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Abstract

Neural collapse (NC) and its multi-layer variant, deep neural collapse (DNC), de-
scribe a structured geometry that occurs in the features and weights of trained deep
networks. Recent theoretical work by Sukenik et al. using a deep unconstrained
feature model (UFM) suggests that DNC is suboptimal under mean squared error
(MSE) loss. They heuristically argue that this is due to low-rank bias induced
by L2 regularization. In this work, we extend this result to deep UFMs trained
with cross-entropy loss, showing that high-rank structures—including DNC—are
not generally optimal. We characterize the associated low-rank bias, proving a
fixed bound on the number of non-negligible singular values at global minima as
network depth increases. We further analyze the loss surface, demonstrating that
DNC is more prevalent in the landscape than other critical configurations, which
we argue explains its frequent empirical appearance. Our results are validated
through experiments in deep UFMs and deep neural networks.

1 Introduction

Many researchers have explored the geometric structures that emerge in well-trained deep neural
networks (DNNs) applied to classification tasks [35, [11} 136]. Among these structures is neural
collapse (NC) [36], which refers to the tendency of overparameterized neural networks to form a
simplex equiangular tight frame (ETF) in their final-layer features and weights. Researchers have
sought to explain the ubiquity of NC [24]. A common approach involves the unconstrained feature
model (UFM) [32], which treats the last-layer features as optimization variables and optimizes them
jointly with the last-layer weights, effectively abstracting away the rest of the network. Within this
framework, NC has been shown to be a global optimum in various settings [32,121]], and the associated
optimization function has been characterized as a strict saddle function [58l 56} 52, |57].

While NC was originally observed in the last layer, researchers have empirically verified that similar
structure emerges in earlier layers of the network [13}/39}137]—a phenomenon known as deep neural
collapse (DNC). Theoretical investigations of DNC have been facilitated by an extension of the
UFM, referred to as the deep UFM, which isolates multiple layers from the network’s approximated
component. While DNC has been shown to be optimal in a variety of restricted contexts [6 45} 43],
a recent study by Sukenik et al. [42]] demonstrated that in the ReLU MSE case, DNC is generally not
optimal in the deep UFM. They argue that suboptimality arises due to a low-rank bias induced by Lo
regularization. This is illustrated by constructing lower-rank solutions that achieve lower loss than
any DNC configuration.

While this finding is significant, Sukenik et al. do not analyze whether DNC or their low-rank
solutions are local minima. Consequently, the interplay between nonlinearity, the loss function, and
low-rank bias remains poorly understood. Their work additionally raises a central question: why
does DNC often emerge in practice despite being suboptimal? Sukenik et al. offer some empirical
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evidence—DNC appears more often with increased width or reduced regularization—but no theory
yet explains its empirical persistence.

To address this question, we examine a deep UFM with cross-entropy (CE) loss and linear layers. This
model strikes a balance between analytical tractability and sophistication: the linear layers facilitate
straightforward analysis, while the model remains sufficiently rich to admit low-rank solutions that
outperform DNC. While Sukenik et al. [42] demonstrate the suboptimality of DNC by presenting
an isolated better solution, we provide a complete theoretical characterization of how low-rank
bias manifests across the loss landscape and why it leads to the systematic suboptimality of DNC.
Specifically:

* We prove that any output matrix with rank higher than necessary to fit the data cannot be
optimal when the number of separated layers L is sufficiently large. This provides a global
classification of how low-rank bias shapes the loss surface.

* We show that global minima must exhibit approximate low-rankness, with all but a small
number of singular values decaying exponentially in L. This demonstrates how low-rank
bias governs the structure of optimal solutions.

* We establish that DNC, although suboptimal for general L, remains a critical point with
a positive semi-definite Hessian when the regularization level is small. This explains why
local search algorithms can converge to DNC solutions. It also contrasts with the L = 1
case [56, 58], where the loss surface is a strict saddle function. This demonstrates that the
fundamental geometry of the optimization landscape changes due to low-rank bias.

* We analyze the role of network width d and show that the dimensionality of the solution
space associated with DNC grows more rapidly than that of lower-rank solutions. This
suggests that width significantly influences the prevalence of DNC in the loss landscape,
offering a heuristic explanation for why local optimization methods frequently converges to
DNC despite its suboptimality.

* We verify that DNC remains suboptimal in our model even when ReLLU activations are used,
suggesting that our findings for the linear model likely extend beyond linear layers and offer
broader generalizability.

* We provide empirical validation on both deep UFMs and standard deep classification
networks, confirming that our theoretical insights extend beyond linear models.

Together, these results provide a comprehensive theoretical characterization of low-rank bias and its
implications for the loss surface, and offer the first explanation for the empirical persistence of DNC
despite its suboptimality.

1.1 Related work

Neural collapse: Many researchers have studied the conditions under which NC emerges using
UFMs [32,[7]], including across various loss functions [57} 32| 21} [12]]. Landscape analyses have
revealed a favorable optimization structure, where the loss surface contains only global minima
and non-degenerate saddles [56, 58| 21]]. Extensions of NC research have explored its behavior in
settings with a large number of classes [23]] and imbalanced class distributions [51} 144} (7] 16, [14]].
Generalizations from the hard-label setting have also been considered for the language setting [155]]
and multi-class regression [1]]. The influence of dataset properties on NC has also been examined
[[15, 25]]. Jacot et al. [20] show that NC arises in wide networks with an architecture similar to our
own, but they do not address DNC, low-rank bias, or use the UFM. NC has also been linked to
various practical aspects of deep learning [4 1} (8} 30} [18} 150L 541, and the impact of different network
architectures has also been explored [29] 49]]. For a review of NC, see [24].

To theoretically analyze DNC, researchers have employed deep UFMs, particularly for MSE loss.
This includes two-layer networks [45]], linear layers [6} [10], binary classification [43], and more
general settings [42]. Additionally, DNC has been studied beyond the UFM framework using unique
layer-wise training procedures [3]. Zangrando et al. [53] examine how DNC and weight decay
lead to a low-rank bias. Our work, which considers solutions with lower rank than DNC, diverges
substantially from theirs.

