
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RAPFI: DISTILLING EFFICIENT NEURAL NETWORK
FOR THE GAME OF GOMOKU

Anonymous authors
Paper under double-blind review

ABSTRACT

Games have played a pivotal role in advancing artificial intelligence, with AI
agents using sophisticated techniques to compete. Despite the success of neu-
ral network based game AIs, their performance often requires significant com-
putational resources. In this paper, we present Rapfi, an efficient Gomoku agent
that outperforms CNN-based agents in limited computation environments. Rapfi
leverages a compact neural network with a pattern-based codebook distilled from
CNNs, and an incremental update scheme that minimizes computation when input
changes are minor. This new network uses computation that is orders of magnitude
less to reach a similar accuracy of much larger neural networks such as Resnet.
Thanks to our incremental update scheme, depth-first search methods such as the
α-β search can be significantly accelerated. With a carefully tuned evaluation and
search, Rapfi reached strength surpassing Katagomo, the strongest open-source
Gomoku AI based on AlphaZero’s algorithm, under limited computational re-
sources where accelerators like GPUs are absent. Rapfi ranked first among 520
Gomoku agents on Botzone and won the championship in GomoCup 2024.

1 INTRODUCTION

Artificial intelligence in board games like Go, Chess, and Shogi has progressed rapidly with the
advent of deep neural networks. Notable examples include AlphaGo (Silver et al., 2016), AlphaGo
Zero (Silver et al., 2017b), Katago (Wu, 2019), and other efforts in Chess (Schrittwieser et al., 2020)
and Shogi (Silver et al., 2017a; Schrittwieser et al., 2020; Nasu, 2018). These methods rely heavily
on deep neural networks, requiring powerful accelerators like high-end GPUs. Our objective is to
create a specialized network that maintains similar prediction accuracy but runs significantly faster,
aiming to outperform current state-of-the-art solutions under constrained computation.

Gomoku, a straightforward yet complex perfect information board game, that serves as an excel-
lent benchmark for evaluating agent performance. Although Gomoku with free openings has been
solved (Allis et al., 1994), achieving optimal play with arbitrary balanced openings remains chal-
lenging. Current methods often fail to exceed top human players or are computationally intensive.
Therefore, we choose Gomoku as our testbed, as it demands precise position evaluation and deep
tactical search, making the balance between evaluation and search critical.

Deep models like convolutional neural networks (CNNs) are highly effective at predicting values and
policies from 2D inputs, playing a crucial role in reinforcement learning. evaluating them can be
computationally intensive. Our key observation is that, in board games with black and white stones,
much of this computation is spent extracting features from local patterns. While CNNs excel at this,
the process is often redundant, as features of the same patterns remain fixed, and most of the board
doesn’t change during gameplay. By decomposing the board into local patterns and pre-computing
their features, we can greatly reduce computational demands.

To address this, we introduce a lightweight neural network named Mixnet, which requires far less
computation than CNNs while maintaining comparable accuracy. Our method uses a pattern-based
codebook derived from a larger network and includes an incremental update scheme that reduces
computation further, especially with depth-first game tree traversal like Alpha-Beta search. We also
introduce several improvements in the feed-forward process to enhance the accuracy of value and
policy prediction. In summary, our contributions include:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• We decompose a binary board plane into local line-shaped patterns and train a mapping
network to convert these patterns into features. This network is then baked into a pattern-
indexed codebook for instant lookup, reducing computation by orders of magnitude while
maintaining fair evaluation accuracy.

• We introduce an incremental update scheme that minimizes computation when only a few
stones on the board change. This mechanism significantly speeds up processing, especially
when combined with depth-first search algorithms.

• We integrate several enhancements to optimize the feed-forward computation of value and
policy heads, including dynamic policy convolution, value grouping, and star blocks, to
improve evaluation accuracy without adding significant computational complexity.

2 RELATED WORK

2.1 EFFICIENT NEURAL NETWORKS

With the rapid advancement of computer vision, the landscape of neural network design has seen
a surge in innovative architectures aimed at minimizing computational demands while maximiz-
ing performance. Notable designs include Mixtures of Experts (MoE) (Jacobs et al., 1991), Mo-
bileNets (Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019), SENet (Hu et al., 2018),
SKNets (Li et al., 2019) and CondConv (Yang et al., 2019). These models are designed to improve
both inference speed and prediction accuracy. Unlike the approaches mentioned above, our method
takes a novel direction by precomputing a pattern-based feature lookup table and takes advantage of
the incremental nature of the gameplay structure. We also incorporate structural improvements in the
feedforward components of the network, including depth-wise and point-wise convolutions (Zhang
et al., 2020), dynamic convolution (Chen et al., 2020), grouped average pooling, and the star opera-
tion (Ma et al., 2024).

2.2 SEARCH ALGORITHMS FOR GAME TREES

The most notable game tree search algorithms are Monte Carlo Tree Search (MCTS) (Coulom,
2006) and α-β search (Knuth & Moore, 1975). MCTS is commonly used by Go agents and has
many variants that enhance its performance, such as UCT (Gelly & Wang, 2006), RAVE (Rimmel
et al., 2010), and EMCTS (Cazenave, 2007). Additionally, parallel versions of MCTS (Chaslot
et al., 2008; Cazenave, 2022) have improved search speed and efficiency on multi-core hardware.
On the other hand, α-β search has a long history with many enhancements, including futility prun-
ing (Heinz, 1998; Hoki & Muramatsu, 2012), razoring (Birmingham & Kent, 1988), null move prun-
ing (Donninger, 1993; Hoki & Muramatsu, 2012), late move reduction (Hoki & Muramatsu, 2012),
and history reduction (Schaeffer, 1983). For Gomoku, algorithms like proof-number search (Allis
et al., 1994) and threat-space search (Allis et al., 1993) significantly reduce computation for proving
positions and improving search efficiency in specific scenarios. Since the traversal order of the game
tree may affect the inference speed of our proposed network, we evaluate it using both MCTS and
α-β search in our experiments.

