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Abstract
As predictive models are increasingly being deployed in high-stakes decision mak-
ing (e.g., loan approvals), there has been growing interest in post-hoc techniques
which provide recourse to affected individuals. These techniques generate re-
courses under the assumption that the underlying predictive model does not change.
However, in practice, models are often regularly updated for a variety of reasons
(e.g., dataset shifts), thereby rendering previously prescribed recourses ineffective.
To address this problem, we propose a novel framework, RObust Algorithmic
Recourse (ROAR), that leverages adversarial training for finding recourses that
are robust to model shifts. To the best of our knowledge, this work proposes the
first ever solution to this critical problem. We also carry out theoretical analysis
which underscores the importance of constructing recourses that are robust to
model shifts: 1) We quantify the probability of invalidation for recourses generated
without accounting for model shifts. 2) We prove that the additional cost incurred
due to the robust recourses output by our framework is bounded. Experimental
evaluation on multiple synthetic and real-world datasets demonstrates the efficacy
of the proposed framework.

1 Introduction
Over the past decade, machine learning (ML) models are increasingly being deployed to make a
variety of highly consequential decisions ranging from bail and hiring decisions to loan approvals.
Consequently, there is growing emphasis on designing tools and techniques which can provide
recourse to individuals who have been adversely impacted by predicted outcomes [30]. For example,
when an individual is denied a loan by a predictive model deployed by a bank, they should be
provided with reasons for this decision, and also informed about what can be done to reverse it. When
providing a recourse to an affected individual, it is absolutely critical to ensure that the corresponding
decision making entity (e.g., bank) is able to honor that recourse and approve any re-application that
fully implements the recommendations outlined in the prescribed recourse Wachter et al. [31].

Several approaches in recent literature tackled the problem of providing recourses by generating local
(instance level) counterfactual explanations 2 [31, 26, 12, 21, 18]. For instance, Wachter et al. [31] pro-
posed a gradient based approach which finds the closest modification (counterfactual) that can result
in the desired prediction. Ustun et al. [26] proposed an efficient integer programming based approach
to obtain actionable recourses in the context of linear classifiers. There has also been some recent
research that sheds light on the spuriousness of the recourses generated by counterfactual/contrastive
explanation techniques [31, 26] and advocates for causal approaches [3, 14, 15].

All the aforementioned approaches generate recourses under the assumption that the underlying
predictive models do not change. This assumption, however, may not hold in practice. Real world
∗Equal contribution
2Note that counterfactual explanations [31], contrastive explanations [13], and recourse [26] are used

interchangeably in prior literature. Counterfactual/contrastive explanations serve as a means to provide recourse
to individuals with unfavorable algorithmic decisions. We use these terms interchangeably to refer to the notion
introduced and defined by Wachter et al. [31]
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settings are typically rife with different kinds of distribution shifts (e.g, temporal shifts) [22]. In order
to ensure that the deployed models are accurate despite such shifts, these models are periodically
retrained and updated. Such model updates, however, pose severe challenges to the validity of
recourses because previously prescribed recourses (generated by existing algorithms) may no longer
be valid once the model is updated. Recent work by Rawal et al. [24] has, in fact, demonstrated
empirically that recourses generated by state-of-the-algorithms are readily invalidated in the face
of model shifts resulting from different kinds of dataset shifts (e.g., temporal, geospatial, and data
correction shifts). Their work underscores the importance of generating recourses that are robust to
changes in models i.e., model shifts, particularly those resulting from dataset shifts. However, none
of the existing approaches address this problem.

In this work, we propose a novel algorithmic framework, RObust Algorithmic Recourse (ROAR)
for generating instance level recourses (counterfactual explanations) that are robust to changes in
the underlying predictive model. To the best of our knowledge, this work makes the first attempt
at generating recourses that are robust to model shifts. To this end, we propose a novel minimax
objective that can be used to construct robust actionable recourses while minimizing the recourse
costs. Second, we propose a set of model shifts that captures our intuition about the kinds of changes
in the models to which recourses should be robust. Next, we outline an algorithm inspired by
adversarial training to optimize the proposed objective. We also carry out theoretical analysis to
establish the following results: i) we quantify the probability of invalidation for recourses generated
without accounting for model shifts, and ii) we derive an upper bound on the relative increase in the
costs incurred due to robust recourses (proposed by our framework) to the costs incurred by recourses
generated from existing algorithms. Our theoretical results further establish the need for approaches
like ours that generate actionable recourses that are robust to model shifts.

We evaluated our approach ROAR on real world data from financial lending and education domains,
focusing on model shifts induced by the following kinds of distribution shifts – data correction shift,
temporal shift, and geospatial shift. We also experimented with synthetic data to analyze how the
degree of data distribution shifts and consequent model shifts affect the robustness and validity of the
recourses output by our framework as well as the baselines. Our results demonstrate that the recourses
constructed using our framework, ROAR, are substantially more robust (67 – 100%) to changes in
the underlying predictive models compared to those generated using state-of-the-art recourse finding
technqiues. We also find that our framework achieves such a high degree of robustness without
sacrificing the validity of the recourses w.r.t. the original predictive model or substantially increasing
the costs associated with realizing the recourses.

