

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TASK-FREE ADAPTIVE META BLACK-BOX OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Handcrafted optimizers become prohibitively inefficient for complex black-box optimization (BBO) tasks. MetaBBO addresses this challenge by meta-learning to automatically configure optimizers for low-level BBO tasks, thereby eliminating heuristic dependencies. However, existing methods typically require extensive handcrafted training tasks to learn meta-strategies that generalize to target tasks, which poses a critical limitation for realistic applications with unknown task distributions. To overcome the issue, we propose the Adaptive meta Black-box Optimization Model (ABOM), which performs online parameter adaptation using solely optimization data from the target task, obviating the need for predefined task distributions. Unlike conventional metaBBO frameworks that decouple meta-training and optimization phases, ABOM introduces a closed-loop adaptive parameter learning mechanism, where parameterized evolutionary operators continuously self-update by leveraging generated populations during optimization. This paradigm shift enables zero-shot optimization: ABOM achieves competitive performance on synthetic BBO benchmarks and realistic unmanned aerial vehicle path planning problems without any handcrafted training tasks. Visualization studies reveal that parameterized evolutionary operators exhibit statistically significant search patterns, including natural selection and genetic recombination.

1 INTRODUCTION

Black-box optimization (BBO) problems arise in diverse machine learning applications such as neuroevolution Stanley et al. (2019); Miikkulainen (2025), hyperparameter tuning Bai & Cheng (2024), neural architecture search Wang et al. (2023); Salmani Pour Avval et al. (2025), and prompt engineering Romera-Paredes et al. (2024); Wang et al. (2025a). In these scenarios, the objective function is accessible solely through expensive evaluations $f(x)$, with derivative information like gradients or Hessians inherently unavailable. Evolutionary algorithms (EAs) Eiben & Smith (2015); De Jong (2017) address this challenge by iteratively updating populations through derivative-free heuristic operators, including selection, crossover, and mutation, to explore complex fitness landscapes. Recent advances in computational infrastructure have enabled EAs to generate robust solutions for increasingly complex BBO problems Miikkulainen & Forrest (2021).

The "No Free Lunch" (NFL) theorem Wolpert & Macready (2002) establishes that no optimization algorithm universally outperforms others across all problem domains. To enhance cross-domain applicability, numerous adaptive mechanisms have been designed Bäck & Schwefel (1993); Brest et al. (2021); Li et al. (2013); Hansen (2016); Tao et al. (2021) that leverage optimization data generated during the search process to dynamically select operators or adjust parameters. Although these adaptive methods achieve strong performance on standard benchmarks, they require specialized expertise in optimization theory and problem characteristics Ma et al. (2024). Meta Black-Box Optimization (MetaBBO) addresses this limitation by automating meta-level strategies Ma et al. (2025b), such as algorithm selection Tian et al. (2020); Guo et al. (2024), algorithm configuration Lange et al. (2023b;a); Guo et al. (2025), solution manipulation Li et al. (2024; 2025), and generative design Chen et al. (2024); Yang et al. (2024), through meta-learning (Fig. 1, Left). **Yet existing MetaBBO methods require training on handcrafted task distributions \mathcal{F} or prior knowledge for generalization to new domains.** Since such distributions are often inaccessible in practical scenarios (e.g., when the target task is unique or data-scarce), this dependency severely limits real-world deployment.

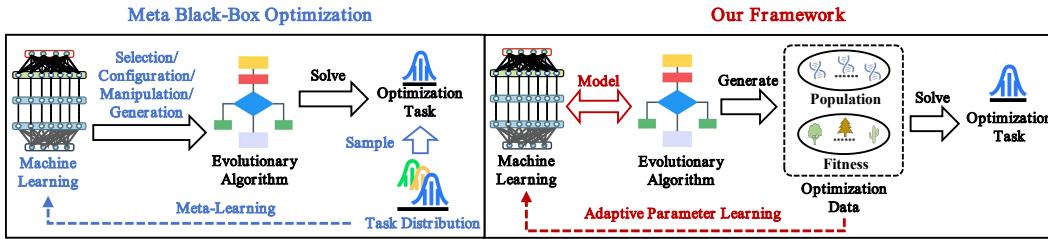


Figure 1: Conceptual comparison: (Left) MetaBBO methods learn meta-strategies from task distributions but depend on handcrafted training tasks; (Right) Our framework performs adaptive parameter learning using self-generated optimization data, eliminating task distribution dependency.

To address this limitation, we propose the Adaptive meta Black-box Optimization Model (ABOM), a task-free meta-optimizer that adaptively learns parameters using only self-generated data (Fig. 1, Right). ABOM’s distinguishing feature is an end-to-end differentiable framework that parameterizes evolutionary operators as learnable functions (Fig. 2). Inspired by EA dynamics, it employs attention mechanisms to separately model relationships among individuals, fitness landscapes, and genetic components, thereby replicating selection, crossover, and mutation as differentiable operations. Crucially, ABOM updates its parameters during optimization by aligning the generated offspring population with an elite archive of high-quality solutions, bypassing the need for meta-training on task distributions. This design yields two key contributions:

- **Task-free adaptation:** The parameters of ABOM are updated via adaptive learning using optimization data from the target task, eliminating the reliance on handcrafted training tasks or heuristic rules. Theoretically, ABOM guarantees convergence to the global optimum.
- **Intrinsic interpretability:** Attention matrices provide quantifiable insights into search patterns, such as selection bias toward high-fitness individuals and consistent genetic interaction patterns during mutation. Moreover, ABOM supports GPU acceleration out of the box, without requiring changes to standard EA infrastructure.

2 RELATED WORKS

Evolutionary Algorithms. EAs, such as genetic algorithms (GA) Holland (1962), evolution strategies (ES) Rechenberg (1984), particle swarm optimization (PSO) Kennedy & Eberhart (1995), and differential evolution (DE) Storn & Price (1997), are widely adopted for BBO tasks due to their derivative-free nature. These methods manipulate populations via heuristic operators but often suffer from inefficiency and fragility when applied to new tasks, as they require labor-intensive manual parameter tuning. While ABOM draws inspiration from EA dynamics, it eliminates manual tuning by enabling adaptive parameter learning directly from optimization data.

Adaptive Optimization. To improve cross-domain generalization, adaptive EA variants employ dynamic operator selection or parameter adjustment such as CMAES Hansen (2016); Ollivier et al. (2017), SAHLPSO Tao et al. (2021), JDE21 Brest et al. (2021)). These methods achieve state-of-the-art results on standard BBO benchmarks but demand deep expertise in optimization theory and often require problem-specific GPU acceleration for scalability. In contrast, ABOM adheres to a unified deep learning architecture, replacing heuristic rules with adaptive parameter learning and reducing deployment barriers.

Meta Black-Box Optimization. MetaBBO techniques leverage meta-learning to automate meta-level strategies for solving lower-level BBO tasks Ma et al. (2025b); Wang et al. (2025b); Yun et al. (2025), thereby reducing the need for expert intervention. Common paradigms include algorithm selection Tian et al. (2020); Guo et al. (2024), which chooses from a predefined pool of operators; algorithm configuration Lange et al. (2023b;a); Guo et al. (2025), which tunes hyperparameters via meta-strategies; solution manipulation Li et al. (2024; 2025), which integrates meta-strategies directly into the optimization process; and algorithm generation Chen et al. (2024); Yang et al. (2024), which synthesizes entire optimization workflows. Despite their promise, these methods critically depend on manually designed components, such as discrete algorithm search spaces \mathcal{A} , state fea-

ture spaces, meta-objectives, and training task distributions \mathcal{F} . The dependency on handcrafted \mathcal{F} hinders real-world applicability when task distributions are unavailable. ABOM addresses this limitation by unifying evolutionary operators into a continuous, differentiable parameter space, enabling adaptive parameter learning without requiring \mathcal{F} or discrete algorithm search spaces.

3 ADAPTIVE META BLACK-BOX OPTIMIZATION MODEL

3.1 PROBLEM DEFINITION

A target BBO task is defined as:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f_T(\mathbf{x}), \quad (1)$$

where \mathbf{x} is the solution vector in a d -dimensional search space. MetaBBO methods formalize the automated design of optimizers as a triplet $\mathcal{T} := (\mathcal{A}, \mathcal{R}, \mathcal{F})$, with the discrete algorithm search space \mathcal{A} , the performance metric \mathcal{R} , and the training task distribution \mathcal{F} . The meta-optimization objective maximizes expected performance Ma et al. (2025b):

$$J(\boldsymbol{\theta}) = \max_{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{f \sim \mathcal{F}} [\mathcal{R}(\mathcal{A}, \pi_{\boldsymbol{\theta}}, f)], \quad (2)$$

where the meta-strategy $\pi_{\boldsymbol{\theta}}$ selects the algorithm (or configuration) $a \in \mathcal{A}$ for each task f . The Eq. (2) needs to be designed manually \mathcal{F} . To mitigate the need for \mathcal{F} , we define adaptive MetaBBO as $\mathcal{T}_{\text{adaptive}} := (\mathcal{A}, \mathcal{R}, f_T)$, operating directly on the target task f_T . **Using cumulative optimization knowledge** $\mathcal{M}^{(t)} = (\mathcal{X}^{(t)}, \mathcal{Y}^{(t)})$, where $\mathcal{X}^{(t)} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(t)}\}$ (solutions) and $\mathcal{Y}^{(t)} = \{f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(t)})\}$ (evaluations) during optimization, the Eq. (2) becomes the following:

$$J(\boldsymbol{\theta}) = \max_{\boldsymbol{\theta} \in \Theta} [\mathcal{R}(\mathcal{A}, \pi_{\boldsymbol{\theta}}, \mathcal{M}^{(t)})], \quad (3)$$

with $\boldsymbol{\theta}$ updated online using $\mathcal{M}^{(t)}$. However, \mathcal{A} and $\pi_{\boldsymbol{\theta}}$ still require expert-crafted components.

To address this limitation, ABOM replaces the discrete meta-optimization framework $(\mathcal{A}, \pi_{\boldsymbol{\theta}})$ with a single, differentiable optimizer $\pi_{\boldsymbol{\theta}}$ parameterized by $\boldsymbol{\theta}$. The final objective is:

$$J(\boldsymbol{\theta}) = \max_{\boldsymbol{\theta} \in \Theta} [\mathcal{R}(\pi_{\boldsymbol{\theta}}, \mathcal{M}^{(t)})], \quad (4)$$

where $\boldsymbol{\theta}$ is updated *only* using $\mathcal{M}^{(t)}$ from f_T , thereby eliminating the need for manual design of \mathcal{F} , discrete search spaces \mathcal{A} , and expert-dependent feature engineering. The Eq. (4) establishes an end-to-end differentiable framework where adaptive parameter learning occurs through continuous feedback from $\mathcal{M}^{(t)}$.

3.2 META-STRATEGY ARCHITECTURE

ABOM implements a differentiable meta-strategy $\hat{\mathbf{P}}^{(t)} = \pi_{\boldsymbol{\theta}}(\mathbf{P}^{(t)}, \mathbf{F}^{(t)})$ (Fig. 2, Bottom) that learns evolutionary operators via attention mechanisms Vaswani et al. (2017). At generation t , the population $\mathbf{P}^{(t)} = [\mathbf{p}_1^{(t)\top}; \dots; \mathbf{p}_N^{(t)\top}] \in \mathbb{R}^{N \times d}$ represents N candidate solutions in the search space, where the individual $\mathbf{p}_i^{(t)} \in \mathbb{R}^d$ is a solution vector. The fitness values $\mathbf{F}^{(t)} = [f_T(\mathbf{p}_1^{(t)}); \dots; f_T(\mathbf{p}_N^{(t)})] \in \mathbb{R}^N$ are scalar evaluations $f_T(\mathbf{p}_i^{(t)})$ obtained via black-box queries to the target objective $f_T(\cdot)$, with lower values indicating better solutions. Given the population-fitness pair, ABOM generates offspring through three unified modules:

Selection. The selection matrix $\mathbf{A}^{(t)} \in \mathbb{R}^{N \times N}$ is computed to jointly model relationships in the solution space and among fitness values via attention:

$$\mathbf{A}^{(t)} = \text{softmax} \left(\frac{(\mathbf{P}^{(t)} \mathbf{W}^{QP})(\mathbf{P}^{(t)} \mathbf{W}^{KP})^\top + (\mathbf{F}^{(t)} \mathbf{W}^{QF})(\mathbf{F}^{(t)} \mathbf{W}^{KF})^\top}{\sqrt{d_A}} \right), \quad (5)$$

where $\mathbf{W}^{QP}, \mathbf{W}^{KP} \in \mathbb{R}^{d \times d_A}$ project solution features, and $\mathbf{W}^{QF}, \mathbf{W}^{KF} \in \mathbb{R}^{1 \times d_A}$ process fitness values. The first term captures spatial relationships in the solution space, while the second term encodes fitness-driven selection pressure. This dual-path design ensures that recombination prioritizes solutions based on both their search-space positioning and fitness ranking, rather than fitness alone.

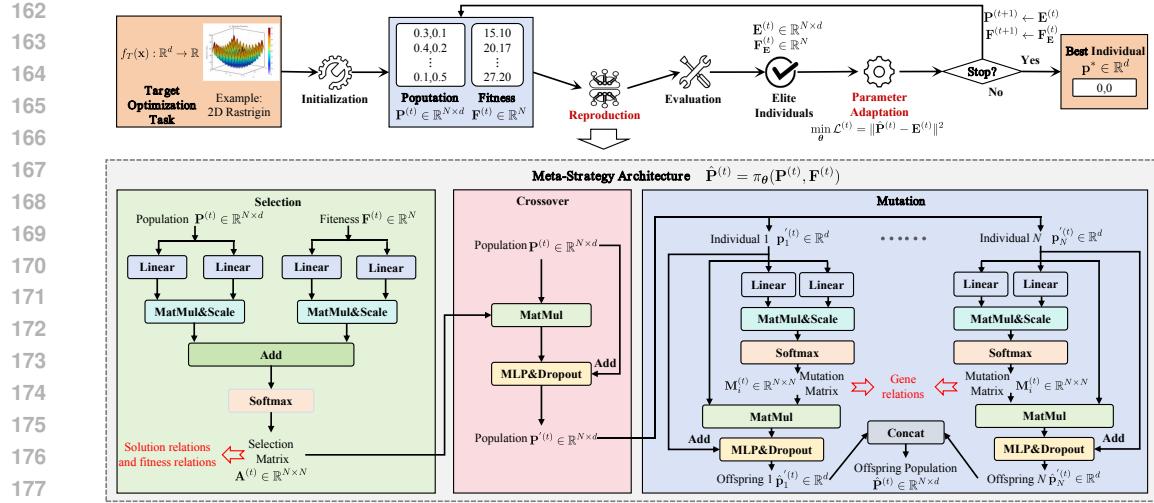


Figure 2: Workflow of ABOM: (Top) Adaptive optimization loop: Initialization, reproduction, evaluation, elitism, and parameter adaptation; (Bottom) Meta-strategies for reproduction: Attention-based evolutionary operators, including selection, crossover, and mutation.

Crossover. The intermediate population $\mathbf{P}'^{(t)}$ is generated by:

$$\mathbf{P}'^{(t)} = \mathbf{P}^{(t)} + \text{MLP}_{\theta_c} \left(\mathbf{A}^{(t)} \mathbf{P}^{(t)} \right), \quad (6)$$

where $\text{MLP}_{\theta_c}(\mathbf{z}) = \mathbf{W}_2 \tanh(\mathbf{W}_1 \mathbf{z} + \mathbf{b}_1) + \mathbf{b}_2$ with $\mathbf{W}_1 \in \mathbb{R}^{d \times d_M}$, $\mathbf{b}_1 \in \mathbb{R}^{d_M}$, $\mathbf{W}_2 \in \mathbb{R}^{d_M \times d}$, $\mathbf{b}_2 \in \mathbb{R}^d$. Dropout with rate p_C is applied to the hidden layer during both adaptive parameter learning and inference. The mechanism ensures persistent exploration through controlled randomness and is consistently maintained across all stochastic operations in ABOM. The term $\mathbf{A}^{(t)} \mathbf{P}^{(t)}$ computes an adaptive recombination pool: each row $\sum_{j=1}^N \mathbf{A}_{i,j}^{(t)} \mathbf{p}_j^{(t)}$ represents a context-aware blend of parent solutions, where weights $\mathbf{A}_{i,j}^{(t)}$ dynamically balance proximity in solution space and fitness-driven selection pressure.

Mutation. For each individual $\mathbf{p}_i^{(t)} \in \mathbb{R}^d$ in $\mathbf{P}'^{(t)}$, offspring $\hat{\mathbf{p}}_i^{(t)}$ is generated via:

$$\hat{\mathbf{p}}_i^{(t)} = \mathbf{p}_i^{(t)} + \text{MLP}_{\theta_m} \left(\mathbf{M}_i^{(t)} \mathbf{p}_i^{(t)} \right), \quad \mathbf{M}_i^{(t)} = \text{softmax} \left(\frac{(\mathbf{p}_i^{(t)} \mathbf{W}^{QM})(\mathbf{p}_i^{(t)} \mathbf{W}^{KM})^\top}{\sqrt{d_A}} \right), \quad (7)$$

where $\mathbf{W}^{QM}, \mathbf{W}^{KM} \in \mathbb{R}^{1 \times d_A}$, and $\text{MLP}_{\theta_m}(\mathbf{z}) = \mathbf{W}_4 \tanh(\mathbf{W}_3 \mathbf{z} + \mathbf{b}_3) + \mathbf{b}_4$ with $\mathbf{W}_3 \in \mathbb{R}^{d \times d_M}$, $\mathbf{b}_3 \in \mathbb{R}^{d_M}$, $\mathbf{W}_4 \in \mathbb{R}^{d_M \times d}$, $\mathbf{b}_4 \in \mathbb{R}^d$. Following the same exploration principle as crossover, dropout with rate p_M is applied during inference to maintain persistent exploration. The mutation matrix $\mathbf{M}^{(t)} \in \mathbb{R}^{d \times d}$ dynamically models gene-wise dependencies: each entry $\mathbf{M}_{j,k}^{(t)}$ quantifies the interaction strength between the j -th and k -th dimensions, enabling context-aware perturbations. Finally, offspring are concatenated as:

$$\hat{\mathbf{P}}^{(t)} = \left[\hat{\mathbf{p}}_1^{(t)\top}; \dots; \hat{\mathbf{p}}_N^{(t)\top} \right] \in \mathbb{R}^{N \times d}. \quad (8)$$

The set θ containing all parameters is:

$$\theta = \{\mathbf{W}^{QP}, \mathbf{W}^{KP}, \mathbf{W}^{QF}, \mathbf{W}^{KF}, \mathbf{W}^{QM}, \mathbf{W}^{KM}\} \cup \theta_c \cup \theta_m, \quad (9)$$

with $\theta_c = \{\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2\}$, $\theta_m = \{\mathbf{W}_3, \mathbf{b}_3, \mathbf{W}_4, \mathbf{b}_4\}$. Note that p_C and p_M are hyperparameters that govern the intensity of exploration. All modules share attention dimension d_A and MLP hidden dimension d_M . The parameterization transforms evolutionary operators into stochastic yet differentiable functions, where structured randomness maintains exploration without compromising gradient-based adaptation.