Low-rank bias: Low-rank bias has been studied for matrix completion [2| 4], where Schatten
quasi-norm minimization [33} 47] is used to recover low-rank matrices from partial observations.



Wang et al. [48] show that in linear networks trained for matrix completion, stochastic gradient
descent (SGD) can jump to lower-rank solutions but not back.

In classification settings, low-rank bias has been analyzed in architectures with linear layers. Ongie
et al. and Parkinson et al. [34} 38] study networks with a single nonlinearity in the final layer,
demonstrating that effective rank tends to decrease as depth increases. A similar perspective across
various architectures is explored in [5]. Low-rank bias is proven for separable data and exponential-
tailed loss with linear networks in the binary setting by Ji et al. [22]. In nonlinear contexts, Galanti et
al. [9] examine low-rank bias in mini-batch SGD, observing that smaller batch sizes, higher learning
rates, and stronger weight decay promote lower-rank neural networks. Huh et al. [[17] and Le et al.
[27] study factors contributing to low-rank behavior. Le et al. [27] use networks with linear final
layers, but focus on binary classification and do not use unconstrained features.

2 Background

We consider a classification task with K classes and n samples per class. We denote the i data
point of the ¢ class by ;. € R%, with corresponding one-hot encoded labels 5. € R¥. A deep
neural network f(z) : R% — R is used to model the relationship between training data and
class labels. We write the network asf(z) = Wro(Wr_10(...c(Wih(z))...)), where W € RExd
and Wy_1,...,W; € R¥*? are weight matrices. The function h : R% — R? represents a highly
expressive feature map, such as a ResNet. The activation function o : R — R is applied elementwise.
Network parameters are trained via a variant of gradient descent on CE loss, along with weight decay.

We denote the image of the data under the map h by h(z;.) = hgl) and define the matrix H; to be
the image of the full dataset in class order: Hy = [h{"], ..., "}, h{), ... n{)] € RPE™. Similarly,
let H, = W1Hy,Hy = Weo(Hs),....H,—1 = Wr_10(Hp— 1) denote the output matrices of
each separated layer before the nonlinearity, with columns hfi) Let H, for I = 2,..., L be the
corresponding matrices after the non-linearity, with columns BE? Define the class feature means
out of each layer as p( ) = Avl{h(l)} and [ i) = AVi{fL(l)} Let M; and M; be the matrices with
class feature means as columns in class order. Define the global means as u( ) = Avc{ug)} and
(l) Avc{uL )} Also, define the simplex ETF matrix as S = I — +1x1% € REXK,
DNC refers to the following observations, which are found to approximately hold in overparame-
terized neural networks as training continues, with adherence typically increasing as the depth of
the considered layer grows. By ‘overparameterized,” we mean the network is capable of attaining
approximately zero training error.

Definition 1: Deep neural collapse: the last L layers obey DNC if, for | = 1, ..., L, they satisfy:

DNCI: Feature vectors collapse onto their means: H; = M; ® 12, ﬁl = Mg ® 15.

DNC2: The feature mean matrices M; and M, after global centering, align with a simplex ETF:
l l ~( ~(l

(M; = pG V3T (M = g1 %) o (M = o 1) (M, — i 1%) o 8.

DNC3: The rows of the weight matrices W) are, after global centering, linear combinations of the

columns of the matrix M, — ﬂg) 1%,

Deep unconstrained feature models: To define the deep UFM, we approximate the feature map
h(x) as being capable of mapping the training data to arbitrary points in feature space, treating the

feature vectors hgi) as freely optimized variables. The loss function becomes:

L
1 1
L(Hy, Wi, .., W) =g(Z) + > 5)\“Wl||§v + 5/\||H1||%, )
=1

where g implements the CE loss

1 K exp((2ic)e) )
) 2
(Z:l i=1 <Zc’ 1 exp((ziC)C/)



and z;. = WLU(WL,la(...WQJ(Wlhg))...)) are the logit vectors, which make up the columns
of the matrix Z € RE*Kn using the same ordering as in the feature matrices. Here, A > 0 is a
regularization coefficient, and for simplicity, we apply equal regularization to all parameters. Note
that, due to the UFM approximation, weight decay is applied to H;.

Low-rank solutions: Recent work by Sukenik et al. [42] demonstrates that, when using ReLLU
layers, DNC is generally not optimal in the deep UFM when using MSE loss. They provide useful
intuition for why such solutions exist. Consider the deep UFM defined in Equation (1)) and focus on
the regularization component. A well-known Schatten quasi-norm result [40] states:

L—-1 rank(X)
1 2/L 1 1
§L)\||X|\S£/L = mm{QAHHlH% +3 > A||Wl||%}, where || X5 = > st
=1 i=1

Here, the minimization is over Wp_1, ..., W1, Hy subject to X = Wy _;..W; Hy, and {si};iﬂi(x)

are the nonzero singular values of X. For large L, the Schatten quasi-norm approximates the rank of
the matrix X, encouraging it to be low-rank. This is traded off against the fit loss, which requires that
the network still fit the data. Since the DNC solution has rank K in the MSE case, sufficiently large
K allows the existence of lower-rank solutions that outperform DNC.

3 The deep unconstrained feature model

We consider the deep UFM, defined in Equation (I, initially using linear layers, o = id, within
the separated portion of the network. While linear networks lack the expressiveness of modern
deep models, the unconstrained feature assumption effectively approximates an expressive network,
mitigating this limitation. This model can be regarded as approximating a standard classification
architecture with appended linear layers. We consider the full nonlinear case at the end of the section.
All proofs appear in Appendix

We now describe the specific DNC structure for this case, informed by previous works [58|, 16]].
First, we demonstrate a well-known simplicity in the singular value decompositions (SVDs) of the
parameter matrices of a linear network at any critical solution:

Lemma 1: Let the network width satisfy d > K. At any critical point of the deep linear UFM, there
exists an SVD of the parameter matrices in the following form:

W, =UxUL,, forl=1,..,.L—-1, W,=UXU}F |; H, =UXV], 3)

where Uy, € REXE v, ¢ REnxEKn . Uy € R¥™? are all orthogonal matrices, and

Y e R¥*d 5 e REXA § € RI*En pave their top K x K block given by diag (s, ..., Sk ), where
s; > 0fori=1,..., K, and all other entries are zero.

