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Abstract

In the field of behavior-related brain computation, it is necessary to align raw neural
signals against the drastic domain shift among them. A foundational framework
within neuroscience research posits that trial-based neural population activities rely
on low-dimensional latent dynamics, thus focusing on the latter greatly facilitates
the alignment procedure. Despite this field’s progress, existing methods ignore
the intrinsic spatio-temporal structure during the alignment phase. Hence, their
solutions usually lead to poor quality in latent dynamics structures and overall
performance. To tackle this problem, we propose an alignment method ERDiff,
which leverages the expressivity of the diffusion model to preserve the spatio-
temporal structure of latent dynamics. Specifically, the latent dynamics structures of
the source domain are first extracted by a diffusion model. Then, under the guidance
of this diffusion model, such structures are well-recovered through a maximum
likelihood alignment procedure in the target domain. We first demonstrate the
effectiveness of our proposed method on a synthetic dataset. Then, when applied
to neural recordings from the non-human primate motor cortex, under both cross-
day and inter-subject settings, our method consistently manifests its capability
of preserving the spatio-temporal structure of latent dynamics and outperforms
existing approaches in alignment goodness-of-fit and neural decoding performance.
Codes are available at: https://github.com/alexwangNTL/ERDiff.

1 Introduction
A key challenge severely impeding the scalability of behavior-related neural computational appli-
cations is their robustness to the distribution shift of neural recordings over time and subjects [1].
Given a behavior model trained on previous neural recordings (e.g., velocity predictor for human
with paralysis [2]), it usually suffers performance degradation when applied to new neural recordings
due to the neural distribution shift [3, 4]. Thus, for long-term usability and stable performance of the
trained neural decoding model, high-quality alignment between the neural recordings used for training
(i.e., source domain) and new recordings for testing (i.e., target domain) is of vital importance.

Distribution alignment is an important task at the heart of unsupervised transfer learning [5, 6]. The
goal is to align the target domain to the source domain so that the trained model in the source domain
can be applied to the target domain after eliminating the distribution shift. However, due to issues such
as instabilities and low signal-to-noise ratio [7], raw neural spiking activities are noisy and ambiguous
[8, 9], causing difficulties in aligning the distributions of these high-dimensional signals directly.
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One promising research direction [10] points out that the trial-based neural activities can always be
understood in terms of low-dimensional latent dynamics [11, 12, 13]. Such latent dynamics manifest
coordinated patterns of evolution constrained to certain "neural manifolds" [14, 15]. Hence, early
studies focusing on the alignment of latent dynamics reach comparably satisfactory results [16, 17].
Generally, most previous methods [16, 18, 19] are based on a pre-defined metric for optimization
during latent dynamics alignment, i.e., minimizing the difference evaluated by the metric, between
source and target domains within the low-dimensional latent space. However, those metrics are
usually non-parametric and handcrafted, which are not guaranteed to suit specific neural recordings or
problems well. Methods based on adversarial-learning [20, 21] thus have been introduced since they
can implicitly find an adapted metric [22]. However, they suffer from mode collapse and instability
issues in practice [23].

Moreover, during the alignment process, we note that the above-mentioned works lack the necessary
awareness of the latent dynamics structure, especially when aligning non-linear and lengthy trials.
Through an empirical study on the motor cortex of non-human primate (NHP) [8] (shown in Figure
1), we can observe that: a state-of-the-art alignment method JSDM [24] (minimizing the symmetric
Jensen–Shannon divergence between distributions) fails to recover the latent dynamics structures of
the source domain since JSDM neglects those structures during alignment. From another perspective,
in the alignment phase, existing methods fail to effectively model and leverage the information-rich
correlations between each time bin and each latent dimension within latent dynamics.

In this paper, we focus on preserving the temporal evolution of each individual latent dimension
and the spatial covariation between latent dimensions of the source domain during alignment. The
main idea is that we first extract the spatio-temporal structure of latent dynamics from the source
domain; and then, we align the target domain by recovering the source domain’s underlying structure.
However, such a workflow is non-trivial since the underlying spatio-temporal structure is both implicit
and complex.

Spatio-temporal 
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Spatio-temporal 

Structure Missing

Figure 1: Empirical study. Latent dy-
namics (3D visualization) of the source
domain and the aligned target domain by
JSDM on a primary motor cortex dataset.

