
Under review as submission to TMLR

Neurons Speak in Ranges: Breaking Free from Discrete
Neuronal Attribution

Anonymous authors
Paper under double-blind review

Abstract

Pervasive polysemanticity in large language models (LLMs) undermines discrete neu-
ron–concept attribution, posing a significant challenge for model interpretation and control.
We systematically analyze both encoder and decoder based LLMs across diverse datasets,
and observe that even highly salient neurons for specific semantic concepts consistently
exhibit polysemantic behavior. Importantly, we uncover a consistent pattern: concept-
conditioned activation magnitudes of neurons form distinct, often Gaussian-like distributions
with minimal overlap. Building on this observation, we hypothesize that interpreting and
intervening on concept-specific activation ranges can enable more precise interpretability and
targeted manipulation in LLMs. To this end, we introduce NeuronLens, a novel range-based
interpretation and manipulation framework, that localizes concept attribution to activation
ranges within a neuron. Extensive empirical evaluations show that range-based interventions
enable effective manipulation of target concepts while causing substantially less collateral
degradation to auxiliary concepts and overall model performance compared to neuron-level
masking.

1 Introduction

Neuron interpretation aims to uncover how individual neurons encode semantic concepts and contribute to
model outputs. Recent work has made significant progress in this direction by identifying neurons that are
strongly associated with specific concepts or model behavior (Dalvi et al., 2019a; Antverg & Belinkov, 2022;
Conmy et al., 2023; Marks et al., 2024). Common approaches include maximal activation analysis (Foote et al.,
2023; Frankle & Carbin, 2019), which links neurons to inputs that produce the highest activations, probe-based
methods (Dalvi et al., 2019a;b) that employ auxiliary classifiers to assess neuron–concept associations, and
probeless approaches (Antverg & Belinkov, 2022) that infer such associations directly from neuron activations.

These methods typically rely, explicitly or implicitly, on discrete neuron-to-concept mappings, assuming that
entire neurons encode single concepts. However, neurons frequently exhibit polysemanticity; the ability to
encode multiple, seemingly unrelated concepts (Lecomte et al., 2024; Marshall & Kirchner, 2024). Given
this heterogeneous encoding of concepts, traditional approaches can lead to unintended consequences when
manipulating neurons, as changes intended for one concept may inadvertently affect others encoded by the
same neuron, and suboptimal interpretations of concepts (Sajjad et al., 2022).

To better understand how polysemanticity manifests at the neuron level, we conduct a systematic analysis of
neuron activations in both encoder- and decoder-based LLMs across multiple datasets. Focusing on neurons
identified as salient for specific concepts, we observe that these neurons consistently exhibit polysemantic
behavior, often responding to multiple concepts. Through qualitative and quantitative analysis, we further
discover that concept-conditioned neuronal activation magnitudes form Gaussian-like distributions, with
minimal overlap across different concepts. This observation suggests that although individual neurons are
polysemantic, the activations associated with a given concept tend to concentrate within a specific band of
activation magnitudes. That is, each concept is typically expressed within a characteristic activation range of
a neuron, even when the same neuron participates in encoding multiple concepts.
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Figure 1: Different concepts induce distinct, Gaussian-like activation distributions within the same neuron,
enabling range-based concept attribution and intervention.

Building on this observation, we introduce NeuronLens, a range-based attribution framework for neuron
interpretation and manipulation, illustrated in Figure 1. Rather than attributing an entire neuron to a
single concept, NeuronLens identifies and maps specific activation ranges within a neuron’s distribution
to individual concepts. Specifically, for a given concept, NeuronLens calculates an activation range that
captures the majority of concept-conditioned activations, enabling precise attribution, which in turn allows for
interventions that operate selectively within this range while leaving other activation regimes of the neuron
unaffected. To causally validate our approach, we run extensive concept-erasure experiments. Across settings,
our method reduces unintended interference on auxiliary concepts by up to 25 percentage points (-14 on
Llama) than full neuron masking. Additionally, our range-based interventions preserve general capabilities of
models, maintaining or improving performance on MMLU benchmark in most settings, while incurring only
minor increases in language modeling perplexity on Wikipedia text.

Our work makes the following contributions. (1) We show that neuronal activations in LLMs form concept-
conditioned, Gaussian-like distributions, with often exhibiting limited overlap across concepts. (2) We empiri-
cally demonstrate that concept-specific activation ranges are consistently identifiable within polysemantic
neurons, providing a more fine-grained handle for neuron-level interpretation than discrete neuron-to-concept
attribution. (3) We introduce NeuronLens to interpret and causally validate concept-specific activation
ranges for targeted interventions, enabling precise manipulation of target concepts while reducing unintended
interference compared to neuron-level masking.

2 Neuron Interpretation Analysis

2.1 Preliminaries

Neuron. We refer to the output of an activation as a neuron. In a transformer model, we consider neurons
of hidden state vectors of different transformer layers. Formally, given a hidden state vector hl ∈ Rd of size d
produced by layer l, hl

j denotes its j-th neuron, i.e., the j-th component of hl.

Concept. A concept c ∈ C is a high-level semantic category that groups each input instance (or components
of every instance), where C is the set of all concepts. For example, in a language task, a sentence can be
categorized into four types: declarative, interrogative, imperative, and exclamatory, where each type is a
concept. Words in a sentence can also convey concepts such as nouns, verbs, adjectives, adverbs, and more.
We study settings where all inputs are labeled with concepts.

Saliency Ranking. A saliency ranking orders the importance of neurons based on some saliency metric.
For a hidden state vector hl, we denote the value of the saliency metric for the j-th neuron with respect to
a concept c as sc

j . The saliency ranking (rc(1), rc(2), · · · , rc(d)) is a permutation of the indices of neurons
(1, 2, · · · , d), where rc(j) < rc(i) if sc

j > sc
i . The saliency metric is usually predefined, such as absolute neuron

activation values.
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Figure 2: Overlap in top 30% salient neurons in GPT-2 model across classes in various datasets.

Concept Learning. Given a hidden state vector hl as input, the associated concept can be the output of
an appended neural network (e.g., several fully connected layers). The parameters of this appended neural
network can be trained using training samples labeled with concepts.

2.2 Datasets and Models

Datasets. For various experiments in this work, we utilize the following datasets: sentiment analysis
(IMDB (Maas et al., 2011)), (SST2 (Socher et al., 2013)), emotion detection (Dair-Ai/Emotions (Saravia
et al., 2018)), news classification (AG-News (Zhang et al., 2015)), and article content categorization (DBPedia-
14 (Zhang et al., 2015)). Moreover, we use the MMLU benchmark (Hendrycks et al., 2021) to evaluate general
capabilities of LLMs and Wikipedia texts (Foundation) for open-ended generation.

Models. This work employs both encoder and decoder-based models, including pretrained Llama-3.2-3B
(Grattafiori, 2024), fine-tuned BERT (Devlin et al., 2019), DistilBERT (Sanh et al., 2020), and GPT-2
(Radford et al., 2019).

2.3 Salient Neurons Extraction

We record activations for training samples of different concepts to perform neuron interpretation. Specifically,
if we want to interpret neurons of hl (hidden vector at layer l), we perform a forward pass using the training
dataset and store the values of hl and the associated concepts of all samples into a set H l. The set H l is
further partitioned into H l

c for all concepts c ∈ C. Such preparation is common in the relevant literature
(Dalvi et al., 2019c;b; Antverg & Belinkov, 2022).

We explore standard neuron saliency approaches, namely max activations (Frankle & Carbin, 2019), prob-
less (Antverg & Belinkov, 2022), and probe analysis (Dalvi et al., 2019b). Details of these approaches are
provided in Appendix C. To evaluate these saliency methods, we employ a concept erasure task that masks
the neurons identified as salient by each method and measures their ability to suppress a target concept
while minimally affecting auxiliary concepts. Table 5 in Appendix C provides the results for this experiment.
Notably, all evaluated saliency methods exhibit degradation in auxiliary concepts when salient neurons for
a target concept are masked. One explanation for such deterioration in auxiliary concepts is due to the
polysemantic neurons. That is, if individual neurons encode multiple concepts, interventions targeting a
specific concept can inadvertently disrupt other concepts co-represented within the same neurons.

While any saliency method can be used to identify influential neurons, we adopt max activation ranking
throughout this work because it provides the strongest targeted suppression as compared to other evaluated
methods while exhibiting comparable degradation in auxiliary concepts.
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Figure 3: Neuronal activation patterns of six neurons in the Llama model on AG-News . Top: neurons
sampled from the highest-activating group; middle: from the mid-ranked; bottom: from the lowest-activating
group.

3 Polysemanticity

Recent work in polysemanticity (Lecomte et al., 2024; Marshall & Kirchner, 2024) shows that individual
neurons learn multiple seemingly unrelated concepts. Polysemanticity often arises when models must represent
more features than their capacity allows or due to specific training paradigms (Anthropic, 2023). Training
methods like subword tokenization, designed to reduce vocabulary size and model complexity, lead to context-
dependent token splits, causing activations to encode multiple meanings (Sennrich et al., 2016; Elhage et al.,
2022; Meng et al., 2022). Additionally, Lecomte et al. (2024) show that even with sufficient capacity, weight
initializations can induce polysemanticity by placing neurons near multiple conceptual regions. Irrespective of
its cause, the polysemanticity of neurons, including salient neurons that encode multiple concepts, challenges
the discrete neuron-to-concept attribution paradigm, which maps a concept to an entire neuron.

Polysemanticity in Salient Neurons. To study polysemanticity in salient neurons, we consider a neuron
to be polysemantic if it appears salient for more than one concept. We calculate the overlap between the top
30% salient neurons (i.e., max activations) in a model across different classes of diverse datasets. Figure 2
presents the results on GPT-2 model using five different datasets. We observe a considerable overlap in
salient neurons between concepts (i.e., classes). For instance, in the case of a two-class dataset, IMDB, the
overlap in salient neurons is more than 60%, showing a high degree of polysemanticity.

4 Neuronal Activation Patterns

The prevalence of polysemanticity in salient neurons raises a natural follow-up question: how do multiple
concepts manifest within the activations of a single neuron? To investigate this question, we analyze
the activation patterns of salient neurons extracted via maximal activation, including those that exhibit
polysemantic behavior. Specifically, we examine neuron activations conditioned on individual concepts across
multiple datasets. Similar to Gurnee et al. (2024), we observe that neuronal activations form Gaussian-like
distributions. Importantly, our findings further indicate that for a given salient neuron, activations associated
with different concepts form distinct Gaussian-like distributions with limited overlap, suggesting that concepts
tend to occupy characteristic regions within a neuron’s activation spectrum. In the following, we present
qualitative and quantitative analyses of the concept-conditioned activation patterns.
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Table 1: Skewness, kurtosis, and Kolmogorov-Smirnov stest results across various datasets for Llama model.

Dataset Skewness Kurtosis KS-Test

stanfordnlp/imdb 0.0003 3.9251 0.9995
fancyzhx/dbpedia_14 0.0068 3.9916 0.9133
dair-ai/emotion 0.0000 3.1609 0.9988
fancyzhx/ag_news -0.0020 3.4079 0.9995
stanfordnlp/sst2 -0.0034 3.5890 0.9993

4.1 Qualitative Analysis

To visually demonstrate that neuron activations for a concept c follow a Gaussian-like distribution, we extract
model activations as described in § 2. Using saliency ranking rc for the dataset, we examine neurons from
different ranking positions in the Llama model on the AG-News dataset. In Figures 3, we visualize these
distributions using Kernel Density Estimation (KDE).

