards will be observed after having pulled a specific
couple of arms a number of times which depends on the conditional probabilities of rewards given the couple
of arms and each couple of states, weighted by the probability Wsi,sj

that each state transition occurs. We
can write the previous formulation in matrix form as follows:

E[nT0 ] = T0

2 DAw, (6)

where the matrix A is the reference matrix already defined in Section 3.3, vector w = Vec(W ) is the
vectorization of the matrix W , while D ∈ RI2V 2 is a diagonal matrix containing the probabilities (determined
by policy θ) associated to each combination of arms, each appearing with multiplicity V 2.
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Having defined Equation 6, we are able to compute an estimate of the vector ŵ based on the obtained vector
count nT0 :

ŵ = A†D̂−1
T0

nT0 , (7)

where A† is the Moore–Penrose inverse of reference matrix A and matrix D̂T0 is the diagonal matrix that
counts with multiplicity V 2 the number of occurrences of each combination of arms (we assume that each
combination of arms has been pulled at least once, so D̂T0 is invertible).
In the limit of infinite samples, Equation 7 has a fixed exact solution that is ŵ = w. After the computation
of ŵ, we obtain an estimate of P̂ . The derivation implies two main steps: the first is to write back the vector
ŵ in matrix form, reversing the vectorization operation and obtaining matrix Ŵ ; the second step consists
in normalizing each obtained row so that the values on each row sum to 1, thus deriving P̂ .

4.2 SL-EC Algorithm

Having established an estimation procedure for the transition matrix P̂ , we will now provide an algorithm
that makes use of this approach in a regret minimization framework.
We consider a finite horizon T for our problem. We propose an algorithm called Switching Latent Explore
then Commit (SL-EC) that proceeds using an EC approach where the exploration phase is devoted to
finding the best estimation of the transition matrix P̂ , while during the exploitation phase, we maximize the
instantaneous expected reward using the information contained in the belief state b with the formulation
provided in Equation 4. The Exploration phase lasts for T0 episodes, where T0 is optimized w.r.t. the total
horizon T , as will be seen in Equation 10.
The presented approach is explained in the pseudocode of Algorithm 1.
Basically, a set of all the ordered combinations of pairs of arms is generated at the beginning of the exploration
phase, and the pairs of arms are sequentially pulled in a round-robin fashion until the exploration phase
is over. The choice of a round-robin approach allows the highlighting of some interesting properties in the
theoretical analysis, as will be shown later in Section 5. When the exploration phase is over, an estimation of
the transition matrix P̂ is computed using the procedure described in Section 4.1. After that, a belief vector
b is initialized, assigning a uniform probability to all the states, and it is updated using the estimated P̂ ,
considering the history of samples collected during the exploration phase up to T0. Finally, the exploitation
phase starts, as described in the pseudocode of the algorithm.

4.3 Arm Selection Policy

In Algorithm 1, we propose a simple approach for choosing the arms to pull. Each ordered combination of
pairs of arms is indeed pulled the same number of times during the exploration phase by using a deterministic
approach. However, the estimation framework proposed in Section 4.1 allows for a more flexible arm selection
policy. We may randomize the arm choice by assigning non-uniform probabilities to each combination. This
aspect allows exploiting the knowledge of the known reward distribution of each arm, for example, giving
a higher probability to the combinations of arms that are more rewarding (assuming an initial uniform
distribution over state transitions). This arm selection policy may be particularly efficient if we plug this
estimation framework into an iterative two-phase exploration and exploitation algorithm, as that used in Zhou
et al. (2021). Notably, we could use the estimates of the transition matrix P̂k at the end of the k-th exploration
phase to properly modify the exploration policy in phase k +1 by giving higher probabilities to combinations
of arms that are expected to be more rewarding. Indeed, our approach is able to reuse all samples collected
during previous exploration phases despite being drawn using different exploration policies.