To tackle this problem, we propose a novel alignment
method that is capable of Extracting and Recovering the
latent dynamics structure with Diff usion model (ERDiff).
Firstly, given the source-domain neural observations, we
use a diffusion model (DM) [25, 26] to extract the spatio-
temporal structure of latent dynamics. Then, in the align-
ment phase, we propose a maximum likelihood align-
ment procedure through the guidance of DM, by which
the spatio-temporal structure of source-domain latent dy-
namics can be recovered well in the target domain. The
proposed extract-and-recover method nicely encodes and
preserves the spatio-temporal structure of latent dynam-
ics, which are significant inductive biases for neural latent
dynamics alignment. Furthermore, from the perspective
of core machine learning, ERDiff introduces an approach of extracting structure knowledge from one
distribution and imposing it as the prior to constrain the alignment of another distribution. Note that
although we have been emphasizing extraction and recovery of the source-domain structure, ERDiff
is not performing a copy-and-paste of the source domain distribution to the target domain. As ERDiff
preserves the dynamics structure of the source domain, it also maintains the original characteristics
of the target domain. We present experimental results to support this argument. Finally, we conduct
extensive experiments to verify the effectiveness of ERDiff on a synthetic dataset and two real-world
neural datasets [8, 27]. Visualization of latent dynamics also demonstrates that ERDiff is capable of
preserving the spatio-temporal structure consistently during the alignment phase.

2 Preliminary
Distribution alignment. We denote the source-domain observations of single-trial neural population

activities as X(s) =
h
x

(s)
1 ; : : : ;x

(s)
l

i>
2 Rl�n, where l is the trial length (i.e., number of time

bins), and n is the number of observed neurons. We denote its low-dimensional latent dynamics

as Z(s) =
h
z

(s)
1 ; : : : ; z

(s)
l

i>
2 Rl�d, where d is the latent dimension size. Generally, we build a

variational autoencoder (VAE) to estimate the latent Z(s) given the observations X(s). The VAE
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consists of a probabilistic encoderq(Z (s) j X (s) ; � s) and a probabilistic decoderp(X (s) jZ (s) ;  s).
� s and s are the parameters of the encoder and decoder. The encoder also serves as an approximated
posterior distribution to the intractable true posteriorp(Z (s) j X (s) ). Then in the target domain, given

the neural population activitiesX ( t ) =
h
x ( t )

1 ; : : : ; x ( t )
l

i >
2 Rl � n , we perform distribution alignment

by linear probing the probabilistic encoderq(Z j X ; � ). This alignment phase is conducted by
minimizing certain probability divergenceD(� j � ) between the two posterior distributions:

min
� t

D(q(Z (s) j X (s) ; � s)kq(Z ( t ) j X ( t ) ; � t )) : (1)

Diffusion (probabilistic) model (DM). Givenl � d-dimensional i.i.d. samplesZ from an unknown
data distribution, a DM [28] aims to approximate such distribution by �tting the parameters of a
neural networkp� (Z). DM is composed of aforward processfollowed by areverse process. In the
forward process, isotropic Gaussian noise is added to diffuse the original data, which can be de�ned
in a linear stochastic differential equation (SDE) form:

dZ = f (Z; t)dt + g(t)dw; (2)

wheref (�) : Rl � d � R 7! Rl � d is the drift coef�cient,g(�) : R 7! R is the diffusion coef�cient,
andw is the standard Wiener process. The solution of the SDE is a diffusion processf Z t gt 2 [0;T ], in
which [0; T] is a �xed time zone. In this paper, we implement them with VP-SDE [25]. f Z t gt 2 [0;T ]

approaches the standard normal prior distribution� (Z) whent = T. Under mild conditions on
drift and diffusion coef�cients [25], the denoisingreverse processcan be solved in the following
closed-form SDE:

dZ =
�
f (Z; t) � g(t)2r Z logpt (Z)

�
dt + g(t)dw; (3)

wherer Z logpt (Z) is the score function, andw is a reverse-time Wiener process. We train a
parameterized networks(Z; t; � ) to �t the score functionr Z logpt (Z). However,r Z logpt (Z) is
not directly accessible and we resort to the denoising score matching (DSM) [29] for optimization:

L DSM (� ) = Et �U [0;T ]EZ 0 � p;p 0t (Z t jZ 0 )

h
� (t)2 kr Z t logp0t (Z t j Z0) � s(Z t ; t; � )k2

2

i
; (4)

whereU represents the uniform distribution and� (t) is the weighting function. Under VP-SDE,
the transition probabilityp0t (Z t j Z0) also follows a Gaussian distributionN (� t Z0; � t ), in which
� t ; � t 2 Rl � d. On the other hand, according to [28], we can de�ne a noise estimator with the score
function as� (Z t ; t; � ) = � K � T

t s(Z t ; t; � ), in whichK t K T
t = � t . Invoking these expressions, we

can thus reformulate the form of DSM loss based on the Fisher Divergence between noise terms:

L DSM (� ) = Et �U [0;T ]EZ 0 � p; � �N (0 ;I l � d )

h
w(t)2 k� � � (Z t ; t; � )k2

2

i
; (5)

in whichw(t) = K t � (t) andZ t = � t Z0 + K t � .

3 Methodology
In this section, we introduce our proposed latent dynamics alignment method ERDiff in detail.

3.1 Maximum likelihood alignment
Given the source-domain neural activitiesX (s) , we infer their latent dynamicsZ (s) by building a VAE.
We use variational inference to �nd the probabilistic encoderq(Z (s) j X (s) ; � s) and probabilistic
decoderp(X (s) j Z (s) ;  s) through maximization of the evidence lower bound (ELBO) [30]:

� s;  s = argmax
� ; 

h
Eq(Z ( s ) jX ( s ) ;� )

h
logp(X (s) j Z (s) ;  )

i
� DKL

�
q(Z (s) j X (s) ; � )k�q(Z (s) )

�i
;

(6)

in which �q(Z (s) ) is the normal prior. Note that we introduce ERDiff with this basic VAE architecture.
But ERDiff can be combined with many variants of latent variable models (LVM) [31, 32]. The
essence of ERDiff is to tune the parameter set� of the probabilistic encoder, regardless of the model
architecture of the encoder and decoder.
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Figure 2:A schematic overview of spatio-temporal structure extraction and recovery in ERDiff.
(A) The architecture of DM for spatio-temporal structure extraction.(B) A descriptive diagram of
structure recovery schematic. The left presents the extracted spatio-temporal structure of the source-
domain latent dynamics; the right illustrates the structure-aware maximum likelihood alignment
guidance in ERDiff.

Practically, alignment methods that directly match the discrete samples from the source and target
domains in a pair-wise fashion may lead to sub-optimal solutions [33, 34], especially when the
collected samples from the target domain are limited. Thus given the target-domain neural activity
X ( t ) , we propose to perform neural distribution alignment via maximum likelihood estimation (MLE):

argmax
�

EX � p(X ( t ) ) [logps (h(X ; � ))] = argmax
�

EZ � q(Z jX ( t ) ;� ) [logps(Z)] ; (7)

in which ps(Z) represents the ground-truth probabilistic density of latent dynamics in the source
domain andh(�) refers to the non-linear transformation fromX to Z underlying the probabilistic
encoderq(Z j X ; � ). The objective in Eq. 7 implies that, instead of minimizing a distance metric
between source observations and target observations, we aim at maximizing the likelihood where the
density comes from the source domain and the data comes from the target domain. The left-hand-side
(LHS) is the MLE for observationX and the right-hand-side (RHS) is the MLE for latentZ. We will
focus on the RHS in the following sections. We note that the RHS objective implies that we will
optimize the encoder parameter� during alignment so that the latent encoder will mapX ( t ) to a
proper latentZ ( t ) who �ts the source densityps(Z) well.

3.2 Spatio-temporal structure extraction and source domain learning

In order to calculate the objective function in Eq. 7, we need to know two density functions:q(Z j
X ; � ) is de�ned in the original VAE model with the learnable parameter� ; ps(Z) is the density of
latentZ for the source domain. The latter is inaccessible by building a VAE alone. Therefore, the
�rst step is to learnps(Z) given onlyX (s) . We propose to learnps(Z) through training a DM.

To fully captureps(Z), the DM should consider the overall spatio-temporal structure of latent
dynamics. To extract such a structure, the DM can not treat each latent state or time bin within latent
dynamics as mutually independent and feed them into the model sequentially. We thus take the entire
trial of latent dynamicsZ (s)

0 � q(� j X (s) ; � s) as input to the DM for training. Speci�cally, the DM
�ts ps(Z) through the training of a denoiser� (Z; t; � s) :

�
Rl � d � R

�
! Rl � d.