2.3 AGENTS FOR THE GAME OF GOMOKU

Gomoku is a two-player game featuring simple rules yet significant strategic depth, making it an
excellent testbed for evaluating evaluation models and search techniques. Played on a 15x15 grid,
players alternate placing black and white stones, with the black player starting first. The goal is to
align five stones in a row—horizontally, vertically, or diagonally. If the board fills without a win-
ner, the game ends in a draw. Research has shown that the first player can always achieve a win,
but reaching optimal play from a balanced position remains a complex challenge, with many meth-
ods still falling short of optimal performance. Notable advancements in Gomoku agents include
threat-space search (Allis et al., 1993), proof-number search (Allis et al., 1993), first-player winning
strategies (Allis et al., 1994), adaptive dynamic programming (Zhao et al., 2012), and genetic algo-
rithms (Wang & Huang, 2014). Additionally, several neural network advancements (Wu, 2019; Xie
et al., 2018; Wang, 2018) have also been inspired by AlphaZero (Schrittwieser et al., 2020).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

In this section, we present the design of our proposed Mixnet. We begin with an overview of the
network architecture, followed by the pattern-based feature codebook and an incremental update
scheme. Lastly, we describe the feed-forward components, including various improvements to the
value and policy prediction heads.

3.1 OVERVIEW OF MIXNET ARCHITECTURE

The Mixnet takes a one-hot encoded binary board plane x ∈ 0, 12×H×W as input and predicts the
policy distribution π̂ ∈ RH×W and the categorical value v̂ ∈ R3 (win, loss, and draw rates). Unlike
a convolutional neural network, it first decomposes the board into directional line patterns, using
these local patterns to construct a feature map. The Mapping network extracts local pattern fea-
tures, which are then combined by a depth-wise 3 × 3 convolution layer. The Mapping network
can be exported to a pattern-indexed codebook losslessly, allowing Mixnet to efficiently retrieve
features during inference with minimal computation. An incremental update scheme further opti-
mizes computation by only recalculating features for updated stones. After building the feature map,
lightweight policy and value heads predict the position’s evaluation in a feed-forward manner. The
pipeline of Mixnet is illustrated in Fig. 1.

Mapping

CodeBook

Export DepthWise
3x3 Conv

Policy
Head

Value
Head

W L D

Incremental Update

Training

Feed ForwardLine PatternsInput
Feature Map

Figure 1: The architecture overview of MixNet. It first decomposes a binary board input into local
line patterns, then uses a mapping network to generate directional feature maps, which are stored
in a pattern-indexed codebook after training. An aggregation and depth-wise 3× 3 convolution are
applied with an incremental update mechanism to produce the final feature map. Finally, a policy
head and value head predict the policy and win rate in a feed-forward manner.

3.2 DECOMPOSING BOARD PLANE AS LOCAL PATTERNS

Consider a H ×W sized board with each cell can be Black, White, or Empty, represented as S =

{0, 1, 2}H×W (with 0 for Empty, 1 for Black, and 2 for White). As the enormous state space would
be too large to store, we break it down into local patterns with manageable state sizes. Since line
connections are crucial in Gomoku, we organize these local patterns into line segments in various
directions, as illustrated on the left side of Fig. 2.

For each point (i, j) in the i-th row and j-th column, we define four local line patterns: the horizontal
pattern L

(0,1)
i,j , the vertical pattern L

(1,0)
i,j , the main diagonal pattern L

(1,1)
i,j , and the anti-diagonal

pattern L
(1,−1)
i,j . Each line segment has a length of 11, enabling it to capture the connection features

of the surrounding five stones. Thus, the localized line pattern at this point can be represented as:

L
(m,n)
i,j = {s(i+m ∗ k, j + n ∗ k)| − 5 ≤ k ≤ 5}. (1)

To construct a feature map F ∈ RC×H×W from the board state S, we define a mapping function M :

L
(m,n)
i,j → f

(m,n)
i,j ∈ RC that transforms a line pattern at point (i, j) into the corresponding feature

with C channels. We use two mapping functions: Mhv for the horizontal and vertical patterns, and
Mdi for the main diagonal and anti diagonal patterns. The final feature at point (i, j), denoted as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(b)

(c)

(a)

(d)

ReLU

Aggregrate

Figure 2: Left: Line patterns in four directions o a 15×15 board. By applying the mapping functions
Mhv and Mdi on these patterns, we obtain four features at this point, which are aggregated by
summing and applying a ReLU activation to produce the final feature. Right: Convolution kernels
for horizontal, vertical, main diagonal, and anti-diagonal patterns.

fi,j ∈ RC , is obtained by aggregating the features from the four directions, and then applying a
ReLU activation to introduce non-linearity:

fi,j = ReLU(Mhv(L
(0,1)
i,j) +Mhv(L

(1,0)
i,j) +Mdi(L

(1,1)
i,j) +Mdi(L

(1,−1)
i,j)). (2)

Finally, we obtain the feature map F by concatenating features at each point:

F =

15⋃
i=1

15⋃
j=1

fi,j (3)

3.3 DISTILLING PATTERN-BASED CODEBOOK

Considering the border, there are N =
∑5

i=0

∑5
j=0 3

i+1+j = 397488 possible line patterns. To
learn features of these patterns, one might use an embedding layer of size N to retrieve features via
a pattern’s index. However, this approach is prone to overfitting and may not sufficiently train all
features, as not every pattern is guaranteed to appear often enough to generate meaningful gradients.
Instead, we utilize a specialized Mapping network with a 3 × 3 kernel that performs convolution
operations along specific directional lines. The kernels, shown in Fig. 2, have non-zero weights only
in the designated direction. Different weights are used for horizontal/vertical and diagonal directions
to capture subtle differences caused by directionality. We refer to this convolution layer as Dir Conv.