Offline arm selection In problems with a large number of available arms, a round-robin approach among
all possible combinations of pairs may be detrimental as it considers all arms equivalently. There may be
cases where some actions carry less information. The extreme case is an action that induces the same obser-
vation distribution for all the switching MABs. Indeed, pulling that action will not provide any additional
information on the current MAB and the effect will only be to slow down the estimation procedure. In
general, actions that induce similar observation distributions for all the MABs will provide less information
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Algorithm 1: SL-EC Algorithm
Input: Reference Matrix A, Exploration horizon T0, Total horizon T

1 Initialize vector of counts n ∈ NI2V 2 with zeroes
2 t← 0
3 D← {}
4 while t ≤ T0 do
5 foreach (ai, aj) ∈ I2 do
6 Pull arm It = ai

7 Observe reward rt

8 Pull arm It+1 = aj

9 Observe reward rt+1
10 Update n with (It, It+1, rt, rt+1)
11 D.add((It, rt), (It+1, , rt+1))
12 t← t + 2

13 ŵ ← Use Equation 7
14 P̂ ← Compute Transition Matrix(ŵ)
15 t← 0
16 b0 ← Uniform()
17 while t ≤ T do
18 if t ≤ T0 then
19 It = D.getAction(t)
20 else
21 It = arg maxa∈I

∑
s∈S
∑

r∈V rQ(r|s, a)bs,t

22 Observe reward rt

23 bt+1 ← UpdateBelief(bt, It, rt)
24 t← t + 1

with respect to actions that induce highly different distributions for all the MABs.
A more convenient approach, in this case, would be to select a subset of different arms, thus leading to a
limited number of combinations of pairs of arms to use during the exploration phase. Clearly, in the general
case, the removal of some arms may lead to a loss of the total information available. Intuitively, the arm
selection procedure tends to promote diversity among arms given the latent states, in order to increase the
identifiability capabilities deriving from the actions. It turns out that we are able to get an understanding of
the information loss we suffer by selecting specific arms, given the knowledge of the reference matrix A, that
we are indeed able to compute beforehand. In particular, in Section 5 devoted to the theoretical analysis, we
will see that the expression 1

σmin(A) , with σmin(A) representing the minimum singular value of the reference
matrix A, is an index of the complexity of the estimation procedure and we can use this value to drive the
choice of the best subset of arms to use. In particular, by fixing a number J < I of arms to use among
those available, the choice over the best subset of size J can be done as follows. For each possible subset
of arms of size J , we can derive a new reference matrix G from A, by extracting from the reference matrix
the rows associated with combinations of arms that appear in the new subset of arms. Intuitively, for each
generated subset, this procedure corresponds to redefining new simplified MAB instances having as actions
only those appearing in the subset. From these new reduced MABs, the standard procedure described in
Section 3.3 is used to construct the new reference matrices of type G. Having defined reference matrices for
each generated subset, their minimum singular values are compared and a good candidate subset of arms is
the one yielding the reference matrix G with the highest σmin(G).
Understandably, this approach implies that the new reference matrix G derived from the subset of selected
arms should be full-column rank, thus satisfying Assumption 3.2. It follows that the necessary condition
J2V 2 ≥ S2 should be verified.
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5 Theoretical Analysis

We will now provide theoretical guarantees on the matrix estimation procedure presented in Section 4.1 and
we will prove a regret bound for the SL-EC Algorithm.
We start with a concentration bound on the transition matrix P̂ estimated using samples coming from a
round-robin collection policy.
Lemma 5.1. Suppose Assumptions 3.1 and 3.2 hold. By fixing an exploration parameter T0 and by pulling
each combination of pairs of arms in a round-robin fashion, with probability 1− δ the estimation error of the
transition matrix P will be:

∥P − P̂ ∥F ≤
2I2V

σmin(A)πmin

√
2S log 2I2V 2

δ

(1− λ2I2)T0
, (8)

where ∥·∥F represents the Frobenius norm (Golub & Van Loan, 1996), σmin represents the minimum singular
value of the reference matrix A, πmin is the minimum component in the probability vector representing the
stationary distribution of the Chain, and λ represents the second highest eigenvalue of matrix P . We will
provide here a sketch of the proof of the presented Lemma. A more detailed version of this proof is reported
in Appendix B.

Sketch of the proof The proof of Lemma 5.1 builds on two principal results. The former comprises a
relation that links the estimation error of the matrix P with the estimation error of the stationary transition
distribution matrix W , while the latter is a concentration bound on the estimated Ŵ from the true one W .
Concerning the first result, we can say that:

∥P − P̂ ∥F ≤
2
√

S∥W − Ŵ ∥F

πmin
.