It reveals that the activations are Gaussian-like for different concepts, where salient neurons demonstrate
distinct activation patterns with limited overlap, middle-ranked neurons show a higher degree of overlap than
the top ones, whereas non-salient neurons (bottom two) exhibit the highest overlap in activation distributions.
Additional analysis for different types of polysemantic neurons for the GPT-2 model is provided in Appendix D.
For example figure 6 in Appendix D visualizes two distinct types of polysemantic neurons. One maintains
partially separable activation patterns despite being polysemantic; the other exhibits completely overlapping
activations. Figure 7 in Appendix D, we present a broader analysis of 7 neurons from the polysemantic subset
for 14 total classes. We observe that most polysemantic neurons exhibit limited overlap between concepts at
the distributional level with distinct means.

Text Analysis. We complement the activation analysis with a qualitative text analysis that examines
representative samples associated with different regions of concept-conditioned activation distributions.
Specifically, for selected neurons showcased in Figure 3, we analyze samples drawn from the lower boundary,
mean, and upper boundary of their activation distributions. Table 2 presents representative examples for
neurons 1525 and 2587, which are predominantly associated with Sci/Tech and Business concepts, respectively.
For neuron 1525, samples near the mean of the distribution focus on core Sci/Tech terminology, while samples
near the upper boundary reflect a mix of Sci/Tech and Business concepts (e.g., “subscription plans”). In
contrast, samples near the lower boundary tend to blend Sci/Tech, Sports (e.g., “marathon”), and World
themes. A similar pattern is observed for neuron 2587: samples near the mean focus on core Business topics,
transition toward World-related content near the lower boundary (e.g., “Asia headquarters”), and shift toward
Sci/Tech concepts near the upper boundary (e.g., “database demand”). These examples indicate that changes
in activation magnitude correspond to semantic transitions, providing qualitative evidence that different
concepts occupy characteristic regions within a neuron’s activation spectrum. Additional details of the text
analysis are provided in Appendix E.

4.2 Quantitative Analysis

For each neuron, we collect activation values over samples associated with concept c ∈ C and compute summary
statistics that capture deviations from normality. Specifically, we measure skewness and kurtosis (Joanes
& Gill, 1998), and assess goodness-of-fit to a normal distribution using the Kolmogorov–Smirnov (KS)
test (Massey Jr, 1951). Table 1 presents the results across all neurons in Llama model. The average skewness
is close to 0 across all datasets, indicating strong symmetry (ideal normal distribution: 0), and the average
kurtosis is close to 3, nearly identical to the expected value for a normal distribution (3.0).

To assess normality, while accounting for practical significance, we employ the KS test with an effect size
threshold of 10%. This approach tests whether the distribution remains within a reasonable bound of
normality, rather than testing for perfect normality, which is overly strict for real-world data. For each
neuron, we normalize the activations to zero mean and unit variance, then compute the KS statistic against
a standard normal distribution. The KS statistic represents the maximum absolute difference between the
empirical and theoretical cumulative distribution functions. Using a threshold of 0.1 (allowing a maximum
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Table 2: Semantic concepts are highlighted by class color: World (Blue), Sports (Green), Business
(Orange), and Sci/Tech (Purple). For each neuron, examples are shown from the lower boundary, mean,
and upper boundary of the neuron activations, illustrating how semantic content varies across activation
magnitudes. The table shows shortened texts; full reference texts are provided in Appendix ??.

Neuron Point Boundary Affinity Representative Examples (Concepts Highlighted)

1525

Lower
Boundary

World /
Sports

“Gene Tweaking Turns... Racers...single gene turned...marathon racers that could
run for hours.”
“Insecure elections...marching...soldiers overseas...ballots via e-
mail...PDF...Defense Department.”
“IBM’s supercomputer breaks world’s fastest...NEC’s Earth Simulator...based at
Yokohama, Japan.”

Mean Sci/Tech

“...powerful chip...microprocessor...appearing in video game consoles and high-
definition T-Vs.”
“AMD...Dual-Core Opteron...faster than single-core chips...fit in existing server
designs.”
“Arm reveals multimedia...Microprocessor designer...multimedia technology for
mobile electronics.”

Upper
Boundary Business

“iPass..Flat-Rate Pricing Plans for US Wi-Fi Hotspot...subscription plans for
use..Wi-Fi connectivity.”
“NTT DoCoMo...Tokyo Stock Exchange...procuring mobile phone handsets made
by Motorola Inc.”
“Omnipod...companies of all sizes...enhancements...Web-based client...a persistent-
chat feature.”

2587

Lower
Boundary

World /
Sports

“Put Me in, Coach!. Coach joins the S&P 500...leather in the weather as the global
stock market reacts.”
“The London Stock Exchange plans...Asia headquarters in Hong Kong...eyeing
stock listings abroad.”
“Halliburton closes higher... Army’s decision...shares closed higher...contract to
supply US troops in Iraq.”

Mean Business

“UBS...capital markets unit for $265 million in cash, strengthening...brokerage
business”
“Applied Materials... shares were off... in trading... wavered around break-even...
results were announced.”
“Brown-Forman...jump in earnings as aggressive marketing boosted sales of
premium spirits.”

Upper
Boundary Sci/Tech

“Arm to pay...$910m in cash and shares for...transistor-level designer for systems-
on-a-chip”
“Oracle sales rise on database demand... focus... obtaining CRM and ERP
software...”
“The...information technology...productivity gains, business software, and
telecommunications ...”

s

10% deviation from normal), we find that close to 100% of the neurons exhibit practically normal distributions.
The combination of near-ideal skewness and kurtosis values, visual confirmation through KDEs, and our effect
size-based KS tests provides strong evidence that the concept-conditioned activations follow approximately
normal distributions.

Additionally, we report layer-wise quantitative statistics for the GPT-2 model in Appendix F.1. As layer
depth increases, kurtosis steadily converges toward the Gaussian reference value of 3.0, skewness remains
near zero, and the 10% practical-normality score stays close to 1 across the network. A qualitative, layer-wise
analysis in Appendix F.2 shows that while concept-conditioned Gaussian-like activation patterns are present
across all layers, early layers exhibit substantial overlap between concepts. Beginning as early as layers
5–6, distinct concept-specific Gaussians emerge and become progressively more separable in later layers,
transitioning toward class-specific semantics.

5 NeuronLens

Given that neuronal activations exhibit approximately Gaussian-like, concept-conditioned distributions with
distinct means, we can interpret and intervene on neurons more precisely by operating on activation ranges
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rather than attributing entire neurons to individual concepts. This perspective applies regardless of whether
a neuron is monosemantic or polysemantic, as it leverages a neuron’s activation spectrum. To operationalize
this idea, we propose NeuronLens that enables range-based attribution and targeted intervention on neurons.

5.1 Range-based Attribution

NeuronLens computes attribution ranges with respect to a concept using means and standard deviations of
the neuronal activations. Specifically, given H l

c that denotes the set of hidden state vector hl(xc) at layer l
for all training samples xc associated with concept c ∈ C, it can calculate the empirical average µ ∈ R and
standard deviation σ ≥ 0 of the activation values of the j-th neuron hl

j for all samples associated with the
concept c as:

µ = 1
|H l

c|
∑

hl∈Hl
c

hl
j , σ =

√√√√ 1
|H l

c|
∑

hl∈Hl
c

(hl
j − µ)2.

Then, it can attribute the activation range of the j-th neuron at layer l to the concept c as:

AR(l, j, c) = [µ − τ × σ, µ + τ × σ],

where τ > 0 is a hyperparameter which controls the attribution scope. Intuitively, a smaller τ yields a
narrower, conservative range, while a larger τ expands coverage at the risk of including less concept-specific
activations. AR is defined as attribution range associated with a given concept c.

5.2 Causal Validation

Causal validation is among the most faithful ways to assess attribution correctness (Feder et al., 2021; Vig
et al., 2020), as it directly tests whether intervening on the attributed component produces the intended
behavioral change, while measuring unintended side effects. Following prior intervention-based validation
(Dalvi et al., 2019b; Dai et al., 2022; Dalvi et al., 2019c; Morcos et al., 2018), we utilize concept erasure
as a diagnostic intervention to determine the causal effect of identified ranges within neurons for a given
concept. The core idea is that if an attribution is salient to a concept, eliminating it should result in the
degradation of model’s performance on that concept while causing minimal disruption to other concepts.
Formally, given a concept-learning model M that maps any input instance x (or part of an instance) to a
concept M(x) = c ∈ C, an ideal intervened model M ′

ideal after erasing a target concept c ∈ C should satisfy
the following property:

M ′
ideal(x) =

{̸
= M(x) if M(x) = c,

= M(x) if M(x) ̸= c.
(1)

NeuronLens enables precise manipulation of target concepts via identified activation ranges in contrast to the
manipulation and ablation of complete neuron activations. Specifically:

hl
j(x) =

{
ϕ(x) if hl

j(x) ∈ AR(l, j, c)
hl

j(x) otherwise
(2)

where ϕ(.) is a user-specified range-gated activation operator applied only when hl
j(x) ∈ AR(l, j, c). In

general, ϕ can be any function, instantiated for causal intervention (e.g., clamping, zeroing, scaling) or for
explanation/attribution (e.g., masking or tagging activations). For concept erasure, the gated function ϕ(.)
zeroes out which is in line with Dai et al. (2022); Antverg & Belinkov (2022). Some studies have argued that
zeroing out neurons is an overly aggressive intervention that can lead to catastrophic degradation in model
performance. In Appendix G, we compare alternative activation interventions, including the dampening
method (Suau et al., 2024) and mean replacement (Suau et al., 2021). Erasure experiments in the main text
ablating a specific range of neuronal activation are referred as range-based masking, whereas ablating the
complete neurons is referred as neuron masking.
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Table 3: Evaluation of selected models on AG-News, Emotions, and DBPedia-14 datasets using activation
range and neuron masking techniques. Performance metrics are calculated using class level 10% trimmed
means at the class level. Metrics are detailed in § 5.3. For GPT-2 and Bert 50% and for Llama-3.2-3B 30%
neurons are selected.

Model Dataset Base Values Neuron Masking Activation Range Masking (ARM)

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT

AG-NEWS 0.948 0.929 0.948 0.929 -0.271 -0.590 0.012 -0.074 -0.261 -0.590 0.013 -0.009
Emotions 0.894 0.834 0.917 0.876 -0.291 -0.633 0.013 -0.265 -0.279 -0.635 0.014 -0.069
DBPedia-14 0.992 0.991 0.990 0.989 -0.028 -0.786 0.000 -0.017 -0.015 -0.766 0.000 -0.000

GPT-2

AG-NEWS 0.945 0.933 0.945 0.933 -0.871 -0.877 -0.155 -0.163 -0.849 -0.862 -0.063 -0.223
Emotions 0.905 0.892 0.930 0.919 -0.735 -0.738 -0.103 -0.103 -0.737 -0.739 -0.044 -0.046
DBPedia-14 0.993 0.990 0.990 0.988 -0.810 -0.845 -0.154 -0.177 -0.782 -0.825 -0.015 -0.031

Llama

AG-NEWS 1.000 0.744 1.000 0.744 -0.934 -0.725 -0.660 -0.572 -0.935 -0.725 -0.484 -0.454
Emotions 0.815 0.472 0.823 0.477 -0.795 -0.470 -0.696 -0.429 -0.797 -0.469 -0.594 -0.404
DBPedia-14 1.000 0.533 1.000 0.563 -0.992 -0.528 -0.912 -0.445 -0.986 -0.527 -0.663 -0.354

Table 4: Evaluation of latent capabilities of Llama model after applying neuron and range-based masking.
Base PPL = 7.007; Base MMLU = 0.53.