The structure of the mapping networks is depicted on the left side of Fig. 3. With a 3× 3 reception
field per layer, we use five Dir Conv layers to ensure the network captures line segment patterns of
length 11. Additionally, we incorporate point-wise 1 × 1 convolution layers alternately to enhance
feature extraction and apply skip connections to facilitate smoother training. The mapping network
operates on an internal feature map with M channels and uses the final point-wise convolution to
produce the output directional feature map with C channels.

Since the mapping network functions as a convolution network with shared parameters, it can be
trained robustly with a limited amount of data. Once training is complete, we pre-compute the
mapping network by enumerating all N patterns as a plane of shape 2 × 1 × (i+ 1 + j) and feed
them into the network. We rearrange all kernel weights of Dir Conv as shown in Fig. 2 (a). By
recording the feature outputs at (1, i + 1), we export the mapping network losslessly as a pattern-
indexed codebook fCB ∈ RN×C , which contains features of all possible patterns.

3.4 INCREMENTAL UPDATE OF FEATURE MAPS

After the mapping phase, we convert the patterns into four directional feature maps, which we
combine into a single feature map F ∈ RC×H×W using the aggregation operation in Eq. 2. To
further enhance the receptive field, we apply a depth-wise 3 × 3 convolution to the first half of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3x
3

D
ir

C
on

v

R
es

 B
lo

ck

O
ut

 B
lo

ck

1x
1

C
on

v

Input 3x3 Dir Conv

1x1 Conv

1x1 Conv

1x1 Conv

Split

ConcatSiLU

SiLU

SiLU

SiLU

Depthwise
3x3 Conv

4x

Directional
Features

Output

Mapping Incremental Update

Aggregate

Figure 3: Left: The mapping network takes a board plane and outputs four directional pattern fea-
ture maps. Right: The incremental updateable parts of Mixnet, which includes aggregation of four
directional features and a depth-wise 3× 3 convolution layer that operators on half of the channels.

channels. The processed feature map F ′ ∈ RC×H×W at point (i, j) of the k-th channel is given as:

F ′(k, i, j) =

3∑
m=1

3∑
n=1

F (k, i+m− 2, j + n− 2) ·W (c,m, n), k ∈ [1, C/2] (4)

where W ∈ R(C/2)×3×3 represents the convolution weights, and F (c, i, j) uses zero padding for
out-of-bounds elements. The last half of the channels retain the original feature map to minimize
computation: F ′(k, i, j) = F (k, i, j), k ∈ [C/2, C].

Since the features arise from localized patterns, we propose an approach called incremental update
of feature maps to further reduce computational cost. Instead of recalculating features for the entire
board after a move, we only update those for affected positions. Changes to one or a few stones
require updating only necessitates updating the affected features from the directional feature maps
by looking up the codebook with the new pattern’s index. For instance, if a single stone changes, at
most 4 × 11 directional features are affected, as illustrated on the left side of Fig. 2, allowing us to
recompute only these features to update F . Similarly, we only update the impacted regions in the
processed feature map F ′. By maintaining an accumulator for F ′ and adding the delta activation
values, we significantly reduce the computation needed to obtain the latest F ′ after the depth-wise
convolution. Experiments in Sec. 5.2 demonstrate that this optimization’s speed advantage is partic-
ularly significant when combined with a depth-first game tree search.

3.5 ENHANCING FEED-FORWARD HEADS

After the incremental update phase, we compute the policy and value heads from the processed
feature map F ′ in a feed-forward manner. To improve the accuracy of Mixnet without a signifi-
cant increase in computation, we propose three enhancements: dynamic policy convolution, value
grouping, and star block.

Dynamic convolution enhances policy prediction accuracy, as illustrated in Fig. 4 (a). The policy
head first applies average pooling on F ′ to compute the global feature mean, followed by two linear
layers with a ReLU activation to generate the weights and bias for dynamic point-wise convolution,
which is applied to the first P channels of F ′. A subsequent point-wise convolution transforms
the 16-channel policy features into the raw policy output π̂ ∈ RH×W . As shown in Sec. 3, this
dynamic convolution enables the policy head to capture global board information and adaptively
adjust predictions by modulating channel contributions, significantly improving accuracy with min-
imal computational cost.

For the value head, shown in Fig. 4 (b), we implement two methods to enhance prediction accuracy:
value grouping and the star block. The value grouping module divides the input feature map F ′ into
3×3 regions, creating local feature chunks denoted as F ′chunk

i,j ∈ RC×H′×W ′
, where i, j ∈ {1, 2, 3}.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Dynamic
Pointwise

Conv

1x1 Conv

AvgPool

Linear

ReLU

Linear

Raw Policy

Feature

Concat

3 layer
MLP

W D L

Group Split

AvgPool

Star
Block

Concat

Linear Linear

Split

Linear

AvgPool AvgPool

Star
Block

Star
Block

Star
Block

Raw Value
Value
Group

Star
Block

Feature

Weight

Bias

ReLU

AvgPoolSplit

AvgPool

ReLU

ReLU

(a) Policy Head (b) Value Head

Figure 4: Structure of the policy head and the value head.