This result follows from a sequence of algebraic manipulations, also involving a derivation from (Ramponi
et al., 2020).
We now need to define a bound on ∥W − Ŵ ∥F . In order to bound this quantity, we apply the vectorization
operator V ec(·) to the two matrices obtaining respectively w and ŵ and use the fact that ∥W − Ŵ ∥F =
∥w − ŵ∥2. We proceed as follows:

∥w − ŵT0∥2 =
∥∥∥∥ 2

T0
A†D−1(E[nT0 ]− nT0)

∥∥∥∥
2

=
∥∥A†(z− ẑ)

∥∥
2

≤∥A†∥2∥z− ẑ∥2 = 1
σmin(A)∥z− ẑ∥2,

where in the second equality we replaced the term (2/T0)D−1E[nT0 ] with the vector z ∈ RI2V 2 and similarly
for ẑ using in the expression the observed vector count nT0 instead of it expectation E[nT0 ]. In the inequality
instead, we used the consistency property for the spectral norm of matrix A†.
Finally, we bound the remaining part as follows:

∥z− ẑ∥2 =

√√√√I2V 2∑
i=1
|zi − ẑi|2 ≤

√√√√I2V 2∑
i=1

(1 + λ2I2) log 2I2V 2

δ

2(1− λ2I2) T0
2I2

≤

√√√√I2V 2(1 + λ2I2) log 2I2V 2

δ

2(1− λ2I2) T0
2I2

≤ I2V

σmin(A)

√
2 log 2I2V 2

δ

(1− λ2I2)T0
,

where, on the first inequality, we used Hoeffding’s inequality with probability 1− δ
I2V 2 for each component

of the vector ẑ and a union bound in the second inequality. In our case, in which samples are generated
from a Markov Process, we employed a variant of Hoeffding’s inequality that accounts for non-independent
samples. We utilized the formulation presented in Fan et al. (2021) which incorporates an additional term
1+λ
1−λ in the bound. More details on this can be found in Proposition C.2 in Appendix C. It is important to
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note that this proposition holds when the starting distribution of the chain corresponds to the stationary
distribution µ0 = π, an assumption we can make in our problem. However, if this is not the case, we would
suffer a further logarithmic term in the regret (See Theorem 12 in Fan et al. (2021)).
We were able to improve this result by introducing an exponential term 2I2 to the second highest eigenvalue
λ. This is possible thanks to the adoption of a round-robin procedure for the choice of combinations of arms.
Notably, each combination is pulled every 2I2 steps of the Markov Process, resulting in a faster mixing of
the chain. A more formal result of this aspect can be found in Corollary C.1 in Appendix C.

Having established the results on the estimation matrix P , we can now provide regret guarantees for Al-
gorithm 1. The oracle we use is aware of both the observation tensor O and the transition matrix P but
does not observe the hidden state. As well as our algorithm, it builds a belief over the states, using the
formulation defined in Equation 3 and selects the arm maximizing the expected instantaneous reward. The
derived regret upper bound is provided in the following:
Theorem 5.1. Suppose Assumptions 3.1 and 3.2 hold. By considering a finite horizon T , there exists a
constant T0, with T > T0, such that with probability 1− δ, the regret of the SL-EC Algorithm satisfies:

R(T ) ≤ 2

 LI2V

πminσmin(A)

√
2S log 2I2V 2

δ

1− λ2I2 · T

2/3

, (9)

where L is a constant that depends on the ϵ value appearing in Assumption 3.1 (More details in Appendix C).
The presented regret has an order of O(T 2/3) w.r.t the horizon T , as common when using an Explore-Then-
Commit algorithm. A detailed proof of this theorem can be found in Appendix B. The presented bound on
the regret can be achieved by appropriately choosing the exploration horizon T0. More specifically, we set it
as follows:

T0 =

 LTI2V

σmin(A)πmin

√
2S log 2I2V 2

δ

(1− λ2I2)

2/3

. (10)

5.1 Dependency on the Problem Parameters

By analyzing the results on the bound of the regret, we can observe that it scales with I2V . This may
seem concerning especially when dealing with problems involving a high number of arms or an extremely
large number of observations. In particular, this configuration does not allow handling cases with continuous
reward models as the number of observations would be infinite, hence impeding the construction of the
reference matrix. Fortunately, we can address both aspects, the one related with the dependency on the
number of arms and the other on the dependency on the number of observations.

