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ABSTRACT

Handcrafted optimizers become prohibitively inefficient for complex black-box
optimization (BBO) tasks. MetaBBO addresses this challenge by meta-learning
to automatically configure optimizers for low-level BBO tasks, thereby eliminat-
ing heuristic dependencies. However, existing methods typically require exten-
sive handcrafted training tasks to learn meta-strategies that generalize to target
tasks, which poses a critical limitation for realistic applications with unknown
task distributions. To overcome the issue, we propose the Adaptive meta Black-
box Optimization Model (ABOM), which performs online parameter adaptation
using solely optimization data from the target task, obviating the need for prede-
fined task distributions. Unlike conventional metaBBO frameworks that decouple
meta-training and optimization phases, ABOM introduces a closed-loop adaptive
parameter learning mechanism, where parameterized evolutionary operators con-
tinuously self-update by leveraging generated populations during optimization.
This paradigm shift enables zero-shot optimization: ABOM achieves competitive
performance on synthetic BBO benchmarks and realistic unmanned aerial vehi-
cle path planning problems without any handcrafted training tasks. Visualization
studies reveal that parameterized evolutionary operators exhibit statistically sig-
nificant search patterns, including natural selection and genetic recombination.

1 INTRODUCTION

Black-box optimization (BBO) problems arise in diverse machine learning applications such as neu-
roevolution [Stanley et al.|(2019); Miikkulainen| (2025)), hyperparameter tuning Bai & Cheng|(2024)),
neural architecture search [Wang et al.[(2023)); |Salmani Pour Avval et al.| (2025), and prompt engi-
neering Romera-Paredes et al.[(2024); Wang et al.| (2025a). In these scenarios, the objective function
is accessible solely through expensive evaluations f(x), with derivative information like gradients
or Hessians inherently unavailable. Evolutionary algorithms (EAs) Eiben & Smith|(2015); |De Jong
(2017) address this challenge by iteratively updating populations through derivative-free heuristic
operators, including selection, crossover, and mutation, to explore complex fitness landscapes. Re-
cent advances in computational infrastructure have enabled EAs to generate robust solutions for
increasingly complex BBO problems Miikkulainen & Forrest| (2021)).

The ”No Free Lunch” (NFL) theorem Wolpert & Macready| (2002) establishes that no optimization
algorithm universally outperforms others across all problem domains. To enhance cross-domain ap-
plicability, numerous adaptive mechanisms have been designed Biack & Schwefel|(1993)); Brest et al.
(2021); [Li et al.| (2013); Hansen| (2016); [Tao et al.|(2021) that leverage optimization data generated
during the search process to dynamically select operators or adjust parameters. Although these adap-
tive methods achieve strong performance on standard benchmarks, they require specialized expertise
in optimization theory and problem characteristics Ma et al.[(2024)). Meta Black-Box Optimization
(MetaBBO) addresses this limitation by automating meta-level strategies Ma et al.| (2025b), such
as algorithm selection [Tian et al.| (2020); \Guo et al|(2024), algorithm configuration [Lange et al.
(2023bja)); (Guo et al.| (2025), solution manipulation [Li et al. (2024; [2025), and generative design
Chen et al.| (2024);|Yang et al.| (2024), through meta-learning (Fig. |1} Left). Yet existing MetaBBO
methods require training on handcrafted task distributions JF or prior knowledge for generalization
to new domains. Since such distributions are often inaccessible in practical scenarios (e.g., when the
target task is unique or data-scarce), this dependency severely limits real-world deployment.
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Figure 1: Conceptual comparison: (Left) MetaBBO methods learn meta-strategies from task distri-
butions but depend on handcrafted training tasks; (Right) Our framework performs adaptive param-
eter learning using self-generated optimization data, eliminating task distribution dependency.

To address this limitation, we propose the Adaptive meta Black-box Optimization Model (ABOM),
a task-free meta-optimizer that adaptively learns parameters using only self-generated data (Fig.
Right). ABOM’s distinguishing feature is an end-to-end differentiable framework that parameter-
izes evolutionary operators as learnable functions (Fig. [J). Inspired by EA dynamics, it employs
attention mechanisms to separately model relationships among individuals, fitness landscapes, and
genetic components, thereby replicating selection, crossover, and mutation as differentiable oper-
ations. Crucially, ABOM updates its parameters during optimization by aligning the generated
offspring population with an elite archive of high-quality solutions, bypassing the need for meta-
training on task distributions. This design yields two key contributions:

» Task-free adaptation: The parameters of ABOM are updated via adaptive learning using
optimization data from the target task, eliminating the reliance on handcrafted training tasks
or heuristic rules. Theoretically, ABOM guarantees convergence to the global optimum.

* Intrinsic interpretability: Attention matrices provide quantifiable insights into search pat-
terns, such as selection bias toward high-fitness individuals and consistent genetic interac-
tion patterns during mutation. Moreover, ABOM supports GPU acceleration out of the box,
without requiring changes to standard EA infrastructure.

2 RELATED WORKS

Evolutionary Algorithms. EAs, such as genetic algorithms (GA)|Holland| (1962)), evolution strate-
gies (ES)Rechenberg| (1984)), particle swarm optimization (PSO) |[Kennedy & Eberhart| (1995)), and
differential evolution (DE) [Storn & Price| (1997), are widely adopted for BBO tasks due to their
derivative-free nature. These methods manipulate populations via heuristic operators but often suf-
fer from inefficiency and fragility when applied to new tasks, as they require labor-intensive manual
parameter tuning. While ABOM draws inspiration from EA dynamics, it eliminates manual tuning
by enabling adaptive parameter learning directly from optimization data.

Adaptive Optimization. To improve cross-domain generalization, adaptive EA variants employ
dynamic operator selection or parameter adjustment such as CMAES Hansen| (2016); Ollivier et al.
(2017), SAHLPSO [Tao et al.| (2021), JDE21 Brest et al.| (2021)). These methods achieve state-of-
the-art results on standard BBO benchmarks but demand deep expertise in optimization theory and
often require problem-specific GPU acceleration for scalability. In contrast, ABOM adheres to a
unified deep learning architecture, replacing heuristic rules with adaptive parameter learning and
reducing deployment barriers.

Meta Black-Box Optimization. MetaBBO techniques leverage meta-learning to automate meta-
level strategies for solving lower-level BBO tasks Ma et al.|(2025b); Wang et al.| (2025b); [Yun et al.
(2025), thereby reducing the need for expert intervention. Common paradigms include algorithm
selection |Tian et al.|(2020); (Guo et al.| (2024), which chooses from a predefined pool of operators;
algorithm configuration |[Lange et al.|(2023bza); |Guo et al.| (2025), which tunes hyperparameters via
meta-strategies; solution manipulation |Li et al.| (2024; 2025), which integrates meta-strategies di-
rectly into the optimization process; and algorithm generation|Chen et al.|(2024));|Yang et al.| (2024)),
which synthesizes entire optimization workflows. Despite their promise, these methods critically
depend on manually designed components, such as discrete algorithm search spaces A, state fea-
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ture spaces, meta-objectives, and training task distributions F. The dependency on handcrafted F
hinders real-world applicability when task distributions are unavailable. ABOM addresses this limi-
tation by unifying evolutionary operators into a continuous, differentiable parameter space, enabling
adaptive parameter learning without requiring J or discrete algorithm search spaces.

3 ADAPTIVE META BLACK-B0OX OPTIMIZATION MODEL

3.1 PROBLEM DEFINITION

A target BBO task is defined as:
min fr(x), (D

xER?
where x is the solution vector in a d-dimensional search space. MetaBBO methods formalize the
automated design of optimizers as a triplet 7 := (A, R, F), with the discrete algorithm search space
A , the performance metric R, and the training task distribution F. The meta-optimization objective
maximizes expected performance |Ma et al.| (2025b):

J(8) = maxE 5 [R(A, 7o, f)] 2)

where the meta-strategy mg selects the algorithm (or configuration) a € A for each task f. The
Eq. needs to be designed manually F. To mitigate the need for F, we define adaptive
MetaBBO as Tgaptive = (A, R, fr), operating directly on the target task fr. Using cumula-
tive optimization knowledge M) = (X® Y®) where X = {x(1) ... x®1 (solutions) and
YO = {f(xM), ..., f(x®)} (evaluations) during optimization, the Eq. becomes the follow-
ing:
t
J(0) = max {R(.A, 79, M( ))} , 3)

with @ updated online using M ®). However, A and 7 still require expert-crafted components.

To address this limitation, ABOM replaces the discrete meta-optimization framework (A, 7g) with
a single, differentiable optimizer g parameterized by 6. The final objective is:

J(6) = max (R (ra, M), &)

where @ is updated only using M) from fr, thereby eliminating the need for manual design of
F, discrete search spaces .A, and expert-dependent feature engineering. The Eq. () establishes an
end-to-end differentiable framework where adaptive parameter learning occurs through continuous
feedback from M®).

3.2 META-STRATEGY ARCHITECTURE

ABOM implements a differentiable meta-strategy P(!) = 7o(P(®) F®)) (Fig. [2| Bottom) that

learns evolutionary operators via attention mechanisms [Vaswani et al.| (2017). At generation ¢,

th : t) _— T, L OT
e population P\ = Ip;” ; ...; py

(®

%

€ RN*4 represents N candidate solutions in the

search space, where the individual p;” € R? is a solution vector. The fitness values F(*) =

[ fT(pgt)); s fT(pg\t,))} € R¥ are scalar evaluations fT(pEt)) obtained via black-box queries to the
target objective fr (), with lower values indicating better solutions. Given the population-fitness
pair, ABOM generates offspring through three unified modules:

Selection. The selection matrix A(Y) € RV*N is computed to jointly model relationships in the
solution space and among fitness values via attention:
(P(t)wQP)(P(t)WKP)T + (F(t)wQF)(F(t)WKF)T )
Vda ’
where WP ' WHEP ¢ Rd*da project solution features, and WO, WEF ¢ R1xda process fitness
values. The first term captures spatial relationships in the solution space, while the second term en-

codes fitness-driven selection pressure. This dual-path design ensures that recombination prioritizes
solutions based on both their search-space positioning and fitness ranking, rather than fitness alone.