216 3.3 ADAPTIVE PARAMETER LEARNING
217

218 As shown in Fig. 2 (Top), ABOM’s optimization loop comprises: 1) **Initialization**: The initial
219 population $\mathbf{P}^{(0)}$ is randomly generated by Latin hypercube sampling; 2) **Reproduction**: Offspring
220 $\hat{\mathbf{P}}^{(t)}$ are generated via $\hat{\mathbf{P}}^{(t)} = \pi_{\theta}(\mathbf{P}^{(t)}, \mathbf{F}^{(t)})$; 3) **Evaluation**: Fitness values $\hat{\mathbf{F}}^{(t)}$ are computed for
221 $\hat{\mathbf{P}}^{(t)}$; 4) **Elitism** Deb et al. (2002): The elite archive $\mathbf{E}^{(t)} \in \mathbb{R}^{N \times d}$, formed by the top N individuals
222 from $\mathbf{P}^{(t)} \cup \hat{\mathbf{P}}^{(t)}$, and their fitness values $\mathbf{F}_{\mathbf{E}}^{(t)} \in \mathbb{R}^N$, are carried over to the next generation; 5)
223 **Parameter adaptation**: θ is updated via adaptive parameter learning. The pseudocode of ABOM
224 can be found in the Appendix C (Alg. 1). Crucially, ABOM performs adaptive parameter learning
225 by minimizing the distance between offspring and the elite archive:

$$226 \min_{\theta} \mathcal{L}^{(t)} = \|\hat{\mathbf{P}}^{(t)} - \mathbf{E}^{(t)}\|^2, \quad (10)$$

228 where, $\mathbf{E}^{(t)}$ denotes the elite archive. The objective refines evolutionary operators using task-specific
229 knowledge from $\mathcal{M}^{(t)}$. From a learning perspective, adaptive parameter learning operates in a
230 supervised paradigm. Gradients of \mathcal{L} with respect to θ are computed, and $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}^{(t)}$ is
231 updated via a gradient-based optimizer (e.g., AdamW Loshchilov & Hutter (2019)). The process
232 ensures continuous adaptation to the target task without handcrafted training tasks.

233 **Discussion.** ABOM introduces three algorithmic properties that enhance its suitability for BBO: (1)
234 **Learnable operators**: evolutionary mechanisms are parameterized and adapted online via gradient-
235 based learning, reducing reliance on hand-designed heuristics; (2) **GPU-parallelizable design**: neu-
236 ral computation enables efficient batched execution on GPU, reducing wall-clock time per iteration;
237 and (3) **Interpretable dynamics**: learned selection and mutation matrices reveal structured patterns
238 in solution-fitness interactions and dimensional dependencies.

240 3.4 COMPUTATIONAL COMPLEXITY AND CONVERGENCE ANALYSIS
241

242 The computational cost of ABOM is primarily dominated by the selection, crossover, and mutation.
243 The selection matrix (Eq. 5) incurs complexity $O(Ndd_A + N^2d_A)$, where N is the population size,
244 d the search space dimension, and d_A the attention dimension. The MLP of the crossover (Eq. 6)
245 contributes $O(Nd_A d_M + Nd_M d)$, with d_M the hidden dimension of the MLP. The mutation (Eq. 7)
246 contributes $O(d^2d_A + dd_A d_M)$. Summing these, the total complexity is:

$$247 \quad 248 \quad O(Ndd_A + N^2d_A + Nd_A d_M + Nd_M d + d^2d_A + dd_A d_M). \quad (11)$$

249 Assuming $d_A = d_M = d$ for simplicity, the formulation (11) reduces to $O(Nd^2 + N^2d + d^3)$. In
250 typical high-dimensional optimization ($N \ll d$), the leading term is $O(d^3)$, indicating that compu-
251 tational cost is primarily governed by the problem dimension. Note that d_A and d_M can be adjusted
252 in practice to balance expressivity and efficiency. Next, we establish that ABOM achieves global
253 convergence under the following assumption:

254 **Assumption 1** *The search space $\mathcal{X} \subseteq \mathbb{R}^d$ is compact, the objective f_T is continuous with global
255 minimizer \mathbf{x}^* in the interior of \mathcal{X} , and ABOM uses tanh-activated MLPs ($d_M \geq 1$) with dropout
256 rates ($0 < p_C, p_M < 1$) during inference (operator execution).*

257 Let $f_t^* = \min_{\mathbf{x} \in \mathbf{E}^{(t)}} f_T(\mathbf{x})$ denote the best objective value in the elite archive. The filtration
258 $\mathcal{F}_t = \sigma(\mathbf{P}^{(0)}, \dots, \mathbf{P}^{(t)}, \theta^{(0)}, \dots, \theta^{(t)})$ captures all algorithmic history up to generation t . ABOM
259 preserves a non-vanishing probability of generating offspring $\hat{\mathbf{p}}_i^{(t)}$ near the global optimum:

260 **Corollary 1 (Exploration Guarantee)** *For any $\delta > 0$, $\exists \gamma > 0$ such that $\forall t \geq 0$,*

$$261 \quad 262 \quad \mathbb{P}(\exists i : \|\hat{\mathbf{p}}_i^{(t)} - \mathbf{x}^*\| < \delta \mid \mathcal{F}_t) \geq 1 - (1 - \gamma)^N > 0. \quad (12)$$

263 Let $f^* = f_T(\mathbf{x}^*)$ be the global optimum value. **Corollary 2** establishes a positive drift condition:
264 when $f_t^* > f^* + \epsilon$, the expected improvement is strictly positive.

265 **Corollary 2 (Progress Guarantee)** *For any $\epsilon > 0$, $\exists \eta(\epsilon) > 0$ such that $\forall t \geq 0$,*

$$266 \quad 267 \quad \mathbb{E}[f_t^* - f_{t+1}^* \mid \mathcal{F}_t, f_t^* > f^* + \epsilon] \geq \eta(\epsilon). \quad (13)$$

270 Combining these properties, we have:
 271

272 **Theorem 3.1 (Global Convergence)** *Under Assumption 1, ABOM converges to the global optimum
 273 almost surely:*

$$f_t^* \xrightarrow{a.s.} f^* \quad \text{as} \quad t \rightarrow \infty. \quad (14)$$

275 All proofs are provided in Appendix D.
 276

277 4 EXPERIMENTS

280 In this section, we address the following research questions: RQ1 (Performance Comparison): How
 281 does ABOM compare against classical and state-of-the-art BBO baselines on both synthetic and
 282 real-world benchmarks? RQ2 (Visualization Study): What statistical patterns emerge in ABOM’s
 283 selection and mutation matrices? RQ3 (Ablation Study): Are all components of ABOM necessary
 284 for achieving competitive performance? RQ4 (Parameter Analysis): How sensitive is ABOM’s
 285 performance to its key hyperparameters? We first describe the experimental setup and then systematically
 286 address RQ1–RQ4.

287 4.1 EXPERIMENTAL SETUP

289 **BBO Tasks.** We evaluate ABOM on the advanced MetaBox Benchmark Ma et al. (2023; 2025a),
 290 comprising both the synthetic black-box optimization benchmark (BBOB) Hansen et al. (2021) and
 291 the realistic unmanned aerial vehicle (UAV) path planning benchmark Shehadeh & Küdela (2025).
 292 The BBOB benchmark suite, widely adopted for evaluating black-box optimizers, comprises 24 continuous
 293 functions that exhibit diverse global optimization characteristics, including unimodal, multi-
 294 modal, rotated, and shifted structures, with varying properties of Lipschitz continuity and second-
 295 order differentiability. We set the search space to $[-100, 100]^d$ with $d = 30/100/500$. The UAV
 296 benchmark provides 56 terrain-based problem instances for path planning in realistic landscapes
 297 with cylindrical threats. The objective is to select a specified number of path nodes in 3D space to
 298 minimize the total flight path length while ensuring collision-free navigation. The maximum function
 299 evaluations for BBOB and UAV are set to 20,000 and 2,500, respectively. All experiments are
 300 conducted on a Linux platform with an NVIDIA RTX 2080 Ti GPU (12 GB memory, CUDA 11.3).
 301 **Detailed task configurations and other experimental results are provided in Appendices F, H, and J.**

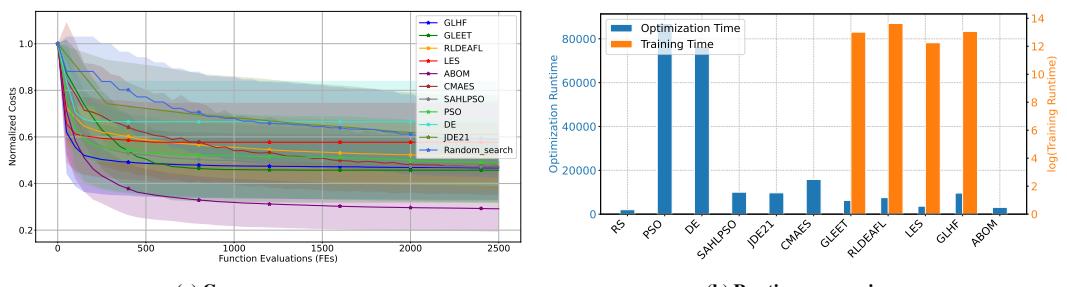
302 **Baselines.** We compare ABOM against three categories of baselines: (1) **Traditional BBO methods**:
 303 Random Search (RS) Bergstra & Bengio (2012), PSO Kennedy & Eberhart (1995), and DE
 304 Storn & Price (1997); (2) **Adaptive optimization variants**: SAHLPSO (advanced adaptive PSO
 305 variant) Tao et al. (2021), JDE21 (advanced adaptive DE variant) Brest et al. (2021), and CMAES
 306 (state-of-the-art adaptive ES variant) Hansen (2016); Ollivier et al. (2017); (3) **MetaBBO methods**:
 307 GLEET (advanced MetaBBO for PSO) Ma et al. (2024), RLDEAFL (advanced MetaBBO
 308 for DE) Guo et al. (2025), LES (advanced MetaBBO for ES) Lange et al. (2023b), and GLHF
 309 (advanced MetaBBO for solution manipulation) Li et al. (2024). All baselines follow the config-
 310urations outlined in the original papers. For all MetaBBO methods, we train them in the same
 311 problem distribution as RLDEAFL Guo et al. (2025) using the recommended settings. For BBOB,
 312 8 out of the 24 problem instances are used as the training set, and the remaining 16 instances
 313 ($f_4, f_6 \sim f_{14}, f_{18} \sim f_{20}, f_{22} \sim f_{24}$) serve as the test set. For UAV, the 56 problem instances
 314 are evenly divided into training and test sets, with a partition of 50% / 50%. All parameter configu-
 315 rations are provided in the Appendix G.

316 4.2 PERFORMANCE COMPARISON (RQ1)

317 **Results on BBOB.** We evaluate ABOM against the baselines on the BBOB suite with $d =$
 318 $30/100/500$. Tables 1, 7, and 8 (See Appendix K) show the mean and standard deviation over
 319 30 runs for each baseline. Convergence curves of average normalized cost across all cases are pro-
 320 vided in the Appendix K. ABOM matches or outperforms all baselines, achieving state-of-the-art
 321 performance, which validates the effectiveness of the proposed method. Both ABOM and adaptive
 322 optimization methods adjust the parameters online using optimization data. ABOM’s parameterized
 323 operators offer greater flexibility than the fixed adaptation rules in the variant, leading to stronger
 324 performance. Compared to existing metaBBO algorithms, ABOM’s improvements highlight the

324
325
326
327
328
329
330 Table 1: The comparison results of the baselines on the BBOB suite with $d = 500$. All results are
331 reported as the mean and standard deviation (mean \pm std) over 30 independent runs. Symbols “-”,
332 “ \approx ”, and “+” imply that the corresponding baseline is significantly worse, similar, and better than
333 ABOM on the Wilcoxon rank-sum test with 95% confidence level, respectively. The best results are
334 indicated in **bold**, and the suboptimal results are underlined.

ID	Traditional BBO			Adaptive Variants			MetaBBO			Ours	
	RS	PSO	DE	SAHLPSON	JDE21	CMAES	GLEET	RLDEAFL	LES	GLHF	ABOM
f_4	3.700e+5 $\pm 1.192e+4$	8.863e+4 $\pm 1.525e+4$	3.166e+5 $\pm 3.506e+4$	2.947e+5 $\pm 2.418e+4$	7.876e+4 $\pm 2.086e+4$	1.447e+4 $\pm 7.83e+2$	2.605e+5 $\pm 2.173e+4$	4.573e+4 $\pm 1.079e+4$	2.363e+5 $\pm 4.075e+3$	2.324e+5 $\pm 7.512e+3$	1.215e+4 <u>$\pm 5.389e+2$</u>
f_6	1.529e+7 $\pm 6.327e+5$	5.266e+6 $\pm 5.262e+5$	1.206e+7 $\pm 1.390e+6$	1.026e+7 $\pm 3.635e+6$	4.399e+6 $\pm 9.051e+5$	2.164e+4 $\pm 6.814e+3$	9.870e+6 $\pm 2.409e+5$	1.875e+6 $\pm 2.855e+5$	9.253e+6 $\pm 9.110e+4$	9.194e+6 $\pm 2.104e+5$	6.201e+3 <u>$\pm 6.326e+2$</u>
f_7	3.92e+4 $\pm 1.094e+3$	2.811e+4 $\pm 2.309e+3$	3.366e+4 $\pm 2.293e+3$	2.774e+4 $\pm 2.246e+3$	1.856e+4 $\pm 2.522e+3$	1.289e+5 $\pm 5.883e+2$	2.525e+4 $\pm 1.623e+3$	1.481e+4 $\pm 1.657e+3$	2.285e+4 $\pm 2.143e+2$	2.073e+4 $\pm 3.669e+2$	2.432e+3 <u>$\pm 2.250e+2$</u>
f_8	6.052e+8 $\pm 2.354e+7$	4.083e+8 $\pm 3.847e+7$	4.153e+8 $\pm 4.952e+7$	2.194e+8 $\pm 2.342e+7$	1.332e+8 $\pm 2.237e+7$	2.827e+5 $\pm 6.292e+4$	1.183e+8 $\pm 1.271e+7$	5.807e+7 $\pm 1.284e+7$	5.068e+7 $\pm 2.664e+5$	5.055e+7 $\pm 5.094e+5$	8.886e+4 <u>$\pm 1.267e+5$</u>
f_9	4.159e+8 $\pm 1.368e+7$	1.719e+8 $\pm 2.766e+7$	2.002e+8 $\pm 3.504e+7$	5.151e+7 $\pm 1.006e+7$	3.326e+7 $\pm 1.238e+7$	2.533e+5 $\pm 5.445e+4$	1.473e+7 $\pm 3.238e+6$	1.145e+7 $\pm 3.538e+6$	4.548e+3 $\pm 3.713e+0$	3.243e+3 <u>$\pm 5.560e-2$</u>	1.792e+5 $\pm 5.876e+4$
f_{10}	2.832e+8 $\pm 1.366e+7$	8.026e+7 $\pm 9.438e+6$	2.440e+8 $\pm 3.217e+7$	2.229e+8 $\pm 2.573e+7$	5.459e+7 $\pm 1.667e+7$	1.580e+7 $\pm 2.835e+6$	2.097e+8 $\pm 2.181e+7$	2.232e+7 $\pm 3.291e+6$	2.085e+8 $\pm 4.324e+6$	2.002e+8 $\pm 9.454e+6$	5.958e+6 <u>$\pm 5.916e+5$</u>
f_{11}	5.881e+3 $\pm 1.591e+2$	6.187e+3 $\pm 7.026e+2$	4.999e+3 $\pm 5.091e+2$	4.835e+3 $\pm 8.117e+2$	4.371e+3 $\pm 5.691e+2$	1.248e+4 $\pm 2.251e+2$	3.722e+3 $\pm 3.575e+2$	3.259e+3 $\pm 2.521e+2$	5.107e+3 $\pm 4.848e+1$	2.529e+3 <u>$\pm 3.248e+1$</u>	5.392e+3 $\pm 3.159e+2$
f_{12}	3.015e+10 $\pm 2.064e+9$	1.414e+10 $\pm 1.401e+9$	2.055e+10 $\pm 4.629e+9$	1.675e+10 $\pm 3.634e+9$	4.800e+9 $\pm 9.841e+8$	1.32e+8 $\pm 2.254e+7$	1.232e+10 $\pm 2.046e+9$	2.819e+9 $\pm 3.899e+8$	1.084e+10 $\pm 5.738e+8$	9.757e+9 $\pm 6.844e+8$	2.733e+7 <u>$\pm 4.903e+7$</u>
f_{13}	1.444e+4 $\pm 1.618e+2$	1.324e+4 $\pm 2.757e+2$	1.197e+4 $\pm 4.159e+2$	8.994e+3 $\pm 2.857e+2$	3.263e+3 $\pm 6.370e+2$	1.248e+4 $\pm 1.436e+2$	1.116e+4 $\pm 3.338e+2$	1.255e+4 $\pm 3.424e+2$	7.073e+3 $\pm 5.007e+1$	1.024e+4 $\pm 5.299e+1$	1.221e+3 <u>$\pm 3.010e+2$</u>
f_{14}	6.634e+2 $\pm 2.241e+1$	4.824e+2 $\pm 4.296e+1$	5.081e+2 $\pm 7.419e+1$	4.208e+2 $\pm 4.277e+1$	1.842e+2 $\pm 2.998e+1$	2.494e+1 $\pm 3.554e+0$	3.231e+2 $\pm 2.764e+1$	1.157e+2 $\pm 1.216e+1$	1.458e+3 $\pm 6.108e+0$	2.542e+2 $\pm 8.222e+0$	1.487e+1 <u>$\pm 2.291e+0$</u>
f_{18}	1.428e+2 $\pm 5.025e+0$	1.017e+2 $\pm 9.614e+0$	9.814e+1 $\pm 8.297e+0$	7.074e+1 $\pm 7.383e+0$	1.100e+3 $\pm 8.102e+0$	1.069e+3 $\pm 1.069e+1$	8.539e+1 $\pm 8.386e+0$	5.495e+1 $\pm 4.191e+0$	3.704e+2 $\pm 6.062e-1$	6.875e+1 $\pm 1.422e+0$	3.792e+1 <u>$\pm 4.075e+0$</u>
f_{19}	2.094e+3 $\pm 6.041e+1$	9.012e+2 $\pm 1.148e+2$	9.606e+2 $\pm 1.704e+2$	2.764e+2 $\pm 4.896e+1$	1.772e+2 $\pm 5.848e+1$	1.374e+1 $\pm 5.336e-1$	8.479e+1 $\pm 1.668e+1$	8.767e+1 $\pm 2.029e+1$	2.502e+3 $\pm 8.225e-1$	2.504e-1 <u>$\pm 3.113e-6$</u>	1.813e+1 $\pm 1.603e+0$
f_{20}	3.233e+6 $\pm 1.022e+5$	2.374e+6 $\pm 2.320e+5$	2.432e+6 $\pm 2.800e+5$	1.471e+6 $\pm 1.945e+5$	5.884e+5 $\pm 1.564e+5$	3.802e+3 $\pm 1.702e+3$	9.466e+5 $\pm 1.069e+5$	2.136e+5 $\pm 6.086e+4$	3.772e+5 $\pm 6.088e+3$	3.753e+5 $\pm 6.417e+3$	2.565e+2 <u>$\pm 1.351e+3$</u>
f_{22}	8.636e+1 $\pm 1.942e-2$	8.609e+1 $\pm 9.432e-2$	8.61e+1 $\pm 1.371e-1$	8.542e+1 $\pm 2.480e-1$	8.003e+1 $\pm 1.838e+0$	2.851e+1 $\pm 3.852e-1$	8.478e+1 $\pm 2.648e-1$	7.159e+1 $\pm 2.184e+0$	1.184e+3 $\pm 4.394e-2$	8.356e+1 $\pm 7.540e-2$	4.971e+0 <u>$\pm 6.520e+0$</u>
f_{23}	1.652e+0 $\pm 3.551e-2$	1.641e+0 $\pm 4.291e-2$	1.659e+0 $\pm 2.456e-2$	1.658e+0 $\pm 5.790e-2$	1.586e+0 $\pm 6.784e-2$	3.959e-1 <u>$\pm 3.542e-2$</u>	1.659e+0 $\pm 4.429e-2$	1.559e+0 $\pm 1.525e-1$	1.202e+3 $\pm 3.532e-2$	1.663e+0 $\pm 3.539e-2$	1.656e+0 $\pm 3.434e-2$
f_{24}	2.089e+4 $\pm 2.555e+2$	1.604e+4 $\pm 5.679e+2$	1.610e+4 $\pm 9.073e+2$	1.222e+4 $\pm 4.744e+2$	1.198e+4 $\pm 9.584e+2$	4.986e+4 $\pm 3.337e+1$	1.010e+4 $\pm 4.16e+2$	9.9e+3 $\pm 6.456e+2$	8.822e+3 $\pm 5.392e+1$	7.437e+3 <u>$\pm 7.572e+1$</u>	8.09e+3 $\pm 3.268e+2$
-	-	15/1/0	15/1/0	14/1/1	14/1/1	14/1/1	15/0/1	14/1/1	14/1/1	14/0/2	11/1/4