2 Related Work

Our work lies at the intersection of algorithmic recourse and adversarial robustness. Below, we
discuss related work pertaining to each of these topics.

Algorithmic recourse As discussed in Section 1, several approaches have been proposed to con-
struct algorithmic recourse for predictive models [31, 26, 12, 21, 18, 3, 14, 15, 7]. These approaches
can be broadly characterized along the following dimensions [29]: the level of access they require
to the underlying predictive model (black box vs. gradients), if and how they enforce sparsity (only
a small number of features should be changed) in counterfactuals, if counterfactuals are required
to lie on the data manifold or not, if underlying causal relationships should be accounted for when
generating counterfactuals or not, whether the output should be multiple diverse counterfactuals
or just a single counterfactual. While the aforementioned approaches have focused on generating
instance level counterfactuals, there has also been some recent work on generating global summaries
of model recourses which can be leveraged to audit ML methods [23]. More recently, Rawal et al.
[24] demonstrated that recourses generated by state-of-the-art algorithms are readily invalidated due
to model shifts resulting from different kinds of dataset shifts. They argued that model updation
is very common place in the real world, and it is important to ensure that recourses provided to
affected individuals are robust to such updates. Similar arguments have been echoed in several other
recent works [28, 13, 20]. While there has been some recent work that explores the construction of
other kinds of explanations (feature attribution and rule based explanations) that are robust to dataset
shifts [16], our work makes the first attempt at tackling the problem of constructing recourses that are
robust to model shifts.
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Adversarial Robustness The techniques that we leverage in this work are inspired by the adversar-
ial robustness literature. Wachter et al. were the first to remark on similarities between counterfactual
generation and adversarial attacks, but did not leverage this connection to develop robust recourse
[31]. It is now well established that ML models are vulnerable to adversarial attacks [10, 4, 2]. The
adversarial training procedure was recently proposed as a defense against such attacks [19, 1, 32].
This procedure optimizes a minimax objective that captures the worst-case loss over a given set of
perturbations to the input data. At a high level, it is based on gradient descent; at each gradient step,
it solves an optimization problem to find the worst-case perturbation, and then computes the gradient
at this perturbation. In contrast, our training procedure optimizes a minimax objective that captures
the worst-case over a given set of model perturbations (thereby simulating model shift) and generates
recourses that are valid under the corresponding model shifts. This training procedure is novel and
possibly of independent interest.

3 Our Framework: RObust Algorithmic Recourse
In this section, we detail our framework, RObust Algorithmic Recourse (ROAR). First, we introduce
some notation and discuss preliminary details about the algorithmic recourse problem setting. We then
introduce our objective function, and discuss how to operationalize and optimize it efficiently.

3.1 Preliminaries
Let us assume we are given a predictive modelM : X →Y , where X ⊆ Rd is the feature space, and
Y is the space of outcomes. Let Y = {0, 1} where 0 and 1 denote an unfavorable outcome (e.g., loan
denied) and a favorable outcome (e.g., loan approved) respectively. Let x ∈ X be an instance which
received a negative outcome i.e.,M(x) = 0. The goal here is to find a recourse for this instance x
i.e., to determine a set of changes ε that can be made to x in order to reverse the negative outcome.
The problem of finding a recourse for x involves finding a counterfactual x′ = x+ ε for which the
black box outputs a positive outcome i.e.,M(x′) =M(x+ ε) = 1.

There are, however, a few important considerations when finding the counterfactual x′ = x+ ε. First,
it is desirable to minimize the cost (or effort) required to change x to x′. To formalize this, let us
consider a cost function c : X × X →R+. c(x, x′) denotes the cost (or effort) incurred in changing
an instance x to x′. In practice, some of the commonly used cost functions are `1 or `2 distance [31],
log-percentile shift [26], and costs learned from pairwise feature comparisons input by end users [23].
Furthermore, since recommendations to change features such as gender or race would be unactionable,
it is important to restrict the search for counterfactuals in such a way that only actionable changes are
allowed. Let A denote the set of plausible or actionable counterfactuals.

Putting it all together, the problem of finding a recourse for instance x for whichM(x) = 0 can be
formalized as:

x′ = arg min
x′∈A

c(x, x′) s.t M(x′) = 1 (1)

Eqn. 1 captures the generic formulation leveraged by several of the state-of-the-art recourse finding
algorithms. Typically, most approaches optimize the unconstrained and differentiable relaxation of
Eqn. 1 which is given below:

x′ = arg min
x′∈A

`(M(x′), 1) + λ c(x, x′) (2)

where ` : Y × Y→R+ denotes a differentiable loss function (e.g., binary cross entropy) which
ensures that gap betweenM(x′) and favorable outcome 1 is minimized, and λ > 0 is a trade-off
parameter.