A® = softmax < 5)
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Figure 2: Workflow of ABOM: (Top) Adaptive optimization loop: Initialization, reproduction, eval-
uation, elitism, and parameter adaptation; (Bottom) Meta-strategies for reproduction: Attention-
based evolutionary operators, including selection, crossover, and mutation.

Crossover. The intermediate population P’'(*) is generated by:
P'® = P L MLP, (A(t)P(t)) , ©6)

where MLPy_(z) = Wy tanh(W1z + by) + by with W, € R¥X9m b, € RIm W, € Rm*d,
b, € R?. Dropout with rate pc is applied to the hidden layer during both adaptive parameter learn-
ing and inference. The mechanism ensures persistent exploration through controlled randomness
and is consistently maintained across all stochastic operations in ABOM. The term AP ®) com-
putes an adaptive recombination pool: each row Zjvzl Agt]) p;t) represents a context-aware blend of
parent solutions, where weights AEtJ) dynamically balance proximity in solution space and fitness-
driven selection pressure.

Mutation. For each individual p;(t) € R%in P’'®), offspring p.") is generated via:

(p{(t)WQJVI) (p{(t)Wszf )T
Vda ’

f)l(,t) = p;(t) + MLPy,, (Ml(.t)p;(t)> , Mgt) = softmax (7

where WM, WM € RT*44, and MLPy,, (z) = W4 tanh(W3z +bg) + by with W3 € R,
by € R, W, € R¥*xd b, ¢ R% Following the same exploration principle as crossover,

dropout with rate pj, is applied during inference to maintain persistent exploration. The mutation

matrix M(®) ¢ R4*4 dynamically models gene-wise dependencies: each entry Mgt,l quantifies the

interaction strength between the j-th and k-th dimensions, enabling context-aware perturbations.
Finally, offspring are concatenated as:

P® — f)gt)T; o f)g\tf)q c R4, 8)

The set 8 containing all parameters is:
6 = (W WHKP W Wi WM WML g, U0, )

with . = {W1,b1, Wa,bo}, 0,, = {W3, b3, Wy, bs}. Note that pc and pjs are hyperparam-
eters that govern the intensity of exploration. All modules share attention dimension d4 and MLP
hidden dimension dj;. The parameterization transforms evolutionary operators into stochastic yet
differentiable functions, where structured randomness maintains exploration without compromising
gradient-based adaptation.
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3.3 ADAPTIVE PARAMETER LEARNING

As shown in Fig. [2| (Top), ABOM’s optimization loop comprises: 1) Initialization: The initial
population P(©) is randomly generated by Latin hypercube sampling; 2) Reproduction: Offspring
P®) are generated via P() = 7o(P®) F(1)); 3) Evaluation: Fitness values F(*) are computed for
f’(t); 4) Elitism Deb et al.|(2002): The elite archive E® € RN*4 formed by the top N individuals

from P® U f’(t), and their fitness values Fg) € RN, are carried over to the next generation; 5)
Parameter adaptation: 6 is updated via adaptive parameter learning. The pseudocode of ABOM
can be found in the Appendix [C| (Alg. [I). Crucially, ABOM performs adaptive parameter learning
by minimizing the distance between offspring and the elite archive:

meinc(t) =|P® —E®|?2, (10)

where, E(®) denotes the elite archive. The objective refines evolutionary operators using task-specific
knowledge from M (Y. From a learning perspective, adaptive parameter learning operates in a
supervised paradigm. Gradients of £ with respect to 6 are computed, and 6 < 0 — nVyL® is
updated via a gradient-based optimizer (e.g., AdamW |Loshchilov & Hutter| (2019)). The process
ensures continuous adaptation to the target task without handcrafted training tasks.

Discussion. ABOM introduces three algorithmic properties that enhance its suitability for BBO: (1)
Learnable operators: evolutionary mechanisms are parameterized and adapted online via gradient-
based learning, reducing reliance on hand-designed heuristics; (2) GPU-parallelizable design: neu-
ral computation enables efficient batched execution on GPU, reducing wall-clock time per iteration;
and (3) Interpretable dynamics: learned selection and mutation matrices reveal structured patterns
in solution-fitness interactions and dimensional dependencies.

3.4 COMPUTATIONAL COMPLEXITY AND CONVERGENCE ANALYSIS

The computational cost of ABOM is primarily dominated by the selection, crossover, and mutation.
The selection matrix (Eq.|5) incurs complexity O(Ndd + N?d ), where N is the population size,
d the search space dimension, and d 4 the attention dimension. The MLP of the crossover (Eq. [6)
contributes O(Nd adpr + Ndjsd), with dpy the hidden dimension of the MLP. The mutation (Eq.
contributes O(d?d s + ddadys). Summing these, the total complexity is:

O(Nddy + N?dy + Ndady + Ndprd + d?d g + ddadyy). (11)

Assuming d4 = dj; = d for simplicity, the formulation (11) reduces to O(Nd? + N2d + d3). In
typical high-dimensional optimization (N < d), the leading term is O(d?), indicating that compu-
tational cost is primarily governed by the problem dimension. Note that d 4 and dj; can be adjusted
in practice to balance expressivity and efficiency. Next, we establish that ABOM achieves global
convergence under the following assumption:

Assumption 1 The search space X C R® is compact, the objective fr is continuous with global
minimizer X* in the interior of X, and ABOM uses tanh-activated MLPs (dy; > 1) with dropout
rates (0 < po, pyv < 1) during inference (operator execution).

Let f; = min,cgw fr(x) denote the best objective value in the elite archive. The filtration
Fi=cPO, . ., PO 9O 91) captures all algorithmic history up to generation . ABOM
®)

preserves a non-vanishing probability of generating offspring p, ” near the global optimum:

Corollary 1 (Exploration Guarantee) For any § > 0, 3~ > 0 such that V¥t > 0,
P(3i: |p) —x*| <6 |F)>1—(1—9)N >0. (12)

Let f* = fr(x*) be the global optimum value. Corollary [2| establishes a positive drift condition:
when f;" > f* + ¢, the expected improvement is strictly positive.

Corollary 2 (Progress Guarantee) For any € > 0, 31(e) > 0 such that ¥t > 0,
ELff = [l [ Fe i > [+ e] = n(e). (13)
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Combining these properties, we have:

Theorem 3.1 (Global Convergence) Under Assumption[I} ABOM converges to the global optimum
almost surely:

t"ﬂ)f* as t— oo. (14)

All proofs are provided in Appendix[D]

4 EXPERIMENTS

In this section, we address the following research questions: RQ1 (Performance Comparison): How
does ABOM compare against classical and state-of-the-art BBO baselines on both synthetic and
real-world benchmarks? RQ2 (Visualization Study): What statistical patterns emerge in ABOM’s
selection and mutation matrices? RQ3 (Ablation Study): Are all components of ABOM neces-
sary for achieving competitive performance? RQ4 (Parameter Analysis): How sensitive is ABOM’s
performance to its key hyperparameters? We first describe the experimental setup and then system-
atically address RQ1-RQ4.

4.1 EXPERIMENTAL SETUP

BBO Tasks. We evaluate ABOM on the advanced MetaBox Benchmark Ma et al.[ (2023} |2025a)),
comprising both the synthetic black-box optimization benchmark (BBOB)|Hansen et al.| (2021 and
the realistic unmanned aerial vehicle (UAV) path planning benchmark Shehadeh & Kiidelal (2025).
The BBOB benchmark suite, widely adopted for evaluating black-box optimizers, comprises 24 con-
tinuous functions that exhibit diverse global optimization characteristics, including unimodal, mul-
timodal, rotated, and shifted structures, with varying properties of Lipschitz continuity and second-
order differentiability. We set the search space to [—100, 100]¢ with d = 30/100/500. The UAV
benchmark provides 56 terrain-based problem instances for path planning in realistic landscapes
with cylindrical threats. The objective is to select a specified number of path nodes in 3D space to
minimize the total flight path length while ensuring collision-free navigation. The maximum func-
tion evaluations for BBOB and UAV are set to 20,000 and 2,500, respectively. All experiments are
conducted on a Linux platform with an NVIDIA RTX 2080 Ti GPU (12 GB memory, CUDA 11.3).
Detailed task configurations and other experimental results are provided in Appendices [} [H] and[]}

Baselines. We compare ABOM against three categories of baselines: (1) Traditional BBO meth-
ods: Random Search (RS) Bergstra & Bengio| (2012), PSO Kennedy & Eberhart| (1995), and DE
Storn & Price| (1997); (2) Adaptive optimization variants: SAHLPSO (advanced adaptive PSO
variant) Tao et al.[(2021)), JDE21 (advanced adaptive DE variant) Brest et al.[(2021), and CMAES
(state-of-the-art adaptive ES variant) Hansen| (2016); Ollivier et al.| (2017); (3) MetaBBO meth-
ods: GLEET (advanced MetaBBO for PSO) [Ma et al.| (2024), RLDEAFL (advanced MetaBBO
for DE) |Guo et al| (2025), LES (advanced MetaBBO for ES) [Lange et al.| (2023b)), and GLHF
(advanced MetaBBO for solution manipulation) [Li et al| (2024). All baselines follow the config-
urations outlined in the original papers. For all MetaBBO methods, we train them in the same
problem distribution as RLDEAFL |Guo et al.| (2025) using the recommended settings. For BBOB,
8 out of the 24 problem instances are used as the training set, and the remaining 16 instances
(fa, fo ~ f1a, f18 ~ fo0, fa2 ~ foq) serve as the test set. For UAV, the 56 problem instances
are evenly divided into training and test sets, with a partition of 50% / 50%. All parameter configu-
rations are provided in the Appendix [G|