355
356
357
358
359
360
361
362
363
364
365 Figure 3: Performance on 28 UAV problems: (Left) Convergence curve of average normalized cost
366 across all problems. Costs (lower is better) are min-max normalized for each case. Detailed results
367 are shown in the Appendix K; (Right) Average runtime (GPU seconds) over 30 independent runs.

370 importance of parameter adaptation in enabling effective meta-optimization across diverse prob-
371 lem instances. The results suggest that adaptive mechanisms can support competitive performance
372 without relying on handcrafted training tasks.

373 **Results on UAV.** We evaluate ABOM on 28 UAV benchmarks to validate its practical effectiveness.
374 Fig. 3 shows the convergence of the normalized cost and runtime. ABOM converges fastest under
375 limited evaluations and achieves the lowest normalized cost. Unlike metaBBO-based methods (e.g.,
376 GLHF, GLEET, RLDEAFL, LES), ABOM and adaptive optimization methods eliminate the need
377 for training on hand-crafted tasks and associated overhead. Through GPU-accelerated evolution and
378 adaptive parameter learning, ABOM achieves significantly faster runtime than most baselines.

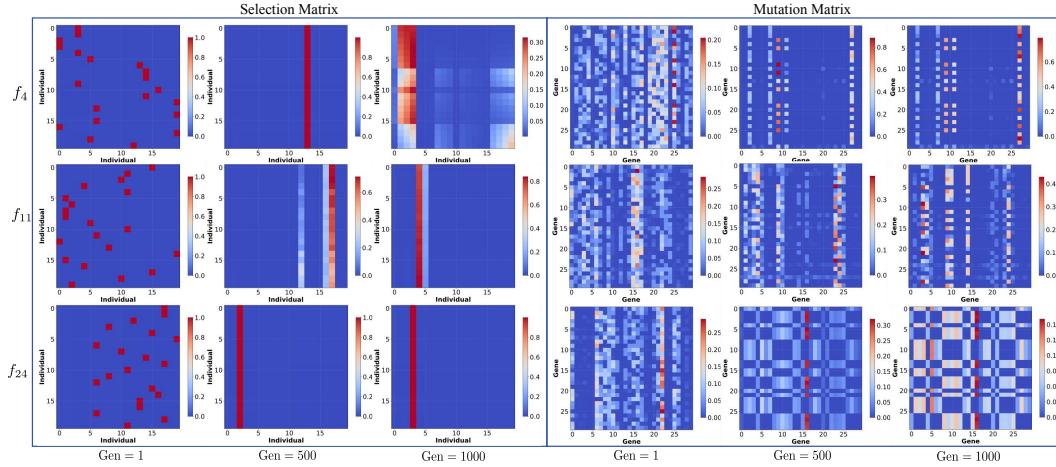


Figure 4: Learned selection and mutation matrices of ABOM on BBOB functions f_4 , f_{11} , and f_{24} ($d = 30$) at Generation 1, 500, and 1000. For the selection matrix, axes represent individuals ranked by their fitness values (0 is the best). For the mutation matrix, axes represent gene (variable) indices.

4.3 VISUALIZATION STUDY (RQ2) AND ABLATION STUDY (RQ3)

We visualize the learned selection and mutation matrices of ABOM on three BBOB functions (f_4 , f_{11} , f_{24} , $d = 30$) in Fig. 4. In all cases, the matrices develop structured statistical patterns as optimization proceeds. The selection matrix shows row similarity, indicating that ABOM learns to generate offspring from a small subset of individuals. This behavior resembles the difference vector mechanism in DE Storn & Price (1997), which reflects the strong expressive capacity of the learnable operator. Individuals with higher fitness are preferentially selected, in line with the principle of survival of the fittest. The best individual is not always selected, which may help preserve population diversity. The mutation matrix evolves from random initialization to an ordered structure, suggesting that mutation follows consistent patterns adapted to the problem. These results demonstrate that ABOM provides greater interpretability than the metaBBO methods, which directly map neural networks to solution manipulation Li et al. (2024; 2025).

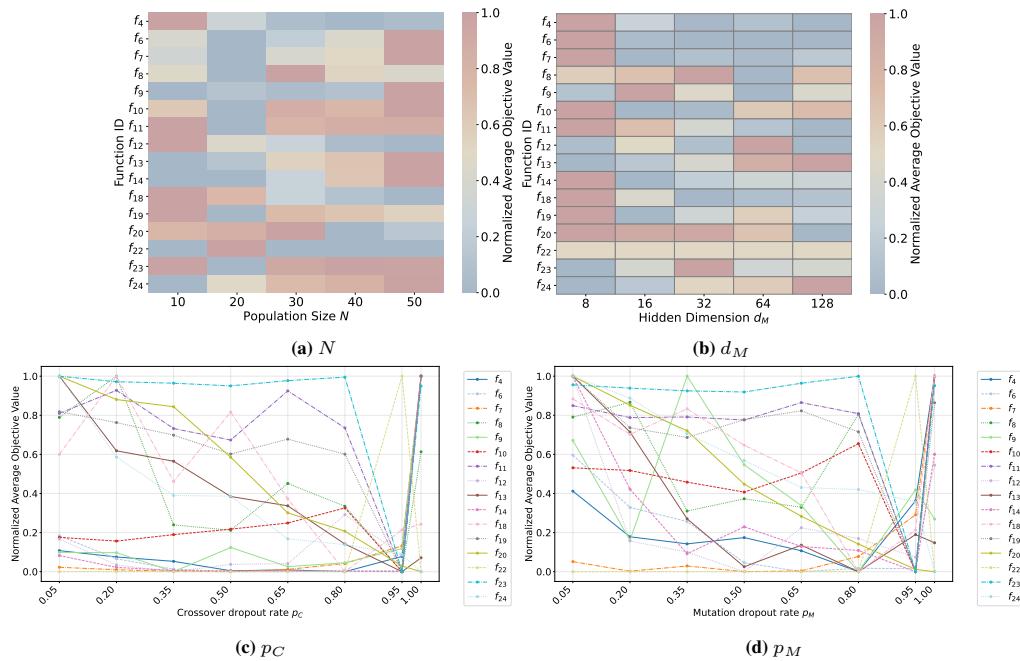
Table 2: Ablation study of ABOM’s key components on the BBOB suite with $d = 30$.

ID	No Crossover (mean \pm std)	No Mutation (mean \pm std)	No Parameter Adaptation (mean \pm std)	ABOM (mean \pm std)
f_4	4.23e+03 \pm 3.02e+03	1.01e+03 \pm 5.44e+02	2.58e+04 \pm 1.67e+04	5.45e+02 \pm 2.95e+02
f_6	1.62e+04 \pm 1.55e+04	1.10e+04 \pm 1.95e+04	4.54e+04 \pm 3.61e+04	2.60e+02 \pm 2.64e+02
f_7	6.39e+03 \pm 6.91e+03	1.18e+03 \pm 6.86e+02	1.67e+04 \pm 1.11e+04	5.58e+02 \pm 2.77e+02
f_8	1.52e+03 \pm 2.91e+03	1.94e+03 \pm 3.62e+03	1.03e+08 \pm 2.68e+08	1.15e+02 \pm 1.56e+02
f_9	1.96e+04 \pm 7.02e+04	1.13e+03 \pm 3.15e+03	2.49e+06 \pm 5.94e+06	2.35e+03 \pm 5.30e+03
f_{10}	1.16e+07 \pm 7.11e+06	1.07e+07 \pm 3.48e+06	3.65e+07 \pm 1.64e+07	9.72e+05 \pm 7.38e+05
f_{11}	1.05e+05 \pm 3.19e+04	1.00e+05 \pm 2.68e+04	8.00e+04 \pm 2.20e+04	2.61e+04 \pm 1.01e+04
f_{12}	1.12e+09 \pm 3.12e+09	2.30e+07 \pm 5.74e+07	1.63e+10 \pm 1.61e+10	5.28e+07 \pm 1.45e+08
f_{13}	7.54e+01 \pm 4.06e+01	7.71e+01 \pm 3.93e+01	8.71e+03 \pm 3.16e+03	7.28e+01 \pm 3.07e+01
f_{14}	8.43e+01 \pm 7.23e+01	9.29e+00 \pm 2.49e+01	9.28e+02 \pm 5.96e+02	3.46e-02 \pm 3.39e-02
f_{18}	1.18e+03 \pm 2.21e+03	7.02e+02 \pm 2.46e+02	4.94e+02 \pm 1.66e+02	5.12e+02 \pm 1.37e+02
f_{19}	2.35e+01 \pm 3.45e+01	1.23e+01 \pm 1.23e+01	1.64e+02 \pm 3.27e+02	2.48e-01 \pm 1.11e-03
f_{20}	-6.54e+01 \pm 4.95e+00	-6.58e+01 \pm 3.53e+00	-5.82e+01 \pm 4.19e+00	-6.57e+01 \pm 3.80e+00
f_{22}	8.66e+01 \pm 0.00e+00	8.66e+01 \pm 0.00e+00	8.66e+01 \pm 0.00e+00	8.66e+01 \pm 0.00e+00
f_{23}	3.03e+00 \pm 5.33e-01	3.12e+00 \pm 4.54e-01	3.20e+00 \pm 4.25e-01	3.01e-01 \pm 2.19e-01
f_{24}	2.92e+02 \pm 2.46e+02	2.30e+02 \pm 5.31e+01	4.94e+03 \pm 3.41e+03	2.44e+02 \pm 2.37e+01
-/≈/+		13/3/0	10/3/3	14/1/1
				-

We conduct an ablation study comparing the proposed ABOM with variants that disable specific mechanisms, including no crossover, no mutation, and no parameter adaptation. Table 2 presents the mean and standard deviation over 30 runs on the BBOB suite with $d = 30$. Table 2 illustrates that both crossover and mutation are crucial components, as their removal individually causes significant performance deterioration. Furthermore, the variant without parameter adaptation performs significantly worse than ABOM, underscoring the critical importance of the adaptive mechanism for achieving robust and high-quality optimization.

432 4.4 PARAMETER ANALYSIS (RQ4)
433

434 Fig. 5 illustrates ABOM’s hyperparameter sensitivity on the BBOB suite ($d = 30$). A population
435 size of 20 proves sufficient for robust performance across most functions within 20,000 evaluations.
436 Similarly, a hidden dimension d_M smaller than d (e.g., $d_M = 16$) often achieves competitive results.
437 In practice, d_M should be carefully configured to balance computational efficiency and optimization
438 quality effectively. The parameters p_C and p_M exhibit optimal performance at 0.95, indicating that
439 higher values increase stochasticity and exploration. Nevertheless, setting either parameter to 1
440 eliminates beneficial randomness, degrading performance. Thus, controlled stochasticity is crucial
441 for maintaining the balance between exploitation and diversity.



443 Figure 5: Sensitivity analysis of key hyperparameters on the BBOB suite with $d = 30$: Algorithm
444 performance across different settings for population size (N), hidden dimension (d_M), crossover
445 dropout rate (p_C), and mutation dropout rate (p_M). The learning rate analysis is in Appendix I.

468 5 CONCLUSION AND DISCUSSION
469

470 **Summary.** We present a task-free adaptive metaBBO method, ABOM, which eliminates dependency
471 on handcrafted training tasks by performing online parameter adaptation using only optimization
472 data from the target task. Unlike conventional MetaBBO methods that require offline meta-
473 training, ABOM integrates parameter learning directly into the evolutionary loop, enabling zero-shot
474 generalization. Our framework parameterizes evolutionary operators as differentiable modules, up-
475 dated via gradient descent to align offspring with elites, thereby eliminating the need for pretraining
476 or heuristic design. Empirical results in synthetic and realistic benchmarks demonstrate that ABOM
477 matches or outperforms advanced baselines without prior task knowledge. Attention visualization
478 reveals interpretable search behaviors with consistent structural patterns. Thus, ABOM establishes
479 a task-free paradigm for metaBBO, where learning and search co-evolve in real time.

480 **Limitations and Future Work.** Current limitations motivate several promising directions: (1) Ad-
481 dressing the cubic computational bottleneck ($O(d^3)$) through sparse or low-rank attention mecha-
482 nisms to reduce ABOM’s complexity; (2) Dynamically adapting population size and model capacity
483 during optimization; (3) Conducting a convergence rate analysis grounded in the theoretical exam-
484 ination of adaptive parameter learning in ABOM; and (4) Exploring hybrid training paradigms that
485 integrate pretraining on prior knowledge with online adaptation, thereby enhancing optimization
efficiency and bridging the gap between task-agnostic adaptation and cross-task generalization.

486 REFERENCES
487

488 Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
489 optimization. *Evolutionary computation*, 1(1):1–23, 1993.

490 Hui Bai and Ran Cheng. Generalized population-based training for hyperparameter optimization in
491 reinforcement learning. *IEEE Transactions on Emerging Topics in Computational Intelligence*, 8
492 (5):3450–3462, 2024.

493

494 James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. *Journal of
495 Machine Learning Research*, 13(10):281–305, 2012.

496

497 Janez Brest, Mirjam Sepesy Maučec, and Borko Bošković. Self-adaptive differential evolution al-
498 gorithm with population size reduction for single objective bound-constrained optimization: Al-
499 gorithm j21. In *2021 IEEE Congress on Evolutionary Computation*, pp. 817–824, 2021.

500

501 Jiacheng Chen, Zeyuan Ma, Hongshu Guo, Yining Ma, Jie Zhang, and Yue-Jiao Gong. SYMBOL:
502 Generating flexible black-box optimizers through symbolic equation learning. In *The Twelfth
503 International Conference on Learning Representations*, 2024.

504

505 Kenneth De Jong. Evolutionary computation: a unified approach. In *Proceedings of the Genetic and
506 Evolutionary Computation Conference Companion*, GECCO ’17, pp. 373–388, New York, NY,
507 USA, 2017. Association for Computing Machinery.

508

509 K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
510 Nsga-ii. *IEEE Transactions on Evolutionary Computation*, 6(2):182–197, 2002.

511

512 Agoston E Eiben and Jim Smith. From evolutionary computation to the evolution of things. *Nature*,
513 521(7553):476–482, 2015.

514

515 Hongshu Guo, Yining Ma, Zeyuan Ma, Jiacheng Chen, Xinglin Zhang, Zhiguang Cao, Jun Zhang,
516 and Yue-Jiao Gong. Deep reinforcement learning for dynamic algorithm selection: A proof-of-
517 principle study on differential evolution. *IEEE Transactions on Systems, Man, and Cybernetics:
518 Systems*, 54(7):4247–4259, 2024.

519

520 Hongshu Guo, Sijie Ma, Zechuan Huang, Yuzhi Hu, Zeyuan Ma, Xinglin Zhang, and Yue-Jiao
521 Gong. Reinforcement learning-based self-adaptive differential evolution through automated land-
522 scape feature learning. In *Proceedings of the Genetic and Evolutionary Computation Conference*,
523 GECCO ’25, pp. 1117–1126, New York, NY, USA, 2025. Association for Computing Machinery.

524

525 Peter Hall and Christopher C Heyde. *Martingale limit theory and its application*. Academic press,
526 2014.

527

528 Muqi Han, Xiaobin Li, Kai Wu, Xiaoyu Zhang, and Handing Wang. Enhancing zero-shot black-box
529 optimization via pretrained models with efficient population modeling, interaction, and stable gra-
530 dient approximation. In *The Thirty-ninth Annual Conference on Neural Information Processing
531 Systems*, 2025.