3.2 Formulating Our Objective
As can be seen from Eqn. 2, state-of-the-art recourse finding algorithms rely heavily on the assumption
that the underlying predictive modelM does not change. However, predictive models deployed in the
real world often get updated. This implies that individuals who have acted upon previously prescribed
recourses are no longer guaranteed a favorable outcome once the model is updated. To address this
critical challenge, we propose a novel minimax objective function which generates counterfactuals
that minimize the worst-case loss over plausible model shifts. We arrived at this approach after
considering the following alternatives: (a) Update the predictive model as desired but ensure that
individuals who were previously prescribed recourse will still be guaranteed a favorable outcome. (b)
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Update the predictive model while including constraints to ensure that previously offered recourses
are still valid. Note that both of these scenarios would potentially incur huge monetary losses to
relevant stakeholders (e.g, banks), hurting the adoption of these approaches. In case (a), banks may
be required to guarantee credit to customers that are potentially not creditworthy under the new model
and thereby risk losing money. In case (b), access to model training is assumed. Furthermore, training
a predictive model under these constraints may be suboptimal and not reflective of the current data
distribution, thereby accruing larger errors under the shifted population. There are no incentives for
stakeholders such as banks to adopt such practices which could potentially lead to huge monetary
losses. While the optimal approach may vary on a case by case basis, we propose our method to
avoid the aforementioned pitfalls outlined in cases (a) and (b).

To formalize our proposed approach, let ∆ denote the set of plausible model shifts and letMδ denote
a shifted model where δ ∈ ∆. Our objective function for generating robust recourse x′′ for a given
instance x can be written as:

x′′ = arg min
x′′∈A

max
δ∈∆

`(Mδ(x
′′), 1) + λc(x, x′′) (3)

where cost function c and loss function l are as defined in Section 3.1.

Choice of ∆ Predictive models deployed in the real world are often updated regularly to handle
data distribution shifts [22]. Since these models are updated regularly, it is likely that they undergo
small (and not drastic) shifts each time they are updated. To capture this intuition, we consider the
following two choices for the set of plausible model shifts ∆:

∆ = {δ ∈ Rn | δmin ≤ δi ≤ δmax∀i ∈ {1 · · ·n}}.
∆ = {δ ∈ Rn | ‖δ‖p≤ δmax}
where p ≥ 1. Note that perturbations δ ∈ ∆ can be considered as operations either on the parameter
space or on the gradient space of M. While the first choice of ∆ presented above allows us to
restrict model shifts within a small range, the second choice allows us to restrict model shifts within a
norm-ball. Alternate formulations of the first include incorporating domain knowledge to set δmin
and δmax per feature. These kinds of shifts can effectively capture small changes to both parameters
(e.g., weights of linear models) as well as gradients. Next, we describe how to optimize the objective
in Eqn. 3 and construct robust recourses.

3.3 Optimizing Our Objective
While our objective function, the choice of ∆, and the perturbations δ ∈ ∆ we introduce in Section 3.2
are generic enough to handle shifts to both parameter space as well as the gradient space of any class
of predictive modelsM, we solve our objective for a linear approximation f ofM. The procedure
that we outline here remains generalizable even for non-linear models because local behavior of
a given non-linear model can be approximated well by fitting a local linear model [25]. Note that
such approximations have already been explored by existing algorithmic recourse methods [26, 23].
Let the linear approximation, which we denote by f be parameterized by w ∈ W . We make this
parametrization explicit by using a subscript notation: fw. We consider model shifts represented
by perturbations to the model parameters w ∈ W . In the case of linear models, these can be
operationalized as additive perturbations δ ∈ ∆ to w. We will represent the resulting shifted classifier
by fw+δ . Our objective function (Eqn. 3) can now be written in terms of this linear approximation f
as:

x′′ = arg min
x′′∈A

max
δ∈∆

`(fw+δ(x
′′), 1) + λc(x, x′′) (4)

Notice that the objective function defined in Equation 4 is similar to that of adversarial training [19].
However, in our framework, the perturbations are applied to model parameters as opposed to data
samples. These parallels help motivate the optimization procedure for constructing recourses that
are robust to model shifts. We outline the optimization procedure that we leverage to optimize our
minimax objective (Eqn. 4) in Algorithm 1.