This result indicates that at critical points, each parameter matrix has equal singular values, and the
singular vectors of adjacent parameter matrices are aligned.

If we construct a solution that satisfies the structure of Lemma 1, we need only specify the logit
matrix Z, since

Z =Wr.WiHy = Up [diag(s{™, ... s%") Ogxm-1k] Vo » 4)

and the only remaining free parameters are U;_1, ..., Uy, which do not affect the loss. Thus, the loss
at any point with this structure can be expressed entirely in terms of the logit matrix Z. Our definition
of DNC structure is consistent with this alignment between matrices in the linear model and naturally
leads to the DNC properties.

Definition 2: DNC in the deep linear UFM: A DNC solution in this setting is any set of matrices
Wi, ..., W1, Hy that both satisfy the SVD properties stated in Lemma 1 and yield a logit matrix of
the form Z = oS @ 1L, for some o > 0.

Proposition 1: Let the matrices Wy, ..., W1, Hy form a DNC solution as in Definition 2. Then these
matrices satisfy the DNC definition stated in Definition 1, with ,u(é) =0forl=1,..., L.



3.1 Low-rank solutions

While the DNC structure is optimal for L = 1 [58]], it generally ceases to be optimal when L > 2.

Theorem 1: Consider the deep linear UFM with network width d > K. If K > 4,L > 3, or
K > 6, L = 2, then no solution with DNC structure can be a global minimum.

This result is proven by leveraging a low-rank structure observed in experiments. While the DNC
structure is given by Z o< S ® 11, the low-rank structure we analyze, when K is even, takes the form

X 0 ... 0
7 0 X .0 ®1£7 whereX:{_l1 _11] 5)
0 0 .. X

We show that, when the scales are set equal, the low-rank solution outperforms the DNC solution.

Theorem 1 highlights that the L = 1 case, known as the UFM, fails to capture the full behavior of
deep networks, as its optimal structure does not generalize to the last layer in deeper models. While
the proof relies on a specific structure, the underlying cause is a low-rank bias, which is further
explored in the next two theorems. Furthermore, since DNC and NC are equivalent in our model due
to layer alignment, this result also rules out the original NC phenomenon.

We can extend Theorem 1 further: any fixed structure whose rank exceeds the minimal rank required
to fit the data is also suboptimal when the number of layers L is sufficiently large. To formalize this,
we introduce the following definition.

Definition 3: Diagonally superior matrix: A matrix M € RE*E" with columns denoted as m;. in

class order, is diagonally superior when (m;c)e > (mic)e forall ¢ # c.

This definition is useful because such matrices can achieve arbitrarily small loss in the fit term of our
objective by setting the scale appropriately large. With this, we state the next theorem.

Theorem 2: Let X, M € REXE™ have ranks p and q < p, with M diagonally superior. Consider
the deep linear UFM with network width d > K, where solutions are construct using the structure
induced by a critical point, allowing the loss to be written in terms of Z. Let L1,(Z) denote this loss,
with L dependence made explicit. Then there exists Ly € N such that for all L > Ly,

?zi%{ﬁL(aX)} > glzig{‘CL(BM )}

with equality occurring only if the minimum is at o = 3 = 0.

Theorem 2 asserts that for sufficiently large L, no structure can be optimal if its rank exceeds that of
the rank-minimal diagonally superior matrix of size K x Kn, except the trivial zero solution when
regularization is too large. This underscores the role of low-rank bias: when a matrix can achieve
arbitrarily small loss on the fit term, low-rank bias ensures that—once enough layers are separated—it
will outperform any higher-rank solution. While this theorem requires large enough L, in practice a
well-chosen M can outperform high-rank solutions even for small L, as shown in Theorem 1.

The imbalanced case: Thus far, we have focused on balanced classes, but our arguments extend
to imbalanced settings as well. A concise description of the single-layer UFM in the imbalanced
case is provided by Thrampoulidis et al. [44]]. Using their characterization of emergent structures in
imbalanced scenarios, we show that the analogy to DNC in these settings is also globally suboptimal
in the deep linear UFM. A detailed discussion and supporting results are given in Appendix

3.2 Optimal structure

We now aim to characterize how low-rank bias influences the structure at global optima. To do so, we
must explicitly account for the scaling of the regularization parameter as L increases. To clarify
this dependence, we write \(L) = Ar. Additionally, we note that the minimal rank of a diagonally
superior matrix in R X" is the same as in RX* X Therefore, this minimal rank is independent of
n and can be denoted by ¢ . The following theorem provides detailed information about the singular
values of a globally optimal solution.
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Figure 1: Experiments in the deep linear UFM: Left: Loss curves for a solution that converges to
DNC versus one that converges to the low-rank structure described in Equation (3)). Middle/Right:
Corresponding mean logit matrices at convergence. Hyperparameters: L = 2, d = 70, A = 2710,
K =10, n = 5, learning rate = 0.5.

Theorem 3: Consider a sequence of deep linear UFM optimization problems, indexed by the number
of layers L = 1,2, 3, .... Assume the regularization parameter satisfies \;, > 0 for all L, and that the
network width is fixed at d > K. Denote each loss function by Ly,. Let Z} be the network output at a
global optimum of L. Also define the minimal rank of a diagonally superior matrix in RE>*K" to be
qx. The following holds:

(i) If \p, is scaled such that )\El = o(L), there exists Ly such that for all L > Ly, each singular
value of Z3 is zero or converges to zero at a rate faster than exponential in L.

(ii) If \p is scaled such that \;, = o(L~'), there exists an Lo such that for all L > Ly, the matrix
Z7 is diagonally superior, and hence has rank at least qx. Furthermore, at most qi singular values

of the normalized matrix Z7 are neither zero, nor converge to zero at a rate at least exponential in L.

The second part of this theorem further clarifies the role of low-rank bias. When regularization
is sufficiently weak, increasing L enhances the low-rank bias, causing most singular values of the
normalized optimal matrix Z7 to decay exponentially in L. As a result, Z7 resembles a low-rank
matrix, with at most an exponentially suppressed perturbation.