4.2 PERFORMANCE COMPARISON (RQ1)

Results on BBOB. We evaluate ABOM against the baselines on the BBOB suite with d =
30/100/500. Tabless and [8] (See Appendix [K) show the mean and standard deviation over
30 runs for each baseline. Convergence curves of average normalized cost across all cases are pro-
vided in the Appendix [Kl ABOM matches or outperforms all baselines, achieving state-of-the-art
performance, which validates the effectiveness of the proposed method. Both ABOM and adaptive
optimization methods adjust the parameters online using optimization data. ABOM’s parameterized
operators offer greater flexibility than the fixed adaptation rules in the variant, leading to stronger
performance. Compared to existing metaBBO algorithms, ABOM’s improvements highlight the
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Table 1: The comparison results of the baselines on the BBOB suite with d = 500. All results are
reported as the mean and standard deviation (mean =+ std) over 30 independent runs. Symbols “—,
“~”, and “+” imply that the corresponding baseline is significantly worse, similar, and better than
ABOM on the Wilcoxon rank-sum test with 95% confidence level, respectively. The best results are
indicated in bold, and the suboptimal results are underlined.

Traditional BBO Adaptive Variants MetaBBO Ours

ID RS PSO DE SAHLPSO JDE21 CMAES GLEET RLDEAFL LES GLHF ABOM

f 3.700e+5  8.863e+4  3.166e+5  2.947c+5  7.876e+4  1.447c+4  2.605e+5  4.573e+4  2.363e+5  2.324e+5  1.215e+4
4 £1.192e44 +1.525e44 +3.506e+4 +2.418e+4 +2.086e+4 7.83e+2 £2.173e+4 £1.07%+4 +£4.075e+3 £7.512e+3 £5.389e+2
P 1.529e+7 5266046 1.206e+7  1.026e47  4.399e+6  2.164e+d  9.870e+6  1.875e+6  9.253e+6  9.194e+6  6.201e+3
6 46.327e+5 £5262e+5 +1.390e+6  A3e+5  £9.05le+5 £6.814e+3 £2.409e+5 £2.855e+5 £9.110e+4 £2.104e+5 +£6.326e+2
f 3.92¢+4  2.81le+d  3366e+4  2.774e+d  1.856e+4  1.289e+5  2.525e+4  1.48le+d  2285e+4  2.073e+4  2.432e+3
T 41.094e+3 £2309e+3 £293e+3 £2246e+3 £2.522e+3 £5883e+2 £1.623e+3 £1.657e+3 +£2.143e+2  +3.669e+2 +2.250e+2
f 6.052¢48  4.083e+8  4.153¢+8  2.194e+8  1332e+8  2.827e+5  1.183e+8  5.807e+7  5.068¢+7  5.055e+7  8.886e+4
8 4£2354e47 £3.847e+7 4+4.952e+7 £2.342e+7 +2.237e+7 +£6292e+4 +£127le+7 +£128e+7 £2.664e+5 £5.094e+5 41.267e+5
f 4.15%+8  1.719e+8  2.002e+8  5.151e+7  3.326e+7  2.533e+5  1.473e+7  1.145e+7  4.548e+3  3.243e+3  1.792e+5
9 4£1.368e+7 £2.766e+7 43.504e+7 +1.06e+7 +1.238e+7 +5.445e+4 +£3.238e+6 +£3.538e+6 £3.713e+0 £5.560e-2 45.876e+4
P 2.832e+8  8.026e+7  2.440e+8  2229e+8  5.459e+7  1.580e+7  2.097e+8  2.232e+7  2.085e+8  2.002e+8  5.958e+6
10 4£1366e+7 +9.438¢+6 43.217e+7 +2.573¢+7 +1.667e+7 +2.835e+6 +2.18e+7 +£3.291e+6 +£4.324e+6 +9.454e+6 45.916e+5
P 5.88le+3  6.187e+3  4.999e+3  4.835¢+3  437le+3  1.248¢+4  3.722e+3  3.25%+3  5.107e+3  2.529e+3  5.392¢+3
1 4159le+2 47.026e+2 =+5.091e+2 £8.117e+2 £5.691e+2 +£225le+2 +£3.575e42 +£2.521e+2 +8.48le+l +3.248e+1 +3.159¢+2
P 3.015e+10  1.414e+10  2.055e+10  1.675e+10  4.800e+9  1.32e+8  1.235e+10 2.819e+9  1.084e+10  9.757e+9  2.733e+7
12 42064649 +1.40le+9 £4.629e+9 £3.634e+9 +£9.841e+8 +£2.254e+7 £2.046e49 +3.899e+8 +5.738e+8 +6.844e+8 +4.903e+7
P l4dde+4  1319e+4  1.324e+4  1.197e+4  8.994e+3  2363e+3  1.1l6e+d  7.073e+3  1255e+4  1.024e+4  1.221e+3
13 41.618+2 £275e+2 £4.159%+2 £2857e+2 £6370e+2 £1.43e+2  £3.338e42 +£3.424e42  £5.007e+1  £5299%+1 +3.010e+2
f 6.634e+2  4.824e+2  5.08le+2  4208e+2  1.842e+2  2494e+l  323le+2  1.157e+2  1.458e+3  2.542e+2  1.487e+l
14 4224le+l +4296e+] +7.419e+1 +£4277e+1 +£2.998e+] +£3.554e+0 +£2.764e+] +£1.216e+1 +6.108e+0 +8.222e+0 +2.291e+0
f 1.428¢+2  1.017e+2  1.093e+2  9.814e+]  7.074e+l  1.100e+3  8.53%e+1  5.495e+1  3.704e+2  6.875e+l  3.792e+1
18 4£5025e40 49.614e+0 48.297e+0 £7.383¢+0 +8.102e+0 +1.069e+1 +8.386e+0 +4.191e+0 +£6.062e-1 =1.422e+0 +4.075e+0
P 209e+3  9.012e+2  9.606e+2  2.764e+2  1.772e+2  1.374e+l  8.47%+1  8.767e+l  2.502e+3  2.50de-1  1.813e+1
19 46.04ler] £1.148e42 +1.704e+2 +4.896e+1 +5.848e+1 +5.336e-1 +1.668e+1 +£2.029e+1 +£8225¢-1 +3.113e-6 =41.603¢+0
P 3.233e+6  2374e+6  2432e+6  147le+6  5.884e+5  3.802e+3  9.466e+5  2.136e+5  3.772e+5  3.753e+5  2.565e+2
200 41.022e45 42.320e+5 £2.800e+5 41.945e+5 1.564e+5 41.702e+3 £1.069e+5 £6.086e+4 +£6.088e+3 +£6.417e+3 +£1.351e+3
P 8.636e+1  8.609¢+1 8.6le+1 8.542¢+1  8.003e+1  2.85lerl  8478e+l  7.15%+1  1.184e+3  8356e+1  4.971e+0
22 419422 49432e2 4137le-l 42480e-1 41.838e+0 £3.852-1 £2.648e-1 £2.18e+0 +£4.39%4e-2  £7.540e2  £6.520e+0
P 1.652e+0  1.641e+0  1.65%+0  1.658e+0  1.586e+0  3.959e-1  1.659e+0  1.559e+0  1202e+3  1.663e+0  1.656e+0
23 4355le2 44.29le2 42456e-2 45790e-2 £6.784e-2 +£3.54e-2 +£4429e-2 £1.525e-1 £3.532e-2 £3.53%-2 +£3.434e2
f 2.089e+4  1.604e+d4  1.610e+4  1.222e+4  1.198e+4  4.986e+4  1.010e+4 9.9¢+3 8.822¢+43  7.437e+3  8.09+3
24 4255542 +5.679+2 +9.073e+2 +4.744e+2 +9.584e+2 +3337e+l +£4.16e+2 +£6456e+2 +£5392+1 +7.572e+1 +£3.268¢+2
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Figure 3: Performance on 28 UAV problems: (Left) Convergence curve of average normalized cost
across all problems. Costs (lower is better) are min-max normalized for each case. Detailed results
are shown in the Appendix (Right) Average runtime (GPU seconds) over 30 independent runs.

importance of parameter adaptation in enabling effective meta-optimization across diverse prob-
lem instances. The results suggest that adaptive mechanisms can support competitive performance
without relying on handcrafted training tasks.

Results on UAV. We evaluate ABOM on 28 UAV benchmarks to validate its practical effectiveness.
Fig. [3] shows the convergence of the normalized cost and runtime. ABOM converges fastest under
limited evaluations and achieves the lowest normalized cost. Unlike metaBBO-based methods (e.g.,
GLHF, GLEET, RLDEAFL, LES), ABOM and adaptive optimization methods eliminate the need
for training on hand-crafted tasks and associated overhead. Through GPU-accelerated evolution and
adaptive parameter learning, ABOM achieves significantly faster runtime than most baselines.
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Figure 4: Learned selection and mutation matrices of ABOM on BBOB functions fy, f11, and fo4
(d = 30) at Generation 1, 500, and 1000. For the selection matrix, axes represent individuals ranked
by their fitness values (0 is the best). For the mutation matrix, axes represent gene (variable) indices.