Algorithm 1 proceeds in an iterative manner where we first find a perturbation δ̂ ∈ ∆ that maximizes
the chance of invalidating the current estimate of the recourse x′′, and then we take appropriate
gradient steps on x′′ to generate a valid recourse. This procedure is executed iteratively until the
objective function value (Eqn. 4) converges.
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Algorithm 1 Our Optimization Procedure

Input: x s.t. fw(x) = 0, fw, λ > 0,∆, learning rate α > 0.
Initialize x′′ = x, g = 0
repeat
δ̂ = arg maxδ∈∆ `(fw+δ(x

′′), 1)

g = ∇
[
`(fw+δ̂(x

′′), 1) + λc(x′′, x)
]

x′′ −= αg
until convergence
Return x′′

4 Theoretical Analysis
Here we carry out theoretical analysis to shed light on the benefits of our framework ROAR. More
specifically: 1) We quantify the probability that recourses generated without accounting for model
shifts are likely to be invalidated. 2) We prove that the additional cost incurred due to the robust
recourses output by our framework is bounded.

We first characterize how recourses that do not account for model shifts (i.e., recourses output by
state-of-the-art algorithms) fare when true model shifts can be characterized as additive shifts to model
parameters. Specifically, we quantify the likelihood that recourses generated without accounting
for model shifts will be invalidated (even if they lie on the original data manifold), under certain
conditions.

Theorem 1. For a given instance x ∼ N (µ,Σ), let x′ be the recourse that lies on the original data
manifold (conditioned on the event thatM(x′) > 0.5) and is obtained without accounting for model

shifts. Let Σ = UDUT . Then, for some true model shift δ, such that, wTµ
(w+δ)Tµ

≥ ‖
√
DUw‖

‖
√
DU(w+δ)‖ , and√

2e
π

√
β−1
β exp

−β (wT µ)2

4‖
√
DUw‖2 ≥ erfc(− (w+δ)Tµ√

2‖w+δ‖ ), for β ≥ 1, the probability that x′ is invalidated on

fw+δ is at least: 1
2

√
2e
π

√
β−1
β exp

−β (wT µ)2

4‖
√
DUw‖2 − 1

2 erfc(− (w+δ)Tµ√
2‖w+δ‖ ) where erfc is the complementary

gaussian error function.

Proof Sketch. Under the assumption that x′ ∼ N (µ,Σ), a recourse is invalid under a model shift if
it is valid under the original model and invalid under the shifted model. This allows us to define the
region where x′ can be invalidated:

Ω = {x′:wTx′ > 0 ∩ (w + δ)Tx′ ≤ 0}

The probability that x′ is invalidated can be obtained by integrating over Ω under the PDF ofN (µ,Σ).

We can then transform x′ and correspondingly Ω, to simplify this integration over a 1-dimensional
Gaussian random variable. That is,

P (x is invalidated) =
1√
(2π)

∫ c2

c1

exp

(
− 1

2
s2

)
ds (5)

where Ωs = {s: [c1, c2]}, c1 = −wTµ
‖
√
DUw‖ and c2 = −(w+δ)Tµ

‖
√
DU(w+δ)‖

The above quantity can be represented as a difference in the Gaussian error function allowing us to
exactly quantify the invalidation probability under our assumptions. Using the lower bounds on the
complementary gaussian error function [9] from Chang et al. [5], we obtain our lower bound. To derive

the lower bound, we add an extra condition that
√

2e
π

√
β−1
β exp

−β (wT µ)2

4‖
√
DUw‖2 ≥ erfc(− (w+δ)Tµ√

2‖w+δ‖ ),
mainly to confirm that the lower bound on the first term still dominates the second term. Both
conditions restricts the types of shift for which the bound can be derived. Note that β can be
optimized away to improve the lower bound. Detailed proof is provided in the Appendix. Discussion
about other distributions (e.g., Bernoulli, Uniform, Categorical) is included in the Appendix.
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Next we characterize how much more costly recourses can be when they are trained to be robust
to model perturbations or model shifts. In the following theorem, we show that the cost of robust
recourses is bounded relative to the cost of recourses that do not account for model shifts.

Theorem 2. Let x ∈ X , and x ∼ ν where ν is a distribution such that Eν [x] = µ < ∞, where
X is a metric space (X , d(·, ·)) and d : X × X → R+. Let d , `2 and assume that (X , d) has
bounded diameter D = supx,x′∈X d(x, x′). Let recourses obtained without accounting for model
shifts and constrained to the manifold be denoted by x′ ∼ ν, and robust recourses be denoted by x′′.
Let δ > 0 be the shift that maximizes Eq. 3 for sample x corresponding to x′′. Further assume that
the ROAR objective (Equation 3) is convex in x′′ for a fixed δ. For ` , `log (the cross-entropy loss),
some 0 < η′ � 1, w.h.p. (1− η′), we have that:

c(x′′, x)− c(x′, x) ≤ 1

λ

1

‖w + δ‖
Eν [exp−φ(w + δ)Tx′] +

√
D2

2
log (

1

η′
)

)
(6)

Proof Sketch. By definition, any recourse x′ generated without accounting for model shifts will
have a higher loss for Equation 3 compared to the robust recourse x′′ (note that finding the global
minimizer is not guaranteed by Algorithm 1).