This raises the question of how low rank a diagonally superior matrix can be. Consider a matrix
X € R2*K where each column z, satisfies |zc|2 = 1 and no column is repeated. Then X TX e
RA&*XK is diagonally superior and has rank 2, implying qx < 2. This demonstrates the significant
gap between the rank of the optimal solution for large L and that of the DNC solution.

3.3 The prevalence of deep neural collapse

Although DNC is not globally optimal, numerical experiments show that models often converge to
it—especially when the regularization parameter X is small or the width d is large. We also observe
DNC in real networks, even where our model predicts suboptimality. To explain this persistence, we
show that there are DNC solutions that remain locally attractive despite being suboptimal.

Theorem 4: Consider the deep linear UFM with network width d > K. When the regularization
parameter \ > 0 is suitably small, the following holds:

(i) There exists solutions with DNC structure that are critical points of the model. Moreover, a subset
of these solutions have a scale « that diverges as A — 0.

(ii) These scale-divergent solutions have Hessian matrices with no negative eigenvalues.

This result makes it clear that although no DNC solution corresponds to a global minimum, there
are DNC solutions that correspond to local minima or degenerate saddle points—both of which
are difficult for local optimization methods to escape. Consequently, gradient descent can readily
converge to DNC solutions in this model.
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Figure 2: Experiments in the deep linear UFM: Left: Empirical probability of DNC versus width
d. Right: Empirical probability of DNC versus regularization A. Averaged over 10 runs; same
hyperparameters as Figure 1.

While this result is necessary for the persistence of DNC, it is not sufficient. We now turn our attention
to the network width parameter d, and examine how changes in the loss surface structure may further
incentivize DNC. We begin with the following definition:

Definition 4: Dimension of a critical point in the loss surface: Suppose Z* denotes the network
output at a critical point of the deep linear UFM loss. Define the dimension of the space of network
parameters (W, ...,W1, Hy) that produce Z* to be D z-.

In the specific case where the solution has DNC structure, denote this dimension by Dpnc. We can
compare the dimension of a general low-rank solution to that of the DNC solution.

Theorem 5: Consider the deep linear UFM with network width d > K. Let the regularization
parameter X > 0 be small enough that there exists a DNC solution that is a critical point of the loss. let
Z* be the network output at another critical point at some fixed scale, with rank(Z*) = r € [2, K—1).
Define the ratio of the dimensions in the loss surface of Zpyc and Z* to be

D d

Ry - Doneld)

Dyz-(d)
This ratio is a monotonic increasing function on the set of natural numbers d > K, starting below 1
and tending towards (K — 1)/r > 1 as d — oc.

This theorem shows that, as d increases, the dimension associated with DNC eventually exceeds that
of any low-rank solution. Since both Dpnc(d) and Dz« (d) tend to infinity as d — oo, the difference
Dpne(d) — Dz+(d) also diverges. This implies that, in the large-width limit, DNC structure becomes
more prevalent in the loss surface relative to low-rank solutions, which helps explain why local
optimization methods may converge to DNC more frequently. Although low-rank solutions are still
observed even when R(d) > 1, suggesting that flatness and basin-of-attraction properties also play
important roles, this result supports the growing persistence of DNC as influenced by the parameter d.

Impact of the regularization parameter \: As A\ — 0, the loss of any diagonally superior structure
at its optimal scale tends to zero. This implies that as A becomes small, the DNC loss becomes
arbitrarily close to the optimal loss. We can also compare local flatness measures of the DNC solution
to those of the low-rank solution described in Equation (5).

Theorem 6: Consider the deep linear UFM with network width d > K, where the number of classes
K is even. Let the regularization parameter \ be small enough that there exists both low-rank
solutions as described in Equation @), and DNC solutions, that are critical points of the loss with
scales that diverge as A — 0. Define the local flatness of these solutions, measured by the Frobenius,
spectral, or trace norm of their respective Hessians, as Fpnc and FLr. Then, as A\ — 0, we have:

Fpne
C,
LR

Fpne, Fir — 0, such that

where C'is a constant that depends on the choice of flatness measure.
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Figure 3: Experiments using UFM-style regularization: Top: Losses of low-rank solutions on MNIST
and CIFAR-10 using linear layers in the fully connected head, along with mean logit matrix for
CIFAR-10. Hyperparameters: L = 3,d = 64, A\yy = 5 X 1073, Ay = 1079, learning rate = 0.05.
Bottom: Loss and singular values across layers for CIFAR-10 using ReLU in the fully connected
head. Same hyperparameters as above, except L = 4.

This result shows that both critical points have local flatness metrics tending to zero, with their
ratio converging to a constant. This suggests that flatness alone does not account for the preferen-
tial selection of DNC. However, when combined with the insight from Theorem 5, it supports a
heuristic explanation for DNC’s persistence: while all minima are approximately equally flat and
perform equally well, DNC structures dominate in number. We provide numerical evidence for this
interpretation in the next section and leave a rigorous demonstration of such a connection to future
work.

While this analysis sheds light on the geometry of the loss surface, we ultimately believe that fully
understanding behavior in the A — 0 limit will require accounting for the implicit biases of gradient
descent and the role of initialization scale. In particular, whether initialization causes the network
output to initially align with a simplex—and thereby increases the likelihood of falling into the basin
of attraction of DNC—appears more amenable to investigation through gradient flow dynamics than
through landscape analysis.

3.4 The deep ReLLU unconstrained feature model

We show that low-rank bias extends to the deep UFM, defined in Equation (T)), with ReLU activations.
This provides evidence that the phenomena described in previous sections persist in more realistic
settings. First, we note how the definition of DNC structure changes.



Singular Values

[
50 - — H
— F[3
—— Logits
40
301
20
-2
10 -4
-6
ol
0 2 4 6 8 -8
0 2 4 6 8

Index

o
®

N
S o

IS
N

Value

=)

o

©

Figure 4: Experiments with standard regularization on CIFAR-10: Left: Singular values of each
feature matrix in the fully connected head. Right: Mean logit matrix. Hyperparameters: L = 3,
d = 64, A\ = 1072, learning rate = 10~3.