4.3  VISUALIZATION STUDY (RQ2) AND ABLATION STUDY (RQ3)

We visualize the learned selection and mutation matrices of ABOM on three BBOB functions (f4,
f11, foa, d = 30) in Fig. E In all cases, the matrices develop structured statistical patterns as
optimization proceeds. The selection matrix shows row similarity, indicating that ABOM learns
to generate offspring from a small subset of individuals. This behavior resembles the difference
vector mechanism in DE [Storn & Price| (1997), which reflects the strong expressive capacity of
the learnable operator. Individuals with higher fitness are preferentially selected, in line with the
principle of survival of the fittest. The best individual is not always selected, which may help
preserve population diversity. The mutation matrix evolves from random initialization to an ordered
structure, suggesting that mutation follows consistent patterns adapted to the problem. These results
demonstrate that ABOM provides greater interpretability than the metaBBO methods, which directly

map neural networks to solution manipulation[Li et al.| (2024} 2025).

Table 2: Ablation study of ABOM’s key components on the BBOB suite with d = 30.

D No Crossover No Mutation No Parameter Adaptation ABOM

(mean =+ std)

(mean =+ std)

(mean =+ std)

(mean =+ std)

fa 4.23e+03 =+ 3.02e+03 1.01e+03 =+ 5.44e+02 2.58e+04 + 1.67e+04 5.45e+02 + 2.95e+02
fe 1.62e+04 &£ 1.55e+04 1.10e+04 =+ 1.95e+04 4.54e+04 + 3.61e+04 2.60e+02 + 2.64e+02
f7 6.39e+03 £ 6.91e+03 1.18e+03 =+ 6.86e+02 1.67e+04 £ 1.11e+04 5.58e+02 £ 2.77e+02
fs 1.52e+03 £ 2.91e+03 1.94e+03 £ 3.62e+03 1.03e+08 = 2.68e+08 1.15e+02 + 1.56e+02
fo 1.96e+04 £ 7.02e+04 1.13e+03 = 3.15e+03 2.49e+06 =+ 5.94e+06 2.35e+03 £ 5.30e+03
fio 1.16e+07 £ 7.11e+06 1.07e+07 = 3.48e+06 3.65e+07 £ 1.64e+07 9.72e+05 + 7.38e+05
f11 1.05e+05 + 3.19e+04 1.00e+05 + 2.68e+04 8.00e+04 + 2.20e+04 2.61e+04 + 1.01e+04
fi2 1.12e+09 + 3.12e+09 2.30e+07 £ 5.74e+07 1.63e+10 + 1.61e+10 5.28e+07 + 1.45e+08
f13 7.54e+01 £ 4.06e+01 7.71e+01 £ 3.93e+01 8.71e+03 + 3.16e+03 7.28e+01 £ 3.07e+01
fia 8.43e+01 £ 7.23e+01 9.29e+00 =+ 2.49e+01 9.28e+02 £ 5.96e+02 3.46e-02 £ 3.39e-02

fis 1.18e+03 £ 2.21e+03 7.02e+02 == 2.46e+02 4.94e+02 £ 1.66e+02 5.12e+02 £ 1.37e+02
f19 2.35e+01 =+ 3.45e+01 1.23e+01 =4 1.23e+01 1.64e+02 == 3.27e+02 2.48e-01 £ 1.11e-03

f20 -6.54e+01 £ 4.95e+00  -6.58e+01 =+ 3.53e+00 -5.82e+01 == 4.19e+00 -6.57e+01 =+ 3.80e+00
fa2 8.66e+01 =+ 0.00e+00 8.66e+01 =+ 0.00e+00 8.66e+01 £ 0.00e+00 8.66e+01 + 0.00e+00
fo23 3.03e+00 =+ 5.33e-01 3.12e+00 =+ 4.54e-01 3.20e+00 + 4.25¢-01 3.01e-01 =+ 2.19¢-01

foa 2.92e+02 + 2.46e+02 2.30e+02 =+ 5.31e+01 4.94e+03 + 3.41e+03 2.44e+02 + 2.37e+01

—/ =+ 13/3/0 10/3/3 14/1/1 -

We conduct an ablation study comparing the proposed ABOM with variants that disable specific
mechanisms, including no crossover, no mutation, and no parameter adaptation. Table [2| presents
the mean and standard deviation over 30 runs on the BBOB suite with d = 30. Table [2]illustrates
that both crossover and mutation are crucial components, as their removal individually causes sig-
nificant performance deterioration. Furthermore, the variant without parameter adaptation performs
significantly worse than ABOM, underscoring the critical importance of the adaptive mechanism for
achieving robust and high-quality optimization.
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4.4 PARAMETER ANALYSIS (RQ4)

Fig. [5|illustrates ABOM’s hyperparameter sensitivity on the BBOB suite (d = 30). A population
size of 20 proves sufficient for robust performance across most functions within 20,000 evaluations.
Similarly, a hidden dimension d,; smaller than d (e.g., dj; = 16) often achieves competitive results.
In practice, dj; should be carefully configured to balance computational efficiency and optimization
quality effectively. The parameters po and pj, exhibit optimal performance at 0.95, indicating that
higher values increase stochasticity and exploration. Nevertheless, setting either parameter to 1
eliminates beneficial randomness, degrading performance. Thus, controlled stochasticity is crucial
for maintaining the balance between exploitation and diversity.

i
o
-
=3

fa fa
fe- fe
o
;- RS E
fo- 083 g 082
o o
ffgr g ffg %
10} L N 2
am 068 fy,y 068
S f2 Y 5ha [
C fi3 g T s g
2 fa 0.4z 2ha 70.4;';’
fig ©  fig °
fio Y f s
©
fa0 02E fo 0.2 g
22 g 22 S
fa3 f23 =
faa faa
. | | | ' -0.0 . v 0 ) i
10 20 30 40 50 8 16 32 64 128 0.0
Population Size N Hidden Dimension dm
(a) N (b) dpr

Iy
o

I
o

o
©

o
3
/

o
>
o
>

°
=
<
=

o

o

H
4

Normalized Average Objective Value
°
~

Normalized Average Objective Value
/

o
°
o
>

H N 5 S
N oY > o2
Crossover dropout rate pc

o

Mutation dropout rate py

(©) pc d) pm

Figure 5: Sensitivity analysis of key hyperparameters on the BBOB suite with d = 30: Algorithm
performance across different settings for population size (/V), hidden dimension (d;y), crossover
dropout rate (pc), and mutation dropout rate (pyr). The learning rate analysis is in Appendixm

5 CONCLUSION AND DISCUSSION

Summary. We present a task-free adaptive metaBBO method, ABOM, which eliminates depen-
dency on handcrafted training tasks by performing online parameter adaptation using only opti-
mization data from the target task. Unlike conventional MetaBBO methods that require offline meta-
training, ABOM integrates parameter learning directly into the evolutionary loop, enabling zero-shot
generalization. Our framework parameterizes evolutionary operators as differentiable modules, up-
dated via gradient descent to align offspring with elites, thereby eliminating the need for pretraining
or heuristic design. Empirical results in synthetic and realistic benchmarks demonstrate that ABOM
matches or outperforms advanced baselines without prior task knowledge. Attention visualization
reveals interpretable search behaviors with consistent structural patterns. Thus, ABOM establishes
a task-free paradigm for metaBBO, where learning and search co-evolve in real time.

Limitations and Future Work. Current limitations motivate several promising directions: (1) Ad-
dressing the cubic computational bottleneck (O(d?)) through sparse or low-rank attention mecha-
nisms to reduce ABOM’s complexity; (2) Dynamically adapting population size and model capacity
during optimization; (3) Conducting a convergence rate analysis grounded in the theoretical exam-
ination of adaptive parameter learning in ABOM; and (4) Exploring hybrid training paradigms that
integrate pretraining on prior knowledge with online adaptation, thereby enhancing optimization
efficiency and bridging the gap between task-agnostic adaptation and cross-task generalization.
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A  REPRODUCIBILITY STATEMENT

To ensure the reproducibility, we have taken the following measures:

* Source Code: We provide a complete implementation of the Adaptive meta Black-box
Optimization Model (ABOM) at the following repository: https://anonymous.
4open.science/r/ABOM-A343/.

¢ Algorithm Specification: ABOM is fully detailed in Section 3| including the mathemati-
cal formulations for the selection, crossover, and mutation operators. The complete pseu-
docode for the optimization loop is provided in Algorithm 1 (Appendix [C).

» Experimental Setup: All baselines are implemented and evaluated using the state-of-the-
art MetaBox benchmark platform Ma et al.| (2023 |2025a). This ensures a standardized,
fair, and reproducible comparison. Appendix [F|describes the BBOB and UAV benchmarks,
including their characteristics, search space dimensions, and evaluation budgets. Appendix
[G] details the hyperparameter settings for all baselines as specified in the original papers
and implemented in MetaBox.

By providing the code, algorithmic descriptions, and experimental configurations on the unified
MetaBox platform, we aim to enable other researchers to fully reproduce and build upon our results.

B USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely as a general-purpose writing assistance tool. Their
role was limited to language polishing, grammatical refinement, and improving the clarity and flu-
ency of the paper. LLMs did not contribute to the conception of research ideas, experimental design,
data analysis, or interpretation of results. All intellectual contributions, including the formulation of
the problem, methodology, and conclusions, were made entirely by the human authors.