532

533 Nikolaus Hansen. The cma evolution strategy: A tutorial. *arXiv preprint arXiv:1604.00772*, 2016.

534

535 Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff.
536 Coco: A platform for comparing continuous optimizers in a black-box setting. *Optimization
537 Methods and Software*, 36(1):114–144, 2021.

538

539 Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary algorithms. *Artifi-
540 cial intelligence*, 127(1):57–85, 2001.

541

542 John H. Holland. Outline for a logical theory of adaptive systems. *J. ACM*, 9(3):297–314, July 1962.

543

544 J. Kennedy and R. Eberhart. Particle swarm optimization. In *Proceedings of ICNN’95 - Interna-
545 tional Conference on Neural Networks*, volume 4, pp. 1942–1948 vol.4, 1995.

540 Robert Lange, Tom Schaul, Yutian Chen, Chris Lu, Tom Zahavy, Valentin Dalibard, and Sebastian Flennerhag. Discovering attention-based genetic algorithms via meta-black-box optimization. In *Proceedings of the Genetic and Evolutionary Computation Conference*, GECCO '23, pp. 541 929–937, New York, NY, USA, 2023a. Association for Computing Machinery.

542

543

544 Robert Tjarko Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin Dalibard, Chris Lu, Satinder Singh, and Sebastian Flennerhag. Discovering evolution strategies via meta-black-box optimization. In *The Eleventh International Conference on Learning Representations*, 2023b.

545

546

547

548 Ke Li, Alvaro Fialho, Sam Kwong, and Qingfu Zhang. Adaptive operator selection with bandits for 549 a multiobjective evolutionary algorithm based on decomposition. *IEEE Transactions on Evolutionary 550 Computation*, 18(1):114–130, 2013.

551

552 Xiaobin Li, Kai Wu, Yujian Betterest Li, Xiaoyu Zhang, Handing Wang, and Jing Liu. Pretrained 553 optimization model for zero-shot black box optimization. In *The Thirty-eighth Annual Conference 554 on Neural Information Processing Systems*, 2024.

555 Xiaobin Li, Kai Wu, Xiaoyu Zhang, and Handing Wang. B2opt: Learning to optimize black-box 556 optimization with little budget. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39 557 (17):18502–18510, Apr. 2025.

558

559 Fei Liu, Xi Lin, Shunyu Yao, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. 560 Large language model for multiobjective evolutionary optimization. In Hemant Singh, Tapabrata 561 Ray, Joshua Knowles, Xiaodong Li, Juergen Branke, Bing Wang, and Akira Oyama (eds.), *Evolutionary 562 Multi-Criterion Optimization*, pp. 178–191, Singapore, 2025. Springer Nature Singapore.

563 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference 564 on Learning Representations*, 2019.

565

566 Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Zhenrui Li, Guojun Peng, Yue-Jiao Gong, Yining Ma, 567 and Zhiguang Cao. Metabox: A benchmark platform for meta-black-box optimization with re- 568 enforcement learning. In *Thirty-seventh Conference on Neural Information Processing Systems 569 Datasets and Benchmarks Track*, 2023.

570 Zeyuan Ma, Jiacheng Chen, Hongshu Guo, Yining Ma, and Yue-Jiao Gong. Auto-configuring 571 exploration-exploitation tradeoff in evolutionary computation via deep reinforcement learning. 572 In *Proceedings of the Genetic and Evolutionary Computation Conference*, GECCO '24, pp. 573 1497–1505, New York, NY, USA, 2024. Association for Computing Machinery.

574

575 Zeyuan Ma, Yue-Jiao Gong, Hongshu Guo, Wenjie Qiu, Sijie Ma, Hongqiao Lian, Jiajun Zhan, 576 Kaixu Chen, Chen Wang, Zhiyang Huang, Zechuan Huang, Guojun Peng, Ran Cheng, and Yining 577 Ma. Metabox-v2: A unified benchmark platform for meta-black-box optimization. In *The Thirty- 578 ninth Annual Conference on Neural Information Processing Systems Datasets and Benchmarks 579 Track*, 2025a.

580 Zeyuan Ma, Hongshu Guo, Yue-Jiao Gong, Jun Zhang, and Kay Chen Tan. Toward automated algo- 581 rithm design: A survey and practical guide to meta-black-box-optimization. *IEEE Transactions 582 on Evolutionary Computation*, pp. 1–1, 2025b.

583 Risto Miikkulainen. Neuroevolution insights into biological neural computation. *Science*, 387 584 (6735):eadp7478, 2025.

585

586 Risto Miikkulainen and Stephanie Forrest. A biological perspective on evolutionary computation. 587 *Nature Machine Intelligence*, 3(1):9–15, 2021.

588 Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen. Information-geometric opti- 589 mization algorithms: A unifying picture via invariance principles. *Journal of Machine Learning 590 Research*, 18(18):1–65, 2017.

591

592 Ingo Rechenberg. The evolution strategy. a mathematical model of darwinian evolution. In *Syner- 593 getics—From Microscopic to Macroscopic Order: Proceedings of the International Symposium on 594 Synergetics at Berlin, July 4–8, 1983*, pp. 122–132. Springer, 1984.

594 Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
 595 M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
 596 Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
 597 *Nature*, 625(7995):468–475, 2024.

598 Sasan Salmani Pour Avval, Nathan D Eskue, Roger M Groves, and Vahid Yaghoubi. Systematic
 599 review on neural architecture search. *Artificial Intelligence Review*, 58(3):73, 2025.

600 Mhd Ali Shehadeh and Jakub Kudela. Benchmarking global optimization techniques for unmanned
 601 aerial vehicle path planning. *Expert Systems with Applications*, pp. 128645, 2025.

602 Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
 603 through neuroevolution. *Nature Machine Intelligence*, 1(1):24–35, 2019.

604 Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuristic for global
 605 optimization over continuous spaces. *J. of Global Optimization*, 11(4):341–359, December 1997.

606 Xinmin Tao, Xiangke Li, Wei Chen, Tian Liang, Yetong Li, Jie Guo, and Lin Qi. Self-adaptive two
 607 roles hybrid learning strategies-based particle swarm optimization. *Information Sciences*, 578:
 608 457–481, 2021.

609 Ye Tian, Shichen Peng, Xingyi Zhang, Tobias Rodemann, Kay Chen Tan, and Yaochu Jin. A recom-
 610 mender system for metaheuristic algorithms for continuous optimization based on deep recurrent
 611 neural networks. *IEEE Transactions on Artificial Intelligence*, 1(1):5–18, 2020.

612 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 613 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
 614 S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural
 615 Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

616 Chao Wang, Licheng Jiao, Jiaxuan Zhao, Lingling Li, Xu Liu, Fang Liu, and Shuyuan Yang. Bi-level
 617 multiobjective evolutionary learning: A case study on multitask graph neural topology search.
 618 *IEEE Transactions on Evolutionary Computation*, 28(1):208–222, 2023.

619 Chao Wang, Jiaxuan Zhao, Licheng Jiao, Lingling Li, Fang Liu, and Shuyuan Yang. When large lan-
 620 guage models meet evolutionary algorithms: Potential enhancements and challenges. *Research*,
 621 8:0646, 2025a.

622 Chen Wang, Zeyuan Ma, Zhiguang Cao, and Yue-Jiao Gong. Instance generation for meta-black-
 623 box optimization through latent space reverse engineering. *arXiv preprint arXiv:2509.15810*,
 624 2025b.

625 David H Wolpert and William G Macready. No free lunch theorems for optimization. *IEEE trans-
 626 actions on evolutionary computation*, 1(1):67–82, 2002.

627 Xiaoming Xue, Cuie Yang, Liang Feng, Kai Zhang, Linqi Song, and Kay Chen Tan. A scalable test
 628 problem generator for sequential transfer optimization. *IEEE Transactions on Cybernetics*, 55(5):
 629 2110–2123, 2025.

630 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
 631 Chen. Large language models as optimizers. In B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki,
 632 M. Khan, and Y. Sun (eds.), *International Conference on Representation Learning*, volume 2024,
 633 pp. 12028–12068, 2024.

634 Taeyoung Yun, Kiyoung Om, Jaewoo Lee, Sujin Yun, and Jinkyoo Park. Posterior inference with
 635 diffusion models for high-dimensional black-box optimization. In *Forty-second International
 636 Conference on Machine Learning*, 2025.

637 Zhi-Hua Zhou, Yang Yu, and Chao Qian. *Evolutionary learning: Advances in theories and algo-
 638 rithms*. Springer, 2019.

639

648 **A REPRODUCIBILITY STATEMENT**
649650 To ensure the reproducibility, we have taken the following measures:
651

- 652 • **Source Code:** We provide a complete implementation of the Adaptive meta Black-box
653 Optimization Model (ABOM) at the following repository: <https://anonymous.4open.science/r/ABOM-A343/>.
654
- 655 • **Algorithm Specification:** ABOM is fully detailed in Section 3, including the mathematical
656 formulations for the selection, crossover, and mutation operators. The complete pseudocode
657 for the optimization loop is provided in Algorithm 1 (Appendix C).
658
- 659 • **Experimental Setup:** All baselines are implemented and evaluated using the state-of-the-
660 art MetaBox benchmark platform Ma et al. (2023; 2025a). This ensures a standardized,
661 fair, and reproducible comparison. Appendix F describes the BBOB and UAV benchmarks,
662 including their characteristics, search space dimensions, and evaluation budgets. Appendix
663 G details the hyperparameter settings for all baselines as specified in the original papers
664 and implemented in MetaBox.
665

666 By providing the code, algorithmic descriptions, and experimental configurations on the unified
667 MetaBox platform, we aim to enable other researchers to fully reproduce and build upon our results.
668

669 **B USE OF LARGE LANGUAGE MODELS**
670

671 Large Language Models (LLMs) were used solely as a general-purpose writing assistance tool. Their
672 role was limited to language polishing, grammatical refinement, and improving the clarity and flu-
673 ency of the paper. LLMs did not contribute to the conception of research ideas, experimental design,
674 data analysis, or interpretation of results. All intellectual contributions, including the formulation of
675 the problem, methodology, and conclusions, were made entirely by the human authors.
676

677 **C PSEUDOCODE OF ABOM**
678679 **Algorithm 1** Adaptive meta Black-box Optimization Model (ABOM)
680

681 **Input:** Target black-box optimization task f_T , population size N , max generations T , crossover
682 dropout rate p_C , mutation dropout rate p_M , learning rate η , attention dimension d_A , and MLP
683 hidden dimension d_M .
684

- 685 1: Initialize $\mathbf{P}^{(0)}$ via Latin hypercube sampling;
686 2: Evaluate: $\mathbf{F}^{(0)} \leftarrow f_T(\mathbf{P}^{(0)})$;
687 3: **for** $t = 0$ **to** $T - 1$ **do**
688 4: Generate offspring: $\hat{\mathbf{P}}^{(t)} \leftarrow \pi_{\theta}(\mathbf{P}^{(t)}, \mathbf{F}^{(t)}; d_A, d_M, p_C, p_M)$;
689 5: Evaluate: $\hat{\mathbf{F}}^{(t)} \leftarrow f_T(\hat{\mathbf{P}}^{(t)})$;
690 6: Form elite archive: $\mathbf{E}^{(t)}, \mathbf{F}_{\mathbf{E}}^{(t)} \leftarrow \text{top}_N(\mathbf{P}^{(t)} \cup \hat{\mathbf{P}}^{(t)}), \text{top}_N(\mathbf{F}^{(t)} \cup \hat{\mathbf{F}}^{(t)})$;
691 7: Update parameters by AdamW: $\theta \leftarrow \theta - \eta \nabla_{\theta} \left\| \hat{\mathbf{P}}^{(t)} - \mathbf{E}^{(t)} \right\|^2$;
692 8: Elitism: $\mathbf{P}^{(t+1)} \leftarrow \mathbf{E}^{(t)}, \mathbf{F}^{(t+1)} \leftarrow \mathbf{F}_{\mathbf{E}}^{(t)}$;
693 9: **end for**
694

695 **Output:** Optimal individual (solution) $\mathbf{p}^* = \arg \min_{\mathbf{p} \in \mathbf{P}^{(t)}} f_T(\mathbf{p})$.
696

697 **D CONVERGENCE ANALYSIS OF ABOM**
698

699 This section presents a convergence analysis of ABOM under some assumptions. We rigorously
700 prove that ABOM converges with probability 1 to the global optimum of the objective function.
701 Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a compact search space and $f_T : \mathcal{X} \rightarrow \mathbb{R}$ be a continuous objective function
702 with global minimum $f^* = f_T(\mathbf{x}^*)$. ABOM maintains a population $\mathbf{P}^{(t)} \in \mathbb{R}^{N \times d}$ at generation

702 t , with corresponding fitness values $\mathbf{F}^{(t)}$. For the convergence analysis, we make the following
 703 assumptions:
 704

705 **Assumption 2** *The following conditions hold:*

706 (i) *The global optimum \mathbf{x}^* lies in the interior of \mathcal{X} .*
 707 (ii) *Dropout rates satisfy $0 < p_C, p_M < 1$.*
 709 (iii) *MLP hidden dimension $d_M \geq 1$ with tanh activation.*

710 Define $f_t^* = \min_{\mathbf{x} \in \mathbf{E}^{(t)}} f_T(\mathbf{x})$, where $\mathbf{E}^{(t)}$ is the elite archive containing the top N individuals from
 711 $\mathbf{P}^{(t)} \cup \hat{\mathbf{P}}^{(t)}$. Let $\mathcal{F}_t = \sigma(\mathbf{P}^{(0)}, \dots, \mathbf{P}^{(t)}, \theta^{(0)}, \dots, \theta^{(t)})$ be the filtration representing all information
 712 up to generation t . The elitism mechanism ensures $f_{t+1}^* \leq f_t^*$ almost surely, implying $\mathbb{E}[f_{t+1}^* | \mathcal{F}_t] \leq f_t^*$. Since f_T is bounded on the compact set \mathcal{X} , the sequence $\{f_t^*, \mathcal{F}_t\}$ forms a lower-bounded
 713 supermartingale. By the martingale convergence theorem Hall & Heyde (2014), f_t^* converges with
 714 probability 1 to the random variable $f_\infty^* \geq f^*$. To establish global convergence, we need to prove
 715 $f_\infty^* = f^*$ with probability 1.

716 **Lemma 1** *Under Assumption 2, for any $\delta > 0$, there exists $\gamma > 0$ such that:*

$$717 \mathbb{P}(\exists i : \|\hat{\mathbf{p}}_i^{(t)} - \mathbf{x}^*\| < \delta | \mathcal{F}_t) \geq 1 - (1 - \gamma)^N > 0. \quad (15)$$

718 **Proof 1** *For the crossover operation, consider any parent $\mathbf{p}_i^{(t)} \in \mathcal{X}$ and let $\mathbf{v} = \mathbf{x}^* - \mathbf{p}_i^{(t)}$. Define
 719 the MLP configuration with $\mathbf{W}_1 = \mathbf{0}$, $\mathbf{b}_1 = \mathbf{0}$, $\mathbf{W}_2 = \mathbf{0}$, and $\mathbf{b}_2 = \mathbf{v}$. Then:*

$$720 \text{MLP}_{\theta_c^*}(\mathbf{A}^{(t)} \mathbf{p}_i^{(t)}) = \mathbf{W}_2 \tanh(\mathbf{W}_1 \mathbf{A}^{(t)} \mathbf{p}_i^{(t)} + \mathbf{b}_1) + \mathbf{b}_2 = \mathbf{v}. \quad (16)$$

721 *Consequently:*

$$722 \mathbf{p}_i^{(t)} + \text{MLP}_{\theta_c^*}(\mathbf{A}^{(t)} \mathbf{p}_i^{(t)}) = \mathbf{x}^*. \quad (17)$$

723 *By continuity of the MLP (as a composition of continuous functions), there exists $\epsilon > 0$ such that for
 724 all $\theta_c \in \mathcal{N}_\epsilon(\theta_c^*)$:*

$$725 \|\mathbf{p}_i^{(t)} + \text{MLP}_{\theta_c}(\mathbf{A}^{(t)} \mathbf{p}_i^{(t)}) - \mathbf{x}^*\| < \delta/2. \quad (18)$$

726 Define $\mu_c = \mathbb{P}(\theta_c^{(t)} \in \mathcal{N}_\epsilon(\theta_c^*) | \mathcal{F}_t)$. Given the parameter update $\theta_c^{(t+1)} = \theta_c^{(t)} - \eta \nabla \mathcal{L}(\theta_c^{(t)}) + \xi^{(t)}$
 727 with stochastic perturbations $\xi^{(t)}$ from dropout patterns $\mathbf{D}^{(t)} \sim \text{Bernoulli}(1 - p_C)^{d_M}$, which have
 728 minimum probability mass:

$$729 \min_{\mathbf{D}} \mathbb{P}(\mathbf{D}^{(t)} = \mathbf{D}) = (\min\{p_C, 1 - p_C\})^{d_M} > 0, \quad (19)$$

730 *and since the conditional distribution of $\theta_c^{(t)}$ has positive density, there exists $c_t > 0$ such that:*

$$731 \mu_c \geq (\min\{p_C, 1 - p_C\})^{d_M} \cdot c_t > 0. \quad (20)$$

732 *For the mutation operation, consider any intermediate solution $\mathbf{p}_i'^{(t)}$ and let $\mathbf{w} = \mathbf{x}^* - \mathbf{p}_i'^{(t)}$. Define
 733 the MLP configuration with $\mathbf{W}_3 = \mathbf{0}$, $\mathbf{b}_3 = \mathbf{0}$, $\mathbf{W}_4 = \mathbf{0}$, and $\mathbf{b}_4 = \mathbf{w}$. Then:*

$$734 \text{MLP}_{\theta_m^*}(\mathbf{M}_i^{(t)} \mathbf{p}_i'^{(t)}) = \mathbf{W}_4 \tanh(\mathbf{W}_3 \mathbf{M}_i^{(t)} \mathbf{p}_i'^{(t)} + \mathbf{b}_3) + \mathbf{b}_4 = \mathbf{w}. \quad (21)$$

735 *Consequently:*

$$736 \mathbf{p}_i'^{(t)} + \text{MLP}_{\theta_m^*}(\mathbf{M}_i^{(t)} \mathbf{p}_i'^{(t)}) = \mathbf{x}^*. \quad (22)$$

737 *By identical continuity properties, there exists $\epsilon > 0$ such that for all $\theta_m \in \mathcal{N}_\epsilon(\theta_m^*)$:*

$$738 \|\mathbf{p}_i'^{(t)} + \text{MLP}_{\theta_m}(\mathbf{M}_i^{(t)} \mathbf{p}_i'^{(t)}) - \mathbf{x}^*\| < \delta/2. \quad (23)$$