Definition 5: DNC in the deep ReLU UFM: A solution of the deep ReLU UFM has DNC structure
if it satisfies the properties of DNC stated in Definition 1, and additionally, the distinct columns of the
logit matrix directly align with a simplex ETF: Z < S ® 17,

The additional condition on Z is consistent with experiments, matches the linear case, and is implied
by the original NC observation of Papyan. We also make the following technical assumption:

Assumption 1: For a DNC solution in the deep ReLU UFM, the ratio of the norm of the global mean

to the norm of the simplex component of M is not decreased by the application of ReLU. Specifically,
for 2 <1 < L if we define

l ~(1
O A9
o o1 YT — a0

1M, — p1T 5 I, — fO1% |

then r; < 7.

This technical assumption is used to avoid solutions that begin with a large global mean and gradually
reduce it to amplify the simplex ETF component. Such behavior would result in early features
approximating a rank-1 matrix with a small perturbation, rather than the typical K — 1-dimensional
simplex ETF. These cases do not arise in our experiments, and Assumption 1 is found to hold. It
is likely that such a structure is prohibited by the properties of ReLU. With this, we present the
following:

Theorem 7: Consider the deep ReLU UFM with network width d > K. If Assumption 1 holds, and
K >10,L > 5, or K > 16, L = 4, then no DNC solution can be globally optimal.

This theorem is proven by showing that the DNC loss in the linear model is a lower bound for the
loss of a DNC solution in the ReLU model, and then constructing a solution that outperforms this
bound using a method similar to that in Theorem 1.

Theorem 7 confirms that the low-rank bias observed in the linear case also occurs in the more realistic
ReLU setting. Moreover, the similarity between the proofs for the two cases suggests that the linear
model effectively captures key phenomenological aspects of the more complex nonlinear setting.

4 Numerical experiments

We empirically validate our theoretical results in the deep UFM, and provide supporting experimental
evidence on the MNIST [28] and CIFAR-10 [26] datasets using both UFM-style and standard
regularization. Additional experiments and details can be found in Appendix [D}

Deep UFM experiments: We Examine the deep linear UFM, defined in Equation (]II), trained from
random initialization using gradient descent. Figure 1 compares the loss achieved by a DNC solution



with that of the low-rank solution described in Equation (3). The final class mean logit matrices at
convergence are also shown. As predicted by Theorem 1, the low-rank solution outperforms the
DNC solution. Figure 2 shows how the probability of DNC changes as network width d increases or
regularization decreases. We observe that DNC is unlikely at small widths but becomes increasingly
probable as the network widens, supporting the argument derived from Theorem 5. We also observe
that the probability of DNC tends to increase as regularization decreases.

Full network experiments: We next consider a ResNet-20 feature map with a fully connected head,
applied to the MNIST and CIFAR-10 datasets using UFM-style regularization. The top row of Figure
3 shows the losses achieved by low-rank solutions when using linear layers in the fully connected
component. We see that the DNC bound is beaten by such solutions. We also display the logit matrix
at output, which clearly is not deep neural collapsed. The number of singular values above 106 was
4 for MNIST and 3 for CIFAR-10. The bottom row of Figure 3 uses ReLU activations in the fully
connected head. Again, DNC is beaten by our solution, which is low rank, as is clear from the plot
of its singular values. Finally, we consider a network trained with standard regularization, where
weight decay is applied to every parameter in the network. Figure 4 shows that the resulting structure
is low rank, and the mean logits do not form a simplex. This demonstrates that low-rank bias has
implications even outside the modeling context.

5 Conclusion

In this work, we investigate low-rank bias in deep UFMs, providing general results on how the
loss varies with the rank of different structures and offering insights into globally optimal solutions.
This constitutes the first rigorous account of how low-rank bias influences the solutions reached by
local search algorithms in these models. We also extend the findings of Sukenik et al. [42] on the
suboptimality of DNC to both linear and ReLU-based CE models. Furthermore, we examine how the
loss landscapes of these models promote DNC solutions despite their suboptimality, suggesting that
the size of the solution space plays a significant role. This is supported by experiments within the
model as well as in deep neural networks trained on real data using standard procedures. Together,
these results establish the first theoretical foundation for the empirical persistence of DNC.

Future Work: In this paper, we examined how variations in the parameters d and A reshape the
loss surface and influence the likelihood of DNC solutions. However, we did not explore how the
choice of local optimizer or the initialization scheme may bias convergence toward DNC. These
factors are clearly relevant. For example, Sukenik et al. [42] note that the learning rate can affect the
probability of reaching a DNC solution. Regarding initialization, prior work has shown that small
initializations can significantly influence the rank structure of the converged solution [[19}31]]. Other
hyperparameters, such as batch size, may also play a role. Investigating how these factors contribute
to the persistence of DNC would be a valuable direction for future research.

We also only provide a preliminary investigation into how the regularization parameter affects the
frequency of DNC in our model. While the implicit bias of linear networks without explicit regulariza-
tion has been widely studied [46]], most of this work focuses either on binary classification—where the
logit matrix reduces to a vector and the Schatten quasi-norm collapses to the Frobenius norm—or on
two-layer networks, where the form of low-rank bias we describe does not arise. A more comprehen-
sive understanding of how implicit bias manifests in deeper networks without explicit regularization
would likely clarify why the limit A — 0 increases the frequency of DNC.

Limitations: Our work focuses on a theoretical model of training dynamics and does not address
downstream properties such as generalization or robustness. Additionally, while our analysis of
the deep UFM captures useful structural biases, it omits important practical factors like batch size,
initialization scale, and optimizer choice. These elements may interact with low-rank bias in nontrivial
ways. Additionally, the UFM assumes overparameterization—and is well supported empirically for
this setting—but its applicability may diminish in underparameterized or highly constrained regimes.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Each claim in the abstract and introduction is evidenced by a theorem in
Section 3.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A paragraph on limitations is included in the conclusion.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Each assumption is stated in the theorem, and all proofs appear in the appen-
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* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes enough details so as to perform the same kind of experi-
ments as the ones presented in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Our contributions are mostly theoretical, using experiments to illustrate the
theory. The source code will be provided on request.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experimental details are provided in the main text and appendices.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experiments verify the sub-optimality of deep neural collapse, for which
reporting single runs is sufficient.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: The experiments do not require any specific hardware setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: No societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We provide references for the datasets used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Imbalanced classes in the deep linear UFM

Our results on low-rank bias in the deep linear UFM extend naturally to the case of imbalanced
classes. This setting has been explored in several recent works [51, [7, 44, [14], though our focus
will be on the studies by Thrampoulidis et al. [44] and Hong et al. [14]. We begin by establishing
general properties of the low-rank bias in the imbalanced setting, before looking at what can be said
specifically about DNC.