Using this insight, and convexity in x′ for fixed δ, we can bound the cost difference between the
robust and non-robust recourse by a 1-Lipschitz function (i.e. the logistic function):

c(x′′, x)− c(x′, x) ≤ 1

λ‖w + δ‖
log {1 + exp−(w + δ)Tx′}

Assuming a bounded metric on X , we can upper bound the RHS using Lemma 2 from van Handel
[27] which gives us our bound. Detailed proof including special cases when ν is Gaussian, is provided
in the Appendix.

This result suggests that the additional cost of recourse is bounded by the amount of shift admissible
in Equation 3. Note that Theorem 2 applies for general distributions so long as the mean is finite,
which is the case for most commonplace distributions like Gaussian, Bernoulli, Multinomial etc.
While Theorem 1 demonstrates the probability that a recourse will be invalidated for Gaussian
distributions, we refer the reader to the Appendix B.1 for a discussion of other distributions, e.g.
Bernoulli, Uniform, Categorical.

5 Experiments
Here we discuss the detailed experimental evaluation of our framework, ROAR. First, we evaluate
how robust the recourses generated by our framework are to model shifts caused by real world data
distribution shifts. We also assess the validity of the recourses generated by our framework w.r.t. the
original model, and further analyze the average cost of these recourses. Next, using synthetic data,
we analyze how varying the degree (magnitude) of data distribution shift impacts the robustness and
validity of the recourses output by our framework and other baselines.

5.1 Experimental Setup
Real world data We evaluate our framework on model shifts induced by real world data distribution
shifts. To this end, we leverage three real world datasets which capture different kinds of data
distribution shifts, namely, temporal shift, geospatial shift, and data correction shift [24]. Our first
dataset is the widely used and publicly available German credit dataset [8] from the UCI repository.
This dataset captures demographic (age, gender), personal (marital status), and financial (income,
credit duration) details of about 1000 loan applicants. Each applicant is labeled as either a good
customer or a bad customer depending on their credit risk. Two versions of this dataset have been
released, with the second version incorporating corrections to coding errors in the first dataset [11].
Accordingly, this dataset captures the data correction shift. Our second dataset is the Small Business
Administration (SBA) case dataset [17]. This dataset contains information pertaining to 2102 small
business loans approved by the state of California during the years of 1989 − 2012, and captures
temporal shifts in the data. It comprises of about 24 features capturing various details of the small
businesses including zip codes, business category (real estate vs. rental vs. leasing), number of jobs
created, and financial status of the business. It also contains information about whether a business
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has defaulted on a loan or not which we consider as the class label. Our last dataset contains student
performance records of 649 students from two Portuguese secondary schools, Gabriel Pereira (GP)
and Mousinho da Silveira (MS) [8, 6], and captures geospatial shift. It comprises of information
about the academic background (grades, absences, access to internet, failures etc.) of each student
along with other demographic attributes (age, gender). Each student is assigned a class label of above
average or not depending on their final grade.

Synthetic data We generate a synthetic dataset with 1K samples and two dimensions to analyze
how the degree (magnitude) of data distribution shifts impacts the robustness and validity of the
recourses output by our framework and other baselines. Each instance x is generated as follows: First,
we randomly sample the class label y ∈ {0, 1} corresponding to the instance x. Conditioned upon
the value of y, we then sample the instance x as: x ∼ N (µy,Σy). We choose µ0 = [−2,−2]T and
µ1 = [+2,+2]T , and Σ0 = Σ1 = 0.5I where µ0, Σ0 and µ1, Σ1 denote the means and covariance
of the Gaussian distributions from which instances in class 0 and class 1 are sampled respectively.
A scatter plot of the samples resulting from this generative process and the decision boundary of a
logistic regression model fit to this data are shown in Figure 1a. In our experimental evaluation, we
consider different kinds of shifts to this synthetic data:

(a) Original data &M1 (b) Mean shift (c) Variance shift (d) Mean & Variance shift

Figure 1: Synthetic data and examples of model shift. From left to right we have (a) original synthetic
dataset, (b) shifted data and decision boundary after mean shift, (c) shifted data and decision boundary
after variance shift, and (d) shifted data and decision boundary after mean and variance shift

(i) Mean shift: To generated shifted data, we leverage the same approach as above but shift the mean
of the Gaussian distribution associated with class 0 i.e., x ∼ N (µ′y,Σy) where µ′0 = µ0 + [α, 0]T

and µ′1 = µ1. Note that we only shift the mean of one of the features of class 0 so that the slope
of the decision boundary of a linear model we fit to this shifted data changes (relative to the linear
model fit on the original data), while the intercept remains the same. Figure 1b shows shifted data
with α = 1.5.