739 Define $\mu_m = \mathbb{P}(\theta_m^{(t)} \in \mathcal{N}_\epsilon(\theta_m^*) | \mathcal{F}_t)$. By analogous reasoning to the crossover operation:

$$740 \mu_m \geq (\min\{p_M, 1 - p_M\})^{d_M} \cdot c_t' > 0, \quad (24)$$

756 where $c'_t > 0$ is determined by mutation parameters.
 757

758 The probability that a single offspring $\hat{\mathbf{p}}_i^{(t)}$ falls within δ of \mathbf{x}^* satisfies:
 759

$$760 \quad \mathbb{P}(\|\hat{\mathbf{p}}_i^{(t)} - \mathbf{x}^*\| < \delta \mid \mathcal{F}_t) \geq \mu_c \mu_m. \quad (25)$$

761 Let $\gamma = \mu_c \mu_m > 0$, which is a positive constant independent of t and depends only on hyperparameters
 762 p_C, p_M, d_M , and the adaptive parameter learning. Finally, for N independent offspring:
 763

$$764 \quad \mathbb{P}(\exists i : \|\hat{\mathbf{p}}_i^{(t)} - \mathbf{x}^*\| < \delta \mid \mathcal{F}_t) = 1 - \prod_{i=1}^N (1 - \mathbb{P}(\|\hat{\mathbf{p}}_i^{(t)} - \mathbf{x}^*\| < \delta \mid \mathcal{F}_t)) \geq 1 - (1 - \gamma)^N > 0. \quad (26)$$

767 Define the distance function $V_t = f_t^* - f^* \geq 0$. Using Lemma 1, we establish the following drift
 768 condition He & Yao (2001); Zhou et al. (2019):
 769

770 **Lemma 2** Under Assumption 2, for any $\epsilon > 0$, there exists $\eta(\epsilon) > 0$ such that:
 771

$$772 \quad \mathbb{E}[V_t - V_{t+1} \mid \mathcal{F}_t, V_t > \epsilon] \geq \eta(\epsilon) > 0. \quad (27)$$

773 **Proof 2** Define the event $A_t = \{\exists i : \|\hat{\mathbf{p}}_i^{(t)} - \mathbf{x}^*\| < \delta\}$, where $\delta > 0$ is chosen such that for all
 774 $\mathbf{x} \in \mathcal{X}$ with $\|\mathbf{x} - \mathbf{x}^*\| < \delta$, we have $f_T(\mathbf{x}) < f^* + \epsilon/2$ (which exists by the continuity of f_T and
 775 Assumption 2(i)). By Lemma 1, there exists $\gamma > 0$ such that:
 776

$$777 \quad \mathbb{P}(A_t \mid \mathcal{F}_t, V_t > \epsilon) \geq 1 - (1 - \gamma)^N > 0. \quad (28)$$

779 When A_t occurs, the elite archive at generation $t+1$ contains at least one solution with fitness value
 780 less than $f^* + \epsilon/2$, so:
 781

$$782 \quad V_{t+1} = f_{t+1}^* - f^* < \epsilon/2. \quad (29)$$

783 When A_t does not occur, the elitism mechanism ensures $V_{t+1} \leq V_t$ (since the elite archive preserves
 784 the best solutions). Therefore, the expected drift can be decomposed as:
 785

$$786 \quad \mathbb{E}[V_t - V_{t+1} \mid \mathcal{F}_t, V_t > \epsilon] = \mathbb{E}[V_t - V_{t+1} \mid \mathcal{F}_t, V_t > \epsilon, A_t] \cdot \mathbb{P}(A_t \mid \mathcal{F}_t, V_t > \epsilon) \quad (30)$$

$$787 \quad + \mathbb{E}[V_t - V_{t+1} \mid \mathcal{F}_t, V_t > \epsilon, A_t^c] \cdot \mathbb{P}(A_t^c \mid \mathcal{F}_t, V_t > \epsilon). \quad (31)$$

788 For the first term, using Eq. (29) and the condition $V_t > \epsilon$:
 789

$$790 \quad \mathbb{E}[V_t - V_{t+1} \mid \mathcal{F}_t, V_t > \epsilon, A_t] \geq V_t - \epsilon/2 \quad (32)$$

$$791 \quad > \epsilon - \epsilon/2 = \epsilon/2. \quad (33)$$

793 For the second term, since $V_{t+1} \leq V_t$ by the elitism mechanism:
 794

$$795 \quad \mathbb{E}[V_t - V_{t+1} \mid \mathcal{F}_t, V_t > \epsilon, A_t^c] \geq 0. \quad (34)$$

796 Combining these results with Eq. (28):
 797

$$798 \quad \mathbb{E}[V_t - V_{t+1} \mid \mathcal{F}_t, V_t > \epsilon] \geq (\epsilon/2) \cdot (1 - (1 - \gamma)^N) + 0 \cdot \mathbb{P}(A_t^c \mid \mathcal{F}_t, V_t > \epsilon) \quad (35)$$

$$799 \quad \geq (\epsilon/2) \cdot (1 - (1 - \gamma)^N). \quad (36)$$

801 Setting $\eta(\epsilon) = (\epsilon/2) \cdot (1 - (1 - \gamma)^N) > 0$ completes the proof.
 802

803 With the positive drift condition established, we can prove global convergence.
 804

805 **Theorem D.1** Under Assumption 2, ABOM converges with probability 1 to the global optimum:
 806

$$807 \quad f_t^* \xrightarrow{a.s.} f^* \quad \text{as} \quad t \rightarrow \infty. \quad (37)$$

808 **Proof 3** By the martingale convergence theorem Hall & Heyde (2014), f_t^* converges with probability 1 to some random variable $f_\infty^* \geq f^*$. Assume for contradiction that $f_\infty^* > f^*$ with positive
 809

810 probability. Then there exists $\epsilon > 0$ such that $V_t > \epsilon$ for all sufficiently large t . Define the stopping
 811 time $\tau_k = \inf\{t \geq k : V_t \leq \epsilon\}$.

812 Consider the value function change from time k to τ_k :

$$814 \quad 815 \quad 816 \quad V_k - V_{\tau_k} = \sum_{t=k}^{\tau_k-1} (V_t - V_{t+1}). \quad (38)$$

817 Taking expectations and applying the law of iterated expectations:

$$819 \quad 820 \quad 821 \quad \mathbb{E}[V_k - V_{\tau_k}] = \mathbb{E} \left[\sum_{t=k}^{\tau_k-1} \mathbb{E}[V_t - V_{t+1} \mid \mathcal{F}_t] \right]. \quad (39)$$

822 For $t < \tau_k$, we have $V_t > \epsilon$, so by Lemma 2:

$$823 \quad 824 \quad 825 \quad \mathbb{E} \left[\sum_{t=k}^{\tau_k-1} \mathbb{E}[V_t - V_{t+1} \mid \mathcal{F}_t] \right] \geq \eta(\epsilon) \cdot \mathbb{E}[\tau_k - k]. \quad (40)$$

826 Thus:

$$827 \quad 828 \quad \mathbb{E}[V_k] - \mathbb{E}[V_{\tau_k}] \geq \eta(\epsilon) \cdot \mathbb{E}[\tau_k - k]. \quad (41)$$

829 Since $V_{\tau_k} \leq \epsilon$, we have:

$$830 \quad 831 \quad \mathbb{E}[\tau_k - k] \leq \frac{\mathbb{E}[V_k]}{\eta(\epsilon)} < \infty. \quad (42)$$

832 This implies $\mathbb{P}(\tau_k < \infty) = 1$, contradicting the assumption that $V_t > \epsilon$ for all sufficiently large t .
 833 Therefore, $f_\infty^* = f^*$ with probability 1.

834 Theorem D.1 establishes that ABOM converges with probability 1 to the global optimum under
 835 Assumption 2. The persistent application of dropout during inference, coupled with the adaptive
 836 parameter learning mechanism, ensures that there exists a positive probability of generating offspring
 837 within an arbitrarily small neighborhood of the optimum at each iteration.

838 **Theoretical Limitation.** Theorem D.1 establishes asymptotic convergence but not polynomial-time
 839 convergence. Convergence rate analysis (expected hitting time) for specific problems is one of the
 840 important research directions for the future. It is worth noting that our convergence analysis does not
 841 directly apply in cases where the global optimum lies on the boundary or where constraint handling
 842 results in a discontinuous feasible region.

843 **Theoretical Contributions.** Our work establishes two theoretical contributions for meta black-box
 844 optimization: 1) We prove a novel exploration guarantee (Lemma 1) showing that attention-based
 845 MLP parameterization with dropout maintains persistent exploration capability. 2) We prove global
 846 convergence of ABOM with adaptive parameter learning (Theorem D.1). Crucially, this demon-
 847 strates that self-supervised parameter adaptation does not compromise convergence guarantees. This
 848 stands in contrast to existing neural network-parameterized methods such as GLHF Li et al. (2024)
 849 and B2Opt Li et al. (2025), which lack rigorous convergence analysis despite empirical success.
 850 These theoretical foundations provide ABOM’s reliability while preserving the flexibility of adap-
 851 tive optimization.

852 E CONVERGENCE ANALYSIS OF PARAMETER ADAPTATION

853 Fig. 6 shows the loss curves of parameter adaptation on the BBOB suite with $[-100, 100]^{500}$. De-
 854 spite the large search space and high dimensionality, the loss of parameter adaptation consistently
 855 decreases and converges across all test functions, with minimal variance across 30 independent runs.
 856 This empirical evidence validates our theoretical assumption of local convergence for parameter
 857 adaptation (Eq. 18), demonstrating that the self-supervised learning paradigm with AdamW opti-
 858 mizer remains stable even in challenging high-dimensional optimization scenarios. The consistent
 859 convergence behavior aligns with standard machine learning practices for training attention-based
 860 MLP architectures using gradient-based optimization, confirming the practical viability of our adap-
 861 tive parameter learning framework.

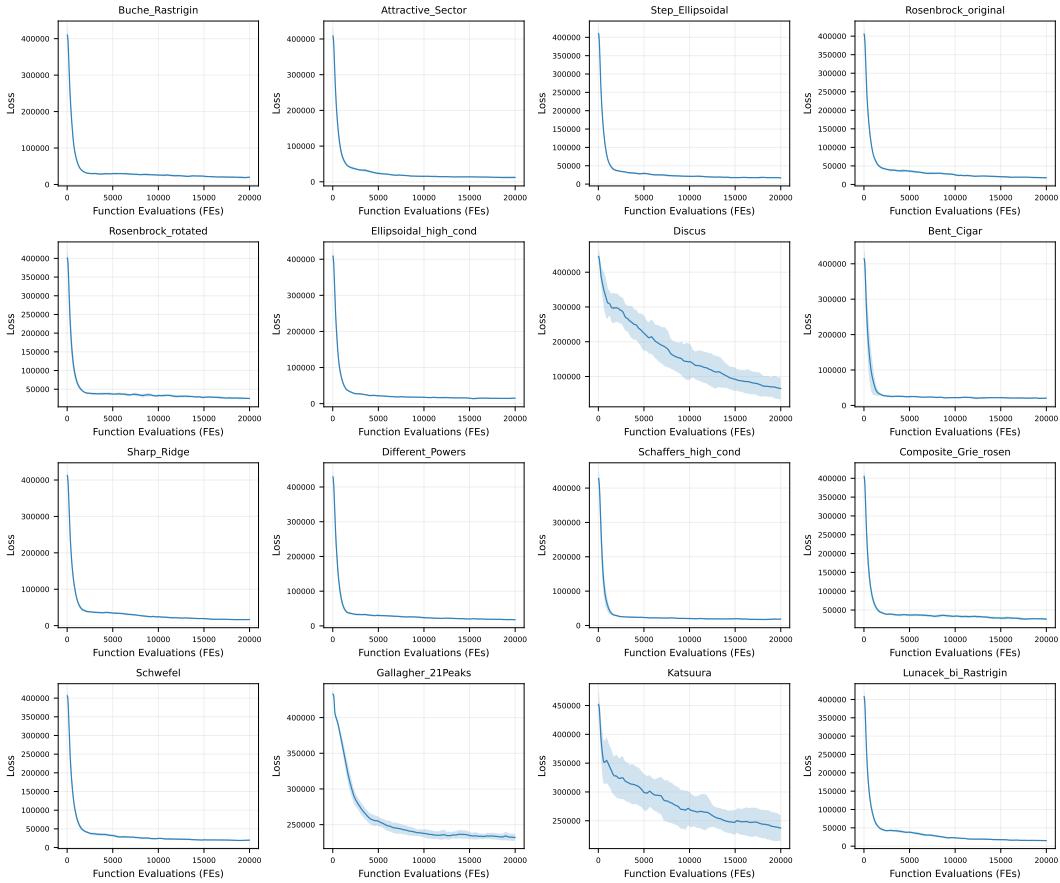


Figure 6: Loss curves of parameter adaptation on the BBOB suite with $d = 500$. Each subplot depicts the mean loss across 30 independent runs, with shaded regions representing standard deviation.

Fig. 7 presents the convergence behavior of ABOM and ABOM-NPA (no parameter adaptation). Both methods demonstrate convergence in practice, which empirically confirms that the convergence guarantee stems from the core mechanisms of elite preservation and dropout-enabled exploration rather than solely depending on parameter adaptation. While our theoretical analysis (Theorem D.1) formally establishes global convergence for ABOM with parameter adaptation, the experimental comparison reveals that the fundamental convergence properties are maintained even without this component, suggesting that the theoretical framework could be extended to cover variants without parameter adaptation. This empirical observation aligns with the martingale convergence argument in Theorem D.1, where the supermartingale property $\mathbb{E}[f_{t+1}^* | \mathcal{F}_t] \leq f_t^*$ is primarily ensured by the elitism mechanism rather than parameter adaptation.

F TASK CONFIGURATION

Table 3 presents 24 instances of synthetic black-box optimization benchmarks (BBOB) with diverse characteristics and landscapes. Following the standard protocol of the benchmark platform Ma et al. (2023; 2025a), functions $f_1, f_2, f_3, f_5, f_{15}, f_{16}, f_{17}$, and f_{21} are designated as training

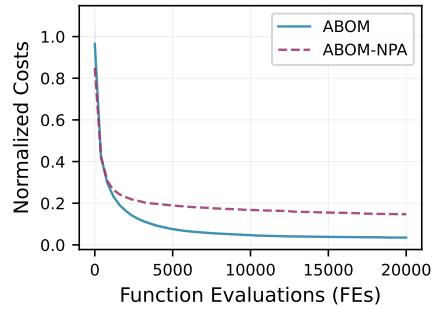


Figure 7: Convergence comparison between ABOM and ABOM-NPA on BBOB suite with $d = 500$, which shows normalized costs against function evaluations over 30 independent runs.

918
919
Table 3: Overview of the BBOB suites.
920

ID	Function	Characteristic	Usage
f_1	Sphere		Train
f_2	Ellipsoidal		Train
f_3	Rastrigin	Separable	Train
f_5	Linear Slope		Train
f_{15}	Rastrigin (non-separable)		Train
f_{16}	Weierstrass	Multi-modal with adequate global structure	Train
f_{17}	Schaffers F7		Train
f_{21}	Gallagher's Gaussian 101-me Peaks	Multi-modal with weak global structure	Train
f_4	Buche-Rastrigin	Separable	Test
f_6	Attractive Sector		Test
f_7	Step Ellipsoidal		Test
f_8	Rosenbrock, original	Low/moderate conditioning	Test
f_9	Rosenbrock, rotated		Test
f_{10}	Ellipsoidal		Test
f_{11}	Discus		Test
f_{12}	Bent Cigar	High conditioning, unimodal	Test
f_{13}	Sharp Ridge		Test
f_{14}	Different Powers		Test
f_{18}	Schaffers F7, ill-conditioned		Test
f_{19}	Composite Griewank-Rosenbrock F8F2	Multi-modal with adequate global structure	Test
f_{20}	Schwefel		Test
f_{22}	Gallagher's Gaussian 21-hi Peaks	Multi-modal with weak global structure	Test
f_{23}	Katsuura		Test
f_{24}	Lunacek bi-Rastrigin		Test

945
946
947 functions, while the remaining functions serve as test instances, ensuring a balanced distribution
948 of optimization difficulty between the training and test sets. The maximum number of function
949 evaluations is set to 20,000. All functions are defined over $[-100, 100]^d$, $d = 30/100/500$.
950

951 The UAV benchmarks comprise 56 terrain-based scenarios that represent realistic unmanned aerial
952 vehicle path planning problems, each with 30 dimensions. The scenarios are divided into training
953 and test sets of equal size (28 instances each), with test instances corresponding to even-numbered
954 indices $(0, 2, 4, \dots, 54)$. Following the standard protocol of the benchmark platform Ma et al. (2023;
955 2025a), the maximum number of function evaluations is set to 2,500.
956

G BASELINES

957 Since our ABOM is an evolution-based meta-black-box optimization (metaBBO) algorithm, we re-
958 strict comparisons exclusively to evolution-based methods, excluding non-evolution-based methods
959 such as Bayesian optimization. Furthermore, we omit LLM-based metaBBO methods Liu et al.
960 (2025); Romera-Paredes et al. (2024); Yang et al. (2024) from our baselines, as they are tailored for
961 specific task types and are not directly comparable to evolution-based general-purpose frameworks.
962

963 To ensure a fair and reproducible comparison, all baselines are implemented using the source code
964 provided by the official MetaBox platform Ma et al. (2023; 2025a). Detailed hyperparameter con-
965 figurations for baselines are provided in Table 4, while the configuration of our proposed ABOM is
966 summarized in Table 5. All results are reported as the mean and standard deviation over 30 indepen-
967 dent runs, with a fixed population size of 20 across all trials.
968

969 For traditional BBO methods, we adopt the hyperparameter settings recommended in the original pa-
970 per, rather than performing a grid search or manual tuning. The design choice aligns with a core mo-
971 tivation of adaptive optimization and metaBBO methods: to reduce the reliance on labor-intensive
972 hyperparameter tuning. By using default settings, we ensure a fair and meaningful comparison that
973 highlights the intrinsic advantages of adaptive strategies.
974

972
973
974975
976
977
978
979
Table 4: Detailed hyperparameter configurations of baselines. ub and lb denote the upper and lower
976 bounds of the search space, respectively. $\text{randn}(d)$ denotes sampling a d -dimensional vector from
977 a standard normal distribution. All MetaBBO methods are trained on the same synthetic problem
978 distribution as RLDEAFL Guo et al. (2025).