Dataset Neuron Masking ARM
Perplexity MMLU Perplexity MMLU

AG-NEWS 12.757 0.510 8.022 0.533
Emotions 11.630 0.526 8.063 0.526
DBPedia-14 12.230 0.507 7.903 0.535

5.3 Experimental Setup

We incorporate our intervention at the penultimate layer. Ablation for layer selection is provided in the
Appendix F. The training details for the fine-tuned models are provided in Appendix H.

Metrics. We causally validate the attribution using two metrics: prediction accuracy and the model’s
predictive probability as a proxy for confidence score. First, baseline measurements of both accuracy and
confidence for all concepts C without any intervention (unmodified model) are established. Post-intervention
measurements are recorded for the target concept c and auxiliary concepts (other concepts in the dataset)
c′. The effectiveness and precision of attribution are assessed through two key metrics: (1) the performance
degradation for concept c, and (2) the extent of unintended impact on auxiliary concepts c′. Throughout our
analysis, we denote the accuracy and confidence metrics for concept c as Acc and Conf respectively, while
corresponding measurements for auxiliary concepts c′ are represented as CAcc and CConf. For evaluating
the effect of the interventions on LLMs latent capabilities, we utilize perplexity (PPL) and zero-shot
accuracy on MMLU.

Hyperparameter. The value of τ is set to 2.5, assuming a fully Gaussian distribution. This threshold
corresponds to a coverage of approximately 98.76% of the distribution, providing a slightly conservative bound
for range-based interventions. Ablations for varying τ are presented in Appendix I. The results indicate that
targeted concept deteriorates up to 2.4-2.7 τ then plateaus, while auxiliary concepts begin to degrade further.

5.4 Results and Analysis

Table 3 presents results for the concept erasure task across five benchmark datasets (Class-wise detailed
results are provided in Appendix J), demonstrating the effectiveness of range-based masking compared to
traditional neuron masking. Results in Table 3 show that multi-class classification tasks with fine-grained
labels, such as AG-News, Emotions, and DBPedia-14, exhibit more pronounced effects under intervention.
Range-based masking results in significant degradation of primary task performance while preserving auxiliary
concept accuracy. This is particularly evident in results for AG-News. On binary classification tasks (IMDB,
SST2) provided in appendix J (Table 17 and 16), both masking approaches show moderate performance
drops in targeted concepts. This suggests higher redundancy for coarser binary concepts.
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Figure 4: Accuracy on the GPT-2 model as a function of the percentage of masked neurons, comparing
activation range-based masking (green) and neuron-level masking (orange).

GPT-2, despite being fine-tuned but trained in an autoregressive manner, shows substantially higher
vulnerability with major drops in AG-NEWS (∆acc = −0.849) and DBPedia-14 (∆acc = −0.782). This
increased sensitivity may be attributed to its autoregressive training objective, which potentially leads to
more sequential and less redundant concept encodings. The Llama-3.2-3B model, evaluated in a few-shot
setting without task-specific training, experiences the most severe degradation across all datasets (often
exceeding −0.90), suggesting that pre-trained representations without task-specific fine-tuning are more
vulnerable to full neuron interventions.

General LLM Capabilities. To ensure that our approach does not compromise general model capabilities,
we evaluate the impact of range-based masking on language modeling quality and broad knowledge and
reasoning performance using the MLU benchmark. Table 4 presents the comparative performance of neuron
masking and activation range masking. Full neuron masking leads to notable increases in perplexity, exceeding
3 points in the best case, whereas range masking results in a maximum increase of only 1.1. In terms of
MMLU accuracy, neuron masking consistently reduces performance across all settings, while range masking
preserves or improves performance in most cases, with degradation observed in only one instance.

Alternative activation interventions. We also experiment with alternative activation interventions.
Details of the alternative approaches are provided in Appendix G. While dampening and mean replacement
methods aim to manipulate without moving too far from the original representation, they exhibit limitations
when applied to neurons. Specifically, neuron dampening increases perplexity by 2.9–3.7 points and often
degrades MMLU accuracy (up to -0.045), whereas range-based dampening confines perplexity increases
to 0.5–0.8 points and occasionally improves MMLU (up to +0.035). Similarly, mean replacement leads
to substantial degradation when applied to neurons (perplexity increases of 7.4–8.8), while range-based
replacement reduces the impact to below 0.7 points.

However, both dampening and mean replacement methods suffer from rigid static suppression or substitution,
failing to account for concept-specific activation dynamics. To address this issue, we introduce a novel
adaptive dampening technique. This method modulates suppression in proportion to each activation’s
deviation from its class-conditional mean, enabling suppression guided by sampled observations. Adaptive
dampening achieves the strongest balance across all metrics: perplexity remains low (0.41–0.61), MMLU is
maintained or improved (up to +0.03), and collateral damage to auxiliary concepts is minimized (CAcc drops
consistently below -0.3, often under -0.15), outperforming dampening, mean replacement, and zeroing out
approaches.

These results demonstrate that precise intervention in specific activation ranges enables substantially more
targeted concept manipulation while preserving auxiliary concepts, highlighting how conceptual information
is encoded within specific activation patterns rather than isolated to individual neurons, underscoring the
importance of activation ranges in capturing neuron-concept relationships.

Percentage Masking Effect. As the masking rate increases, the advantage of range-based masking over
the neuron-masking baseline becomes increasingly pronounced. Beyond a critical masking level, the baseline

9
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exhibits a sharp performance collapse, whereas our method avoids this cliff and degrades smoothly all the
way to full masking (100%). This arises from two factors: (1) models have a large number of polysemantic
neurons, and higher masking rates increase the chance of ablating them, and (2) blocking/manipulating a
higher percentage of the model’s neurons creates a significant deviation from the original model’s behavior.
For low-activation neurons with respect to the concept of interest, discrete neuron masking (i.e., completely
masking out a neuron) becomes unreliable, as shown in Figure 4, with a steep performance drop after masking
50% of neurons. Notably, our range-based method offers finer-grained attribution, preserving model behavior
under extensive masking. The relatively stable results on auxiliary concept when using range-based masking
at a high percentage of neurons reduce the need to find an optimum threshold for the number of neurons to
ablate, which is critical to neuron masking.

6 Related Work

While we have discussed closely related approaches in § 2, we briefly review additional relevant techniques
here. Circuit discovery identifies groups of neurons that jointly encode concepts, providing a structured
view of model behavior (Marks et al., 2024; Conmy et al., 2023; Olah et al., 2020). However, extracting
circuits is computationally intensive and lacks fine-grained neuron-level attribution. Gradient-based methods
attribute predictions to input features by tracking gradients through the network, with integrated gradi-
ents (Sundararajan et al., 2017; Dai et al., 2022) being a widely used approach. However, they struggle with
polysemanticity, as they do not disentangle overlapping concepts within neurons. Causal analysis methods
intervene on internal components to assess their role in encoding concepts. Causal tracing measures the
effect of corrupting activations on model performance (Vig et al., 2020; Meng et al., 2022), while causal
mediation analysis quantifies information propagation through neurons (Vig et al., 2020). Although effective,
these techniques require costly perturbation experiments. Beyond neuron-level analysis, representation-level
methods examine hidden states and their relationship to model outputs and concepts (Veldhoen et al., 2016;
Tenney et al., 2019; Liu et al., 2019). Sparse probing (Gurnee et al., 2023) compresses hidden representations
into sparse, interpretable subspaces. While prior work has advanced interpretability, most methods rely on
discrete neuron-to-concept mappings, which fail to account for polysemanticity (Sajjad et al., 2022). Our
work extends activation-based approaches by introducing activation ranges as the unit of interpretability,
enabling more precise concept attribution and intervention.

7 Conclusion

In this work, we revisited neuron-level interpretability through the lens of polysemanticity and showed that,
despite encoding multiple concepts, individual neurons exhibit predictable activation behavior. Through
systematic qualitative and quantitative analysis, we demonstrated that concept-conditioned neuron activations
form Gaussian-like distributions with limited overlap. Building on this observation, we introduced NeuronLens,
a range-based framework that attributes concepts to activation ranges rather than entire neurons. NeuronLens
enables more precise concept manipulation by selectively intervening within these ranges while substantially
reducing unintended interference with auxiliary concepts. Our causal evaluations show that range-based
masking consistently outperforms full neuron masking and preserves general model capabilities, including
broad knowledge and reasoning performance measured by MMLU, as well as language modeling quality.
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A Limitations

While NeuronLens can disentangle polysemanticity to a degree using identified Gaussian-like distributions,
it is unable to completely disentangle concepts encoded in the polysemantic neurons, as concept-specific
activation distributions still partially overlap. We also present results primarily from the penultimate layer,
and not the intermediate or earlier layers; however, we provide ablations and rationale for this choice in
Appendix F

B Impact Statement

This work advances neural network interpretability by providing a fine-grained understanding of concept
encoding in language models. The proposed NeuronLens framework enables precise control of model behavior,
benefiting research in model safety and reliability. While this improved understanding could potentially
be misused, the work’s theoretical nature and focus on interpretability methods makes immediate harmful
applications unlikely.

C Details of Saliency Methods

Max Activations (Frankle & Carbin, 2019). Max activations extract high neural activations as a
saliency ranking metric relying upon the rationale that maximally activating neurons are salient as these
neurons play a critical role in controlling the model’s output, highlighting their importance for a concept
c.To identify them, the column-wise mean of absolute neuronal activations in H l

c, H l
c is defined in §2.3,

is computed, given that high negative activations also carry significant signals (Voita et al., 2023). The
magnitude of the means is then considered as a ranking for concept c.

Probe Analysis (Dalvi et al., 2019b). Probe analysis trains a linear classifier on the hidden representations
H l

c to distinguish between concepts. The learned model weights are then utilized as a saliency ranking. This
process involves learning a weight matrix W ∈ Rd×|c|, where d is the hidden dimension and |c| is the number
of concept classes. The absolute weight values of each row in the weight matrix are used as a ranking for the
importance of each neuron for a given concept. To prevent the emergence of redundant solutions characterized
by minimal variations in the weights, the probe is trained using the elastic regularization technique.

Probeless (Antverg & Belinkov, 2022). Probeless examines individual neurons, without the need for
auxiliary classifiers, using the element-wise difference between mean vectors. The element-wise difference
between mean vectors is computed as r =

∑
c,c′∈C |q(c) − q(c′)|, where r ∈ Rd and d is the hidden dimension.

The final neuron saliency ranking is obtained by sorting r in descending order.

C.1 Causal validation

To causally validate the aforementioned approaches, we apply erasure; the results for this are provided in
Table 5. The results show that degradation the target concepts is highest when using max activations.

D Qualitative and Quantitative Analysis on GPT-2

D.1 Qualitative

Following similar experimental setup as used in § 4, here we provide the results for the GPT-2 model.
Figure 5 and 6 shows these visualizations. Figure 5 similar to the Llama shows that while the activations are
Gaussian-like for different concepts, salient neurons demonstrate distinct activation patterns with limited
overlap.

In Figure 6, we identify and visualize two distinct types of polysemantic neurons that appear in the salient
sets across all classes, when 5% salient set was selected, in the dataset. The first type, exemplified by neuron
480, maintains partially separable activation patterns despite being polysemantic, suggesting some degree
of class-specific behavior. In contrast, the second type, represented by neuron 675, exhibits completely

14



Under review as submission to TMLR

Table 5: Performance drops relative to Baseline configuration (i.e., unaltered model’s performance) for three
techniques: Probeless, Probe, and Max. All values show the difference from Base values. Results are for
Emotions dataset on the GPT-2 model using 30% salient neurons of each method. Metrics are detailed in
§ 5.3.