5.1.1 Continuous Reward Distributions and Dependency on the Number of Observations

Concerning the number of observations, it appears that handling continuous reward distributions within this
framework is not feasible and this is true if we apply our framework as is. However, nothing prevents us from
discretizing the distribution and considering the discretized distribution as a categorical one. The process of
discretization involves dividing the distributions into a predetermined number U of distinct segments. Each
segment is assigned a probability value that represents the likelihood of a particular sample originating from
the continuous distribution and belonging to that segment. Consequently, the count vector is constructed
with dimensions I2U2, and at each iteration, the associated value of the segment to which the sample belongs
is incremented.
The discretization of a continuous distribution paves the way for important considerations because the
number of different segments U determines the size of the reference matrix A. In principle, we can choose
U such that U2 ≥ S2 and this allows us to estimate the transition matrix by using a unique combination
of arms (as long as Assumption 3.2 is satisfied). Notably, in the case of continuous distributions and by
properly choosing the number of segments, we may need fewer arms to carry on the estimation procedure.
It is an interesting problem to determine in this setting the number of suitable splits and the location of the
split points that lead to a faster estimation of the transition matrix.

10



Under review as submission to TMLR

Another issue arises when the environment comprises numerous but finite observations. In such scenarios,
we can employ the inverse approach by clustering some observations, thereby reducing the problem’s scale.
By selecting a number of clusters C < V , we can divide the observations into distinct groups. This allows
us to utilize cluster-level probabilities (obtained by summing probabilities of the single observations) to
construct a new reference matrix and consider counts at the cluster-level for the count vector n. Of course,
this approach may lead to a loss of information due to the clustering procedure but it may be beneficial in
scenarios with limited availability of memory resources.

5.1.2 Dependency on the Number of Arms

From the point of view of the number of arms, we already observed in Section 4.3 that when the number of
arms is large, it is possible to select a subset of arms that allows solving the problem. In particular, the best
subset J we can select is the one minimizing the term J2

σmin(GJ) , with J being the size of J and GJ being the
matrix obtained from the choice of the arms in J. It is indeed likely that when I ≫ S, some arms contain
redundant information and can be easily discarded for the estimation procedure.

6 Numerical Simulations

In this section, we provide numerical simulations on synthetic and semi-synthetic data based on the Movie-
Lens 1M (Harper & Konstan, 2015) dataset, demonstrating the effectiveness of the proposed Markov Chain
estimation procedure. Specifically, we show the efficiency of the offline arm selection procedure described in
Section 4.3 and conduct a comparison between our SL-EC Algorithm and several baselines in non-stationary
settings. In Appendix A, we provide additional experiments that highlight the performance difference be-
tween our approach and a modified technique based on Spectral Decomposition methods.

6.1 Estimation Error of Transition Matrix

The first set of experiments is devoted to showing the error incurred by the estimation procedure of the
transition matrix in relation to the number of samples considered and the set of actions used for estimation.
The left side of Figure 1 illustrates the estimation error of the transition matrix given different instances of
Switching Bandits with an increasing number of states. In particular, we fix the number of total actions
I = 10 and number of observations V = 10 and consider three instances with S = 5, S = 10 and S = 15
number of states. As it is expected, we can see that as the number of states increases the problem becomes
more complex, and more samples are needed in order to improve the estimation. Figure 1 reports the ∥·∥1 of
the error between the true and the estimated transition matrix, scaled by the number of states. We can see
that the estimation procedure is particularly efficient leading to low error values even with a limited number
of samples, as can be seen from the steep error drop experienced in the first part of the plot.
The right plot in Figure 1, instead, shows the estimation error obtained by using a different subset of
arms. As mentioned in previous sections, it is not always beneficial to use all the available actions during
the estimation procedure, but selecting a subset of actions may be preferable. Furthermore, we show that
by selecting specific subsets of arms we can improve the estimation w.r.t using other subsets. For this
experiment, we consider J = 3 arms among the I = 8 available for a Switching MAB instance with S = 5
states. We then identify the optimal subset of arms of size J and initiate the estimation process using the
selected subset. In order to find the best one, we generate all matrices of type G, as described in Section 4.3
and choose the matrix with lowest 1