This includes four corner chunks, four edge chunks, and one center chunk. We apply average pooling
to each chunk to obtain the mean feature, and then use the star block to transform each mean feature
into value group features Gi,j ∈ RV . These features are concatenated and averaged to form 2 × 2
groups of intermediate features G′

i,j ∈ RV , where i, j ∈ {1, 2}:

G′
i,j = (Gi,j +Gi,j+1 +Gi+1,j +Gi+1,j+1)/4 (5)

Next, we concatenate the global feature mean with these four group features G′
i,j after applying

another star block, and use a three-layer MLP to produce the final raw value estimation. The star
block, illustrated on the right in Fig. 4 (b), takes the input tensor through two separate linear layers
(one with a ReLU activation) to double the channels, followed by multiplication between them.
A pairwise dot product is then applied to halve the channels, with a final linear layer and ReLU
activation to produce the output. This multiplication pooling acts similarly to the kernel trick(Ma
et al., 2024), enhancing the non-linearity of this relatively shallow network. Overall, the introduction
of value grouping and the star block improves the value head’s prediction accuracy by effectively
integrating local and global features while keeping computational demands minimal.

4 EXPERIMENTAL SETUP

4.1 DATASET

To evaluate our proposed model’s performance, we first train all models in a supervised man-
ner and then conduct strength tests under various configurations. The dataset, generated by
Katagomo (Hang, 2024) through an AlphaZero-like self-play process over several weeks, con-
tains approximately 30.8 million positions. Each position is represented as a 3-tuple (B, Vt, πt).
B ∈ {0, 1}2×H×W is the board input, with channels representing the current player’s and oppo-
nent’s stones.. Vt = (pw, pl, pd) ∈ R3 is the value target, indicating win, loss, and draw probabili-
ties.. πt ∈ RH×W is the normalized policy target.

4.2 TRAINING DETAILS

To assess the tradeoff between accuracy and speed, we assess three sizes of MixNet. The smallest
configuration has M = 64, C = 32 for mapping, and P = 16, V = 32 for policy and value heads,
with each larger model doubling the channel sizes. We present the parameter counts, computational
cost, storage size, and the average inference speed for a specific search algorithm in Tab. 1.

To evaluate strength and efficiency, we use the widely used ResNet architecture (He et al., 2016),
which includes two skip-connected convolution layers with f channels in each of b blocks. A 3× 3
convolution kernel processes the input, followed by a 1×1 kernel, global pooling, and an MLP head
for the final value and policy outputs. Details on the baselines can be found in the appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model k#Params kFLOPs Storage Infer. Speed
CB FF (forward) (in MiB) MCTS α-β

Mixnet small 14160 37 51 28.4 47575 428K
Mixnet Medium 28320 146 131 54.7 36823 257K
Mixnet Large 56640 580 381 111 18401 104K

Resnet 4b64f 0 298 67089 1.13 1064 1758
Resnet 6b96f 0 1001 225396 3.81 297 484
Resnet 10b128f 0 2960 666403 11.2 95 163
Resnet 15b192f 0 9976 2245493 38.0 28 51
Resnet 20b256f 0 23631 5318727 90.0 11 32

Table 1: The number of CodeBook and Feed-Forward parameters, theoretical inference FLOPs,
weight size and average inference speed of different models. Inference speed is measured using
MCTS (playouts per second) and α-β search (nodes per second) respectively.

All models are trained using the Adam optimizer with an initial learning rate of lr = 0.001, β1 =
0.9, β2 = 0.999 and ϵ = 10−8, with a batch size of 128 samples for 600k iterations. For training
MixNet, we use cross-entropy loss and knowledge distillation with a Resnet-6b128f pretrained on
the same dataset as the teacher. Further training details are available in the appendix.

4.3 SEARCH

A key difference between algorithms for general reinforcement learning and perfect-information
board games is that the latter can use ”look-ahead” search to reduce approximation errors from
imperfect evaluations. Improving evaluation and search often conflict due to their computational
demands, creating a tradeoff. Our goal is to find the optimal balance that maximizes performance
within a fixed computation budget. To assess model effectiveness, we need to test them with a
practical search algorithm, considering the variability in evaluation accuracy and inference speed.

We validate the efficiency of our proposed model using two search algorithms. First, we employ the
best-first Monte Carlo Tree Search (MCTS) with the Predictor Upper Confidence Bounds applied to
Tree (PUCT) variant, which combines policy and value for selective search. Given that MixNet ben-
efits from incremental updates suited for depth-first traversal, we also test it with Alpha-Beta search,
implementing the Principal Variation Search (PVS) variant and incorporate various enhancements
that improve performance. Further details on our implementations of these search algorithms are
available in the appendix.

5 RESULTS

We begin by comparing the loss and accuracy of various models during supervised training. Next,
we evaluate the relative strength of these models combined with search algorithms given a fixed
computation budget. Finally, we conduct an ablation study.