Model Probeless Probe Max

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

GPT-2 -0.524 -0.510 -0.086 -0.086 -0.052 -0.036 -0.018 -0.049 -0.735 -0.739 -0.103 -0.103

Llama -0.751 -0.292 -0.751 -0.272 -0.177 -0.145 -0.169 -0.096 -0.805 -0.500 -0.511 -0.399

Table 6: Skewness, kurtosis, and Kolmogorov-Smirnov test results across various datasets. GPT-2 model

Dataset Skewness Kurtosis KS-Test

stanfordnlp/imdb 0.0014 3.6639 1.0000
fancyzhx/dbpedia_14 -0.0007 3.9360 0.9782
dair-ai/emotion 0.0015 3.0198 0.9446
fancyzhx/ag_news -0.0013 3.2060 0.9918
stanfordnlp/sst2 -0.0083 3.2038 1.0000

overlapping activation patterns across all classes, making it hard to disentangle. To further investigate this
phenomenon, Figure 7 presents a broader analysis of neurons from the polysemantic subset, identified using a
5% saliency threshold (top 5% salient neurons selected for a concept).

D.2 Quantitative

Skewness and Kurtosis results are provided in Table 6. The results are similar to those observed on the
Llama model in the main text.
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Figure 5: Neuronal Activation Patterns of six neurons on AG-News dataset class 1. Neurons 418 and 447 are
the highest activating neurons, neurons 132 and 387 are middle-ranked neurons, and neurons 721 and 365 are
the lowest activating neurons.

Figure 6: Neuronal Activation Patterns comparison of neurons 480 and 675. The plots show class-specific
activity patterns with fitted Gaussian curves. Both neurons were part of salient set of all classes when top
5% salient selected on AG-News dataset.
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Figure 7: Box plot of neural activation of 7 polysemantic neurons (i.e: neurons in the salient group for all
classes, percentage selected: 5% top salient) for 6 randomly selected classes out of 14 classes of DBPedia-14
dataset.

E Qualitative Text Analysis

After recording the activations and calculating distributions, we calculate the activation range (as defined in
§ 5.1) for each class in the dataset under consideration. We then extract 10 text examples at each of three
points along the computed activation range for each concept: the lower bound (minimum of the activation
range), the midpoint (mean of the activation range), and the upper bound (maximum of the activation range).

We then pass these text examples to an LLM judge (Gemini Pro) along with class labels and boundary
position information. The LLM judge then extracts the underlying semantics shared in the examples from
one of the labels of the dataset, along with highlighted keywords. We present 3 representative examples from
each set for one selected class, along with LLM highlighted keywords and semantics in the Table 2, the full
relevant texts for the table are provided in Table 7.

F Layer Ablation

F.1 Statistical Results

We analyze concept level activation distributions across all 12 layers of GPT-2, measuring kurtosis (where
a value of 3.0 indicates a Gaussian distribution), skewness (where 0 indicates symmetry), and practical
normality in Table 8:

These results show that kurtosis values converge toward 3.0 (the Gaussian ideal) as layers progress, skewness
values remain near zero across all layers, and practical normality scores are close to 1 across all layers.
Importantly, if the activations were not clustered into continuous intervals and were in disconnected islands
of activations, these would be reflected in the score for the practical normality and other statistical metrics.

F.2 Qualitative Results

We expanded our visualization approach shown in Figures figs. 8 to 19 in Figure 4) to all layers in the model.
The visualizations demonstrate an interesting progression: while all layers exhibit Gaussian-like distributions
on the class level, class concepts aren’t separated in the activation spectrum Gaussians of the early layers.
This aligns with the understanding that lower layers capture more basic features rather than high-level
semantic features like class. However, distinct concept-level Gaussian distributions begin forming as early as
layers 5-6, becoming increasingly separable in deeper layers.
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Figure 8: Neuronal Activation Patterns of six neurons
on AG-News dataset. Layer 1

Figure 9: Neuronal Activation Patterns of six neurons
on AG-News dataset. Layer 2

Figure 10: Neuronal Activation Patterns of six neu-
rons on AG-News dataset. Layer 3

Figure 11: Neuronal Activation Patterns of six neu-
rons on AG-News dataset. Layer 4

F.3 Masking Results

In Table 9 and Table 10 we provide results of applying both approaches on all layers of GPT-2 model on
Emotions dataset. From the results we can see that: Early layers (1-3) show highly variable and often severe
impacts: Layer 1 exhibits minimal effects (∆Acc = −0.113, ∆CAcc = −0.064), while Layers 2-3 show extreme
degradation (∆Acc ≈ −0.7, ∆CAcc > −0.5). Middle layers (4-8) demonstrate inconsistent behavior with high
variance in impacts. Layer 12, however, achieves an optimal balance: it maintains substantial primary task
impact (∆Acc = −0.571) while minimizing auxiliary concept interference (∆CAcc = −0.060). This pattern
holds true for both neuron masking and range masking techniques, with range masking showing slightly better
preservation of auxiliary concepts (∆CAcc = −0.045). The mid-range primary task degradation combined
with minimal auxiliary impact makes Layer 12 the most suitable for targeted interventions, offering better
control and specificity compared to earlier layers.

18



Under review as submission to TMLR

Figure 12: Neuronal Activation Patterns of six neu-
rons on AG-News dataset. Layer 5

Figure 13: Neuronal Activation Patterns of six neu-
rons on AG-News dataset. Layer 6

Figure 14: Neuronal Activation Patterns of six neu-
rons on AG-News dataset. Layer 7

Figure 15: Neuronal Activation Patterns of six neu-
rons on AG-News dataset. Layer 8

G Alternative Activation Interventions

In the main text, we primarily presented results using a “zeroing out” strategy for neuron manipulation.
This approach was chosen to compare neuron manipulation against range-based manipulation. However,
zeroing out is considered a suboptimal strategy (Suau et al., 2024). The primary concern with standard
zeroing-out approaches is that they distort the activation distribution significantly, diverging from that of the
original model. However, our range-based method selectively zeroes out only a narrow slice of the activation
spectrum, thereby mitigating the adverse effects associated with hard erasure.

In this section, we explore alternative, more optimized strategies for concept removal. We also introduce a
novel range-based scaling strategy that has demonstrated superior results.

Below, we explore various activation intervention strategies, comparing traditional neuron-level approaches
with the nuanced range-based technique. Our comprehensive evaluation reveals that range-based manipulations
consistently outperform neuron interventions across multiple metrics, with significantly less disruption to the
model’s general capabilities.
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Figure 16: Neuronal Activation Patterns of six neu-
rons on AG-News dataset. Layer 9

Figure 17: Neuronal Activation Patterns of six neu-
rons on AG-News dataset. Layer 10

Figure 18: Neuronal Activation Patterns of six neu-
rons on AG-News dataset. Layer 11

Figure 19: Neuronal Activation Patterns of six neu-
rons on AG-News dataset. Layer 12

Among all techniques examined, our novel adaptive dampening approach emerges as the most effective,
maintaining targeted concept suppression while minimizing collateral impact on auxiliary concepts and
preserving overall language modelling capabilities. This pattern holds true across different intervention
methods including zeroing out, dampening, and mean replacement strategies.

G.1 Dampening

In their work, Suau et al. (2024) propose using a dampening function rather than setting neuron activations
to zero outright. This approach, referred to as DAMP, corresponds to a specific choice of the intervention
function ϕ(x) = αx, where 0 ≤ α ≤ 1. In this formulation, the activations of selected neurons are scaled down
by a factor α instead of being completely suppressed. Here, x represents neuron activation. The rationale
behind dampening is that a fixed intervention (like zeroing out) can disrupt the LLM’s inference dynamics,
especially when a large number of neurons (k) are involved, thereby limiting its effectiveness. Dampening
offers a less destructive intervention by allowing contextual signals to continue passing through the network.
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This, in turn, permits intervention on a larger set of expert neurons, potentially achieving stronger mitigation
of the targeted concept.

Table 11 presents a comparative analysis of two intervention strategies, neuron masking and activation range
masking, when employing the Dampening technique with α = 0.5. The evaluation spans 14 classes and
utilizes the metrics: accuracy (Acc), confidence (Conf), class-wise accuracy (CAcc), class-wise confidence
(CConf), alterations in perplexity (PPL), and MMLU score.

A consistent trend emerges across the primary metrics (Acc, Conf, CAcc, and CConf), where activation range
masking demonstrates superior performance over neuron masking. Interventions based on activation ranges
lead to a notably smaller decline in the accuracy and confidence associated with auxiliary concepts. For
example, in Class 3, while neuron masking results in an accuracy drop of -0.974 in the targeted class and
auxiliary class accuracy decrease of -0.411, activation range masking, despite a comparable accuracy reduction
in the targeted class (-0.970), shows a less severe impact on auxiliary class accuracy (-0.283). This pattern of
activation range masking better preserves auxiliary class performance, is evident across all evaluated classes.

Examining the broader effects on language modeling capabilities reveals significant distinctions between the
two approaches. Neuron masking results in a considerable rise in perplexity (PPL), with increases ranging
from +2.891 to +3.732 across all the classes. Furthermore, it tends to cause more pronounced negative
shifts in MMLU scores, reaching as low as -0.045. Conversely, activation range masking results in substantially
smaller increments in perplexity, falling within the +0.546 to +0.810 range, and frequently results in
improved or minimally altered MMLU scores, with gains up to +0.035.

G.2 Mean Replacement

Another approach of activation replacement discussed in the literature(Suau et al., 2021) is replacing it with
the mean activation value. We provide the results for this type of replacement in Table 12.

The mean replacement strategy corresponds to setting the intervention function to ϕ(x) = µ, where µ is the
mean activation of the neuron x computed over a general next-token prediction task on the Wikipedia (Foun-
dation).

In Table 12, we assess the effect of mean replacement using both neuron masking and activation range
masking. In every class, neuron masking results in more severe degradation than range-based masking across
all auxiliary and general metrics.

Across metrics (Acc, Conf, CAcc, and CConf), activation range masking consistently outperforms neuron
masking. The degradation in accuracy and confidence of auxiliary concepts is significantly lower under
range-based interventions. For instance, in Class 3, neuron masking causes a drop of -1.000 in Acc and -0.766
in CAcc, whereas activation range masking yields a similar Acc drop (-1.000) but a substantially smaller
decline in CAcc (-0.538). A similar pattern repeats across all classes; for example, in Class 0, neuron masking
results in CAcc of -0.685 while activation range masking yields -0.551. In Class 7, neuron masking shows a
CAcc of -0.491 compared to -0.267 for activation range masking.

Beyond auxiliary class performance, we observe substantial differences in how the two masking methods
affect general language modelling capabilities. Neuron masking leads to a large increase in perplexity (PPL),
ranging from +7.413 to +8.791 which is catastrophic, across classes, and induces more negative shifts in
MMLU scores (as low as -0.035 for Class 9, and also for Class 0 with -0.025, Class 1 with -0.030, Class 10
with -0.020, and Class 13 with -0.025). In contrast, activation range masking results in substantially smaller
increases in perplexity (+0.397 to +0.687) and often yields improved or near-zero changes in MMLU scores
(up to +0.020 for Class 6, and several positive values like +0.015 for Class 1, Class 8, and Class 9).