A.1 General results in the imbalanced case

Assume we have K classes, where the number of data points in class c is n., and the total number of

data points is N = Zf(zl n.. The loss function for the deep linear UFM in this imbalanced setting is
given by:

L
1 1
£=g(2)+ A Y Wil + AN Hl
=1

In this expression, the feature vectors are represented by the matrix H; € RN which we assume
is ordered so that the first n; columns correspond to class 1, the next n, columns to class 2, and
so on. The function g computes the sum of cross-entropy losses between the column vectors of
Z = Wy, --- W1 H; and the corresponding labels vy, that is:

9(Z) = %ZZ —log (ZKeXp((ziC)c) ) ;

c=1 i=1 =1 €xXP((%ic)er)

where (z;.) denotes the network output of the i-th sample of the corresponding class c.

Importantly, the result in Lemma 1 holds independently of the class structure; that is, it does not
depend on the specific values of n.. While the dimensions of H; are adjusted accordingly, the
structural result remains unchanged. Thus, at any optimal point of the loss, the same structural
constraints from Lemma 1 apply, allowing us to reduce the problem to specifying only the network
output Z € REXN _The loss can then be expressed as:

1 =1
L(2) = 9(Z) + ZML+ DIZ]57, -
L+1

We now generalize the notion of a diagonally superior matrix to the imbalanced class setting:

Definition: (K;n,, ..., nx) Diagonally superior matrix: A matrix M € RE*N s said to be

(K;n1,...,nk) diagonally superior, where N = ) _n., if the first ny columns have their largest
element in the first entry, the next no columns have their largest element in the second entry, and so on.

With this definition in place, we can now state a generalization of Theorem 2 from the main text:

Theorem Al: Let X € R5*N be a matrix of rank p, and let M € R¥*N be a (K;ny,...,n.)
diagonally superior matrix of rank q < p. Consider the deep linear UFM with K classes of sizes
ni,...,Ng, and suppose d > K. Construct solutions using the structure induced by an optimal point
so that the loss can be written entirely in terms of the output matrix Z. Let L1,(Z) denote this loss,
with its dependence on L made explicit. Then there exists Ly € N such that for all L > L, we have:

min{L;(aX)} > Iﬁnzilol{LL(ﬂM )},

with equality only if the minimum is attained at o = 5 = 0.
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The proof closely mirrors that of Theorem 2 in the main text. Specifically, we identify a scale at
which M achieves a lower loss than X on the fit term, and when enough layers are separated, the
lower rank of M ensures it also outperforms X on the regularization term. The full proof is provided
in Appendix C.1. This establishes that the same low-rank bias persists in the imbalanced setting, with
analogous implications to those in the balanced case.

We also present the following generalization of Theorem 3 from the main text:

Theorem A2: Consider a sequence of deep linear UFM optimization problems indexed by the
number of layers L = 1,2, 3, .... Assume the regularization parameter obeys Ay, > 0 for all L, that
there are K classes of sizes n1, ..., nx respectively , and the network width obeys d > K. Let L,
denote the corresponding loss functions, making the dependence on L explicit. Let Z7 represent the
network output at a global optimum of L1,. Define the minimal rank of a diagonally superior matrix
in REXEK 10 be q. Then:

(i) If \p, is scaled such that )\El = o(L), there exists Ly such that for all L > Ly, each singular
value of Z7 is zero, or converges to zero at a faster than exponential rate in L.

(ii) If A, is scaled such that A\, = o(L_l), there exists an Lo such that for all L > L the matrix Z7
is (K;nq,...,n.) diagonally superior, and consequently has rank at least qr. In addition, when
L > Ly at most qx singular values of the normalized matrix Zz are neither zero, nor converge to
zero at a rate at least exponential in L.

The proof follows the same structure as that of Theorem 3 in the main text and is given in Appendix
C.2. As in the balanced case, these results illustrate how as the number of separated layers L increases,
the global optima become more biased towards low rank diagonally superior matrices.

A.2 Deep neural collapse results in the imbalanced case

We now turn our attention to DNC in the imbalanced setting. Ideally, we would like a generalization
of Theorem 1 from the main text. However, this is challenging because full characterizations of
optimal structures under general class imbalance are not currently available in the literature. While
Hong et al. [14] provide valuable insights for general imbalance, their results involve unevaluated
constants, which prevent direct recovery of rank information. Moreover, the phenomenon of minority
collapse—where minority classes receive vanishing representation—can result in solutions with
lower rank than those observed in the balanced case.

Thrampoulidis et al. [44], on the other hand, focus on the no-regularization setting, but they do
provide a concrete result in the A — 0 limit for a specific class of imbalances. Their analysis enables
us to draw conclusions about DNC behavior when regularization is sufficiently small. Before stating
our result, we recall two useful definitions adapted from their work:

Definition: (R, p)-Step imbalance: In a (R, p)-STEP imbalance setting with label-imbalance ratio
R > 1 and minority fraction p € (0,1) the following hold: all minority (resp. majority) classes have
the same size Ny (resp. Rnypin). There are (1 — p) K majority and pK minority classes. Without
loss of generality, assume classes {1, ..., (1 — p) K} are majorities.