C PSEUDOCODE OF ABOM

Algorithm 1 Adaptive meta Black-box Optimization Model (ABOM)

Input: Target black-box optimization task fr, population size [N, max generations 7', crossover
dropout rate pc, mutation dropout rate pys, learning rate ), attention dimension d 4, and MLP
hidden dimension dp,.
Initialize P(°) via Latin hypercube sampling;
Evaluate: F(©) « f7(P©);
fort =0toT —1do
Generate offspring: P() < mg(P®)  F®):d 4, dus, po, par) 5
Evaluate: F(®) «— f(P®);
Form elite archive: E®, F) « topy (P(t) U P(t)> ,topy (F(t) U F(t));
2

AN AN A e

PO _ B®

~

Update parameters by AdamW: 6 < 0 — nVg

8 Elitism: P(t+) « E®, F+)  FlY;
9: end for
Output: Optimal individual (solution) p* = arg min,cpw fr(p)-

D CONVERGENCE ANALYSIS OF ABOM

This section presents a convergence analysis of ABOM under some assumptions. We rigorously
prove that ABOM converges with probability 1 to the global optimum of the objective function.
Let X C R? be a compact search space and fr : X — R be a continuous objective function
with global minimum f* = fr(x*). ABOM maintains a population P(*) ¢ RN*? at generation
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t, with corresponding fitness values F(*). For the convergence analysis, we make the following
assumptions:

Assumption 2 The following conditions hold:

(i) The global optimum x* lies in the interior of X.
(ii) Dropout rates satisfy 0 < pc,py < 1.

(iii) MLP hidden dimension dy; > 1 with tanh activation.
Define f; = ming g fr(x), where E() is the elite archive containing the top N individuals from
POUP®, Let F, = o(P© ..., P® 90 9®) be the filtration representing all information
up to generation ¢. The elitism mechanism ensures f ; < f7 almost surely, implying E[f/, ; |
Fi] < fi. Since fr is bounded on the compact set X, the sequence { f;*, F;} forms a lower-bounded
supermartingale. By the martingale convergence theorem Hall & Heyde|(2014), f; converges with

probability 1 to the random variable f* > f*. To establish global convergence, we need to prove
fx = f* with probability 1.

Lemma 1 Under Assumption[2] for any § > 0, there exists v > 0 such that:
P(3i: p —x*|| < 8| F) >1—(1—7)N >0. (15)
Proof 1 For the crossover operation, consider any parent pl(-t) € X andlet v =x* — pl(-t). Define
the MLP configuration with W1 = 0, by = 0, Wy = 0, and by = v. Then:
MLPg: (AOp{") = Wy tanh (W, APl 4+ by) + by = v. (16)

Consequently:
p'" + MLP,, (AOp!) = x*. (17)

By continuity of the MLP (as a composition of continuous functions), there exists € > 0 such that for
all 0. € N(0%):
by + MLP,, (A®p") —x*|| < 6/2. (18)

Define . = P(Gg) € N.(0%) | Ft). Given the parameter update ol — gV — nVﬁ(th)) +¢®
with stochastic perturbations €% from dropout patterns D) ~ Bernoulli(1 — pc ), which have
minimum probability mass:

mDin P(D® = D) = (min{pc, 1 — pc})™ >0, (19)

and since the conditional distribution of 99 has positive density, there exists ¢, > 0 such that:

tre > (min{pc, 1 —pc )™ - ¢, > 0. (20)

For the mutation operation, consider any intermediate solution p;(t) and let w = x* — p;(t). Define
the MLP configuration with W3 = 0, bs = 0, W4 = 0, and by = w. Then:

7

MLP,. (MYp ) = W, tanh (WM P p Y 4 by) + by = w. 1)

Consequently:
p.” + MLPy, (M{"p, ")) = x". (22)

By identical continuity properties, there exists € > 0 such that for all 0., € N(65,):

Ip;" + MLP,,, (M7, ") — x7|| < §/2. 23)

Define i, = ]P’(Hg,? € N.(0%,) | Ft)- By analogous reasoning to the crossover operation:

fim > (min{par, 1 — par )™ - ¢} > 0, (24)

14
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where ¢, > 0 is determined by mutation parameters.
The probability that a single offspring f)l(-t) falls within § of X* satisfies:

P(p" — x*|| < 8 | Fi) > prepim. (25)

Let v = pcptm > 0, which is a positive constant independent of t and depends only on hyperparam-
eters pc, Py, dar, and the adaptive parameter learning. Finally, for N independent offspring:

N
PEi: [ - x| <0 | F) =1-T[a-P(p{” x| < 5| F)) = 1= (1 =7 > 0. (26)

i=1

Define the distance function V; = f* — f* > 0. Using Lemma [I] we establish the following drift
condition He & Yaol|(2001)); [ Zhou et al.| (2019):

Lemma 2 Under Assumption Sor any € > 0, there exists n(€) > 0 such that:
E[V; = Vg1 | 72, Vi > €] > n(e) > 0. 27
Proof 2 Define the event Ay = {3i : ||f)§t) — x*|| < 8}, where 6 > 0 is chosen such that for all

x € X with ||[x — x*|| < §, we have fr(x) < f* + €/2 (which exists by the continuity of fr and
Assumption2fi)). By Lemmall} there exists v > 0 such that:

P(A | Fo,Vi>e)>1—(1—y)N >0. (28)
When Ay occurs, the elite archive at generation t+ 1 contains at least one solution with fitness value

less than f* 4 €/2, so:
Vigr = fign — fF<e/2. (29)

When Ay does not occur, the elitism mechanism ensures Vi1 < Vi (since the elite archive preserves
the best solutions). Therefore, the expected drift can be decomposed as:

E[V; = Vigr | Fi, Vi > € = E[Vi = Vig | Fi, Vi > € Af] - P(A, | Fi, Vi > ) (30)
FEIV, = Vigr | Fu Vi > € A P(AS | Fu Vi > ). (3D)

For the first term, using Eq. (29) and the condition V; > e:

EVi = Vi | Fo, Vi > €, Al >V, —€/2 (32)
>e—€/2=¢€/2. (33)

For the second term, since V11 < V; by the elitism mechanism:

E[Vi = Visr | Ft, Vi > €, Af] 2 0. (34)

Combining these results with Eq. (28):
EV, = Vig1 | Fi,Vi> € > (/2) - (1 — (1= )N) +0-P(AS | Fi, Vi > €) (35)

> (€
> (¢/2)- (1= (1=)™). (36)
Setting n(e) = (¢/2) - (1 — (1 —)N) > 0 completes the proof.

With the positive drift condition established, we can prove global convergence.

Theorem D.1 Under Assumption |2} ABOM converges with probability 1 to the global optimum.:

F LN as t— oo, (37)

Proof 3 By the martingale convergence theorem |Hall & Heyde| (2014)), f; converges with proba-
bility 1 to some random variable f% > f*. Assume for contradiction that f3 > f* with positive

15
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probability. Then there exists € > 0 such that V, > € for all sufficiently large t. Define the stopping
time 7, = inf{t > k: V; < e}.

Consider the value function change from time k to 7.
Tk — 1

Vi = Ve, = > (Vi = Viga). (38)
t=k

Taking expectations and applying the law of iterated expectations:

Tre—1
E[Vi -V, =E [Z E[V; — Viq1 | ]-“t]] : (39)
t=k
For t < 1y, we have V; > €, so by Lemma[2}
Tk—l
E [Z E[V; — Vig: | m] > n(e) - Elri — k] (40)
t=k
Thus:
E[Vi] = E[Vz.] 2 n(e) - E[r — k]. (41)
Since V;, < €, we have:
E
E[r, — k] < LN, (42)
n(e)

This implies P(1, < 00) = 1, contradicting the assumption that V; > e for all sufficiently large t.
Therefore, f% = f* with probability 1.

Theorem establishes that ABOM converges with probability 1 to the global optimum under
Assumption|2| The persistent application of dropout during inference, coupled with the adaptive pa-
rameter learning mechanism, ensures that there exists a positive probability of generating offspring
within an arbitrarily small neighborhood of the optimum at each iteration.

Theoretical Limitation. Theorem[D.T]establishes asymptotic convergence but not polynomial-time
convergence. Convergence rate analysis (expected hitting time) for specific problems is one of the
important research directions for the future. It is worth noting that our convergence analysis does not
directly apply in cases where the global optimum lies on the boundary or where constraint handling
results in a discontinuous feasible region.

Theoretical Contributions. Our work establishes two theoretical contributions for meta black-box
optimization: 1) We prove a novel exploration guarantee (Lemma [I) showing that attention-based
MLP parameterization with dropout maintains persistent exploration capability. 2) We prove global
convergence of ABOM with adaptive parameter learning (Theorem [D.I). Crucially, this demon-
strates that self-supervised parameter adaptation does not compromise convergence guarantees. This
stands in contrast to existing neural network-parameterized methods such as GLHF [Li et al |
and B20pt (2025), which lack rigorous convergence analysis despite empirical success.
These theoretical foundations provide ABOM’s reliability while preserving the flexibility of adap-
tive optimization.

E CONVERGENCE ANALYSIS OF PARAMETER ADAPTATION

Fig. |§| shows the loss curves of parameter adaptation on the BBOB suite with [—100, 100]°°°. De-
spite the large search space and high dimensionality, the loss of parameter adaptation consistently
decreases and converges across all test functions, with minimal variance across 30 independent runs.
This empirical evidence validates our theoretical assumption of local convergence for parameter
adaptation (Eq. [T8), demonstrating that the self-supervised learning paradigm with AdamW opti-
mizer remains stable even in challenging high-dimensional optimization scenarios. The consistent
convergence behavior aligns with standard machine learning practices for training attention-based
MLP architectures using gradient-based optimization, confirming the practical viability of our adap-
tive parameter learning framework.
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Figure 6: Loss curves of parameter adaptation on the BBOB suite with d = 500. Each subplot de-
picts the mean loss across 30 independent runs, with shaded regions representing standard deviation.