σmin(G) . The subset of arms generating that matrix will be used for
estimation. The estimation error of the best subset of arms is represented in the plot with the red line, while
we represent in green the estimation error of the subset having the lowest σmin(G). The figure clearly exhibits
the performance difference between the two choices, thereby validating our claims. Additional details about
the characteristics of the matrices used in the experiments are provided in Appendix A.
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Figure 1: (a) Difference between the estimated and real transition matrix with an increasing number of
samples. Metric used is ∥·∥1 divided by the number of states (10 runs, 95% c.i.), (b) Difference between real
and estimated transition matrix using two different subsets of arms of size J = 3 arms from the 8 available
on a problem with 5 states. Metric used is ∥·∥1 divided by the number of states (10 runs, 95% c.i.).

6.2 Algorithms Comparisons

In this second set of experiments, we compare the regret suffered by our SL-EC approach with other algo-
rithms specifically designed for non-stationary environments. Following the recent work of Zhou et al. (2021),
we consider the subsequent baseline algorithms: the simple ϵ-greedy heuristics, a sliding-window algorithm
such as SW-UCB (Garivier & Moulines, 2011) that is generally able to deal with non-stationary settings
and the Exp3.S (Auer et al., 2002) algorithm. The parameters for all the baseline algorithms have been
properly tuned according to the different considered settings. It is worth noting that, unlike our Algorithm,
the baseline algorithms do not have knowledge of the observation tensor or the underlying Markov Chain.
In contrast, our approach utilizes the observation tensor to estimate the transition matrix and to update
the belief over the current state. Additionally, we compare our approach with a particle filter algorithm
proposed in Hong et al. (2020b) about non-stationary Latent Bandits. They consider two settings: one with
complete knowledge of both the observation and transition models and another that incorporates priors on
the parameters of the models to account for uncertainty. We compare against a mixture of these two settings
by providing their algorithm with full information about the observation model (as it is for our case) and
an informative prior about the true transition model. The comparison is made in terms of the empirical
cumulative regret R̂(t), which is the empirical counterpart of the expected cumulative regret R(t) averaged
over multiple independent runs.

6.2.1 Synthetic Experiments

These experiments have been conducted on various problem configurations with different numbers of states
S, actions I, and observations V . The regret results for one configuration are shown in Figure 2(a). From
the figure, it is clear that most of the baseline algorithms display a linear time dependence for the regret.
This is expected since these algorithms do not take into account the underlying Markov Chain that governs
the process. The particle filter algorithm, despite being given a good initial prior on the transition model,
is unable to achieve the performance of SL-EC in the long run. Conversely, we can notice a quite different
behavior for our algorithm that, in line with an Explore-Then-Commit approach, initially accumulates a
large regret and then experiences a drastic slope change when the exploitation phase begins. The regret
shown in each plot is the average over all the runs. For further information regarding the generation of the
transition model and observation tensor, as well as the hyperparameters used for the baseline algorithms,
please refer to Appendix A.
As a remark, our algorithm outperforms the others when the spectral gap β of the chain is not close to
zero. Indeed, if this is not the case, simple exploration heuristics such as ϵ-greedy would lead to comparable
performance. A clear example is when the transition matrix P defining the chain assigns equal probability
to all transitions. In this scenario, all states can be considered independent and identically distributed, and
we get no advantage from the knowledge of the matrix P over the use of an algorithm such as ϵ-greedy.
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Figure 2: Plots of regret comparing the SL-EC Algorithm with some non-stationary bandit algorithms using:
(a) synthetic data with parameters S = 3 states, I = 4 actions and V = 5 observations (5 runs, 95% c.i.);
(b) data from MovieLens assuming S = 5 states, I = 18 actions and V = 5 observations. (5 runs, 95% c.i.).