G.3 Adaptive Dampening

We propose a novel replacement method in which the intervention function ϕ(x) applies runtime-controlled
dampening based on the distance of the observed activation x from the center of a predefined activation range.
Specifically, the dampening factor a(x) is linearly scaled according to the distance of x from the mean µ of
the neuron’s activation distribution, within the range [µ − 2.5σ, µ + 2.5σ].
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Let β ∈ [0, 1] denote the maximum dampening factor applied at the range boundaries. Then:

a(x) = β · |x − µ|
2.5σ

, and ϕ(x) = a(x) · x.

This ensures that when x = µ (the center of the range), a(x) = 0 and the activation is fully suppressed via
ϕ(x) = 0. At the boundaries (x = µ ± 2.5σ), a(x) = β, and the activation is minimally dampened. Values
within the range are scaled proportionally based on their normalized distance from the mean. This adaptive
dampening mechanism suppresses values near the mean while preserving those closer to the range edges.

The dampening factor β can be optimized for different neurons based on the concept information that neuron
provides. For this work, we use β = 0.5 across all neurons.

In Table 13 we evaluate the adaptive dampening variant of the replacement function. This approach
outperforms both neuron masking and static activation masking across all metrics.

In auxiliary class metrics, adaptive dampening yields much smaller degradation. Auxilary class accuracy
(CAcc) and confidence (CConf) show significantly reduced drops compared to other methods. For example,
in Class 0, CAcc drops only −0.215 compared to −0.685 under neuron masking and −0.551 under hard
activation masking. The effect is consistent across classes, with most CAcc and CConf drops staying well
below −0.3, and in many cases below −0.15.

Language modeling metrics show this approach to be exceptionally efficient. Perplexity increases are minimal,
remaining within +0.408 to +0.609, substantially lower than all hard-masking variants. MMLU deltas also
stay close to zero, with several classes showing improvement (e.g., Class 8: +0.030, Class 4: +0.015). Notably,
no class suffers significant MMLU degradation.

H Training Details

For BERT, DistilBERT, and Llama, we utilize pretrained models. Since BERT, and DistilBert are not
inherently trained as a conversational agent, we use top-performing fine-tuned models from the Hugging
Face repository. For the Llama model, few-shot prompt completion is employed to predict class labels. This
involves providing a small number of training samples from the dataset to guide the model’s predictions.

For GPT-2, we fine-tune the pretrained model across all datasets for three epochs. The input sequence is
constructed by concatenating the text with a <sep> token, followed by the class label, and ending with
an <eos> token. During training, the loss is back-propagated only for the class label token, while all other
tokens are assigned a skip label (-100). Additionally, all class labels are added to the model’s dictionary as
special single-token entries.

In the case of Bert-based models, record the activation of the CLS token, In the case of GPT-2 and Llama
models, we record the last token output when the class token is being predicted. The intervention is applied
to the appropriate token on the residual stream.

For trained models (BERT, DistilBERT, and GPT-2), a higher proportion of neurons (up to 50%) can
be ablated with a relatively minor impact on primary task performance and minimal interference with
auxiliary concepts. This suggests substantial neuronal redundancy, wherein multiple neurons appear to
encode overlapping features.

Dataset Preprocessing for Llama For Llama we process whole datasets in few shout settings and only
curate 2000 samples per class, where the model prediction was correct.

H.1 Computation Details

All experiments, including activation extraction and interventions on large language models (LLMs), were
conducted using an NVIDIA RTX 3090 GPU equipped with 24GB of VRAM. 64GB RAM.
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I Hyperparameter Ablation

The results for ablating τ on GPT-2 model using the X dataset are shown in Table 14. For target concept,
values 0.3 − 2.4 show decreasing accuracy/confidence, stabilizing at τ = 2.4 (accuracy 0.6126). Beyond 2.4,
negligible additional degradation occurs, indicating we’ve captured the complete target concept activation
range. Importantly, while target performance stabilizes after τ = 2.4, auxiliary task performance declines
after τ = 2.7. Complement accuracy stays above 0.93 until then before dropping to 0.8795 at τ = 4.5. This
aligns with normal distribution properties where 95-99% of values fall within ±2.5 standard deviations.

J Class Wise Results

Here we provide the complete results for the selected models for all datasets. IMDB (Table 16), SST2
(Table 17), AG-news (Table 15), Emotions (Table 18) and DBpedia-14 (Table 19)
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Table 7: Full text for samples shown in Table2 for Neuron 1525 (Sci/Tech) and Neuron 2587 (Business).

Neuron Point Boundary Affinity Representative Examples

1525

Lower
Boundary

World /
Sports

“Gene Tweaking Turns Couch Potato Mice Into Racers Altering a single gene turned
ordinary mice into marathon racers that could run for hours and eat huge amounts of
food without getting fat, a team of researchers reported on Monday.”
“Insecure elections marching ever closer Friday’s St. Louis Post-Dispatch reports on
a controversial decision by Missouri’s Secretary of State: the state of Missouri will be
allowing soldiers stationed overseas to cast ballots via e-mail. Their absentee ballots will
be scanned and converted to PDF files, which will be emailed to the Defense Department,
printed out, and then faxed to Missouri. I’m in favor of helping soldiers vote; this is a
democracy, everyone should be able to vote. Yet I’m deeply skeptical of this proposal,
for two reasons: The plan depends on e-mailed ballots being printed out and faxed by
the Defense Department but does not provide any safeguards against soldiers being
sanctioned for how they have voted; The transmission method is inherently technically
insecure ”
“IBM’s new supercomputer breaks the world’s fastest computer’s ... Technology India:
London, Nov 8 : A new supercomputer being constructed by IBM has broken all
supercomputing records after demonstrating double the power of the long-reigning
supercomputing champion, NEC’s Earth Simulator, based at Yokohama, Japan.”

Mean Sci/Tech

“Sony, IBM, Toshiba say powerful chip to start production in 2005 SAN JOSE, Calif.
A long-awaited microprocessor developed by IBM, Sony, and Toshiba will go into
production next year and start appearing in video game consoles and high-definition
T-Vs in 2006.”
“AMD Gives Details on Dual-Core Opteron Advanced Micro Devices has given out more
details on its fortcoming dual-core microprocessor chip. The Opteron-based design is
said to be 30-55 percent faster than AMD #39;s single-core chips, but it will fit in
existing server designs.”
“Arm reveals Neon multimedia extension technology Microprocessor designer Arm Ltd.
has developed a new multimedia technology called Neon that will help improve the
performance of mobile electronics devices that process multiple tasks, the company said
Monday.”

Upper
Boundary Business

“iPass Introduces New Flat-Rate Pricing Plans for US Wi-Fi Hotspot ... REDWOOD
SHORES, Calif., Nov. 17 – iPass Inc. today announced new monthly and annual
flat-rate subscription plans for use of the Company’s US Wi-Fi connectivity.”
“NTT DoCoMo Rises on TSE on Reported Deal with Motorola Tokyo, Aug. 23 (Jiji
Press)–NTT DoCoMo firmed on the Tokyo Stock Exchange Monday morning following a
media report that it will start procuring mobile phone handsets made by Motorola Inc.”
“Update: Omnipod beefs up instant messaging service Omnipod, which provides hosted
instant message (IM) services to companies of all sizes, is preparing several enhancements
to its platform, including the additions of a Web-based client, a telephony component
and a persistent-chat feature, Omnipod’s chief executive officer said.”

2587

Lower
Boundary

World /
Sports

“Put Me in, Coach! Coach joins the S P 500, and others stand to benefit from the
leather in the weather.”
“London Stock Exchange eyes Asia HQ The London Stock Exchange plans to set up
an Asia headquarters in Hong Kong to tap the growing number of mainland corporates
eyeing listings abroad, a local newspaper reports.”
“Halliburton closes higher on Army’s decision to pay DALLAS (CBS.MW) – Halliburton’s
shares closed higher Wednesday after the Army Materiel Command reversed its decision
to withhold 15 percent of its future payments to the company under a contract to supply
and support US troops in Iraq.”

Mean Business

“UBS Buys Schwab Unit for $265 Mln GENEVA/NEW YORK (Reuters) - Swiss-based
banking giant UBS AG has agreed to buy Charles Schwab Corp.’s capital markets unit
for $265 million in cash, making UBS a leading player on the U.S. Nasdaq exchange,
the companies said on Tuesday.”
“Applied Materials Applied Materials (AMAT: news, chart, profile) shares were off two
cents to $16.05 in trading before the bell Wednesday and had wavered around break-even
in late trading Tuesday after the results were announced.”
“Brown-Forman Earnings Jump 67 Percent Brown-Forman Corp. , which sells products
ranging from Jack Daniels whiskey to Lenox china, on Thursday posted a better-than-
expected 67 percent jump in earnings as aggressive marketing boosted sales of premium
spirits and new wines.”

Upper
Boundary Sci/Tech

“Arm hands over $910m for US chip firm Arm is to pay $910m (504m) in cash and
shares for Artisan, the US-based transistor-level designer for systems-on-a-chip. Arm
chairman Sir Robin Saxby said in a conference call: quot;This will be a combination ”
“Oracle sales rise on database demand com September 14, 2004, 2:26 PM PT. This
fourth priority’s main focus has been improving or obtaining CRM and ERP software
for the past year and a half.”
“Coming: IT that adapts to users’ requirements The march of information technology
into the workplace has been greeted with a mix of awe and resistance. For all their
promise of productivity gains, computers, business software, and telecommunications
gear have disrupted processes at the core of a company’s identity.”
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Table 8: Statistical analysis of different layers showing skewness, kurtosis, and Kolmogorov- Smirnov test
results. GPT2 model. AG-News Dataset

Layer Kurtosis Skewness Practical Normality
1 3.9314 0.0430 0.7913
2 3.7622 -0.0091 0.9525
3 3.4109 -0.0143 0.9870
4 3.5582 -0.0073 0.9801
5 3.6145 0.0051 0.9730
6 3.5318 0.0086 0.9769
7 3.3461 0.0083 0.9880
8 3.2763 0.0037 0.9870
9 3.2267 0.0039 0.9860
10 3.2057 0.0029 0.9899
11 3.2105 -0.0002 0.9912
12 3.2061 -0.0014 0.9919

Table 9: Evaluation of layer selection on GPT-2 model on the Emotions dataset using neuron and range
masking techniques. 20% Neurons selected. Here, Acc represents class accuracy, Conf denotes class prediction
probability, and CAcc and CConf refer to average accuracy and average class prediction probability across
other classes, respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance.