(ii) Variance shift: Here, we leverage the same generative process as above, but instead of shifting
the mean, we shift the variance of the Gaussian distribution associated with class 0 i.e., i.e., x ∼
N (µy,Σ

′
y) where Σ′0 = (1 + β)Σ0 and Σ′1 = Σ′1 for some increment β ∈ R. The net result here

is that the intercept of the decision boundary of a linear model we fit to this shifted data changes
(relative to the linear model fit on the original data), while the slope remains unchanged. Figure 1c
shows shifted data with β = 3.

(ii) Mean and variance shift: Here, we change both the mean and variance of the Gaussian distri-
bution associated with class 0 simultaneously (Figure 1d). It can be seen that there are noticeable
changes to both the slope and intercept of the decision boundary compared to Figure 1a.

Predictive models We generate recourses for a variety of linear and non-linear models: deep neural
networks (DNNs), SVMs, and logistic regression (LR). Here, we present results for a 3-layer DNN
and LR; remaining results are included in the Appendix. Results presented here are representative of
those for other model families.

Baselines We compare our framework, ROAR, to the following state-of-the-art baselines: (i)
counterfactual explanations (CFE) framework outlined by Wachter et al. [31], (ii) actionable recourse
(AR) in linear classification [26], and (iii) causal recourse framework (MINT) proposed by Karimi
et al. [14]. While CFE leverages gradient computations to find counterfactuals, AR employs a
mixed integer programming based approach to find counterfactuals that are actionable. The MINT
framework operates on top of existing approaches for finding nearby counterfactuals. We use the
MINT framework on top of CFE and ROAR and refer to these two approaches as MINT and ROAR-
MINT respectively. As the MINT framework requires access to the underlying causal graph, we
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experiment with MINT and ROAR-MINT only on the German credit dataset for which such a causal
graph is available.

Cost functions Our framework, ROAR, and all the other baselines we use rely on a cost function
c that measures the cost (or effort) required to act upon the prescribed recourse. Furthermore, our
approach as well as several other baselines require the cost function to be differentiable. So, we
consider two cost functions in our experimentation: `1 distance between the original instance and the
counterfactual, and a cost function learned from pairwise feature comparison inputs (PFC) [13, 26, 23].
PFC uses the Bradley-Terry model to map pairwise feature comparison inputs provided by end users
to the cost required to act upon the prescribed recourse for any given instance x. For more details on
this cost function, please refer to Rawal and Lakkaraju [23]. In our experiments, we follow the same
procedure as Rawal and Lakkaraju [23] and simulate the pairwise feature comparison inputs.

Setting and implementation details We partition each of our synthetic and real world datasets
into two parts: initial data (D1) and shifted data (D2). In the case of real world datasets, D1 and D2

can be logically inferred from the data itself – e.g., in case of the German credit dataset, we consider
the initial version of the dataset as D1 and the corrected version of the dataset as D2. In the case of
synthetic datasets, we generate D1 and D2 as described earlier where D2 is generated by shifting D1

(See "Synthetic data" in Section 5.1).

We use 5-fold cross validation throughout our real world and synthetic experiments. On D1, we use 4
folds to train predictive models and the remaining fold to generate and evaluate recourses. We repeat
this process 5 times and report averaged values of our evaluation metrics. We leverage D2 only to
train the shifted modelsM2. More details about the data splits, model training, and performance of
the predictive models are included in the Appendix.

We use binary cross entropy loss and the Adam optimizer to operationalize our framework, ROAR.
Our framework, ROAR, has the following parameters: the set of acceptable perturbations ∆ (defined
in practice by δmax) and the tradeoff parameter λ. In our experiments on evaluating robustness to real
world shifts, we choose δmax = 0.1 given that continuous features are scaled to zero mean and unit
variance. Furthermore, in each setting, we choose the λ that maximizes the recourse validity ofM1

(more details in Section 5.1 "Metrics" and Appendix). In case of our synthetic experiments where we
assess the impact of the degree (magnitude) of data distribution shift, features are not normalized,
so we do a grid search for both δmax and λ. First, we choose the largest δmax that maximizes the
recourse validity ofM1 and then set λ in a similar fashion (more details in Appendix). We set the
parameters of the baselines using techniques discussed in the original works [31, 14, 26] and employ
a similar grid search approach if unspecified.

Following the precedents set forth in [26] and [23], we adapt AR and ROAR to non-linear models
by first generating local linear approximations of these models using LIME [25]. We refer to these
variants as AR-LIME and ROAR-LIME respectively.

Metrics. We consider two metrics in our evaluation: 1) Avg Cost is defined as the average cost
incurred to act upon the prescribed recourses where the average is computed over all the instances
for which a given algorithm provides recourse. Recall that we consider two notions of cost in our
experiments – `1 distance between the original instance and the counterfactual, costs learned from
pairwise feature comparisons (PFC) (See "Cost Functions" in Section 5.1). 2) Validity is defined
as the fraction of instances for which acting upon the prescribed recourse results in the desired
prediction. Note that validity is computed w.r.t. a given model.