980 Baseline	981 Parameter	982 Setting
Traditional BBO methods		
983 RS	984 —	985 Uniform sampling within $[lb, ub]^d$ Bergstra & 986 Bengio (2012).
987 PSO	Inertia weight w	988 Linearly decreased from 0.9 to 0.4 over itera- 989 tions Kennedy & Eberhart (1995).
	Coefficients c_1/c_2	990 2.0/2.0 Kennedy & Eberhart (1995)
991 DE	Mutation factor F	992 0.5 Storn & Price (1997)
	Crossover probability CR	993 0.5 Storn & Price (1997)
	Strategy	994 DE/rand/1/bin Storn & Price (1997)
Adaptive optimization variants		
995 SAHLPSON	996 Adaptive parameters	997 Parameter ranges follow those specified in the 998 original paper Tao et al. (2021).
999 JDE21	1000 Adaptive parameters	1001 Parameter ranges follow those specified in the 1002 original paper Brest et al. (2021).
1003 CMAES	1004 Initial step size σ	1005 $0.3 \times (ub - lb)$ Hansen (2016)
	1006 Initial mean μ	1007 $\mu = lb + \text{randn}(d) \times (ub - lb)$ Hansen (2016)
MetaBBO methods (Training on BBOB or UAV training set)		
1008 GLEET	1009 Training parameters	1010 Parameter configurations are consistent with 1011 the original paper Ma et al. (2024).
1012 RLDEAFL	1013 Training parameters	1014 Parameter configurations are consistent with 1015 the original paper Guo et al. (2025).
1016 LES	1017 Training parameters	1018 Parameter configurations are consistent with 1019 the original paper Lange et al. (2023b).
1020 GLHF	1021 Training parameters	1022 Parameter configurations are consistent with 1023 the original paper Li et al. (2024).

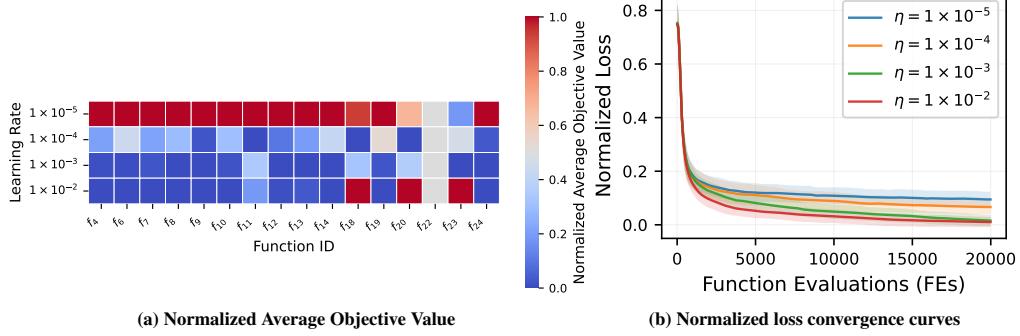
1015
1016
Table 5: Hyperparameter configuration of ABOM.

1017 Parameter	1018 Setting
1019 Crossover dropout rate p_C	1020 0.95
1021 Mutation dropout rate p_M	1022 0.95
1023 Learning rate η of AdamW	1×10^{-3}
1024 Attention dimension d_A	d
1025 MLP hidden dimension d_M	$2^{\lfloor \log_2(d) \rfloor}$

1026 H COMPARISON WITH EPOM

1028 This section conducts a performance comparison between our method ABOM and EPOM, a recently
 1029 proposed meta black-box optimization method that
 1030 represents the current state of the art in zero-shot
 1031 optimization Han et al. (2025). EPOM operates as
 1032 a pre-trained optimization model that learns a generalizable
 1033 mapping from task-specific features to optimization
 1034 strategies, thereby enabling zero-shot optimization
 1035 capabilities on previously unseen black-box
 1036 problems. We evaluate ABOM and EPOM on the
 1037 Bipedal Walker task, which requires optimizing a
 1038 fully-connected neural network policy with $d = 874$
 1039 parameters over $k = 800$ timesteps to enhance
 1040 robotic locomotion control performance. To ensure a
 1041 fair and reproducible comparison, we strictly adhere
 1042 to the experimental protocol and parameter settings
 1043 established in the original paper Han et al. (2025).
 1044 ABOM utilizes the identical hyperparameters
 1045 as those employed in our prior experiments (refer to Table 5 for details), maintaining consistency
 1046 across evaluations. As demonstrated in Fig. 8, ABOM achieves significantly faster convergence to
 1047 high-quality solutions, while EPOM exhibits premature convergence, underscoring the robustness
 1048 and effectiveness of our method in challenging optimization scenarios.

1049 I SENSITIVITY ANALYSIS OF LEARNING RATE



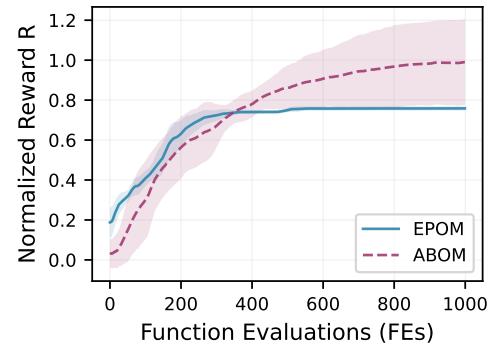
1061 Figure 9: Sensitivity analysis of learning rate η on the BBOB suite with $d = 30$.

1062 Fig. 9 presents the sensitivity analysis of the learning rate of AdamW for ABOM’s parameter adaptation.
 1063 The heatmap (Fig. 9(a)) shows optimization performance across different learning rates, while
 1064 the loss curves (Fig. 9(b)) demonstrate the convergence behavior of the parameter adaptation.

1065 The loss exhibits stable convergence across the evaluated learning rate spectrum (Fig. 9(b)), em-
 1066 pirically validating our theoretical assumption of local convergence for parameter adaptation (Eq.
 1067 18). However, as shown in Fig. 9(a), optimization performance varies significantly across learning
 1068 rates. $\eta = 1 \times 10^{-3}$ achieves the best balance between convergence speed and solution quality. This
 1069 demonstrates that while convergent behavior of the loss is necessary for stable parameter adaptation,
 1070 it does not guarantee optimal optimization performance. The choice of learning rate remains crucial
 1071 for effective parameter adaptation.

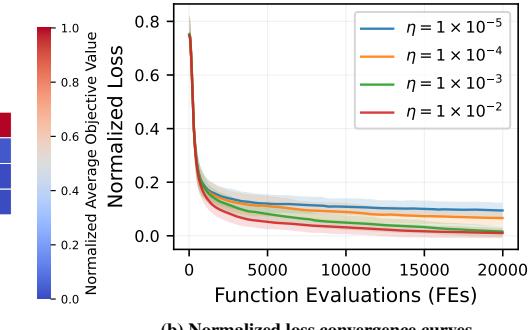
1072 J PRELIMINARY GENERALIZATION ANALYSIS OF ABOM

1073 This section preliminarily explores the generalization capability of ABOM through pre-training on
 1074 the STOP benchmark suite Xue et al. (2025). The STOP suite comprises 12 sequence transfer
 1075 optimization problems, where each problem contains a series of source optimization tasks and one



1076 Figure 8: Convergence comparison between
 1077 ABOM and EPOM on Bipedal Walker task.

1078 ABOM utilizes the identical hyperparameters
 1079 as those employed in our prior experiments (refer to Table 5 for details), maintaining consistency
 1080 across evaluations. As demonstrated in Fig. 8, ABOM achieves significantly faster convergence to
 1081 high-quality solutions, while EPOM exhibits premature convergence, underscoring the robustness
 1082 and effectiveness of our method in challenging optimization scenarios.



1083 Figure 8: Convergence comparison between
 1084 ABOM and EPOM on Bipedal Walker task.

1085 Fig. 9 presents the sensitivity analysis of the learning rate of AdamW for ABOM’s parameter adaptation.
 1086 The heatmap (Fig. 9(a)) shows optimization performance across different learning rates, while
 1087 the loss curves (Fig. 9(b)) demonstrate the convergence behavior of the parameter adaptation.

1088 The loss exhibits stable convergence across the evaluated learning rate spectrum (Fig. 9(b)), em-
 1089 pirically validating our theoretical assumption of local convergence for parameter adaptation (Eq.
 1090 18). However, as shown in Fig. 9(a), optimization performance varies significantly across learning
 1091 rates. $\eta = 1 \times 10^{-3}$ achieves the best balance between convergence speed and solution quality. This
 1092 demonstrates that while convergent behavior of the loss is necessary for stable parameter adaptation,
 1093 it does not guarantee optimal optimization performance. The choice of learning rate remains crucial
 1094 for effective parameter adaptation.

target optimization task. Based on the similarity between source and target tasks (measured by fitness landscape overlap and optimal solution alignment), the 12 problems are categorized into three groups: *high similarity* (STOP1–4), *mixed similarity* (STOP5–8), and *low similarity* (STOP9–12). Detailed properties of the optimization tasks are provided in Xue et al. (2025). For experimental evaluation, each problem is instantiated with 10 source tasks under a maximum evaluation budget of 5,000 per task. We treat these source tasks as the training set and the target task as the test set. This setup spans diverse similarity scenarios between training and test sets, enabling a more comprehensive evaluation of ABOM’s generalization performance.

We introduce ABOM-PT, a pre-trained variant of ABOM, where meta-optimization knowledge is distilled from the training set. Specifically, ABOM is executed on 10 source tasks for $T = 250$ iterations per task, generating 2500 prior training samples $\mathcal{M} = \{(P_k^{(t)}, F_k^{(t)}) \mid P_k^{(t)} \in \mathbb{R}^{N \times d}, F_k^{(t)} \in \mathbb{R}^N, k = 1, \dots, K, t = 1, \dots, T\}$. The pre-training objective minimizes the prediction error of population evolution:

$$\min_W \mathcal{L}_{\text{pt}} = \sum_{k=1}^K \sum_{t=1}^{T-1} \left\| P_k^{(t+1)} - \text{ABOM}_W(P_k^{(t)}, F_k^{(t)}) \right\|^2, \quad (43)$$

where ABOM_W predicts the next-generation population $P_k^{(t+1)}$ from current population-fitness pairs. We optimized the Eq. (43) using AdamW with a learning rate of 1×10^{-3} and a batch size of 256. The hyperparameters for parameter adaptation are consistent with those in Table 5.

Table 6 presents the experimental results of ABOM and ABOM-PT on the STOP benchmark suite, revealing four key insights: 1) ABOM-PT outperforms ABOM in 9 of 12 problems, confirming the generalization capability of our method; 2) Under high-similarity conditions (STOP1–4), ABOM-PT achieves substantially better performance by effectively leveraging optimization knowledge from training tasks to the test task; 3) ABOM-PT underperforms on some mixed-similarity problems (such as STOP8), revealing limitations in handling complex task relationships; 4) Surprisingly, pre-training on low-similarity tasks (STOP9–12) consistently improves performance on the test task, demonstrating that even dissimilar training tasks contain valuable optimization knowledge that enhances generalization capability.

Table 6: Performance comparison of ABOM vs. ABOM-PT on the STOP suite over 30 independent runs, reported as the mean and standard deviation of objective values (lower is better).

Problem	Similarity	ABOM (mean \pm std)	ABOM-PT (mean \pm std)
STOP1	High	1.08e+0 \pm 4.42e-1	4.73e-1 \pm 1.97e-1
STOP2	High	1.92e-1 \pm 7.26e-2	2.61e-2 \pm 7.45e-4
STOP3	High	1.20e+0 \pm 4.87e+0	1.71e-1 \pm 8.04e-3
STOP4	High	2.52e-1 \pm 6.50e-3	2.08e-1 \pm 2.72e-3
STOP5	Medium	2.79e+0 \pm 1.21e+1	1.28e-2 \pm 9.88e-6
STOP6	Medium	1.06e+2 \pm 9.62e+2	1.01e+2 \pm 3.74e+2
STOP7	Medium	5.27e-2 \pm 1.28e-2	6.84e-3 \pm 7.83e-5
STOP8	Medium	3.60e+0 \pm 1.22e+1	5.39e+0 \pm 2.90e+1
STOP9	Low	1.75e-2 \pm 1.50e-4	3.84e-3 \pm 4.32e-6
STOP10	Low	3.87e+1 \pm 5.49e+1	2.69e+1 \pm 4.61e+1
STOP11	Low	5.02e+0 \pm 3.97e+1	6.20e-1 \pm 1.20e-1
STOP12	Low	9.52e+2 \pm 1.38e+6	8.55e+1 \pm 1.20e+4
-/≈/+		9/3/0	-

K EXPERIMENTAL RESULTS

Tables 7 and 8 show the mean and standard deviation over 30 runs for each baseline on the BBOB suite with $d = 30/100$. The convergence curves of the average normalized cost across all test functions for the BBOB suite, with dimensions $d = 30/100/500$, are presented in Fig. 10, based on 30 independent runs.

1134 The convergence curves of cost (log scale) for the 28 UAV problems over 30 independent runs are
 1135 shown in Fig. 11, Fig. 12, and Fig. 13.

1136 The boxplots of cost (log scale) over 30 independent runs for the 28 UAV problems are shown in
 1137 Fig. 14, Fig. 15, and Fig. 16.

1139 Table 7: The comparison results of the baselines on the BBOB suite with $d = 30$. All results are
 1140 reported as the mean and standard deviation (mean \pm std) over 30 independent runs. Symbols “-”,
 1141 “~”, and “+” imply that the corresponding baseline is significantly worse, similar, and better than
 1142 ABOM on the Wilcoxon rank-sum test with 95% confidence level, respectively. The best results are
 1143 indicated in **bold**, and the suboptimal results are underlined.

1144

1145	ID	Traditional BBO			Adaptive Variants			MetaBBO			Ours	
		RS	PSO	DE	SAHLSPO	JDE21	CMAES	GLEET	RLDEAFL	LES	GLHF	ABOM
1147	f_4	5.17e+5 $\pm 1.25e+5$	1.28e+5 $\pm 3.87e+4$	9.84e+3 $\pm 1.80e+3$	2.04e+5 $\pm 2.43e+5$	5.58e+3 $\pm 4.39e+3$	3.25e+1 <u>6.05e+0</u>	3.68e+4 $\pm 3.44e+4$	6.18e+3 $\pm 3.89e+3$	1.81e+6 $\pm 3.30e+5$	6.96e+5 $\pm 4.08e+5$	5.45e+2 <u>2.95e+2</u>
1148	f_6	5.42e+7 $\pm 7.85e+6$	2.49e+5 $\pm 2.45e+5$	6.12e+4 $\pm 7.08e+3$	5.11e+6 $\pm 1.05e+7$	2.80e+4 $\pm 1.19e+4$	5.33e+0 <u>4.28e+0</u>	3.76e+4 $\pm 2.82e+4$	2.09e+4 $\pm 1.24e+4$	8.01e+7 $\pm 8.30e+6$	6.61e+7 $\pm 1.58e+7$	2.60e+2 <u>2.64e+2</u>
1149	f_7	2.68e+5 $\pm 4.35e+4$	6.70e+4 $\pm 1.85e+4$	2.45e+4 $\pm 4.99e+3$	5.67e+4 $\pm 5.23e+4$	3.86e+3 $\pm 1.59e+3$	3.26e+5 $\pm 5.56e+3$	8.11e+3 $\pm 4.18e+3$	6.28e+3 $\pm 3.62e+4$	3.54e+5 $\pm 4.79e+4$	2.59e+5 <u>5.58e+2</u> <u>2.77e+2</u>	
1150	f_8	1.45e+10 $\pm 2.94e+9$	1.23e+9 $\pm 5.32e+8$	1.27e+3 $\pm 2.86e+3$	2.46e+8 $\pm 2.53e+8$	7.85e+3 $\pm 3.26e+4$	5.63e+2 $\pm 1.57e+2$	1.29e+7 $\pm 6.97e+7$	1.04e+3 $\pm 1.98e+3$	3.82e+9 $\pm 4.23e+8$	4.02e+9 $\pm 5.45e+8$	1.15e+2 <u>1.56e+2</u>
1151	f_9	1.19e+10 $\pm 2.13e+9$	8.86e+8 $\pm 2.27e+8$	1.56e+4 $\pm 1.53e+4$	3.82e+7 $\pm 3.65e+7$	2.34e+4 $\pm 5.40e+4$	2.48e+1 <u>1.05e+0</u>	2.03e+4 $\pm 5.28e+4$	4.36e+4 $\pm 1.42e+5$	1.49e+3 $\pm 2.12e+0$	1.85e+2 $\pm 1.69e+0$	2.35e+3 <u>5.30e+3</u>
1152	f_{10}	7.47e+8 $\pm 1.56e+8$	1.43e+8 $\pm 6.28e+7$	1.11e+8 $\pm 2.29e+7$	2.51e+8 $\pm 3.13e+8$	1.73e+7 $\pm 1.32e+7$	8.99e+6 $\pm 4.14e+6$	1.54e+7 $\pm 2.64e+7$	7.42e+6 $\pm 3.12e+6$	1.81e+9 $\pm 4.37e+8$	6.69e+8 $\pm 3.01e+8$	9.72e+5 <u>7.38e+5</u>
1153	f_{11}	1.12e+5 $\pm 1.23e+4$	8.82e+4 $\pm 2.84e+4$	1.04e+5 $\pm 1.57e+4$	9.90e+4 $\pm 2.55e+4$	7.32e+4 $\pm 2.54e+4$	3.55e+4 $\pm 2.96e+4$	3.23e+4 $\pm 1.04e+4$	8.57e+4 $\pm 2.88e+4$	8.99e+5 $\pm 1.71e+6$	6.72e+4 $\pm 7.71e+3$	2.61e+4 <u>1.01e+4</u>
1154	f_{12}	1.68e+15 $\pm 3.30e+15$	1.38e+11 $\pm 2.12e+11$	1.05e+9 $\pm 4.85e+8$	3.46e+18 $\pm 1.40e+19$	1.52e+9 $\pm 2.24e+9$	1.03e+0 <u>2.14e+0</u>	3.96e+10 $\pm 3.27e+10$	6.45e+8 $\pm 1.79e+9$	8.23e+19 $\pm 7.42e+19$	2.56e+17 $\pm 5.16e+17$	5.28e+7 <u>1.45e+8</u>
1155	f_{13}	4.34e+4 $\pm 2.36e+3$	2.17e+4 $\pm 2.49e+3$	6.96e+2 $\pm 1.15e+2$	1.51e+4 $\pm 5.51e+3$	5.18e+2 $\pm 4.89e+2$	1.09e+0 <u>1.45e+0</u>	3.57e+3 $\pm 3.05e+3$	7.71e+2 $\pm 1.81e+3$	3.97e+4 $\pm 1.40e+3$	3.78e+4 $\pm 2.41e+3$	<u>7.28e+1</u> <u>3.07e+1</u>
1156	f_{14}	3.52e+4 $\pm 5.49e+3$	5.77e+3 $\pm 1.86e+3$	3.76e+3 $\pm 7.40e+2$	5.07e+3 $\pm 6.19e+3$	3.72e+2 $\pm 1.91e+2$	3.99e+0 $\pm 6.73e+0$	5.69e+2 $\pm 4.04e+2$	1.94e+2 $\pm 8.73e+1$	9.99e+4 $\pm 2.17e+4$	3.30e+4 $\pm 1.75e+4$	3.46e-2 <u>3.39e-2</u>
1157	f_{18}	1.42e+5 $\pm 1.06e+5$	9.43e+2 $\pm 2.09e+2$	6.03e+2 $\pm 6.10e+1$	8.89e+5 $\pm 1.19e+6$	5.61e+2 $\pm 1.26e+2$	3.36e+12 $\pm 2.84e+11$	5.79e+2 $\pm 1.62e+2$	5.21e+2 $\pm 1.28e+2$	2.48e+6 $\pm 1.74e+6$	5.18e+5 $\pm 4.19e+5$	5.12e+2 <u>1.37e+2</u>
1158	f_{19}	1.01e+6 $\pm 1.89e+5$	7.82e+4 $\pm 1.98e+4$	1.22e+1 $\pm 3.78e+0$	2.92e+3 $\pm 2.84e+3$	2.01e+1 $\pm 1.97e+1$	6.76e+0 $\pm 7.40e-1$	1.37e+1 $\pm 8.35e+0$	2.87e+1 $\pm 3.03e+1$	1.30e+3 $\pm 1.27e+0$	9.19e+0 $\pm 5.91e+0$	2.48e-1 <u>1.11e-3</u>
1159	f_{20}	1.24e+7 $\pm 2.78e+6$	9.79e+5 $\pm 6.89e+5$	-3.88e+1 $\pm 2.75e+0$	4.04e+3 $\pm 1.62e+4$	-6.29e+1 $\pm 2.67e+0$	-1.53e+1 $\pm 9.73e+0$	-3.97e+1 $\pm 4.98e+0$	-5.20e+1 $\pm 5.06e+0$	1.49e+3 $\pm 2.37e+0$	-4.10e+0 $\pm 1.77e+0$	-6.57e+1 <u>3.80e+0</u>
1160	f_{22}	8.66e+1 $\pm 0.00e+0$	8.66e+1 $\pm 0.00e+0$	8.66e+1 $\pm 0.00e+0$	8.66e+1 $\pm 0.00e+0$	8.66e+1 $\pm 0.00e+0$	8.66e+1 $\pm 0.00e+0$	8.66e+1 $\pm 0.00e+0$	8.66e+1 $\pm 4.55e-13$	8.66e+1 $\pm 0.00e+0$	8.66e+1 <u>0.00e+0</u>	
1161	f_{23}	3.29e+0 $\pm 3.96e-1$	3.23e+0 $\pm 3.82e-1$	3.18e+0 $\pm 4.56e-1$	3.41e+0 $\pm 4.94e-1$	3.32e+0 $\pm 3.92e-1$	3.30e+0 $\pm 3.68e-1$	2.98e+0 $\pm 3.34e-1$	3.31e+0 $\pm 5.37e-1$	1.30e+3 $\pm 3.11e-1$	3.34e+0 $\pm 3.70e-1$	3.01e-1 <u>2.19e-1</u>
1162	f_{24}	1.46e+5 $\pm 1.37e+4$	3.84e+4 $\pm 7.79e+3$	3.23e+2 $\pm 5.65e+1$	1.22e+4 $\pm 5.97e+3$	5.70e+2 $\pm 8.02e+2$	2.58e+2 $\pm 1.64e+1$	3.98e+2 $\pm 7.61e+1$	7.08e+2 $\pm 5.00e+2$	5.35e+4 $\pm 2.34e+3$	6.11e+4 $\pm 2.70e+3$	2.44e+2 <u>2.37e+1</u>
1163	-/-/+	15/1/0	15/1/0	15/1/0	15/1/0	10/1/5	15/1/0	15/1/0	15/0/1	14/1/1	-	