Next, we describe the architecture of� (Z; t; � s), which is re�ned for extracting the global spatio-
temporal structure of latent dynamics. Traditional architecture based on 2D-Convolution Layers
[35] focuses on capturing the local features within latent dynamics, which can hardly extract its
global spatio-temporal dependency or structure. Thus, we adopt an architecture mainly derived from
Diffusion Transformer (DiT) [36, 37]. Speci�cally, we propose to useSpatio-Temporal Transformer
Block(STBlock), shown in Figure 2(A). Each STBlock is composed of a Spatio Transformer layer
followed by a Temporal Transformer layer, which are 1-layer encoders based on multi-head self-
attention. The Spatio Transformer layer takes latent states of each time bin as inputs to extract
spatial structure, whereas the Temporal Transformer layer takes the entire latent trajectory of each
latent space dimension as inputs to extract temporal structure. (see Appendix A for details of the
architecture of DM).
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For the training objective of� (�; � s), we sample noisy targetsZ (s)
t and minimize the following DSM

loss function:

� s = argmin
�

Et �U [0;T ]EZ ( s )
0 � q( �j X ( s ) ;� s ) ;� �N (0;I l � d )

�
w(t)2



 � � � (Z (s)

t ; t; � )




2

2

�
: (8)

We note thatZ (s)
0 here are actually latent dynamics inferred via VAE in Eq. 6. To enrich the input

samples and adequately estimate the source densityps(Z) as motivated earlier, we propose to learn
the VAE objective (Eq. 6) and the diffusion objective (Eq. 8) simultaneously. In each training
iteration, conditioning on the current value of� s and s, we obtain a set ofZ0 = h(X (s) ; � s) and
use it asZ (s)

0 to optimize Eq. 8. We can also optimize VAE �rst, obtain an optimal� s, and use
it to optimize Eq. 8. Experimental results show that the former approach achieves higher density
estimation performance compared to the latter (see Appendix A for details).

3.3 Spatio-temporal structure recovery and distribution alignment
Given the trained denoiser� (Z; t; � s), we go through the reverse process fromt = T to t = 0 in
Eq.(3) and obtain the marginal distributionp0 (Z; � s). We usep0 (Z; � s) to approximateps(Z) in
Eq. (7). The maximum likelihood estimation can thus be written as

argmax
�

EZ � q(Z jX ( t ) ;� ) [logp0(Z; � s)] : (9)

We perform alignment by tuning the parameter set� of the probabilistic encoder while keeping the
DM p0 (Z; � s) �xed. Note that we have already optimized the VAE objective to obtain an optimal
� s using source data. During alignment, we �rst set� as� s and then linear probe� (e.g., neural
observation read-in layer). Consequently, we not only initialize the model with a good encoder but
also make optimization during alignment much faster and more ef�cient.

In the reverse process, the computation oflogp0(Z; � s ) is tractable through the probability �ow
ODE [25] whose marginal distribution at each time stept matches that of our VP-SDE. However, the
direct computation oflogp0(Z; � s ) will require invoking the ODE solver in each intermediate time
step [38, 39]. Such complexity is prohibitively costly for online neural applications. To circumvent
this issue, we can reform Eq. (9) as follows:

� EZ � q(Z jX ( t ) ;� ) [logp0(Z; � s )] = DKL

�
q(Z j X ( t ) ; � )kp0(Z; � s)

�
+ H

�
q(Z j X ( t ) ; � )

�
; (10)

where the �rst term is the KL divergence from the DM marginal distributionp0 (Z; � s) to the
probabilistic encoder distributionq(Z j X ( t ) ; � ), and the second termH(�) denotes the differential
entropy. For theDKL (�) term in Eq. (10), via the Girsanov theorem [40, 41], we have

DKL

�
q(Z j X ( t ) ; � )kp0(Z; � s)

�
6 L DSM (� ; � s) + DKL (pT (Z; � s)k� (Z)) ; (11)

whereL DSM is the denoising score matching loss in Eq. (5), andpT (�) is the distribution at �nal
time stepT of Eq. (2). Consequently, we could obtain an upper bound of the maximum likelihood
objective, as follows (we provide detailed derivation in Appendix B):