5.2 Robustness to real world shifts
Here, we evaluate the robustness of the recourses output by our framework, ROAR, as well as the
baselines. A recourse finding algorithm can be considered robust if the recourses output by the
algorithm remain valid even if the underlying model has changed. To evaluate this, we first leverage
our approach and other baselines to find recourses of instances in our test sets w.r.t. the initial model
M1. We then compute the validity of these recourses w.r.t. the shifted modelM2 which has been
trained on the shifted data. Let us refer to this asM2 validity. The higher the value ofM2 validity,
the more robust the recourse finding method. Table 1 shows theM2 validity metric computed for
different algorithms across different real world datasets.

It can be seen that recourse methods that use our framework, ROAR and ROAR-MINT, achieve the
highestM2 validity across all datasets. In fact, methods that use our framework do almost twice as
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Correction Shift Temporal Shift Geospatial Shift
Model Cost Recourse Avg Cost M1 Validity M2 Validity Avg Cost M1 Validity M2 Validity Avg Cost M1 Validity M2 Validity

LR

L1

CFE 1.02 ± 0.18 1.00 ± 0.00 0.54 ± 0.27 3.57 ± 1.14 1.00 ± 0.00 0.31 ± 0.09 8.37 ± 0.73 0.98 ± 0.03 0.29 ± 0.09
AR 0.85 ± 0.14 1.00 ± 0.00 0.53 ± 0.21 1.50 ± 0.28 1.00 ± 0.00 0.16 ± 0.06 5.29 ± 0.28 1.00 ± 0.00 0.43 ± 0.14

ROAR 3.13 ± 0.32 1.00 ± 0.00 0.94 ± 0.08 3.14 ± 0.25 0.99 ± 0.01 0.98 ± 0.02 10.88 ± 1.67 1.00 ± 0.00 0.67 ± 0.19
MINT 4.73 ± 1.56 1.00 ± 0.00 0.93 ± 0.07 NA NA NA NA NA NA

ROAR-MINT 6.77 ± 0.35 1.00 ± 0.00 1.00 ± 0.00 NA NA NA NA NA NA

PFC

CFE 0.03 ± 0.02 1.00 ± 0.00 0.56 ± 0.33 0.24 ± 0.09 1.00 ± 0.00 0.26 ± 0.11 0.34 ± 0.04 1.00 ± 0.00 0.18 ± 0.10
AR 0.09 ± 0.02 1.00 ± 0.00 0.54 ± 0.27 0.11 ± 0.02 1.00 ± 0.00 0.09 ± 0.05 0.32 ± 0.03 1.00 ± 0.00 0.24 ± 0.11

ROAR 0.36 ± 0.08 1.00 ± 0.00 1.00 ± 0.00 0.44 ± 0.12 0.99 ± 0.01 0.98 ± 0.01 1.20 ± 0.10 1.00 ± 0.00 0.91 ± 0.07
MINT 1.00 ± 1.15 1.00 ± 0.00 0.95 ± 0.08 NA NA NA NA NA NA

ROAR-MINT 1.23 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 NA NA NA NA NA NA

NN

L1

CFE 0.55 ± 0.10 1.00 ± 0.00 0.47 ± 0.06 3.78 ± 0.68 1.00 ± 0.00 0.52 ± 0.09 10.09 ± 0.71 1.00 ± 0.00 0.48 ± 0.09
AR-LIME 0.38 ± 0.15 0.16 ± 0.10 0.31 ± 0.06 1.39 ± 0.13 0.59 ± 0.11 0.65 ± 0.17 9.02 ± 1.57 0.76 ± 0.06 0.83 ± 0.10

ROAR-LIME 1.83 ± 0.19 0.78 ± 0.06 0.72 ± 0.10 4.90 ± 0.24 0.98 ± 0.02 0.97 ± 0.02 21.05 ± 3.58 1.00 ± 0.00 0.97 ± 0.03
MINT 2.24 ± 1.25 0.81 ± 0.02 0.63 ± 0.11 NA NA NA NA NA NA

ROAR-MINT 8.59 ± 1.70 0.90 ± 0.03 0.84 ± 0.04 NA NA NA NA NA NA

PFC

CFE 0.06 ± 0.02 1.00 ± 0.00 0.51 ± 0.12 0.19 ± 0.06 1.00 ± 0.00 0.50 ± 0.13 0.48 ± 0.06 1.00 ± 0.00 0.30 ± 0.14
AR-LIME 0.06 ± 0.03 0.49 ± 0.11 0.56 ± 0.15 0.11 ± 0.01 0.54 ± 0.08 0.62 ± 0.12 0.78 ± 0.15 0.84 ± 0.06 0.82 ± 0.11