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

Table 8: The comparison results of the baselines on the BBOB suite with $d = 100$. All results are reported as the mean and standard deviation (mean \pm std) over 30 independent runs. Symbols “-”, “ \approx ”, and “+” imply that the corresponding baseline is significantly worse, similar, and better than ABOM on the Wilcoxon rank-sum test with 95% confidence level, respectively. The best results are indicated in **bold**, and the suboptimal results are underlined.

1201

1202

1203

1204

1205

ID	Traditional BBO			Adaptive Variants			MetaBBO			Ours	
	RS	PSO	DE	SAHLPSO	JDE21	CMAES	GLEET	RLDEAFL	LES	GLHF	ABOM
f_4	9.64e+6	1.83e+6	7.23e+5	2.49e+6	2.82e+5	3.72e+3	3.77e+5	2.89e+5	1.14e+7	9.66e+6	9.72e+3
	$\pm 1.21e+6$	$\pm 4.72e+5$	$\pm 7.94e+4$	$\pm 2.14e+6$	$\pm 5.83e+4$	<u>9.84e+2</u>	$\pm 1.74e+5$	$\pm 8.20e+4$	$\pm 8.00e+5$	$\pm 1.47e+6$	$\pm 5.28e+3$
f_6	6.11e+8	4.76e+7	1.03e+6	4.50e+7	7.16e+5	2.15e+4	4.27e+5	1.96e+5	5.71e+8	5.45e+8	7.92e+4
	$\pm 3.81e+7$	$\pm 2.94e+7$	$\pm 4.92e+5$	$\pm 3.58e+7$	$\pm 1.07e+6$	<u>4.87e+3</u>	$\pm 9.26e+5$	$\pm 9.09e+4$	$\pm 1.63e+7$	$\pm 2.78e+7$	$\pm 3.49e+4$
f_7	1.75e+6	6.23e+5	4.94e+5	4.76e+5	9.32e+4	8.81e+3	7.92e+4	1.17e+5	1.13e+6	1.08e+6	6.23e+3
	$\pm 9.77e+4$	$\pm 6.59e+4$	$\pm 3.66e+4$	$\pm 2.10e+5$	$\pm 2.85e+4$	$\pm 2.97e+3$	$\pm 2.07e+4$	$\pm 2.87e+4$	$\pm 6.30e+4$	$\pm 8.55e+4$	$\pm 1.50e+3$
f_8	4.33e+11	8.71e+10	2.67e+8	2.65e+10	4.60e+9	5.16e+3	1.41e+8	3.79e+9	5.24e+10	5.30e+10	3.84e+3
	$\pm 3.31e+10$	$\pm 1.59e+10$	$\pm 5.05e+7$	$\pm 1.53e+10$	$\pm 4.18e+9$	<u>5.73e+3</u>	$\pm 1.39e+8$	$\pm 3.66e+9$	$\pm 2.10e+9$	$\pm 2.68e+9$	<u>5.03e+3</u>
f_9	2.87e+11	7.21e+10	1.53e+9	1.34e+9	4.97e+8	5.83e+4	6.37e+7	3.41e+8	2.96e+3	6.43e+2	1.13e+5
	$\pm 2.82e+10$	$\pm 1.21e+10$	$\pm 4.45e+8$	$\pm 5.55e+8$	$\pm 4.42e+8$	$\pm 1.89e+4$	$\pm 2.21e+7$	$\pm 2.71e+8$	$\pm 2.16e+1$	<u>4.10e-1</u>	$\pm 2.79e+5$
f_{10}	7.88e+9	1.97e+9	2.30e+9	1.88e+9	4.37e+8	1.20e+8	2.55e+8	2.07e+8	6.53e+9	5.63e+9	6.65e+7
	$\pm 7.69e+8$	$\pm 3.14e+8$	$\pm 2.58e+8$	$\pm 9.32e+8$	$\pm 1.37e+8$	<u>3.66e+7</u>	$\pm 8.80e+7$	$\pm 8.93e+7$	$\pm 5.19e+8$	$\pm 8.08e+8$	<u>1.48e+7</u>
f_{11}	4.30e+5	4.12e+5	4.35e+5	2.99e+5	3.78e+5	9.10e+5	1.97e+5	2.02e+5	1.15e+6	2.07e+5	3.48e+5
	$\pm 2.62e+4$	$\pm 5.51e+4$	$\pm 3.31e+4$	$\pm 5.28e+4$	$\pm 4.03e+4$	$\pm 6.26e+5$	<u>3.31e+4</u>	$\pm 4.91e+4$	$\pm 1.40e+6$	$\pm 8.84e+3$	$\pm 6.24e+4$
f_{12}	1.84e+22	7.09e+22	6.78e+13	2.77e+22	5.29e+12	8.76e+8	2.84e+11	4.77e+11	6.99e+22	3.75e+21	3.97e+9
	$\pm 2.12e+22$	$\pm 3.37e+16$	$\pm 6.93e+13$	$\pm 9.39e+22$	$\pm 8.04e+12$	<u>5.66e+8</u>	$\pm 1.10e+11$	$\pm 6.81e+11$	$\pm 5.86e+22$	$\pm 9.78e+21$	$\pm 1.31e+10$
f_{13}	1.08e+5	6.70e+4	2.86e+4	5.28e+4	2.32e+4	1.09e+2	1.69e+4	2.31e+4	8.37e+4	8.14e+4	3.65e+2
	$\pm 2.50e+3$	$\pm 4.61e+3$	$\pm 1.90e+3$	$\pm 1.10e+4$	$\pm 6.09e+3$	<u>2.35e+1</u>	$\pm 3.85e+3$	$\pm 4.78e+3$	$\pm 1.15e+3$	$\pm 1.57e+3$	$\pm 1.14e+2$
f_{14}	3.10e+5	4.73e+4	6.79e+4	5.84e+4	8.14e+3	1.53e+3	4.62e+3	4.89e+3	2.60e+5	2.16e+5	3.33e+2
	$\pm 3.56e+4$	$\pm 9.85e+3$	$\pm 6.41e+3$	$\pm 5.22e+4$	$\pm 2.57e+3$	<u>3.75e+2</u>	$\pm 1.97e+3$	$\pm 1.58e+3$	$\pm 2.62e+4$	$\pm 3.70e+4$	$\pm 1.35e+2$
f_{18}	5.81e+7	6.42e+3	1.59e+4	7.27e+7	1.04e+4	2.82e+3	4.63e+3	2.68e+4	2.49e+7	1.12e+7	2.46e+2
	$\pm 2.84e+7$	$\pm 8.93e+3$	$\pm 8.45e+3$	$\pm 3.12e+8$	$\pm 6.34e+3$	<u>3.60e+3</u>	$\pm 6.79e+3$	$\pm 4.78e+4$	$\pm 1.01e+7$	$\pm 6.30e+6$	<u>4.41e+1</u>
f_{19}	7.48e+6	1.77e+6	3.42e+4	2.87e+4	1.06e+4	2.93e+1	1.69e+3	6.34e+3	5.06e+2	1.54e+1	2.50e-1
	$\pm 5.96e+5$	$\pm 2.80e+5$	$\pm 7.96e+3$	$\pm 1.42e+4$	$\pm 8.60e+3$	$\pm 2.54e+0$	$\pm 7.41e+2$	$\pm 6.13e+3$	$\pm 1.65e+0$	$\pm 1.16e+1$	$\pm 7.63e-5$
f_{20}	1.16e+8	3.44e+7	3.05e+4	2.33e+5	7.12e+4	-3.04e+0	-1.92e+1	7.93e+4	2.10e+3	9.08e-1	-5.60e+1
	$\pm 5.88e+6$	$\pm 6.40e+6$	$\pm 3.04e+4$	$\pm 2.88e+5$	$\pm 1.44e+5$	$\pm 1.72e+0$	$\pm 5.28e+0$	$\pm 1.51e+5$	$\pm 8.78e-1$	$\pm 5.31e-1$	$\pm 3.36e+0$
f_{22}	8.66e+1	8.66e+1	8.66e+1	8.66e+1	8.66e+1	8.66e+1	8.66e+1	8.66e+1	1.29e+3	8.66e+1	8.66e+1
	$\pm 0.00e+0$	$\pm 0.00e+0$	$\pm 0.00e+0$	$\pm 0.00e+0$	$\pm 0.00e+0$	$\pm 0.00e+0$	$\pm 0.00e+0$	$\pm 0.00e+0$	$\pm 4.55e-13$	$\pm 0.00e+0$	$\pm 0.00e+0$
f_{23}	4.85e+0	4.87e+0	4.90e+0	4.80e+0	4.85e+0	7.11e+0	4.84e+0	4.66e+0	2.11e+3	4.88e+0	4.61e+0
	$\pm 3.86e-1$	$\pm 2.39e-1$	$\pm 3.87e-1$	$\pm 4.32e-1$	$\pm 2.27e-1$	$\pm 6.07e-1$	$\pm 3.44e-1$	$\pm 6.00e-1$	$\pm 2.98e-1$	$\pm 3.51e-1$	$\pm 4.11e-1$
f_{24}	9.01e+5	4.31e+5	2.03e+4	1.58e+5	3.36e+4	1.21e+3	9.89e+3	3.66e+4	2.26e+5	2.35e+5	1.05e+3
	$\pm 3.01e+4$	$\pm 3.66e+4$	$\pm 1.26e+4$	$\pm 5.12e+4$	$\pm 1.53e+4$	<u>7.02e+1</u>	$\pm 1.84e+3$	$\pm 1.64e+4$	$\pm 3.33e+3$	$\pm 3.69e+3$	$\pm 3.56e+1$

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

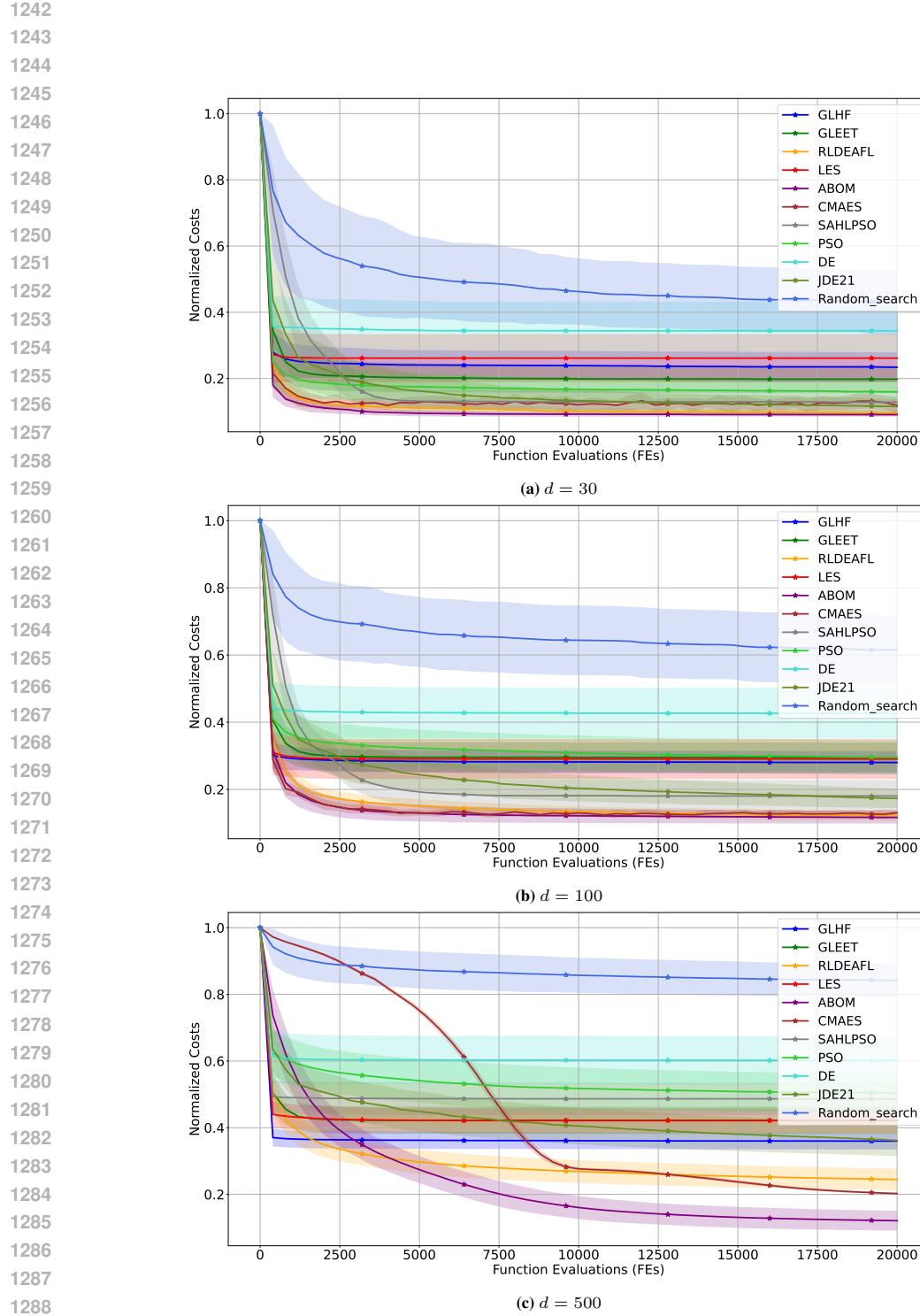


Figure 10: Convergence curves of the average normalized cost across all test functions in the BBOB suite, with $d = 30/100/500$, over 30 independent runs. The cost values are min-max normalized per function to ensure comparability. Each subplot displays the performance trend, highlighting the algorithm's scalability as the dimensionality increases.