Definition: SEL matrix: The simplex-encoded label (SEL) matrix S e REXN jsq (K;nq,...,ne)
diagonally superior matrix, in which all columns corresponding to the same class are iden-

tical. The distinct columns of S are given by the columns of the standard simplex ETF

S =1Ig— £1x1% € REXK,

In Theorem 2 of their work, Thrampoulidis et al. show that, in the single layer UFM, with a (R, p)-
STEP imbalance, there exists a unique global minimizer Z3 for each A > 0. However, unlike
in the balanced case, they demonstrate in Proposition 1 of their main text that the frame of this
matrix depends non-trivially on A, not just its scale. Moreover, they show (as a consequence of their
Proposition 2) that in the (R, p)-STEP imbalance setting, the global minimizer of the single-layer
UFM aligns with the SEL matrix in the A — 0 limit.
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While the structure of the optimal solution at non-zero regularization in the UFM case is not fully
known, we treat the frame Z7 as the natural generalization of DNC in the deep UFM to the imbalanced
case when A > 0. This is justified by the fact that, in the balanced setting, the DNC structure is
recovered as the global minimizer of the single-layer UFM. Therefore, in the presence of STEP
imbalance, we define the DNC solution to be any matrix of the form Z « Z3, equipped with
parameter matrices satisfying the SVD properties established in Lemma 1. Here, "proportional”
refers to allowing differences in the overall scale of Z, which may vary depending on the depth of the
network (i.e., number of separated layers), but we assume the frame structure of the DNC solution is
determined entirely by Z73.

We have the following theorem about this generalized DNC structure:

Theorem A3: Consider the deep linear UFM with K classes of sizes n1, ..., ng respectively, and
with network width d > K. Also assume we are in a (R, p)-STEP imbalance setting. Then there
exists \o, Lo > 0 such that for all A < Mg, L > Lg, and K > 4, there is no generalized DNC
structure that is a global minimum of the loss.

The proof proceeds by noting that in order to align with the SEL geometry for small A, the generalized
DNC structure must have rank K — 1, since this is the rank of the SEL geometry. As a consequence
we can apply Theorem A1, where we use a generalization of the same structure from the proof of
Theorem 1 in the main text as the explicit lower rank generalized diagonally superior matrix. Full
details are provided in Appendix C.3.

We find that notions of DNC in the imbalanced setting are also no longer globally optimal in general
when we have more than one layer separated in our model, reinforcing the fact that the suboptimality
of DNC is not confined to balanced class settings. However, unlike in the balanced case, we do not
obtain an explicit bound on Ly, and so it could, in principle, be large.

While we are currently limited to the (R, p)-STEP setting, we expect this result to extend to more
general imbalance structures when A is sufficiently small and minority collapse does not occur.

B Deep UFM proofs

We begin by stating some useful definitions for the deep linear UFM model. Recall our loss function
from Equation (T)), which when using linear layers becomes:

L
1 1
L=gWr.WiHy)+ -A) W7+ S A Hil7
gWr..WiH) + 5 ;H Iz + SAIH L,

where the function g is defined as:

K n

=1 €XP((2ic)er)
Here, the matrix Z € RE>*E" is written in the form Z = [211, 221, .-, Zn1, 212, ---s ZKn), Where 2;.
denotes the column corresponding to the ¢-th sample of class c.

We also define the following quantities:

for0 <I<L-—1: Ay = Wr..Wiyy € REX4,
forl <1< L: H =W;_q..W1H, € RI*En,
Z =Wy..WiH, € RExXKn
exp((Zic)c)

25:1 exp((zic)c')

c ]RKXKn

P = [p11,p21, -, Pn1, P12 -y DK , where p;. =

)

Y:IK®13; ERKXKn,
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We also define for later notational convenience Ay 1 = Ix, Hy = Ixn.

Lastly, we will use the notation that D € R4*? D e RE*d D e RixEn )/ ¢ REXK g]] represent
matrices where the top K x K block is given by diag(1, 1, ..., 1,0), with all other entries being 0.

B.1 Proof of Lemma 1

For this section, it is convenient to denote H; = W) to make the equations more compact. Using the
quantities defined at the start of this appendix, we have the following elementary calculations:

0Z,

a(Wl)yab = (Al+1)a:a(Hl)bya (6)
dg(Z) 1 -
oz " ka7

Hence, the set of first order differential equations becomes

oL 1
T = EAZTH(P ~Y)H] + AW, @)

At any optimal point, we clearly have

r 0L 0L
Low, ow,_;

and substituting the explicit forms of these derivatives yields

WEW, = Wi Wi,

This implies that at a local optimum, all weight matrices have equal rank. Consequently, the rank is
at most /K, since W, has at rank at most K.

We now express each weight matrix using its singular value decomposition (SVD) as follows:

forl=1,..,.L —1: W, = UL, VT, with U}, &;, V; € R¥*¢,
Wo = UpSo Vg, with Uy € R¥*9, 53y € RIXEn 1, ¢ REnxKn,
W, = ULELng with Uy, € RKXK, Y € RKXd, Vi € RdXd,

where each U; and V] is orthogonal, and J; has non-zero entries only on its diagonal. Using the
expressions derived from the gradients, we obtain for 2 < [ < L — 1:

VETUNUEVT) = U S Vi) (Vi S Ut )

Which implies

VisiVih = Ui B7 UL, ®)

From this, we conclude that for2 <[ < L —1

Y= =2,

where ¥ = diag(sy, s2, ..., Sk, 0, ...,0), and sy, ..., sk denote the top K singular values.

We can extend this to the cases [ = L and [ = 1, giving:
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vty vl =vp, x*uf |, )
V2V = UpSE UL (10)

This implies that X, = ¥ = [diag(s1, ..., sk ), Ok x(d—K)], and X = ¥, where the top K x K block
of 3 is diag(s1, ..., sx ), and all other entries are 0.

Finally, we aim to show that there exists a choice of SVD for the weight matrices where the left and
right singular vectors align. There is a subtlety here, since Equations (8), (O) and (T0) together imply
that for any [ such a decomposition exists, but does not guarantee a decomposition exists where it
holds for all [ at once. Such a decomposition can be achieved by working iteratively. choose V; = Uy
using Equation (I0), this places some constraint on the choice of U;. Next pick V5 so it matches
U;, which places some constraint on Us, and so on. The outcome is an SVD decomposition where
Vi =U,_1 forl = 1,..., L, which completes the proof.