6.2.2 MovieLens Experiments

We also perform some experiments on semi-synthetic data based on MovieLens 1M (Harper & Konstan,
2015), a well-known collaborative filtering dataset where users rate different movies each belonging to a
specific set of genres. We adopt a procedure similar to the one used in Hong et al. (2020b). The dataset is
initially filtered to include only users who rated at least 100 movies and the movies that have been rated by
at least 100 users. After that, we combine the available information in order to obtain a table where each
row contains the mean of the ratings for each observed genre for each user (user-genre-rating table). If the
user didn’t observe any movie belonging to a specific genre, the cell is empty. From the obtained matrix, we
select 70% of all ratings as a training dataset and use the remaining 30% as a test set. The sparse matrices
so obtained are completed using least-squares matrix completion (Mnih & Salakhutdinov, 2007) using rank
10 and leading to a low prediction error.
Having defined the appropriate rank, we use the predictions on the empty cells of the original user-genre
rating matrix to fill the entire table. We define a switching bandit instance by using the notion of a superuser
inspired by Hong et al. (2020b). We use k-means to cluster users using the rows of the user-genre-rating
matrix. The users belonging to the same cluster define a superuser that embeds a set of users with similar
tastes. The information about the users belonging to the same clusters is then combined and used to generate
categorical distributions on the rating, given each superuser and each possible genre (our actions). We choose
k = 5 for the number of superusers as it is the one that yields clusters with more similar dimensions and we
use I = 18 for the actions since it represents the number of identified genres. The number of observations
V = 5 corresponds to the 5 possible ratings that a movie can get. The transition matrix that governs the
dynamics with which superusers alternate is defined by giving higher probabilities to transitions to similar
states and also giving higher weights to self-loops in order to avoid too frequent changes. The interaction
goes as follows. At each step, a new superuser st is sampled based on st−1 and the transition matrix. The
agent chooses an action at corresponding to a genre to propose and gets a rating that is sampled from the
categorical distribution with parameters Ost,at,:.
As for the synthetic case, our algorithm is compared to other baselines. From Figure 2(b), we can see that
our SL-EC still outperforms the other baselines in the considered horizon. However, we highlight that our
goal is not on beating the baselines since the comparison is not fair as most of them do not take into account
the underlying Markov process, but we aim to show the difference w.r.t. other algorithms belonging to state
of the art. More details about the experiments on Movielens can be found in Appendix A.

7 Discussion and Conclusions

This paper studies a Latent Bandit problem with latent states changing in time according to an underlying
unknown Markov Process. Each state is represented by a different Bandit instance that is unobserved by
the agent. As common in the latent Bandit literature, we assumed to know the observation tensor relating
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each MAB to the reward distribution of its actions, and by using some mild assumptions, we presented a
novel estimation technique using the information derived from consecutive pulls of pairs of arms. As far
as we know, we are the first to present an estimation procedure of this type aiming at directly estimating
the probabilities of the state transitions encoded in the matrix W . We have shown that our approach
is flexible as it allows choosing combinations of pairs of arms with non-uniform probability and easy as
it does not require specific hyperparameters to be set. We also provided some offline techniques for the
selection of the best subsets of arms to speed up the estimation process. We analyzed the dependence of
the parameters on the complexity of the problem and we showed how our approach can be extended to
handle models with continuous observation distributions. We used the presented estimation approach in
our SL-EC algorithm that uses an Explore-Then-Commit approach and for which we proved a O(T 2/3)
regret bound. The experimental evaluation confirmed our theoretical findings showing advantages over some
baseline algorithms designed for non-stationary MABs and showing good estimation performances even in
scenarios with larger problems.
We identified different future research directions for the presented work such as designing new algorithms that
are able to exploit the flexibility in the exploration policy determined by the defined procedure, allegedly in
an optimistic way. It may also be interesting to deepen the understanding of this problem when dealing with
continuous reward models, trying to design optimal ways to discretize them in order to reach faster estimation
performances. We could also consider the extension to the continuous state space setting (e.g., linearMDPs).
Among the main challenges in this scenario, we consider the adoption of a different representation for the
reference matrix that would otherwise not be computable with infinite states and the redefinition of the
stationary transition distribution matrix. In such a case, it might be beneficial to directly estimate the
feature functions by means of which the linear MDP is defined. Finally, it might be worth considering a
contextual version of the proposed setting. According to the assumptions made, for example, whether the
context is discrete or continuous or whether it is related or not to the latent state, this aspect may bring
another dimension to the observation space. Redefining the reference matrix by also taking this feature into
account will likely lead to more informative components and help the estimation procedure.
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