5.1 LOSS AND ACCURACY COMPARISON

We present the supervised training loss and relative ELO for all models in Tab. 2, based on a fixed
amount of search. The train and validation losses indicate how effectively each model learns static
evaluation for both value and policy prediction. Relative ELO is determined by running 400 games
with varying search nodes or playouts. From the table, it’s clear that our proposed MixNet excels in
learning value but struggles more with policy learning. In contrast, ResNet shows significant policy
improvements with additional residual blocks. MixNet’s value loss is comparable to ResNet-6b94f,
while its policy loss only approaches that of ResNet-4b64f at its largest configuration. We believe
this is due to the stacked convolution layers offering a larger receptive field, which is crucial for
effective policy prediction.

This is also evident in the performance of raw neural networks; using MCTS with a single play-
out effectively relies solely on the network’s policy prediction. Here, all MixNet configurations

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Supervised Loss Relative ELO Under Fixed Nodes
Train Validation MCTS α-β Search

Value Policy Value Policy 1p 4p 16p 64p 1d 3d 5d 7d
Mixnet Small 0.7925 1.278 0.7836 1.277 0 0 0 0 0 0 0 0
Mixnet Medium 0.7791 1.213 0.7715 1.214 64 64 68 90 50 54 49 82
Mixnet Large 0.7688 1.165 0.7632 1.166 101 121 119 138 77 84 89 102

Resnet 4b64f 0.8004 1.188 0.7928 1.184 106 97 64 37 31 30 25 48
Resnet 6b96f 0.7727 1.035 0.7645 1.031 247 212 208 214 123 154 129 155
Resnet 10b128f 0.7534 0.9246 0.744 0.9215 354 320 336 361 198 251 247 270
Resnet 15b192f 0.7329 0.8376 0.7303 0.8384 475 391 442 505 228 320 338 352
Resnet 20b256f 0.7264 0.7979 0.7181 0.7969 516 451 507 566 283 370 404 415

Table 2: Comparison of different models’ value and policy losses and their relative strength under a
fixed amount of search nodes.

performed worse than ResNets, which have superior policy predictions. However, as more fixed
nodes are introduced, the search increasingly utilizes value prediction to identify the best root move.
Consequently, MixNet’s strength gradually surpasses that of the smallest ResNet-4b64f, while the
performance gap with ResNet 6b96f-narrows.

Thus, in terms of fitting accuracy, MixNet aligns roughly between ResNet 4b64f and ResNet 6b96f.
However, it reaches this level of accuracy with significantly lower inference computation, enabling
much faster evaluations. This speed can be a critical advantage when operating under fixed compu-
tation budgets rather than a fixed number of search nodes.

5.2 STRENGTH COMPARISON WITH SEARCH

Our proposed MixNet prioritizes efficiency with a well-distilled pattern-based codebook and en-
hanced feed-forward head, leading to significantly reduced inference computation compared to a
ResNet baseline. As shown in the last two columns of Tab. 1, MixNet’s inference throughput is
orders of magnitude higher than that of ResNet. Furthermore, when paired with a depth-first α-β
search instead of best-first MCTS, MixNet’s evaluation computation decreases even further, lever-
aging the incremental update mechanism between closely searched positions. Although MixNet
may not surpass larger neural networks in raw value and policy evaluation accuracy, its much faster
inference throughput offers a significant advantage when used with search algorithms.

We evaluate the efficiency of MixNet against baselines using the vanilla Monte Carlo Tree Search
from Sec. 4.3, which relies heavily on the models’ value and policy predictions. We conduct 400
time-controlled games between each pair of models across various time settings to assess their rel-
ative strengths. To ensure accurate and fair measurements, games begin from balanced openings
sampled from a prepared book, with each model playing as the first player once per opening.

2 5 10 20
Move Time (s)

1200

1300

1400

1500

1600

1700

1800

El
o

Mixnet Small
Mixnet Medium
Mixnet Large
Resnet 4b64f
Resnet 6b96f
Resnet 10b128f
Resnet 15b192f
Resnet 20b256f

Figure 5: ELO of all models given a fixed move time of Monte Carlo Tree Search.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

As shown in Fig. 5, all MixNet configurations consistently outperform ResNet baselines by a signif-
icant margin of 300-400 ELOs, translating to a winning rate of 85%-92%. Notably, larger MixNet
models, despite slower inference speeds, achieve higher strength, especially with more time allo-
cated for searching. This trend is also seen in ResNet models, where stronger performance emerges
with larger models and increased move time, and the ELO gap with MixNet narrows slightly. It indi-
cates that with more search time and established tactics, more accurate evaluations gain importance.
Nonetheless, even with 20 seconds per move, MixNet’s advantages remain clear. Since both sides
use the same move time, these results reflect the true strength of the models within a constrained
computational budget in real-world scenarios.

5.3 STRENGTH COMPARISON BETWEEN AGENTS

To explore the limits of MixNet, we combine it with the advanced Alpha-Beta search described in
Sec. 4.3. We also include the state-of-the-art Gomoku agent Katagomo (Hang, 2024) for strength
comparison. This version of Katagomo utilizes domain-specific search and several model enhance-
ments to improve performance while lowering the computational cost of large convolution neural
networks, having undergone months of reinforcement learning. Since Katagomo is primarily de-
signed for GPUs, we use its CPU version to ensure a fair comparison within the same computation
resource constraints.

As shown in Fig. 6, α-β search exhibits significantly higher playing strength due to its depth-first
traversal of the game tree, effectively leveraging the speed of our incremental update mechanism.
Notably, the large MixNet does not outperform the medium and small alternatives, likely due to
the higher codebook update cost diminishing the benefits of incremental updates. Nevertheless,
combining MixNet with α-β search demonstrates the speed enhancement of incremental updates,
achieving a strength of approximately 400 ELO above the SOTA agent in a CPU-only environment
with limited computational resources.