Layer Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

1

Class 0 0.970 0.957 0.915 0.904 -0.029 -0.071 -0.074 -0.100 0.006 0.002 -0.004 -0.005
Class 1 0.933 0.932 0.931 0.913 -0.011 -0.056 -0.090 -0.116 0.001 -0.003 -0.004 -0.004
Class 2 0.901 0.865 0.934 0.924 -0.206 -0.195 -0.052 -0.092 -0.019 -0.015 -0.001 -0.002
Class 3 0.926 0.924 0.932 0.919 -0.128 -0.152 -0.051 -0.090 -0.004 -0.005 -0.001 -0.002
Class 4 0.885 0.867 0.938 0.927 -0.055 -0.084 -0.061 -0.093 -0.016 -0.009 0.002 -0.001
Class 5 0.851 0.786 0.934 0.924 -0.249 -0.217 -0.055 -0.094 0.016 0.013 -0.004 -0.005

2

Class 0 0.970 0.957 0.915 0.904 -0.804 -0.808 -0.389 -0.386 -0.061 -0.133 -0.077 -0.096
Class 1 0.933 0.932 0.931 0.913 0.053 -0.003 -0.819 -0.781 -0.011 -0.049 -0.110 -0.145
Class 2 0.901 0.865 0.934 0.924 -0.868 -0.737 -0.515 -0.519 -0.365 -0.337 -0.077 -0.126
Class 3 0.926 0.924 0.932 0.919 -0.870 -0.805 -0.498 -0.501 -0.215 -0.248 -0.096 -0.153
Class 4 0.885 0.867 0.938 0.927 -0.729 -0.707 -0.461 -0.463 -0.042 -0.077 -0.076 -0.116
Class 5 0.851 0.786 0.934 0.924 -0.845 -0.769 -0.511 -0.508 -0.229 -0.188 -0.106 -0.163

3

Class 0 0.970 0.957 0.915 0.904 -0.896 -0.904 -0.824 -0.832 -0.647 -0.688 -0.517 -0.544
Class 1 0.933 0.932 0.931 0.913 -0.901 -0.916 -0.835 -0.832 -0.568 -0.607 -0.609 -0.630
Class 2 0.901 0.865 0.934 0.924 -0.868 -0.845 -0.838 -0.851 -0.605 -0.600 -0.589 -0.619
Class 3 0.926 0.924 0.932 0.919 -0.868 -0.896 -0.830 -0.840 -0.567 -0.605 -0.567 -0.596
Class 4 0.885 0.867 0.938 0.927 -0.800 -0.811 -0.849 -0.857 -0.502 -0.522 -0.513 -0.544
Class 5 0.851 0.786 0.934 0.924 0.022 0.081 -0.865 -0.881 -0.155 -0.124 -0.561 -0.596

4

Class 0 0.970 0.957 0.915 0.904 -0.650 -0.703 -0.698 -0.764 -0.608 -0.621 -0.499 -0.510
Class 1 0.933 0.932 0.931 0.913 -0.845 -0.884 -0.667 -0.725 -0.491 -0.519 -0.480 -0.491
Class 2 0.901 0.865 0.934 0.924 -0.858 -0.824 -0.772 -0.809 -0.488 -0.497 -0.506 -0.523
Class 3 0.926 0.924 0.932 0.919 -0.700 -0.808 -0.663 -0.739 -0.534 -0.546 -0.512 -0.528
Class 4 0.885 0.867 0.938 0.927 -0.239 -0.514 -0.754 -0.797 -0.304 -0.307 -0.452 -0.471
Class 5 0.851 0.786 0.934 0.924 -0.612 -0.463 -0.692 -0.765 -0.047 -0.038 -0.525 -0.541

5

Class 0 0.970 0.957 0.915 0.904 -0.838 -0.852 -0.492 -0.630 -0.695 -0.688 -0.554 -0.555
Class 1 0.933 0.932 0.931 0.913 -0.387 -0.563 -0.683 -0.714 -0.552 -0.564 -0.605 -0.599
Class 2 0.901 0.865 0.934 0.924 -0.702 -0.700 -0.634 -0.690 -0.472 -0.470 -0.607 -0.605
Class 3 0.926 0.924 0.932 0.919 -0.361 -0.507 -0.615 -0.692 -0.567 -0.575 -0.538 -0.539
Class 4 0.885 0.867 0.938 0.927 -0.873 -0.844 -0.525 -0.650 -0.668 -0.653 -0.594 -0.594
Class 5 0.851 0.786 0.934 0.924 -0.637 -0.573 -0.588 -0.681 -0.069 -0.022 -0.548 -0.553

6

Class 0 0.970 0.957 0.915 0.904 -0.720 -0.775 -0.829 -0.830 -0.484 -0.499 -0.318 -0.322
Class 1 0.933 0.932 0.931 0.913 -0.871 -0.887 -0.750 -0.768 -0.176 -0.195 -0.499 -0.499
Class 2 0.901 0.865 0.934 0.924 -0.895 -0.860 -0.735 -0.773 -0.680 -0.638 -0.335 -0.348
Class 3 0.926 0.924 0.932 0.919 -0.863 -0.884 -0.772 -0.793 -0.418 -0.431 -0.379 -0.381
Class 4 0.885 0.867 0.938 0.927 -0.621 -0.669 -0.743 -0.784 -0.430 -0.435 -0.247 -0.262
Class 5 0.851 0.786 0.934 0.924 -0.143 -0.086 -0.808 -0.831 -0.114 -0.070 -0.474 -0.478
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Table 10: Evaluation of layer selection on GPT-2 model on the Emotions dataset using neuron and range
masking techniques. 20% Neurons selected. Here, Acc represents class accuracy, Conf denotes class prediction
probability, and CAcc and CConf refer to average accuracy and average class prediction probability across
other classes, respectively. The Base Values indicate the baseline model performance, while Activation Range
Masking and Neuron Masking show deviations from the baseline performance.

Layer Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

7

Class 0 0.970 0.957 0.915 0.904 -0.908 -0.901 -0.752 -0.753 -0.527 -0.538 -0.492 -0.498
Class 1 0.933 0.932 0.931 0.913 -0.884 -0.895 -0.743 -0.729 -0.484 -0.509 -0.330 -0.338
Class 2 0.901 0.865 0.934 0.924 -0.866 -0.835 -0.767 -0.765 -0.451 -0.442 -0.336 -0.355
Class 3 0.926 0.924 0.932 0.919 -0.786 -0.819 -0.641 -0.666 -0.445 -0.457 -0.331 -0.346
Class 4 0.885 0.867 0.938 0.927 -0.626 -0.618 -0.810 -0.817 -0.341 -0.335 -0.521 -0.532
Class 5 0.851 0.786 0.934 0.924 0.106 0.147 -0.810 -0.811 0.102 0.107 -0.547 -0.553

8

Class 0 0.970 0.957 0.915 0.904 -0.776 -0.791 -0.209 -0.291 -0.191 -0.312 -0.082 -0.114
Class 1 0.933 0.932 0.931 0.913 -0.585 -0.667 -0.412 -0.441 -0.591 -0.644 -0.199 -0.227
Class 2 0.901 0.865 0.934 0.924 -0.692 -0.716 -0.469 -0.496 -0.560 -0.562 -0.468 -0.486
Class 3 0.926 0.924 0.932 0.919 -0.657 -0.714 -0.415 -0.464 -0.468 -0.503 -0.230 -0.266
Class 4 0.885 0.867 0.938 0.927 -0.501 -0.509 -0.531 -0.569 -0.201 -0.234 -0.258 -0.290
Class 5 0.851 0.786 0.934 0.924 -0.092 -0.050 -0.634 -0.647 0.065 0.058 -0.279 -0.308

9

Class 0 0.970 0.957 0.915 0.904 -0.759 -0.768 -0.311 -0.351 -0.610 -0.661 -0.307 -0.328
Class 1 0.933 0.932 0.931 0.913 -0.570 -0.713 -0.319 -0.346 -0.906 -0.910 -0.267 -0.298
Class 2 0.901 0.865 0.934 0.924 -0.424 -0.520 -0.504 -0.531 -0.635 -0.643 -0.579 -0.595
Class 3 0.926 0.924 0.932 0.919 -0.810 -0.834 -0.501 -0.502 -0.759 -0.772 -0.502 -0.516
Class 4 0.885 0.867 0.938 0.927 -0.358 -0.357 -0.476 -0.481 -0.587 -0.566 -0.519 -0.527
Class 5 0.851 0.786 0.934 0.924 -0.133 -0.101 -0.546 -0.554 0.106 0.104 -0.450 -0.462

10

Class 0 0.970 0.957 0.915 0.904 -0.733 -0.741 -0.105 -0.126 -0.624 -0.659 -0.146 -0.163
Class 1 0.933 0.932 0.931 0.913 -0.389 -0.671 -0.178 -0.209 -0.899 -0.911 -0.254 -0.285
Class 2 0.901 0.865 0.934 0.924 -0.230 -0.513 -0.116 -0.224 -0.699 -0.735 -0.409 -0.451
Class 3 0.926 0.924 0.932 0.919 -0.434 -0.687 -0.081 -0.133 -0.898 -0.905 -0.401 -0.455
Class 4 0.885 0.867 0.938 0.927 -0.489 -0.506 -0.188 -0.256 -0.140 -0.186 -0.063 -0.102
Class 5 0.851 0.786 0.934 0.924 -0.306 -0.243 -0.157 -0.240 0.063 0.010 -0.095 -0.127

11

Class 0 0.970 0.957 0.915 0.904 -0.358 -0.496 -0.382 -0.414 -0.301 -0.441 -0.121 -0.148
Class 1 0.933 0.932 0.931 0.913 -0.800 -0.857 -0.078 -0.123 -0.858 -0.875 -0.128 -0.162
Class 2 0.901 0.865 0.934 0.924 -0.897 -0.861 -0.416 -0.450 -0.901 -0.864 -0.464 -0.500
Class 3 0.926 0.924 0.932 0.919 -0.923 -0.921 -0.427 -0.470 -0.913 -0.914 -0.354 -0.393
Class 4 0.885 0.867 0.938 0.927 -0.152 -0.212 -0.039 -0.075 -0.210 -0.239 -0.181 -0.204
Class 5 0.851 0.786 0.934 0.924 0.047 -0.028 -0.131 -0.173 0.053 0.002 -0.142 -0.159

12

Class 0 0.970 0.957 0.915 0.904 -0.550 -0.603 -0.013 -0.003 -0.542 -0.594 0.005 0.012
Class 1 0.933 0.932 0.931 0.913 -0.526 -0.545 0.001 0.012 -0.521 -0.538 -0.005 -0.004
Class 2 0.901 0.865 0.934 0.924 -0.416 -0.402 0.002 0.006 -0.419 -0.407 0.007 0.006
Class 3 0.926 0.924 0.932 0.919 -0.561 -0.576 -0.007 0.003 -0.561 -0.572 0.000 0.005
Class 4 0.885 0.867 0.938 0.927 -0.655 -0.658 -0.042 -0.034 -0.657 -0.659 -0.011 -0.003
Class 5 0.851 0.786 0.934 0.924 -0.718 -0.672 -0.300 -0.297 -0.718 -0.672 -0.267 -0.266

Table 11: Dampening intervention results on Llama-3.2-3B (DBPedia-14): comparison of neuron and
range masking. 30% neurons were selected. Dampening factor used is a = 0.125. Acc represents class
accuracy, Conf denotes class prediction probability, and CAcc and CConf refer to average accuracy and
average class prediction probability across other classes, respectively. The Base Values indicate the baseline
model performance, while Neuron Masking and Activation Range Masking show deviations from the baseline
performance. PPL ∆ and MMLU ∆ show changes in perplexity and MMLU scores, respectively.

Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf PPL ∆ MMLU ∆ Acc Conf CAcc CConf PPL ∆ MMLU ∆

Class 0 1.000 0.576 1.000 0.563 -0.919 -0.545 -0.281 -0.309 3.161 -0.020 -0.924 -0.545 -0.276 -0.285 0.640 -0.010
Class 1 1.000 0.526 1.000 0.567 -0.988 -0.467 -0.246 -0.270 3.578 -0.015 -0.805 -0.466 -0.193 -0.206 0.725 0.015
Class 2 1.000 0.441 1.000 0.575 -0.864 -0.391 -0.461 -0.323 2.891 -0.030 -0.869 -0.389 -0.346 -0.282 0.718 0.005
Class 3 1.000 0.461 1.000 0.573 -0.974 -0.439 -0.411 -0.346 3.036 -0.025 -0.970 -0.438 -0.282 -0.283 0.653 0.010
Class 4 1.000 0.839 1.000 0.541 -0.382 -0.597 -0.367 -0.317 2.997 0.000 -0.382 -0.597 -0.334 -0.284 0.691 0.020
Class 5 1.000 0.339 1.000 0.568 -0.970 -0.326 -0.239 -0.246 3.503 0.010 -0.970 -0.325 -0.197 -0.187 0.810 0.015
Class 6 1.000 0.810 1.000 0.545 -0.233 -0.638 -0.194 -0.276 3.126 -0.010 -0.241 -0.637 -0.174 -0.203 0.697 -0.010
Class 7 1.000 0.595 1.000 0.562 -0.210 -0.382 -0.206 -0.226 3.037 0.000 -0.179 -0.376 -0.123 -0.143 0.546 0.015
Class 8 1.000 0.417 1.000 0.574 -0.310 -0.416 -0.335 -0.297 3.001 0.020 -0.346 -0.416 -0.200 -0.187 0.624 0.015
Class 9 1.000 0.526 1.000 0.567 -0.820 -0.465 -0.327 -0.264 3.369 -0.030 -0.809 -0.463 -0.213 -0.189 0.596 0.000
Class 10 1.000 0.505 1.000 0.569 -0.691 -0.466 -0.389 -0.314 3.732 0.000 -0.696 -0.465 -0.267 -0.198 0.695 -0.015
Class 11 1.000 0.497 1.000 0.569 -0.873 -0.432 -0.472 -0.289 3.070 -0.030 -0.865 -0.427 -0.335 -0.205 0.594 -0.015
Class 12 1.000 0.573 1.000 0.563 -0.720 -0.452 -0.295 -0.221 3.410 -0.045 -0.723 -0.451 -0.190 -0.163 0.595 0.035
Class 13 1.000 0.567 1.000 0.564 -0.951 -0.537 -0.226 -0.189 2.995 0.000 -0.955 -0.536 -0.157 -0.150 0.672 0.005
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Table 12: Mean replacement intervention results on Llama-3.2-3B (DBPedia-14): comparison of neuron
and range masking.. 30% neurons were selected 30% neurons were selected. Mean Activation µ is used as
replacement value. Acc represents class accuracy, Conf denotes class prediction probability, and CAcc and
CConf refer to average accuracy and average class prediction probability across other classes, respectively.
The Base Values indicate the baseline model performance, while Neuron Masking and Activation Range
Masking show deviations from the baseline performance. PPL ∆ and MMLU ∆ show changes in perplexity
and MMLU scores, respectively.

Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf PPL ∆ MMLU ∆ Acc Conf CAcc CConf PPL ∆ MMLU ∆

Class 0 1.000 0.576 1.000 0.563 -1.000 -0.576 -0.685 -0.554 7.681 -0.025 -1.000 -0.576 -0.551 -0.545 0.687 -0.005
Class 1 1.000 0.526 1.000 0.567 -1.000 -0.526 -0.554 -0.550 8.437 -0.030 -1.000 -0.526 -0.356 -0.517 0.583 0.015
Class 2 1.000 0.441 1.000 0.575 -0.995 -0.441 -0.697 -0.556 7.567 -0.015 -0.995 -0.440 -0.574 -0.536 0.520 -0.010
Class 3 1.000 0.461 1.000 0.573 -1.000 -0.461 -0.766 -0.561 8.005 -0.015 -1.000 -0.461 -0.538 -0.534 0.543 0.010
Class 4 1.000 0.839 1.000 0.541 -1.000 -0.838 -0.724 -0.528 8.239 0.010 -0.995 -0.838 -0.502 -0.503 0.565 0.005
Class 5 1.000 0.339 1.000 0.568 -1.000 -0.339 -0.616 -0.551 7.753 0.010 -1.000 -0.339 -0.382 -0.510 0.552 0.005
Class 6 1.000 0.810 1.000 0.545 -0.313 -0.805 -0.549 -0.531 7.880 -0.005 -0.292 -0.805 -0.336 -0.499 0.547 0.020
Class 7 1.000 0.595 1.000 0.562 -1.000 -0.592 -0.491 -0.535 7.413 -0.010 -0.995 -0.591 -0.267 -0.449 0.462 0.000
Class 8 1.000 0.417 1.000 0.574 -0.928 -0.414 -0.632 -0.556 7.688 0.015 -0.934 -0.414 -0.298 -0.489 0.495 0.015
Class 9 1.000 0.526 1.000 0.567 -1.000 -0.526 -0.611 -0.544 8.057 -0.035 -1.000 -0.526 -0.370 -0.482 0.467 0.015
Class 10 1.000 0.505 1.000 0.569 -0.998 -0.505 -0.642 -0.558 8.791 -0.020 -0.998 -0.505 -0.406 -0.485 0.484 0.005
Class 11 1.000 0.497 1.000 0.569 -1.000 -0.497 -0.719 -0.543 7.903 0.025 -1.000 -0.497 -0.447 -0.459 0.397 -0.005
Class 12 1.000 0.573 1.000 0.563 -0.904 -0.572 -0.629 -0.543 8.046 -0.005 -0.896 -0.571 -0.375 -0.484 0.425 0.000
Class 13 1.000 0.567 1.000 0.564 -1.000 -0.566 -0.526 -0.533 7.543 -0.025 -0.998 -0.566 -0.341 -0.481 0.464 -0.010

Table 13: Adaptive dampening intervention results on Llama-3.2-3B (DBPedia-14): comparison of neuron
and range masking.. 30% neurons were selected. Adaptive Dampening factor used is β = 0.5. Acc represents
class accuracy, Conf denotes class prediction probability, and CAcc and CConf refer to average accuracy
and average class prediction probability across other classes, respectively. The Base Values indicate the
baseline model performance, while Neuron Masking and Activation Range Masking show deviations from the
baseline performance. PPL ∆ and MMLU ∆ show changes in perplexity and MMLU scores, respectively.

Class Base Values Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf PPL ∆ MMLU ∆

Class 0 1.000 0.576 1.000 0.563 -0.927 -0.543 -0.215 -0.217 0.487 -0.015
Class 1 1.000 0.526 1.000 0.567 -0.791 -0.451 -0.134 -0.109 0.543 0.000
Class 2 1.000 0.441 1.000 0.575 -0.828 -0.380 -0.277 -0.215 0.540 -0.010
Class 3 1.000 0.461 1.000 0.573 -0.958 -0.432 -0.230 -0.214 0.492 0.010
Class 4 1.000 0.839 1.000 0.541 -0.346 -0.579 -0.261 -0.218 0.521 0.015
Class 5 1.000 0.339 1.000 0.568 -0.960 -0.319 -0.140 -0.116 0.609 -0.015
Class 6 1.000 0.810 1.000 0.545 -0.236 -0.613 -0.130 -0.122 0.524 -0.010
Class 7 1.000 0.595 1.000 0.562 -0.243 -0.388 -0.108 -0.080 0.408 0.005
Class 8 1.000 0.417 1.000 0.574 -0.440 -0.414 -0.152 -0.088 0.465 0.030
Class 9 1.000 0.526 1.000 0.567 -0.799 -0.459 -0.182 -0.131 0.445 0.005
Class 10 1.000 0.505 1.000 0.569 -0.684 -0.451 -0.222 -0.130 0.513 -0.010
Class 11 1.000 0.497 1.000 0.569 -0.836 -0.420 -0.308 -0.155 0.440 -0.005
Class 12 1.000 0.573 1.000 0.563 -0.720 -0.451 -0.172 -0.095 0.444 0.025
Class 13 1.000 0.567 1.000 0.564 -0.941 -0.530 -0.142 -0.098 0.502 0.010

Table 14: Performance metrics for varying τ values.

τ Acc Conf CAcc CConf
0.3 0.9021 0.8858 0.9452 0.9358
0.6 0.8439 0.8185 0.9424 0.9327
0.9 0.7801 0.7486 0.9391 0.9263
1.2 0.7295 0.6950 0.9340 0.9174
1.5 0.6834 0.6482 0.9337 0.9093
1.8 0.6424 0.6141 0.9331 0.9000
2.1 0.6184 0.5926 0.9327 0.8910
2.4 0.6126 0.5858 0.9314 0.8846
2.7 0.6024 0.5798 0.9280 0.8800
3.0 0.5971 0.5776 0.9234 0.8777
3.3 0.5963 0.5786 0.9173 0.8753
3.6 0.5970 0.5794 0.9097 0.8729
3.9 0.5976 0.5802 0.9020 0.8698
4.2 0.5967 0.5798 0.8908 0.8642
4.5 0.5967 0.5798 0.8795 0.8577
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Table 15: Evaluation of selected models on the AG-News dataset using neuron and range masking techniques.
Acc represents class accuracy, Conf denotes class prediction probability, and CAcc and CConf refer
to average accuracy and average class prediction probability across other classes, respectively. The Base
Values indicate the baseline model performance, while Activation Range Masking and Neuron Masking show
deviations from the baseline performance. For GPT-2 50% and for Llama-3.2-3B 30% neurons selected.

Model Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT

Class 0 0.945 0.936 0.949 0.927 -0.205 -0.587 0.004 -0.076 -0.198 -0.589 0.007 -0.010
Class 1 0.993 0.988 0.933 0.910 -0.225 -0.659 0.004 -0.077 -0.194 -0.650 0.003 -0.012
Class 2 0.905 0.881 0.962 0.945 -0.300 -0.536 0.014 -0.079 -0.298 -0.542 0.014 -0.009
Class 3 0.949 0.913 0.948 0.935 -0.354 -0.577 0.026 -0.065 -0.353 -0.579 0.025 -0.005

GPT-2

Class 0 0.955 0.951 0.941 0.928 -0.920 -0.926 -0.231 -0.224 -0.919 -0.925 -0.019 -0.008
Class 1 0.986 0.981 0.931 0.917 -0.926 -0.931 -0.253 -0.257 -0.912 -0.916 -0.054 -0.069
Class 2 0.897 0.886 0.960 0.949 -0.696 -0.737 -0.110 -0.132 -0.678 -0.725 -0.097 -0.306
Class 3 0.940 0.916 0.946 0.939 -0.940 -0.916 -0.024 -0.037 -0.887 -0.882 -0.080 -0.510

Llama-3.2-3B

Class 0 1.000 0.936 1.000 0.680 -0.995 -0.934 -0.530 -0.427 -0.995 -0.934 -0.345 -0.306
Class 1 1.000 0.742 1.000 0.744 -0.870 -0.680 -0.615 -0.599 -0.875 -0.681 -0.515 -0.503
Class 2 1.000 0.655 1.000 0.773 -0.895 -0.646 -0.795 -0.634 -0.895 -0.646 -0.655 -0.549
Class 3 1.000 0.642 1.000 0.778 -0.975 -0.641 -0.698 -0.630 -0.975 -0.640 -0.420 -0.459

Table 16: Evaluation of selected models on the IMDB dataset using neuron and range masking techniques.
Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAcc and CConf refer
to average accuracy and average class prediction probability across other classes, respectively. The Base
Values indicate the baseline model performance, while Activation Range Masking and Neuron Masking show
deviations from the baseline performance.