. . —— ABOM
Fig. presents the convergence behavior of ABOM 1.0 1 ——- ABOM-NPA

and ABOM-NPA (no parameter adaptation). Both meth-
ods demonstrate convergence in practice, which empiri-
cally confirms that the convergence guarantee stems from
the core mechanisms of elite preservation and dropout-
enabled exploration rather than solely depending on pa-
rameter adaptation. While our theoretical analysis (The-
orem [D.J) formally establishes global convergence for 0.0, , ] : :
ABOM with parameter adaptation, the experimental com- 0 5000 10000 15000 = 20000
parison reveals that the fundamental convergence proper- Function Evaluations (FEs)
ties are maintained even without this component, suggest- . .
. - Figure 7: Convergence comparison be-
ing that the theoretical framework could be extended to

. . . . . tween ABOM and ABOM-NPA on
cover variants without parameter adaptation. This empir- . . .
. . . . . BBOB suite with d = 500, which shows
ical observation aligns with the martingale convergence . . .

. : normalized costs against function eval-
argument in Theorem where the supermartingale . .
. = . . . uations over 30 independent runs.

property E[f} |F¢] < f; is primarily ensured by the
elitism mechanism rather than parameter adaptation.

Normalized Costs

F TASK CONFIGURATION

Table 3| presents 24 instances of synthetic black-box optimization benchmarks (BBOB) with diverse
characteristics and landscapes. Following the standard protocol of the benchmark platform

et al (2023 20254), functions fi, fa, f3, f5, fi5. f16, f17,» and fo1 are designated as training
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Table 3: Overview of the BBOB suites.

ID | Function | Characteristic | Usage
f1 | Sphere Train
f2 | Ellipsoidal Train
f3 | Rastrigin Separable Train
fs | Linear Slope Train
fis | Rastrigin (non-separable) Train
fie | Weierstrass Multi-modal with adequate global structure | Train
fi7 | Schaffers F7 Train
f21 | Gallagher’s Gaussian 101-me Peaks |  Multi-modal with weak global structure | Train
fa | Buche-Rastrigin | Separable | Test
fe | Attractive Sector Test
fr Step Ellipsoidal o Test
s | Rosenbrock, original Low/moderate conditioning Test
fo Rosenbrock, rotated Test
fio | Ellipsoidal Test
f11 | Discus Test
fi2 | Bent Cigar High conditioning, unimodal Test
fis | Sharp Ridge Test
f1a | Different Powers Test
fis | Schaffers F7, ill-conditioned . . Test
fio | Composite Griewank-Rosenbrock F8F2 Multi-modal with adequate global structure Test
f20 | Schwefel Test
f22 | Gallagher’s Gaussian 21-hi Peaks Multi-modal with weak global structure Test
f2s | Katsuura Test
f24 | Lunacek bi-Rastrigin Test

functions, while the remaining functions serve as test instances, ensuring a balanced distribution
of optimization difficulty between the training and test sets. The maximum number of function
evaluations is set to 20,000. All functions are defined over [—100, 100}, d = 30/100/500.

The UAV benchmarks comprise 56 terrain-based scenarios that represent realistic unmanned aerial
vehicle path planning problems, each with 30 dimensions. The scenarios are divided into training
and test sets of equal size (28 instances each), with test instances corresponding to even-numbered
indices (0, 2,4, ..., 54). Following the standard protocol of the benchmark platform|Ma et al.| (2023;
2025a)), the maximum number of function evaluations is set to 2,500.

G BASELINES

Since our ABOM is an evolution-based meta-black-box optimization (metaBBO) algorithm, we re-
strict comparisons exclusively to evolution-based methods, excluding non-evolution-based methods
such as Bayesian optimization. Furthermore, we omit LLM-based metaBBO methods |Liu et al.
(2025)); Romera-Paredes et al.| (2024); |Yang et al.| (2024)) from our baselines, as they are tailored for
specific task types and are not directly comparable to evolution-based general-purpose frameworks.

To ensure a fair and reproducible comparison, all baselines are implemented using the source code
provided by the official MetaBox platform Ma et al.| (2023} |2025a). Detailed hyperparameter con-
figurations for baselines are provided in Table 4 while the configuration of our proposed ABOM is
summarized in Table[5] All results are reported as the mean and standard deviation over 30 indepen-
dent runs, with a fixed population size of 20 across all trials.

For traditional BBO methods, we adopt the hyperparameter settings recommended in the original pa-
per, rather than performing a grid search or manual tuning. The design choice aligns with a core mo-
tivation of adaptive optimization and metaBBO methods: to reduce the reliance on labor-intensive
hyperparameter tuning. By using default settings, we ensure a fair and meaningful comparison that
highlights the intrinsic advantages of adaptive strategies.
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Table 4: Detailed hyperparameter configurations of baselines. ub and (b denote the upper and lower
bounds of the search space, respectively. randn(d) denotes sampling a d-dimensional vector from
a standard normal distribution. All MetaBBO methods are trained on the same synthetic problem

distribution as RLDEAFL (2025)).

Baseline Parameter Setting
Traditional BBO methods
RS Uniform sampling within [1b, ub]?
(2012).
. . Linearly decreased from 0.9 to 0.4 over itera-
PSO Inertia weight w tions [Kennedy & Eberhart| (1995).
Coefficients ¢ /c2 2.0/2.0Kennedy & Eberhart/ (1995)
DE Mutation factor F’ 0.5[Storn & Price (1997
Crossover probability CR  0.5|Storn & Price| (1997
Strategy DE/rand/1/bin Storn & Price] (1997)
Adaptive optimization variants
. Parameter ranges follow those specified in the
SAHLPSO Adaptive parameters original paper 2021).
. Parameter ranges follow those specified in the
JDE21 Adaptive parameters original paper @
CMAES Initial step size o 0.3 X (ub — Ib) (12016)
Initial mean p = 1b+ randn(d) X (ub — Ib)|Hansen|(2016)
MetaBBO methods(Training on BBOB or UAV training set)
GLEET Trainine parameters Parameter configurations are consistent with
Ep the original paperMa et al| (2024).
.. Parameter configurations are consistent with
RLDEAFL Training parameters the original paper @
LES Trainine parameters Parameter configurations are consistent with
EP the original paper (2023b).
GLHF Training parameters Parameter configurations are consistent with

the original paper|Li et al.| (2024).

Table 5: Hyperparameter configuration of ABOM.

Parameter Setting
Crossover dropout rate pc 0.95
Mutation dropout rate pas 0.95
Learning rate  of AdamW 1 x 1073
Attention dimension d 4 d
MLP hidden dimension dp; ~ 2!°g2(@)]
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H COMPARISON WITH EPOM

This section conducts a performance comparison be-
tween our method ABOM and EPOM, a recently
proposed meta black-box optimization method that
represents the current state of the art in zero-shot
optimization (2025). EPOM operates as
a pre-trained optimization model that learns a gener-
alizable mapping from task-specific features to op-
timization strategies, thereby enabling zero-shot op-

1.2 A

-

Normalized Reward R

Lo e . —— EPOM
timization capabilities on previously unseen black- ——- ABOM
box problems. We evaluate ABOM and EPOM on ! ! . . . .
the Bipedal Walker task, which requires optimizing 0 200 400 600 800 1000
a fully-connected neural network policy with d = Function Evaluations (FEs)

874 parameters over £ = 800 timesteps to enhance

robotic locomotion control performance. To ensure a  Figure 8: Convergence comparison between
fair and reproducible comparison, we strictly adhere ABOM and EPOM on Bipedal Walker task.
to the experimental protocol and parameter settings

established in the original paper (2025). ABOM utilizes the identical hyperparameters
as those employed in our prior experiments (refer to Table ] for details), maintaining consistency
across evaluations. As demonstrated in Fig. [§] ABOM achieves significantly faster convergence to
high-quality solutions, while EPOM exhibits premature convergence, underscoring the robustness
and effectiveness of our method in challenging optimization scenarios.

I SENSITIVITY ANALYSIS OF LEARNING RATE
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Figure 9: Sensitivity analysis of learning rate 77 on the BBOB suite with d = 30.

Fig.[]presents the sensitivity analysis of the learning rate of AdamW for ABOM’s parameter adapta-
tion. The heatmap (Fig.[9(a)) shows optimization performance across different learning rates, while
the loss curves (Fig.[9(b)) demonstrate the convergence behavior of the parameter adaptation.

The loss exhibits stable convergence across the evaluated learning rate spectrum (Fig. P(b)), em-
pirically validating our theoretical assumption of local convergence for parameter adaptation (Eq.
[I8). However, as shown in Fig.[0(a)] optimization performance varies significantly across learning
rates. 7 = 1 x 1072 achieves the best balance between convergence speed and solution quality. This
demonstrates that while convergent behavior of the loss is necessary for stable parameter adaptation,
it does not guarantee optimal optimization performance. The choice of learning rate remains crucial
for effective parameter adaptation.

J PRELIMINARY GENERALIZATION ANALYSIS OF ABOM

This section preliminarily explores the generalization capability of ABOM through pre-training on
the STOP benchmark suite (2025). The STOP suite comprises 12 sequence transfer
optimization problems, where each problem contains a series of source optimization tasks and one
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target optimization task. Based on the similarity between source and target tasks (measured by
fitness landscape overlap and optimal solution alignment), the 12 problems are categorized into
three groups: high similarity (STOP1-4), mixed similarity (STOP5-8), and low similarity (STOP9—
12). Detailed properties of the optimization tasks are provided in[Xue et al| (2025). For experimental
evaluation, each problem is instantiated with 10 source tasks under a maximum evaluation budget
of 5,000 per task. We treat these source tasks as the training set and the target task as the test
set. This setup spans diverse similarity scenarios between training and test sets, enabling a more
comprehensive evaluation of ABOM’s generalization performance.