� EZ � q(Z jX ( t ) ;� ) [logp0(Z; � s)] 6 DKL (pT (Z; � s)k� (Z))
| {z }

Constant Term

+ Et �U [0;T ]EZ 0 � q(Z jX ( t ) ;� ) ;� �N (0 ;I l � d )

2

6
4w(t)2 k� � � (Z t ; t; � s)k2

2| {z }
Weighted Noise Residual

� 2r Z � f (Z t ; t)
| {z }

Divergence

3

7
5 :

(12)

Since� (Z) is a �xed prior distribution, it does not depend on parameter� . Thus, our optimization
objective will include only the latter two terms, which are more computationally tractable. The �rst
objective simpli�es to a weighted noise residual for the parameter set� and the second divergence
objective can be approximated using the Hutchinson-Skilling trace estimator [42]. We note that the
recovery of spatio-temporal structure is primarily conducted by the weighted noise residual part,
in which the probabilistic encoder obtains alignment guidance in awareness of the spatio-temporal
structure from� (Z; t; � s). This procedure is illustrated in Figure 2(B).
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In distribution alignment, it is a common practice to directly leverage the ground-truth data samples
by introducing a regularizer term in the optimization function. To encourage the diversity of latent
dynamics after alignment, here we further compute and penalize the Sinkhorn Divergence [43]
between the latent dynamics samples of source domainZ (s) � q(� j X (s) ; � s) and that of target
domainZ ( t ) � q(� j X ( t ) ; � ):

min


h ; Ci F + � H( ); (13)

where each valueC[i ][j ] =


 Z (s)

i � Z ( t )
j





2

2
in matrix C denotes the squared Euclidean cost to move

a probability mass fromZ (s)
i to Z ( t )

j , andH( ) computes the entropy of transport plan . The total
loss for distribution alignment is composed of the term in (13) and the latter two terms on the right
side of (12). We note that the total loss is minimized only with respect to the probabilistic encoder
parameter set� . (see Appendix C for the total loss formula and the detailed algorithm of ERDiff.)

4 Experiments
Datasets. We �rst train and evaluate ERDiff with a synthetic dataset. Then we apply ERDiff to
a non-human primate (NHP) dataset with neural recordings from the primary motor cortex (M1),
in which the primates are performing a center-out reaching task in 8 different directions. The NHP
dataset contains rich cross-day and inter-subject settings that provide us with an ideal test bed.

Baselines for comparison.We compare ERDiff against the following two strong baselines proposed
for the neural distribution alignment task:
� JSDM [24]: a metric-based method that leverages discrete samples from both the source and
target domains. The alignment is performed through the symmetric Jensen–Shannon divergence [44].
� Cycle-GAN [21]: a state-of-the-art GAN-based method that uses cycle-consistent adversarial
networks to align the distributions of latent dynamics.

Considering the neural observations and latent dynamics are in the format of multi-variate time series,
we also compare ERDiff with the following methods aiming at distribution alignment for general
time series data:
� SASA[45]: a metric-based distribution alignment method for time series data regression task
through the extraction of domain-invariant representation.
� DANN [46]: an adversarial learning framework in which a domain classi�er is followed by a
feature extractor through a gradient reversal layer. This layer adjusts the gradient by multiplying it
with a prede�ned negative constant during the training process.
� RDA-MMD [47]: a distribution alignment method via minimizing MMD Loss between the
latent dynamics extracted from LSTM.
� DAF [48]: an adversarial learning framework that uses a transformer-based shared module with
a domain discriminator. During the adaptation step, the domain-invariant features are invariant (Q,
K of self-attention); the domain-speci�c features (V of self-attention) keep tuning.

4.1 Synthetic dataset
Data synthesis and evaluation metrics.We �rst generate a simulated latent dynamics dataset to
illustrate the effect of our ERDiff method on spatio-temporal structure-preserving and distribution
alignment performance. In this setting, we consider modeling the nonlinear latent dynamics to follow
conditionally Continuous Bernoulli (CB) [49] distribution. For each single-trial latent dynamics,
we generate2-dimensional latent variablesZ = f z1:L g and their32-dimensional observations
X = f x1:L g, whereL = 32. We use the following synthesis process and parameter settings to
generate samples for the source and target domains, respectively:

p
�

z(s)
l +1 j z(s)

l

�
=

Y

d

CB
�

z(s)
l +1 ;d j W (s) tanh(z(s)

l;d )
�

; p
�

x (s)
l j z(s)

l

�
= N

�
x (s)

l j R (s) z(s)
l ; K

�
;

p
�

z( t )
l +1 j z( t )

l

�
=

Y

d

CB
�

z( t )
l +1 ;d j W ( t ) tanh(z( t )

l;d )
�

; p
�

x ( t )
l j z( t )

l

�
= N

�
x ( t )

l j R ( t ) z( t )
l ; K

�
;