ROAR-LIME 0.64 ± 0.08 0.85 ± 0.07 0.82 ± 0.05 0.37 ± 0.07 0.99 ± 0.01 0.99 ± 0.0 1.66 ± 0.21 1.00 ± 0.00 0.97 ± 0.04
MINT 0.60 ± 0.16 0.82 ± 0.07 0.64 ± 0.15 NA NA NA NA NA NA

ROAR-MINT 0.60 ± 0.07 0.91 ± 0.04 0.81 ± 0.04 NA NA NA NA NA NA

Table 1: Avg Cost, M1 (original) validity, and M2 (shifted model) validity of recourses across
different real world datasets. Recourses that leverage our framework ROAR are more robust (higher
M2 validity) compared to those generated by existing baselines.

good compared to other baselines on this metric, indicating that ROAR based recourse methods are
quite robust. After ROAR, MINT is the next best performing baseline with respectM2 validity. This
may be explained by the fact that MINT accounts for the underlying causal graphs when generating
recourses.

We also assess if the robustness achieved by our framework is coming at a cost i.e., by sacrificing
validity on the original model or by increasing avg cost. Table 1 shows the results for the same. It
can be seen that ROAR based recourses achieve higher than 95%M1 validity in all but two settings.
We compute the avg cost of the recourses output by all the algorithms on various datasets and find
that ROAR typically has a higher avg cost (both under `1 and PFC cost functions) compared to CFE
and AR baselines. As demonstrated through additional experiments in the Appendix, these relatively
higher costs are expected given our Theorem 2 upper bound on ROAR cost. However, overall, MINT
and ROAR-MINT seem to exhibit the highest avg costs and are the worst performing algorithms
according to this metric. Since non-causal recourse methods assume independent features, and do not
have to adhere to the underlying causal structure when finding counterfactuals, they can generate
relatively lower cost counterfactuals even if those counterfactuals may not correspond to realistic data
instances. This is likely one of the key reasons why we observe higher average costs in the causal
recourse methods.

5.3 Impact of the degree of data distribution shift on recourses

Figure 2: Impact of the degree of data distribution shift on validity of recourse: DNN classifier with
`1 cost function (top row), DNN classifier with PFC cost function (bottom row); Validity of the
recourses generated by all methods drops as degree (magnitude) of the shift increases; The drop in
the validity is much smaller for our method ROAR-LIME compared to other baselines.
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Here, we assess how different kinds of distribution shifts and the magnitude of these shifts impact the
robustness of recourses output by our framework and other baselines. To this end, we leverage our
synthetic datasets and introduce mean shifts, variance shifts, and combination shifts (both mean and
variance shifts) of different magnitudes by varying α and β (See "Synthetic data" in Section 5.1). We
then leverage these different kinds of shifted datasets to construct shifted models and then assess the
validity of the recourses output by our framework and other baselines w.r.t. the shifted models.

We generate recourses using our framework and baselines CFE and AR for different predictive models
(LR, DNN) and cost functions (`1 distance, PFC). Figure 2 captures the results of this experiment for
DNN model both with `1 distance and PFC cost functions. Results with other models are included
in the Appendix. It can be seen that the x-axis of each of these plots captures the magnitude of the
dataset shift, and the y-axis captures the validity of the recourses w.r.t. the corresponding shifted
model. Standard error bars obtained by averaging the results over 5 runs are also shown.

It can be seen that as the magnitude of the distribution shift increases, validity of the recourses
generated by all the methods starts dropping. This trend prevailed across mean, variance, and
combination (mean and variance) shifts. It can also be seen that the rate at which validity of the
recourses generated by our method, ROAR-LIME, drops is much smaller compared to that of other
baselines CFE and AR-LIME. Furthermore, our method exhibits the highest validity compared
to the baselines as the magnitude of the distribution shift increases. CFE seems to be the worst
performing baseline and the validity of the recourses generated by CFE drops very sharply even at
small magnitudes of distribution shifts.

6 Conclusions & Future Work
We proposed a novel framework, RObust Algorithmic Recourse (ROAR), to address the critical but
under-explored issue of recourse robustness to model updates. To this end, we introduced a novel
minimax objective to generate recourses that are robust to model shifts, and leveraged adversarial
training to optimize this objective. We also presented novel theoretical results which demonstrate
that recourses without accounting for model shifts are likely to be invalidated, underscoring the
necessity of ROAR. Furthermore, we also showed that the additional cost incurred by robust recourses
generated by ROAR are bounded. Extensive experimentation with real world and synthetic datasets
demonstrated that recourses using ROAR are highly robust to model shifts induced by a range of data
distribution shifts. Our work also paves the way for further research into techniques for generating
robust recourses. For instance, it would be valuable to further analyze the tradeoff between recourse
robustness and cost to better understand the impacts to affected individuals. Other interesting future
directions include non-linear extensions that leverage novel local linear approximation methods that
improve on LIME [33].
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