2 5 10 20
Move Time (s)

1600

1700

1800

1900

2000

El
o

Mixnet/S (-)
Mixnet/M (-)
Mixnet/L (-)
Mixnet/S (MCTS)
Mixnet/M (MCTS)
Mixnet/L (MCTS)
KataGomo

Figure 6: ELO of various MixNet agents and Katagomo given a fixed move time of search.

5.4 ABLATION STUDIES

To validate the effectiveness of enhancements in MixNet’s feed-forward components, we perform
an ablation study by removing specific modules and comparing their loss and ELOs under identical
computation time and search algorithms in Tab. 3. Specifically, We evaluate the impact of the star
block, value group, and dynamic convolution. The star block is replaced with a single linear layer,
the value grouping is simplified by retaining only the global feature mean for the value MLP, and
the dynamic policy convolution is substituted with a fixed point-wise convolution of the same size.

Training losses show a significant increase in value loss when either the star block or value group is
removed, suggesting that both components enhance the capture of localized features, which aid in
value prediction alongside the global feature mean. Conversely, the policy loss rises considerably
when the dynamic policy convolution is eliminated, indicating that the global information from the
global feature mean is crucial for the policy convolution, which relies solely on localized features to
make location-specific decisions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Mixnet Train Loss MCTS α-β Search
Configuration Value Policy 2s 5s 10s 20s 2s 5s 10s 20s
Small (full) 0.7925 1.278 0 0 0 0 0 0 0 0
Small w/o star block 0.7995 1.294 -14 -15 -30 -4 5 -6 -1 -7
Small w/o value group 0.8083 1.287 -72 -82 -84 -82 -70 -77 -70 -81
Small w/o dynamic conv 0.7903 1.465 -143 -144 -150 -145 2 -1 3 -8

Medium (full) 0.7791 1.213 54 60 50 62 11 10 20 9
Medium w/o star block 0.7839 1.223 26 29 19 30 2 -4 5 -2
Medium w/o value group 0.7957 1.219 2 2 -6 14 -43 -47 -42 -61
Medium w/o dynamic conv 0.7801 1.431 -118 -116 -120 -113 -24 -32 -12 -21

Large (full) 0.7688 1.165 57 74 77 84 -82 -58 -45 -38
Large w/o star block 0.7733 1.160 90 99 96 112 -9 -11 -3 -8
Large w/o value group 0.7844 1.161 28 41 33 48 -24 -34 -42 -29
Large w/o dynamic conv 0.7712 1.387 -112 -97 -99 -88 -100 -92 -66 -61

Table 3: Mixnet Elo ratings for different models and move times.

Tab. 3 shows the relative ELOs when removing these modules. For MCTS, policy prediction ac-
curacy is critical; removing dynamic policy convolution results in over a 100 ELO loss. Notably,
MCTS depends less on value accuracy when a strong policy is in place, resulting in the larger MixNet
without the star block achieving the best performance, likely due to the star block’s significant speed
reduction. In contrast, for α-β search, a medium-sized model is preferred, with value accuracy
playing an essential role, making the full medium MixNet the top performer in terms of ELOs.

6 CONCLUSION

We present Rapfi, an efficient Gomoku AI agent optimized for resource-limited environments. Our
proposed model, Mixnet, decomposes the board plane into local line-shaped patterns and distills a
pattern-indexed codebook from a specially designed mapping network. This approach, combined
with an incremental update scheme and enhancements in the feed-forward heads, allows Mixnet
to match the performance of large CNNs while drastically reducing computational requirements.
Experimental results show that Mixnet significantly outperforms Resnet baselines and the state-of-
the-art Gomoku agent Katagomo under the same computational constraints. Combining Mixnet
with a carefully tuned Alpha-Beta search, Rapfi ranks top among 520 Gomoku agents on Botzone,
and successfully won the championship in the 2024 Gomocup tournament against 54 competitors.
Details of the match results are available on the website of Botzone and Gomocup.

In conclusion, we have showcased the potential of carefully designed compact neural networks,
especially in scenarios where evaluation speed is crucial for agent performance. The success of
our model stems from the novel pattern decomposition and the precomputation of a pattern-indexed
feature codebook. Our incremental update mechanism further minimizes computational costs when
inputs change partially, making it well-suited for game tree traversal with sequential evaluations of
similar positions. Additionally, enhancements in feed-forward heads significantly boost prediction
accuracy without adding excessive computation costs. However, this paper does not address certain
limitations, such as the model’s shallowness and its scalability to larger networks. We hope our
findings will inspire further research into efficient neural networks and advancements in game AI.

REFERENCES

Louis Victor Allis, Hendrik Jacob Herik, and Matty PH Huntjens. Go-moku and threat-space search.
University of Limburg, Department of Computer Science Maastricht, The . . . , 1993.

Louis Victor Allis et al. Searching for solutions in games and artificial intelligence. Ponsen &
Looijen Wageningen, 1994.

John Birmingham and Peter Kent. Tree-searching and tree-pruning techniques. In Computer chess
compendium, pp. 123–128. Springer, 1988.

Tristan Cazenave. Evolving monte carlo tree search algorithms. Dept. Inf., Univ. Paris, 8, 2007.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tristan Cazenave. Batch monte carlo tree search. In International Conference on Computers and
Games, pp. 146–162. Springer, 2022.