We introduce ABOM-PT, a pre-trained variant of ABOM, where meta-optimization knowledge is
distilled from the training set. Specifically, ABOM is executed on 10 source tasks for 7" = 250 iter-
ations per task, generating 2500 prior training samples M = {(P,it)7 F]gt)) | P]Et) € RNVxd, F,Et) €
RN k=1,...,K,t =1,...,T}. The pre-training objective minimizes the prediction error of popu-
lation evolution:

K T-1
2
in Ly =33 | A - ABoM (P, B 4
Hvlllfnﬂpl k=1 t=1 H k OMy (P, F )| s “3)

where ABOMyy predicts the next-generation population P,Etﬂ) from current population-fitness
pairs. We optimized the Eq. @ using AdamW with a learning rate of 1 x 10~3 and a batch
size of 256. The hyperparameters for parameter adaptation are consistent with those in Table 5]

Table[f] presents the experimental results of ABOM and ABOM-PT on the STOP benchmark suite,
revealing four key insights: 1) ABOM-PT outperforms ABOM in 9 of 12 problems, confirming the
generalization capability of our method; 2) Under high-similarity conditions (STOP1-4), ABOM-PT
achieves substantially better performance by effectively leveraging optimization knowledge from
training tasks to the test task; 3) ABOM-PT underperforms on some mixed-similarity problems
(such as STOPS), revealing limitations in handling complex task relationships; 4) Surprisingly, pre-
training on low-similarity tasks (STOP9-12) consistently improves performance on the test task,
demonstrating that even dissimilar training tasks contain valuable optimization knowledge that en-
hances generalization capability.

Table 6: Performance comparison of ABOM vs. ABOM-PT on the STOP suite over 30 independent
runs, reported as the mean and standard deviation of objective values (lower is better).

Problem  Similarity ABOM ABOM-PT
(mean =+ std) (mean =+ std)

STOP1 High 1.08e+0 4 4.42¢-1 4.73e-1 + 1.97e-1
STOP2 High 1.92e-1 4 7.26e-2 2.61e-2 + 7.45e-4
STOP3 High 1.20e+0 = 4.87e+0  1.71e-1 & 8.04e-3
STOP4 High 2.52e-1 4+ 6.50e-3 2.08e-1 + 2.72¢-3
STOP5 Medium 2.79¢+0 £ 1.21e+1 1.28e-2 + 9.88e-6
STOP6 Medium 1.06e+2 +9.62e+2  1.01e+2 + 3.74e+2
STOP7 Medium 5.27e-2 + 1.28e-2 6.84e-3 + 7.83e-5
STOPS Medium 3.60e+0 + 1.22e+1  5.39e+0 + 2.90e+1
STOP9 Low 1.75¢-2 + 1.50e-4 3.84e-3 + 4.32¢-6
STOP10 Low 3.87e+1 £ 5.49e+1  2.69e+1 + 4.61e+1
STOP11 Low 5.02e+0 £ 3.97e+1 6.20e-1 + 1.20e-1
STOP12 Low 9.52e+2 £+ 1.38e+6  8.55e+1 + 1.20e+4
—/=~/+ 9/3/0 -

K EXPERIMENTAL RESULTS

Tables [7] and [§] show the mean and standard deviation over 30 runs for each baseline on the BBOB
suite with d = 30/100. The convergence curves of the average normalized cost across all test
functions for the BBOB suite, with dimensions d = 30/100/500, are presented in Fig. based on
30 independent runs.
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The convergence curves of cost (log scale) for the 28 UAV problems over 30 independent runs are
shown in Fig.[IT] Fig.[T2] and Fig.[13]
The boxplots of cost (log scale) over 30 independent runs for the 28 UAV problems are shown in

Fig.[I4] Fig.[T3] and Fig.[T6]

Table 7: The comparison results of the baselines on the BBOB suite with d = 30. All results are
reported as the mean and standard deviation (mean =+ std) over 30 independent runs. Symbols “—",
“~”, and “+” imply that the corresponding baseline is significantly worse, similar, and better than
ABOM on the Wilcoxon rank-sum test with 95% confidence level, respectively. The best results are
indicated in bold, and the suboptimal results are underlined.

Traditional BBO Adaptive Variants MetaBBO Ours

D RS PSO DE SAHLPSO  JDE2I CMAES GLEET  RLDEAFL LES GLHF ABOM
5.17e+5 1.28e+5 9.84e+3 2.04e+5 5.58e+3 3.25e+1 3.68e+4 6.18e+3 1.81e+6 6.96e+5 5.45e+2

fa +125e+5  +3.87e+4  £1.80e+3 £+2.43e+5  +4.39%e+3  £6.05e+0  +3.4de+d  £3.89%e+3  £3.30e+5  £4.08c+5  £2.95e+2
5.42e+7 2.49e+5 6.12e+4 5.11e+6 2.80e+4 5.33e+0 3.76e+4 2.09e+4 8.0le+7 6.61e+7 2.60e+2

e +7.85¢+6  +2.45e+5 +£7.08e+3 £1.05e+7 +1.19e+4 +£4.28e+0  +2.82e+4  +£124e+d  +8.30e+6  +£1.58e+7  42.6d4e+2
2.68e+5 6.70e+4 2.45e+4 5.67e+4 3.86e+3 3.26e+5 8.11e+3 6.28e+3 3.54e+5 2.59e+5 5.58e+2

fz +435e+4  +1.85e+4 +£499e+3 +523e+4  +1.59e+3  £7.09e+5  £5.56e+3  +£4.18e+3  +3.62e+4  +£4.7%+4  +2.77e+2
1.45e+10 1.23e+9 1.27e+3 2.46e+8 7.85¢+3 5.63e+2 1.29e+7 1.04e+3 3.82e+9 4.02e+9 1.15e+2

fs +294e49  £+532e+8 +£2.86e+3 +2.53¢+8 +3.26e+4 £157e+2  +697e+7  £198e+3  +4.23e+8  £545¢+8  +1.56e+2
1.19¢+10 8.86e+8 1.56e+4 3.82e+7 2.34e+4 2.48e+1 2.03e+4 4.36e+4 1.49e+3 1.85e+2 2.35¢+3

fo +2.13¢49  +2.27e+8 +£1.53e+4  +3.65e+7 +540e+4 +£1.05e+0  +528e+4  £142e+5 +2.12e+0  +£1.69e+0  45.30e+3
7.47e+8 1.43e+8 L.1le+8 2.51e+8 1.73e+7 8.99¢+6 1.54e+7 7.42e+6 1.8le+9 6.69e+8  9.72e+5

fio +1.56e+8  +6.28e+7  £229e+7 £3.13e+8  £1.32e+7 F4.lde+6  +2.6de+7  £3.12e+6 +4.37e+8  £3.0le+8  £7.38e+5
1.12e+5 8.82c+4  1.04e+5  9.90e+4  7.32e+4  3.55e+4 323¢+4  857c+d  8.99%+5 6.72¢+4  2.6le+d

fi +1.23e+4  £2.84e+4  +1.57e+4  +2.55e+4  12.54e+4  £2.96e+4  +1.0de+4  +£2.88e+4  £1.7le+6  £7.7le+3 £1.0le+4
1.68e+15  1.38e+11 1.05e+9  3.46e+18  1.52e+9 1.03e+0  396e+10  6.45e+8 8.23e+19  2.56e+17  5.28e+7

F120 43300415 42120411 +£485048 +£1400419 +£2240+9 +2.14es0  L£327c+10 £1.7949 +£7420419 £5.160+17 145048
4.34e+4 2.17e+4 6.96e+2 1.5le+4 5.18e+2 1.09¢+0 3.57e+3 7.71e+2 3.97e+4 3.78e+4 7.28e+1

fis 4236643 +2.49%+3  £1.15e+42 +55le+3  +4.8%+2 +£1d45e+0  +3.05e+3  £1.8le+3  +1.40e+3  +£24le+3  £3.07e+1
3.52e+4 5.77e+3 3.76e+3 5.07e+3 3.72e+2 3.99e+0 5.69e+2 1.94e+2 9.99e+4 3.30e+4 3.46e-2

f1a +5.49e+3  +1.86e+3 £7.40e+2 £6.19e+3  £19le+2  £6.73e+0  +4.04e+2  £873e+l  £2.17e+4  £1.75e+4  +3.39e-2
1.42e+5 9.43e+2 6.03e+2 8.89¢+5 56le+2  336e+12  5.79%+2 52le+2 2.48e+6 5.18e+5 5.12e+2

f1s +1.06e+5  +2.09+2  +£6.10e+1  £1.19e+6 +1.26e+2 £2.84e+rll  +1.62e+2  £128e+2  +1.74e+6  +£4.19e+5 +1.37e+2
1.0le+6 7.82e+4 1.22e+1 2.92e+3 2.0le+l 6.76e+0 137e+1  2.87e+1  1.30e+3 9.19¢+0 2.48e-1

fio +1.89e+5  +1.98e+4  £3.78e+0 £2.84e+3  £1.97e+l1  £7.40e-1  £8.35e+0  £3.03e+]  £1.27e+0  £59le+0  F1.11e-3
1.24e+7 9.79e+5  -3.88e+1 4.04e+43  -629e+1  -1.53e+] -3.97e+1 -5.20e+1 1.49¢+3 -4.10e+0  -6.57e+1

f20 +278e+6  +6.8%e+5 £2.75e+0 +1.62e+4  £2.67e+0  £9.73e+0  +4.98e+0  £5.06e+0 +2.37e+0  £1.77e+0  +3.80e+0
8.66e+1 8.66e+1 8.66e+1 8.66e+1 8.66e+1 8.66e+1 8.66e+1 8.66e+1 1.19e+3 8.66e+1 8.66e+1

fa2 +0.00e+0  40.00e+0  £0.00e+0  £0.00e+0  £0.00e+0  £0.00e+0  0.00e+0  £0.00e+0 F4.55e-13  £0.00e+0  40.00e+0
3.29e+0 3.23e+0 3.18e+0 3.41e+0 3.32e+0 3.30e+0 2.98e+0 3.31e+0 1.30e+3 3.34e+0 3.01e-1

fas +396e-1  +3.82e-1  +4.56e-1  +494e-1  +3.92e-1  £3.68e-1  +33de-1  £537e-1  A3.1le-l  £370e-1  £2.19e-1
1.46e+5 3.84e+4 3.23e+2 1.22e+4 5.70e+2 2.58e+2 3.98e+2 7.08e+2 5.35e+4 6.11e+4 2.44e+2

faa +137e+4  £7.79%+3  £5.65e+1  £597e+3  £8.02e+2 £1.6de+l  £7.6le+l  £5.00e+2  +2.34e+3  £2.70e+3  +2.37e+l