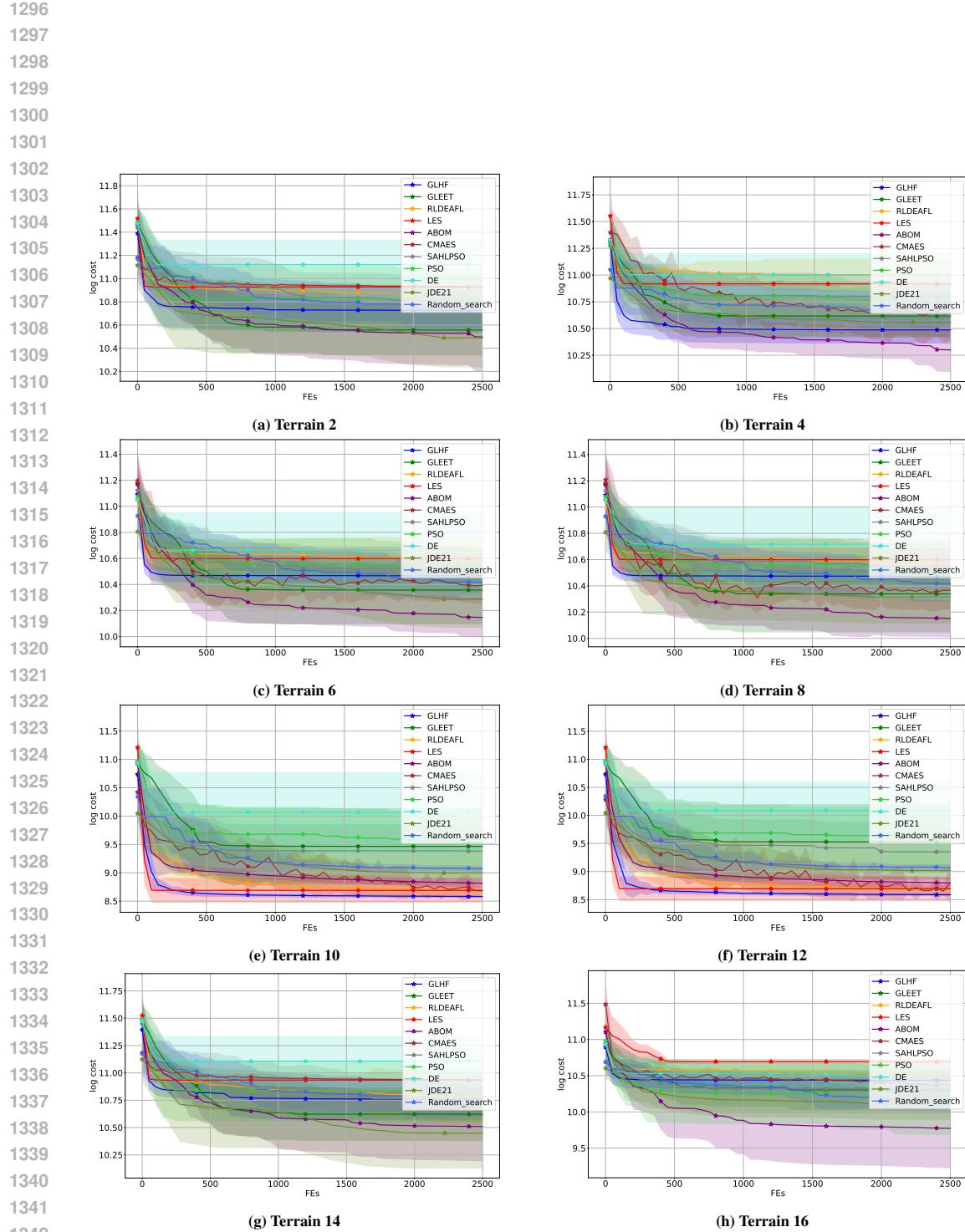


Figure 11: Convergence curves of cost (log scale) for UAV problems (Terrain 2 to 16).

1343
1344
1345
1346
1347
1348
1349

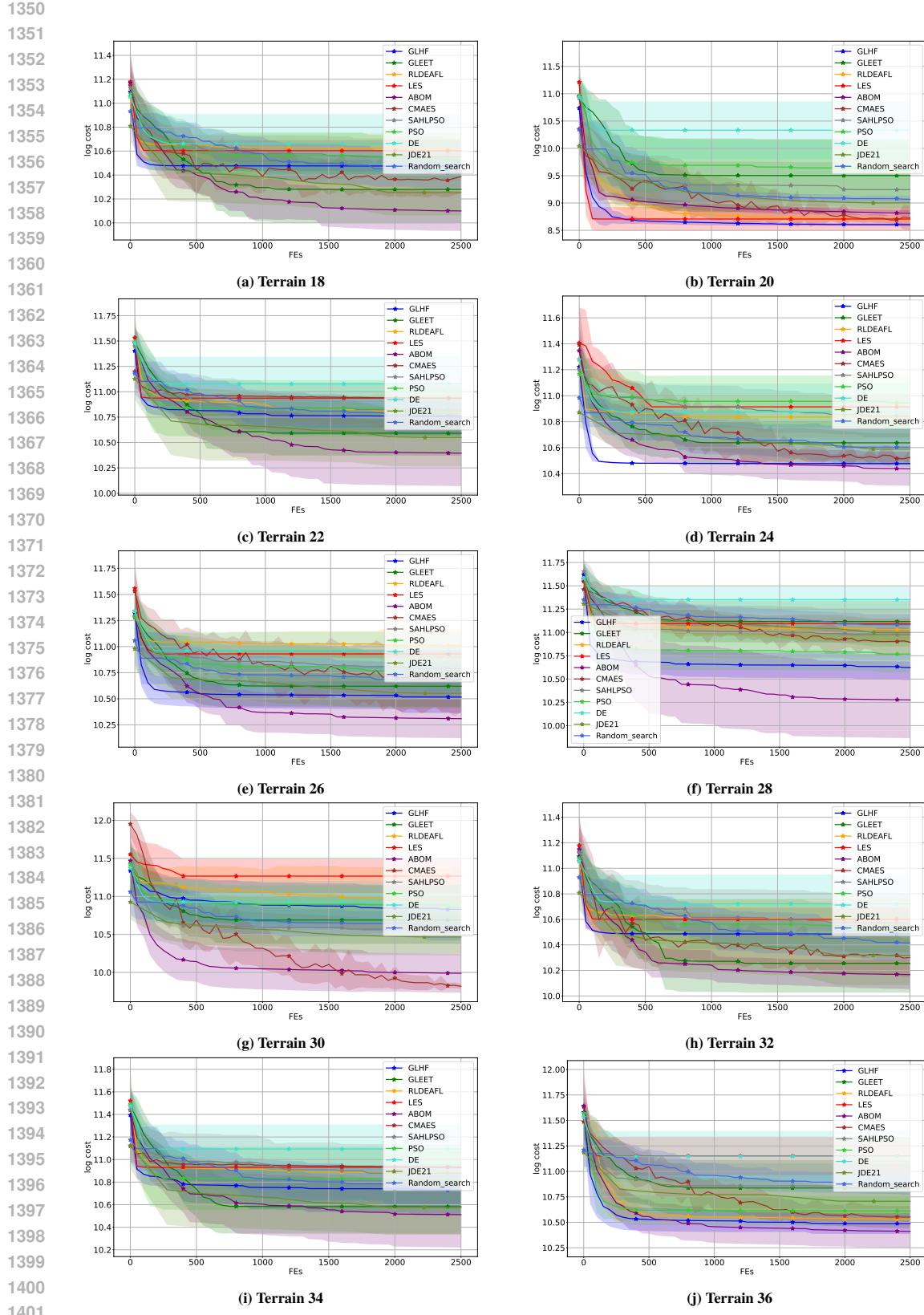


Figure 12: Convergence curves of cost (log scale) for UAV problems (Terrain 18 to 36).



Figure 13: Convergence curves of cost (log scale) for UAV problems (Terrain 38 to 56).

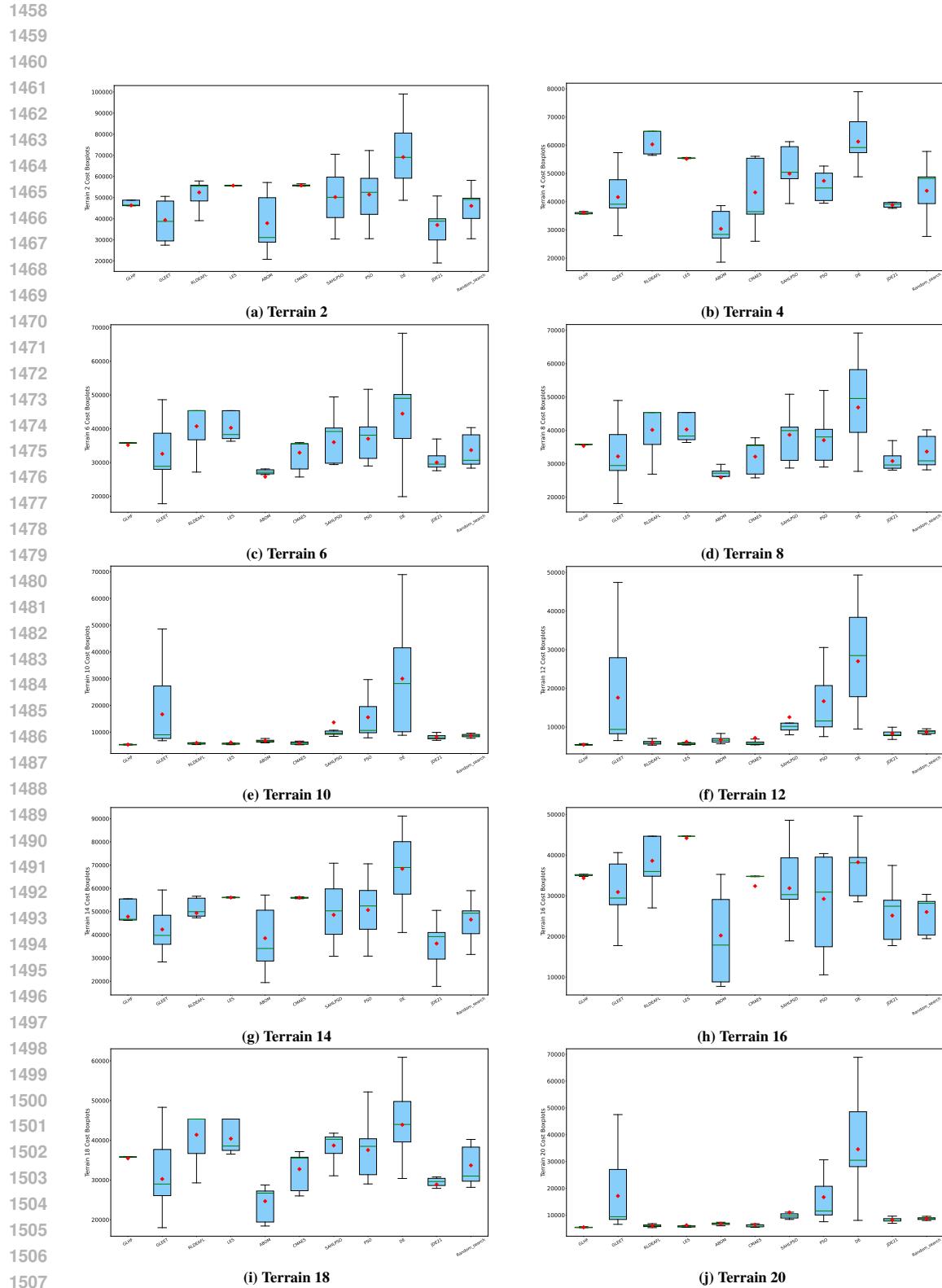


Figure 14: Boxplots of cost (log scale) over 30 runs for UAV problems (Terrain 2 to 20).

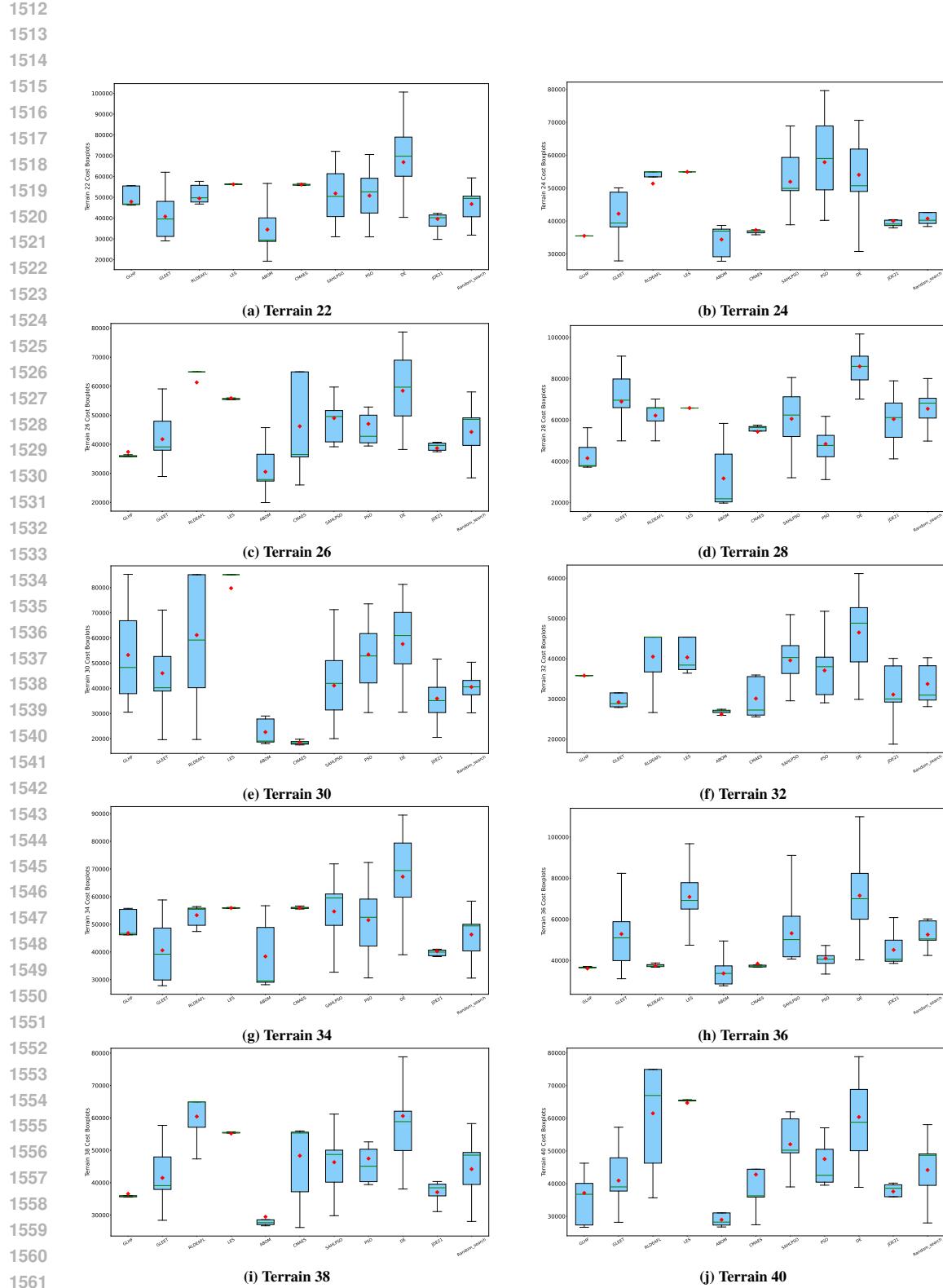


Figure 15: Boxplots of cost (log scale) over 30 runs for UAV problems (Terrain 22 to 40).

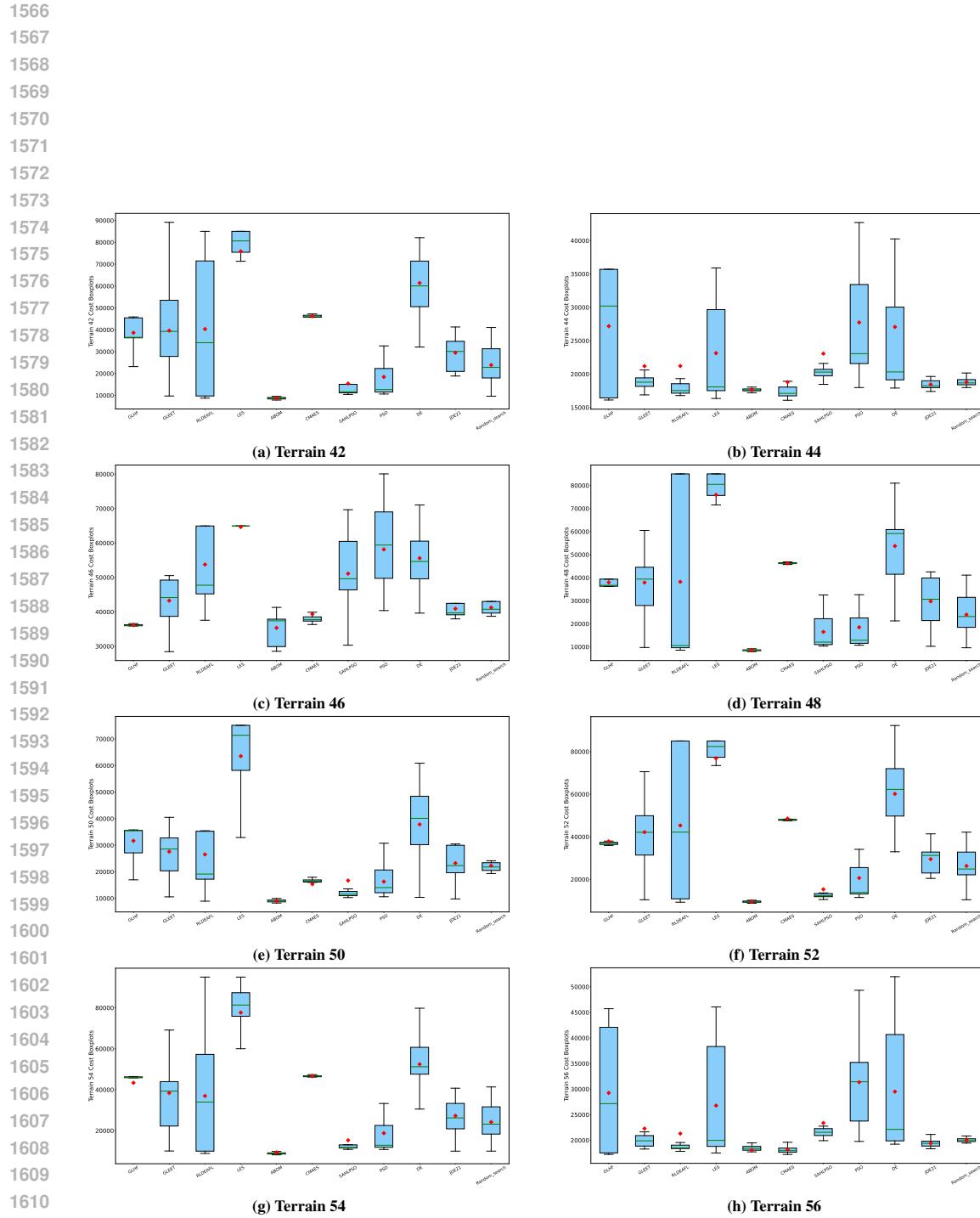


Figure 16: Boxplots of cost (log scale) over 30 runs for UAV problems (Terrain 42 to 56).