Guillaume MJ B Chaslot, Mark HM Winands, and H Jaap van Den Herik. Parallel monte-carlo
tree search. In Computers and Games: 6th International Conference, CG 2008, Beijing, China,
September 29-October 1, 2008. Proceedings 6, pp. 60–71. Springer, 2008.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11030–11039, 2020.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Christian Donninger. Null move and deep search. ICGA Journal, 16(3):137–143, 1993.

Sylvain Gelly and Yizao Wang. Exploration exploitation in go: Uct for monte-carlo go. In NIPS:
Neural Information Processing Systems Conference On-line trading of Exploration and Exploita-
tion Workshop, 2006.

Zhiyang Hang. KataGo modifications for various games, September 2024. URL https:
//github.com/hzyhhzy/KataGo.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Ernst A Heinz. Extended futility pruning. ICGA Journal, 21(2):75–83, 1998.

Kunihito Hoki and Masakazu Muramatsu. Efficiency of three forward-pruning techniques in shogi:
Futility pruning, null-move pruning, and late move reduction (lmr). Entertainment Computing, 3
(3):51–57, 2012.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Donald E Knuth and Ronald W Moore. An analysis of alpha-beta pruning. Artificial intelligence, 6
(4):293–326, 1975.

Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 510–519, 2019.

Xu Ma, Xiyang Dai, Yue Bai, Yizhou Wang, and Yun Fu. Rewrite the stars. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5694–5703, 2024.

Yu Nasu. Efficiently updatable neural-network-based evaluation functions for computer shogi. The
28th World Computer Shogi Championship Appeal Document, 185, 2018.

Arpad Rimmel, Fabien Teytaud, and Olivier Teytaud. Biasing monte-carlo simulations through rave
values. In International Conference on Computers and Games, pp. 59–68. Springer, 2010.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

11

https://github.com/hzyhhzy/KataGo
https://github.com/hzyhhzy/KataGo

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Schaeffer. The history heuristic. ICGA Journal, 6(3):16–19, 1983.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017a.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017b.

Junru Wang and Lan Huang. Evolving gomoku solver by genetic algorithm. In 2014 IEEE workshop
on advanced research and technology in industry applications (WARTIA), pp. 1064–1067. IEEE,
2014.

Yuan Wang. Mastering the game of gomoku without human knowledge. Master’s thesis, California
Polytechnic State University, 2018.

David J Wu. Accelerating self-play learning in go. arXiv preprint arXiv:1902.10565, 2019.

Zheng Xie, XingYu Fu, and JinYuan Yu. Alphagomoku: An alphago-based gomoku artificial intel-
ligence using curriculum learning. arXiv preprint arXiv:1809.10595, 2018.

Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally parame-
terized convolutions for efficient inference. Advances in neural information processing systems,
32, 2019.

Pengfei Zhang, Eric Lo, and Baotong Lu. High performance depthwise and pointwise convolutions
on mobile devices. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 6795–6802, 2020.

Dongbin Zhao, Zhen Zhang, and Yujie Dai. Self-teaching adaptive dynamic programming for
gomoku. Neurocomputing, 78(1):23–29, 2012.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DETAILS OF RESNET BASELINE

The detailed architecture of the ResNet baselines used in our experiments is illustrated in Fig. 7. The
model takes an input board tensor with a shape of 2×H ×W . Initially, the input passes through a
3× 3 convolutional layer with 2× f filters, resulting in an output shape of f ×H ×W , followed by
a ReLU activation function. This output then enters a module containing residual blocks, repeated
b times. Each residual block consists of two 3 × 3 convolutional layers with f × f filters, each
followed by a ReLU activation function, and a residual connection that adds the block’s input to the
output of the second convolutional layer.

The output of the residual block module is processed through two parallel paths for feature aggrega-
tion: the first path includes an average pooling layer, a linear layer, and a ReLU activation function,
yielding an output with dimensions 3; the second path consists of a 1× 1 convolutional layer with f
filters and a ReLU activation function, producing an output with dimensions H ×W . This ResNet
architecture effectively captures spatial features through convolutional layers and residual connec-
tions, while the parallel paths ensure comprehensive feature aggregation and transformation. We
implement the ResNet baselines using the ONNX runtime, which includes various optimizations for
CPU inference.

Input

3x
3

C
on

v2
D

3x
3

C
on

v2
D

3x
3

C
on

v2
D

1x
1

C
on

v2
D

Av
gP

oo
l

Li
ne

ar

R
eL

U

R
eL

U

R
eL

U

R
eL

U
R

eL
U

W L D

Policy

Value

Figure 7: The structure of Resnet baselines used in our experiments.

A.2 DETAILS OF TRAINING

Our model is trained end-to-end, with both the policy and value heads optimized using policy and
value objectives. In this section, we provide a detailed description of the loss functions related to
these targets:

• Policy Target
The Policy Target objectives are derived from the self-play data generated by KataGo.

Lp = −
∑

m∈ moves

π(m) log(π̂(m)) (6)

where π is the policy target and π̂ is the model’s prediction of π and moves ∈ {1, 2, ...,H×
W}.

• Value Target
The Value Target objectives are also derived from the self-play data generated by KataGo.

Lv = −
∑

n∈{1,2,3}

Vt(n) log(V̂ (n)) (7)

where Vt is the value target from the game result and V̂ is the model’s value prediction,
both have 3 channels representing the probability of win, loss, and draw.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The final loss function is the sum of lossp, lossv , and a regularization term.

L = Lp + Lv + λ

n∑
i=1

w2
i (8)

where wi is parameter of the model.