(14)
wherel 2 f 1; : : : ; Lg, andf W (s) ; R (s) g, f W ( t ) ; R ( t ) g are the speci�c parameter sets of the source
and target domains. To compare and evaluate the latent dynamics alignment performance, we estimate
the trial-average log density of the aligned latent dynamics evaluated at the optimal generation
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Figure 3:Experimental results on the synthetic dataset. (A) Performance comparison on trial-
average negative log-likelihood (NLL) and KL Divergence (KLD).# means the lower the better.
ERDiff achieves the second-lowest NLL and the lowest KLD.(B) True continuous Bernoulli dynamics
in the source domain compared to the latent dynamics aligned by ERDiff and JSDM in the target
domain (blue dots denote the �xed points). ERDiff preserves the spatio-temporal structure of latent
dynamics much better.

distribution:1=L
P L � 1

l =0 logq�
�

z( t )
l

�
, and the trial-averaged KL Divergence to the optimal latent

dynamics distribution:1=L
P L � 1

l =0 DKL

�
p� � (z( t )

l +1 j z( t )
l )kp� ( t ) (z( t )

l +1 j z( t )
l )

�
.

Results on synthetic dataset.We repeat the simulation experiment �ve times and report the mean
and standard deviation of each method in the above two quantitative evaluation metrics, shown in
Figure 3(A). We observe that ERDiff achieves higher alignment performance on both two evaluation
metrics compared to baseline methods. For further analysis, we plot the phase portrait of the true
source domain and those inferred by ERDiff and JSDM in Figure 3(B). Compared to JSDM, ERDiff
can extract and recover the spatio-temporal structure of the synthetic latent dynamics more precisely
and be much closer to the ground truth. These results mainly due to the fact that ERDiff obtains
structure-aware alignment signals from the DM while JSDM neglects this structural information.

4.2 Neural datasets
We conduct extensive experiments on two real-world neural datasets: the non-human-primate (NHP)
primary motor cortex (M1) [8] and Rat hippocampal CA1 [27]. Experiments on these two datasets
use a nearly identical setup. Here we primarily discuss the experimental approach and results related
to the NHP motor cortex dataset. (See Appendix D for the detailed results on the rat hippocampal
CA1 dataset.)

Motor cortex dataset description. We conduct experiments with datasets collected from the
primary motor cortex (M1) of two non-human primates (`C' & `M') [8]. The primates have been
trained to reach one of eight targets at different angles (Figure 4A). Neural recordings from these
two primates have been widely studied [20, 50]. During such a process, their neural spike activities
(signals) in the primary motor cortex (M1) along with the reaching behavior velocity were recorded.
They performed the center-out reaching task multiple times in each direction and only successful
trials were saved. For our experimental evaluation purpose, we select the trials from three recording
sessions for each primate per day. In total, we have 3 days for each primate. We will perform
cross-day(recordings of the same primate performing the task on different days) andinter-subject
(recordings of different primates) experiments.

Data processing and evaluation metrics.The neural recordings of each day and each primate
consist of about 180-220 trials across 3 sessions. For each trial, about 200 neurons are recorded and
the number of time bins is 39 with 20ms intervals. We also bin the velocity of the primate's behavior
into 39 bins. Therefore, we have time-aligned neural data and behavioral data. When training with
the source data, we optimize the VAE model together with the DM. One thing we need to emphasize
here is that we also include a velocity-decoding loss to the VAE loss. The decoder maps the neural
latent to the velocity values, which is a ridge regression model. Therefore, the inferred latent contains
a rich amount of velocity information. During testing, we align the test neural data to the training
neural data so that we can directly apply the velocity decoder to the latent in the test data without
performance degradation. In the training session, the ratio of training and validation set is split
as 80%:20% through 5-fold cross-validation. The post-processed dataset of primate `C' contains
586 trials in total while that of primate `M' contains 632 trials. For the evaluation protocol, since
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