Model Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT Class 0 0.930 0.908 0.926 0.901 -0.169 -0.352 0.061 -0.066 -0.163 -0.359 0.059 0.035
Class 1 0.926 0.901 0.930 0.908 -0.211 -0.355 0.057 -0.091 -0.206 -0.361 0.056 0.025

GPT-2 Class 0 0.965 0.941 0.940 0.922 -0.935 -0.922 0.050 0.057 -0.905 -0.901 0.055 0.046
Class 1 0.940 0.922 0.965 0.941 -0.620 -0.667 0.005 0.018 -0.610 -0.657 0.015 0.027

Llama-3.2-3B Class 0 1.000 0.619 1.000 0.500 -0.643 -0.448 -0.515 -0.287 -0.640 -0.446 -0.502 -0.278
Class 1 1.000 0.500 1.000 0.619 -0.877 -0.410 -0.273 -0.304 -0.873 -0.409 -0.265 -0.303

Table 17: Evaluation of selected models on the SST2 dataset using neuron and range masking techniques.
Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAcc and CConf refer
to average accuracy and average class prediction probability across other classes, respectively. The Base
Values indicate the baseline model performance, while Activation Range Masking and Neuron Masking show
deviations from the baseline performance.

Model Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT Class 0 0.890 0.882 0.930 0.925 -0.058 -0.308 0.029 -0.047 -0.075 -0.329 0.031 0.036
Class 1 0.930 0.925 0.890 0.882 -0.043 -0.318 0.033 -0.045 -0.045 -0.330 0.030 0.050

GPT-2 Class 0 0.950 0.937 0.981 0.978 -0.142 -0.158 0.010 0.012 -0.142 -0.167 0.009 0.010
Class 1 0.981 0.978 0.950 0.937 -0.187 -0.223 0.041 0.053 -0.176 -0.216 0.041 0.046

Llama-3.2-3B Class 0 1.000 0.620 1.000 0.690 -0.532 -0.459 -0.420 -0.424 -0.532 -0.456 -0.404 -0.415
Class 1 1.000 0.690 1.000 0.620 -0.289 -0.379 -0.326 -0.315 -0.284 -0.376 -0.306 -0.301
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Table 18: Evaluation of selected models on the Emotions dataset using neuron and range masking techniques.
Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAcc and CConf refer
to average accuracy and average class prediction probability across other classes, respectively. The Base
Values indicate the baseline model performance, while Activation Range Masking and Neuron Masking show
deviations from the baseline performance.

Model Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT

Class 0 0.960 0.935 0.901 0.851 -0.241 -0.718 0.013 -0.266 -0.222 -0.718 0.012 -0.055
Class 1 0.942 0.904 0.905 0.861 -0.223 -0.691 0.028 -0.254 -0.213 -0.692 0.032 -0.064
Class 2 0.824 0.723 0.926 0.889 -0.371 -0.533 0.016 -0.284 -0.352 -0.534 0.018 -0.115
Class 3 0.927 0.873 0.916 0.876 -0.247 -0.664 0.010 -0.256 -0.240 -0.667 0.012 -0.057
Class 4 0.884 0.837 0.922 0.880 -0.406 -0.646 0.012 -0.251 -0.402 -0.648 0.012 -0.066
Class 5 0.591 0.566 0.929 0.886 -0.303 -0.392 0.004 -0.299 -0.303 -0.397 0.005 -0.090

GPT-2

Class 0 0.969 0.956 0.913 0.903 -0.695 -0.751 -0.125 -0.124 -0.698 -0.749 -0.009 -0.009
Class 1 0.939 0.938 0.925 0.908 -0.879 -0.882 -0.019 -0.009 -0.879 -0.880 -0.016 -0.015
Class 2 0.902 0.872 0.932 0.923 -0.776 -0.736 -0.029 -0.032 -0.780 -0.739 -0.023 -0.028
Class 3 0.910 0.905 0.932 0.921 -0.713 -0.714 -0.006 -0.007 -0.715 -0.716 -0.002 -0.001
Class 4 0.869 0.854 0.938 0.927 -0.754 -0.753 -0.240 -0.248 -0.754 -0.753 -0.127 -0.133
Class 5 0.857 0.798 0.932 0.923 -0.587 -0.601 -0.301 -0.308 -0.587 -0.601 -0.280 -0.289

Llama-3.2-3B

Class 0 0.950 0.550 0.782 0.455 -0.950 -0.547 -0.655 -0.408 -0.945 -0.547 -0.571 -0.378
Class 1 0.905 0.498 0.804 0.473 -0.855 -0.495 -0.743 -0.433 -0.867 -0.494 -0.607 -0.404
Class 2 0.785 0.421 0.827 0.483 -0.785 -0.420 -0.771 -0.454 -0.785 -0.420 -0.658 -0.436
Class 3 0.790 0.482 0.833 0.476 -0.760 -0.477 -0.635 -0.423 -0.755 -0.476 -0.544 -0.402
Class 4 0.780 0.487 0.829 0.476 -0.780 -0.486 -0.534 -0.365 -0.780 -0.486 -0.444 -0.324
Class 5 0.536 0.296 0.855 0.498 -0.417 -0.284 -0.751 -0.465 -0.429 -0.282 -0.653 -0.434
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Table 19: Evaluation of selected models on the DBPedia-14 dataset using neuron and range masking
techniques. Here, Acc represents class accuracy, Conf denotes class prediction probability, and CAcc and
CConf refer to average accuracy and average class prediction probability across other classes, respectively.
The Base Values indicate the baseline model performance, while Activation Range Masking and Neuron
Masking show deviations from the baseline performance.

Model Class Base Values Neuron Masking Activation Range Masking

Acc Conf CAcc CConf Acc Conf CAcc CConf Acc Conf CAcc CConf

BERT

Class 0 0.972 0.966 0.992 0.991 -0.082 -0.702 0.001 -0.014 -0.076 -0.698 0.001 -0.000
Class 1 0.987 0.986 0.991 0.990 -0.030 -0.778 0.000 -0.017 -0.018 -0.770 0.000 -0.000
Class 2 0.987 0.985 0.991 0.990 -0.239 -0.814 0.001 -0.018 -0.217 -0.806 0.001 -0.000
Class 3 0.997 0.997 0.990 0.989 -0.008 -0.766 0.000 -0.019 -0.001 -0.731 0.000 -0.000
Class 4 0.984 0.983 0.991 0.990 -0.058 -0.777 0.001 -0.018 -0.032 -0.761 0.000 -0.000
Class 5 0.995 0.995 0.990 0.989 -0.007 -0.795 0.000 -0.017 -0.001 -0.771 0.000 -0.000
Class 6 0.975 0.974 0.992 0.991 -0.121 -0.807 0.000 -0.015 -0.112 -0.803 0.000 -0.001
Class 7 0.994 0.994 0.990 0.989 -0.028 -0.789 0.000 -0.017 -0.010 -0.767 0.000 -0.000
Class 8 1.000 1.000 0.990 0.989 -0.001 -0.808 0.000 -0.022 0.000 -0.772 0.000 -0.000
Class 9 0.999 0.998 0.990 0.989 -0.004 -0.837 0.000 -0.019 -0.001 -0.811 0.000 -0.000
Class 10 0.994 0.993 0.990 0.989 -0.025 -0.846 0.000 -0.016 -0.005 -0.831 0.000 -0.000
Class 11 0.997 0.997 0.990 0.989 -0.013 -0.751 0.000 -0.017 -0.001 -0.726 0.000 -0.000
Class 12 0.990 0.990 0.990 0.989 -0.018 -0.772 0.000 -0.017 -0.005 -0.755 0.000 -0.000
Class 13 0.994 0.994 0.990 0.989 -0.009 -0.740 0.001 -0.017 -0.001 -0.721 0.000 -0.000

GPT-2

Class 0 0.985 0.977 0.990 0.989 -0.860 -0.877 -0.133 -0.136 -0.850 -0.869 -0.002 -0.017
Class 1 0.995 0.992 0.990 0.988 -0.500 -0.567 -0.180 -0.192 -0.460 -0.544 -0.023 -0.024
Class 2 0.985 0.980 0.990 0.989 -0.890 -0.904 -0.189 -0.213 -0.880 -0.902 -0.004 -0.010
Class 3 0.995 0.995 0.990 0.987 -0.900 -0.933 -0.145 -0.143 -0.900 -0.927 -0.008 -0.017
Class 4 0.970 0.969 0.992 0.989 -0.715 -0.773 -0.224 -0.260 -0.695 -0.750 -0.042 -0.062
Class 5 0.995 0.993 0.990 0.988 -0.315 -0.446 -0.127 -0.192 -0.290 -0.432 -0.013 -0.025
Class 6 0.965 0.964 0.992 0.990 -0.925 -0.932 -0.052 -0.062 -0.910 -0.928 -0.006 -0.007
Class 7 1.000 0.998 0.989 0.987 -0.815 -0.865 -0.003 -0.008 -0.775 -0.846 -0.026 -0.057
Class 8 1.000 1.000 0.989 0.987 -0.995 -0.990 -0.148 -0.188 -0.900 -0.932 -0.026 -0.055
Class 9 1.000 1.000 0.989 0.987 -0.975 -0.979 -0.250 -0.268 -0.955 -0.958 -0.020 -0.049
Class 10 0.995 0.993 0.990 0.988 -0.595 -0.685 -0.045 -0.053 -0.590 -0.675 -0.005 -0.011
Class 11 0.985 0.984 0.990 0.988 -0.210 -0.453 -0.094 -0.118 -0.135 -0.396 -0.015 -0.034
Class 12 0.990 0.988 0.990 0.988 -0.930 -0.938 -0.293 -0.309 -0.855 -0.880 -0.013 -0.029
Class 13 1.000 0.999 0.989 0.987 -0.985 -0.986 -0.393 -0.416 -0.945 -0.981 -0.018 -0.044

Llama-3.2-3B

Class 0 1.000 0.586 1.000 0.559 -0.990 -0.584 -0.949 -0.473 -0.990 -0.584 -0.823 -0.441
Class 1 1.000 0.533 1.000 0.563 -1.000 -0.528 -0.870 -0.446 -0.970 -0.528 -0.706 -0.371
Class 2 1.000 0.467 1.000 0.568 -0.995 -0.462 -0.963 -0.477 -0.995 -0.461 -0.838 -0.432
Class 3 1.000 0.460 1.000 0.569 -0.995 -0.459 -0.981 -0.486 -0.995 -0.459 -0.815 -0.420
Class 4 1.000 0.828 1.000 0.539 -0.965 -0.809 -0.981 -0.454 -0.955 -0.808 -0.852 -0.412
Class 5 1.000 0.349 1.000 0.568 -1.000 -0.348 -0.882 -0.429 -0.989 -0.347 -0.585 -0.346
Class 6 1.000 0.809 1.000 0.541 -1.000 -0.787 -0.972 -0.449 -1.000 -0.787 -0.736 -0.366
Class 7 1.000 0.599 1.000 0.558 -0.855 -0.588 -0.918 -0.410 -0.860 -0.586 -0.489 -0.274
Class 8 1.000 0.420 1.000 0.572 -1.000 -0.420 -0.957 -0.467 -1.000 -0.420 -0.660 -0.335
Class 9 1.000 0.527 1.000 0.563 -1.000 -0.524 -0.842 -0.435 -0.995 -0.523 -0.552 -0.320
Class 10 1.000 0.505 1.000 0.565 -0.995 -0.503 -0.907 -0.464 -1.000 -0.503 -0.589 -0.322
Class 11 1.000 0.505 1.000 0.565 -0.975 -0.501 -0.862 -0.416 -0.970 -0.501 -0.579 -0.313
Class 12 1.000 0.560 1.000 0.561 -0.980 -0.545 -0.812 -0.417 -0.975 -0.544 -0.496 -0.310
Class 13 1.000 0.587 1.000 0.559 -0.990 -0.584 -0.722 -0.406 -0.985 -0.584 -0.588 -0.337
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