In training Mixnet, we utilize knowledge distillation with a teacher model based on the ResNet
baseline from Sec. A.1, specifically configured as ResNet 6b128f (b = 6, f = 128). Initially,
we train ResNet 6b128f to convergence to serve as the teacher model, which then aids in training
MixNet by providing enriched data that helps lower the loss. The outputs of ResNet 6b128f are used
as supervisory labels for MixNet. For loss calculation, we adopt a mixed loss strategy, incorporating
75% from the distillation labels and 25% from the true labels.

A.3 DETAILS OF MIXNET IMPLEMENTATION

When implementing the inference of Mixnet, we quantize the whole neural network to avoid any
floating point error that may be introduced during the accumulation process of incremental update,
and further speed up the inference computation. Specifically, we clamp all features in the pattern-
based codebook to [−16, 16], and quantize them into 16-bit integer using a scale factor of 32. For the
incremental update computation, we fetch the directional features and computes both the aggregation
operator and the depth-wise 3× 3 convolution in 16-bit integer, then the sum of final feature map is
accumulated in 32-bit integer. For the policy head, we also use 16-bit quantized matrix multiply for
the dynamic convolution, and revert to floating point for the final point-wise convolution. For the
value head and the linear layers that produces the dynamic weights and bias in the policy head, we
use 8-bit matrix multiply with 32-bit accumulation quantization for all linear layers.

To completely utilize the computation power of modern CPUs, we implement the inference of
Mixnet with Single Instruction Multiple Data (SIMD) intrinsics. Specifically, we use the AVX2
instruction set on the Intel CPU platform to speed up the processing of incremental update as well
as the feed-forward heads. This optimization achieves about roughly 4x inference speed compared
to a non-vectorized implementation.

A.4 DETAILS OF SEARCH ALGORITHMS

In this section, we detail the implementation of two search algorithms used in our experiments:
Monte Carlo Tree Search (MCTS) and Alpha-Beta Search.

MCTS is a selective best-first search algorithm that iteratively expands a search tree through four
steps: selection, expansion, evaluation, and backpropagation. It recursively selects the child node
with the highest upper confidence bound until reaching an unexpanded leaf node. The neural net-
work model is then evaluated to obtain the value and policy of that position, followed by backprop-
agating the results to update the average utility and visit count of all ancestor nodes. We employ a
slightly modified version of the Predictor Upper Confidence Bounds applied on Trees (PUCT) vari-
ant in our experiments. Specifically, at each state s, for every time step t, a best action at is chosen
using the following selection formula:

at = argmax
a

(Q(st, a) + U(st, a)), (9)

where

U(st, a) = cpuct(st)

√∑
b N(st, b)

1 +N(st, a)
, (10)

and Q(st, a) and N(st, a) is the average utility and the visit count of the child a. We use a dynamic
PUCT factor that scales with the visit count of the parent node:

cpuct(st) = cpuct-init + cpuct-log · log(1 +
∑

b N(st, b)

cpuct-base
), (11)

where cpuct-init = 1.0, cpuct-log = 0.4, cpuct-base = 500. For unexpanded child nodes that does not have
an average utility value, we use the first-play urgency heuristic:

Q(st, a) = Q(st)− cfpu ∗
√∑

b

P (st, b)I(N(st, b) > 0), (12)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where cfpu = 0.1, Q(st) is the average utility value of the parent node, and
∑

b P (st, b)I(N(st, b) >
0) represents the sum of policy of all explored children. Additionally, we implement several en-
hancements to MCTS, including graph search, which treats the search tree as a directed acyclic
graph to minimize redundant node computations. We also apply Lower Confidence Bounds at the
root node by tracking the utility variance at each node and select the best move that maximizes the
lower bound. Finally, delayed policy evaluation conserves memory by only generating and evaluat-
ing child nodes upon a second visit to a node.

Alpha-Beta (α-β) search is a depth-first algorithm that exhaustively searches up to a specified depth
while tracking upper and lower bounds to prune irrelevant branches. Its efficiency hinges on move
ordering; perfect ordering can reduce complexity from exponential to square root of exponential
growth. We utilize the Principle Variation Search (PVS) variant, which employs zero-window
searches for non-PV moves to further enhance pruning opportunities. However, even with per-
fect ordering, the algorithm’s time complexity grows exponentially with depth due to its exhaustive
nature, and it is susceptible to the horizon effect. To strengthen α-β search, we integrate quiescence
search commonly used in chess engines, focusing on moves for the attacker side that allow only
one response from the defender, thus reducing the branch factor and uncovering tactical paths hard
for pure evaluation models. A transposition table stores search results to optimize first moves, and
we apply various enhancements like futility pruning, late move reduction, singular extension and
null move pruning. Additionally, we leverage neural network policy predictions to rank moves and
adjust search depth dynamically. Overall, these enhancements, combined with parameter tuning
via the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, result in significant
ELO improvements over the basic α-β search.

15

	Introduction
	Related Work
	Efficient Neural Networks
	Search Algorithms for Game Trees
	Agents for the Game of Gomoku

	Methodology
	Overview of Mixnet Architecture
	Decomposing Board Plane as Local Patterns
	Distilling Pattern-based Codebook
	Incremental Update of Feature Maps
	Enhancing Feed-Forward Heads

	Experimental Setup
	Dataset
	Training Details
	Search

	Results
	Loss and Accuracy Comparison
	Strength Comparison with Search
	Strength Comparison between Agents
	Ablation Studies

	Conclusion
	Appendix
	Details of Resnet Baseline
	Details of Training
	Details of Mixnet Implementation
	Details of Search Algorithms