—Irl+ 15/1/0 15/1/0 15/1/0 15/1/0 15/1/0 10/1/5 15/1/0 15/1/0 15/0/1 14/1/1 -
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Table 8: The comparison results of the baselines on the BBOB suite with d = 100. All results are
reported as the mean and standard deviation (mean =+ std) over 30 independent runs. Symbols “—”,

3

‘~”, and “4” imply that the corresponding baseline is significantly worse, similar, and better than

ABOM on the Wilcoxon rank-sum test with 95% confidence level, respectively. The best results are
indicated in bold, and the suboptimal results are underlined.

Traditional BBO Adaptive Variants MetaBBO Ours
D RS PSO DE SAHLPSO  JDE2I CMAES  GLEET  RLDEAFL LES GLHF ABOM
9.64e+6 1.83e+6 7.23e+5 2.49e+6 2.82e+5 3.72e+3 3.77e+5 2.89e+5 1.14e+7 9.66e+6 9.72e+3
fa +12le+6  £4.72e+5 +£794e+4  42.14e+6  £583e+4  +9.84e+2 +£174e+5  £820e+4  £8.00e+5 1.47e+6  £5.28e+3
6.11e+8 4.76e+7 1.03e+6 4.50e+7 7.16e+5 2.15e+4  4.27e+5 1.96e+5 5.71e+8 5.45¢+8  7.92¢+4
fe +38le+7  +2.94e+7  £4.92e+5 +3.58e+7 £1.07e+6 +4.87e+3  £9.26e+5 +£9.09e+4  +1.63e+7  +£2.78e+7  +3.49%+4
1.75e+6 6.23e+5 4.94e+5 4.76e+5 9.32¢+4 8.81e+3 7.92e+4 1.17e+5 1.13e+6 1.08e+6 6.23¢+3
Iz 49.77e+4  £6.59%+4  £3.66e+4  +2.10e+5  +2.85e+4 £2.97e+3  £2.07e+4  +287e+4  +630e+4  £8.55e+4  £1.50e+3
433e+11  8.71e+10 2.67¢+8 2.65e+10  4.60e+9  5.16e+3  1.4le+8 3.79e+9 524e+10  530e+10  3.84e+3
fs +331e+10 +1.59%+10  £5.05e+7 +1.53e+10  £4.18e+9  +573e+3  £1.39e+8  £3.66e+9  £2.10e+9  +2.68e+9  £5.03e+3
2.87e+11  7.21e+10 1.53e49 1.34e49 4.97¢+8 5.83c+4 6.37e+7 3.41e+8 2.96e+3 6.43e+2 1.13e+5
o +2.82e+10 H1.21e+10 +4.45¢48  +5.55e+8  £4.42e+8 +1.8%e+4 +£221e+7  +2.7le+8  £2.16e+]  F4d0e-1  £2.79e+5
7.88e+9 1.97e+9 2.30e+9 1.88e+9 4.37e+8 1.20e+8 2.55e+8 2.07e+8 6.53e+9 5.63e+9 6.65e+7
fio +7.69e+8  43.14e+8  £2.58e+8  49.32e+8  +£1.37e+8 3.66e+7 +£8.80e+7  £8.93e+7  £5.19e+8  +8.08e+8  +£1.48e+7
4.30e+5 4.12e45 4.35¢+5 2.99e+5 3.78e+5 9.10e+5 1.97e+5 2.02e+5 1.15e+6 2.07e+5 3.48e+5
fu +2.62e+4  +55le+4  +£33le+d  £528e+4  +4.03e+d4  £626e+5 +£33le+d  +49le+d  +£140e+6  +8.84e+3  +£6.24e+4
1.84e422  7.09e+15  6.78e+13  2.77e+22  5.29e+12  8.76e+8  2.84e+ll  477e+ll  6.99e+22  3.75e+21 3.97e+9
f12 1) 126120 4337e416 +£693¢+13 £0.39¢+22 +8.04c+12 +£5.66e+8 +1.10c+11 +68lerll +£5.86e+22 +9.78¢421 +131e+10
1.08e+5 6.70e+4 2.86e+4 5.28e+4 2.32e+4 1.09e+2 1.69e+4 23le+4 8.37e+4 8.14e+4 3.65¢+2
f1s +2.50e+3  +4.6le+3  £1.90e+3  +1.10e+4  £6.09¢e+3 £2.35e+1 +3.85e+3  +£4.78e+3  +1.15e+3  £1.57e+3  £1.14e+2
3.10e+5 4.73e+4 6.79e+4 5.84e+4 8.14e+3 1.53e+3 4.62e+3 4.89¢+3 2.60e+5 2.16e+5 3.33e+2
fia +3.56e+4  £9.85e+3  +6.4le+3  £522e+4  £2.57e+3  +3.75e+2 £197e+3  £1.58e+3  £2.62e+4  +3.70e+4  +£1.35e+2
5.8le+7 6.42¢+43 1.59e+4 7.27e+7 1.04e+4 2.82¢+3 4.63e+3 2.68e+4 2.49e+7 1.12e+7 2.46e+2
fis +2.84e+7  £8.93e+3  +£845e+3  43.12e+8  +£6.34e+3  43.60e+3 +£6.79e+3  +4.78e+4  +£1.0le+7  £+6.30e+6  +ddlesl
7.48e+6 1.77e+6 3.42e+4 2.87e+4 1.06e+4 2.93e+1 1.69e+3 6.34e+3 5.06e+2 1.54e+1 2.50e-1
f1o +596e+5  £2.80e+5 +£7.96e+3  41.42e+4  +£8.60e+3 42.54e+0 +£7.4le+2  £6.13e+3  £1.65e+0 H1.16e+1  +£7.63e-5
1.16e+8 3.44e+7 3.05e+4 2.33e+5 7.12e+4  -3.04e+0  -1.92e+1 7.93e+4 2.10e+3 9.08e-1 -5.60e+1
f20 +588e+6  £+6.40e+6  +£3.04e+4  £2.88e+5  £ldde+5 +1.72e+0 £528e+0 1.5le+5  +£878-1  453le-l  £3.36e+0
8.66e+1 8.66e+1 8.66e+1 8.66e+1 8.66e+1 8.66e+1 8.66¢+1 8.66e+1 1.29e+3 8.66e+1 8.66e+1
faz 40.00e+0  £0.00e+0  £0.00e+0  +0.00e+0  £0.00e+0 +£0.00e+0 £0.00e+0  +£0.00e+0 £4.55¢-13  £0.00e+0  40.00e+0
4.85e+0 4.87e+0 4.90e+0 4.80e+0 4.85¢+0 7.1le+0  4.84e+0 4.66e+0 2.11e+3 4.88e+0 4.61e+0
23 +3.86e-1  £2.3%-1  £3.87e-1  +432-1  £227e-1  £6.07e-1  +£3.44e-1  £6.00e-1  +298e-1  £3.5le-1  Fddle-l
9.0le+5 4.31e+5 2.03e+4 1.58e+5 3.36e+4 1.21e+3 9.89¢+3 3.66e+4 2.26e+5 2.35e+5 1.05e+3
faa +3.0le+d4  £3.66e+4 £126e+4  £5.12e+4  £1.53e+d4  £7.02e+1  £1.84e+3  Fl.6de+d  £333e+3  £3.69e+3  £3.56e+1
— I~ 14/2/0 14/2/0 14/2/0 13/2/1 14/2/0 92/5 13121 13/2/1 15/0/1 12212 -
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Figure 10: Convergence curves of the average normalized cost across all test functions in the BBOB
suite, with d = 30/100/500, over 30 independent runs. The cost values are min-max normalized
per function to ensure comparability. Each subplot displays the performance trend, highlighting the
algorithm’s scalability as the dimensionality increases.
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Figure 11: Convergence curves of cost (log scale) for UAV problems (Terrain 2 to 16).
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Figure 12: Convergence curves of cost (log scale) for UAV problems (Terrain 18 to 36).
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Figure 13: Convergence curves of cost (log scale) for UAV problems (Terrain 38 to 56).
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Figure 14: Boxplots of cost (log scale) over 30 runs for UAV problems (Terrain 2 to 20).
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Figure 15: Boxplots of cost (log scale) over 30 runs for UAV problems (Terrain 22 to 40).
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Figure 16: Boxplots of cost (log scale) over 30 runs for UAV problems (Terrain 42 to 56).
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