B.2 Proof of Proposition 1

We consider a set of parameter matrices Wi, ..., W1, Hy for which their SVDs can be expressed in

the form described in Lemma 1. We also assume that the network output has the form Z = oS ® 17,
1

where § = I — 1 k1% Our aim is to show this implies the parameter matrices obey the DNC
properties of Definition 1.

First observe that the matrix S admits an SVD of the form S = QD'Q”, where D' =
diag(1,1,...,1,0) € RE*K and @Q is orthogonal. The SVD of the vector 17 is given by

11 = \/ﬁ(eg"))TRT, where R € R™*" is orthogonal, and egn) is the first standard basis vector in
R™. Hence the SVD of the Kronecker product S ® 17 can be written as

S@ 17 = /nQ (D’ ® (eﬁ"))T) Q@ R)T.
Using the SVD forms of the parameter matrices from Lemma 1, we have
W WiH; = Up[diag(s{ ™, ..., sk, 0k (noy x|V - (11)

Comparing this with the SVD form of Z, we find that s; = (a\/ﬁ)%ﬂ fori =1,..,K —1, and
sk = 0. Hence Equation (TI)) can be written as

(aVIULID' 01y lVi = (/MU (D' @ (e")7) Vi

Using the remaining freedom in specifying the SVDs (as discussed in the proof of Lemma 1), we can
choose V) = Q ® R.

Now consider the intermediate feature matrices H; = W;_1...Wj Hy. Using the SVD structure from
Lemma 1, we compute:

Hy = U XUL,. . U020 UV = U 27 svT

Notice that 518 = (ay/n) =7 DT @ (e{)T, where D = [diag(1,1,...,1,0), 0x x(a—x)] €
R& >4 Therefore

Hy = (av/m) P70 (DT @ (")) Vi = (av/m) 77Uy (DTQT @ (¢{)TRT)

= %(a\/ﬁ)#lUl_l (DTQT ® 1{)
- %wa)ﬁ (U D"Q" ©17).
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and hence we can write H; = M; ® 17 as claimed, where M; = ﬁ(a\/ﬁ)#l (U1 DT Q).
Next note that
MlTMl X QDUljilUl_leQT = QD/QT =5,

and hence this matrix does align with a simplex ETF.

Finally, note that up to scale the weight matrix is given by

W' o U_1 DU} « [M;,0]0

Where O is the orthogonal matrix

o-[¢ fur

and hence if we denote the rows of W, by wj(.l) , they satisfy

K
wj(l) x Z OuinD,
c=1

meaning they can be written as a linear combination of the columns of M. Hence, all three properties
hold.

We also note the property typically used in the linear setting as DNC3 holds as a consequence of our
structure, though this does not generalize to the non-linear case and so was not incorporated as part
of the definition:

Using the alternative formulation where Uy, = ), we find that

Wr. Wy, =USUL . .UXUL |, = U sxlUr

= (a\/ﬁ) LE{Z’YI ULDUZZLI.
From which it follows
(Wr.. W) Wr..W)T o« U, DUL U, DTUL = QD'QT = S

B.3 Proof of Theorem 1

We begin by observing that, using the form of any critical point from Lemma 1, the loss at a critical
point can be written entirely in terms of the output matrix

Z =Wr..WiHy = Ug [diag(s{™, ... sEM) Oxwinonyx] Vo -

The loss function then becomes

2

K
1
=g(Z)+ =(L+1 gt
£=9(@)+ 5L+ NS,

where 57 = sf“, ey SK = SIL(+1 are the singular values of Z. We will denote this second term by
R(Z).

Since our DNC solution already conforms to the structure described in Lemma 1, and we will
construct a low-rank solution to obey the same properties, it suffices to compare the loss via this

27



reduced formulation in terms of Z alone. Note this is the exact same expression as one would have
using the Schatten quasi-norm result from [40], but it is for general critical points, not just global
minima.

In this formulation the only relevant free parameter in the DNC solution is the scale «.. To make this
explicit we denote a DNC solution by Zpnc(«). If the optimal scale occurs at « = 0, then DNC
is not optimal by definition. Thus, we assume the best performing scale satisfies o > 0. We will
similarly fix the structure in the lower-rank solution so its only free parameter will be its scale £,
and denote this solution by Zr (). The method of proof is then to show that the low-rank solution
outperforms the DNC solution whenever their scales are set equal (and non-zero by definition), and
hence this is true even when the DNC scale is optimized, and so no DNC solution can be optimal.

By definition, the DNC solution has Zpnc(a) = a(Ix — 1x1%) ® 17 This matrix has repeated

columns, with the matrix formed of the distinct columns having %a on the diagonal, and — %a
on the off-diagonal. Hence we can compute the fit-term for this solution, which gives:

9(Zpne(a)) =log(1 4 (K — 1)e™ ).

In addition the singular values of Zpnc(«) are §; = ... = §x-1 = ay/n, Sk = 0. So the
regularization loss in this case is given by

R(Zone(@) = 5(L+ 1)(K ~ DA(aya) 7.

We can construct a low-rank solution like so: If K = 2m, then we write the matrix Zjg () in terms
of 2 x 2 blocks

X 0 .. 0
anp) =00 X el wneex = |4 L
0o 0 .. X

If K = 2m + 1 we simple use the same matrix as K = 2m but with the extra row and column in the
class mean matrix having 1 on its diagonal and 0 otherwise (up to the scaling by ().

In the even case this matrix has singular values 51 = ... = §,,, = 28v/n, Sma1 = ... = G2, = 0,
whilst for the odd case it has singular values 51 = ... = 5, = 287, ;i1 = BV, Simpe = ... =
Sam+1 = 0. The fit-term of the loss can be computed in both cases, giving

For K = 2m:

9(Zir(B)) = log (1 + (K —2)e P + 6725)) .
For K = 2m + 1:

9(Zix(6)) = Hmmg (1 (K =207 47 trlog (1+ (K - 1>e—ﬁ)]

From this expression we have that if we set the scales equal we arrive at g(Z1r(«)) < g(Zpnc())
for both even and odd K. For example, in the even case this follows directly since e 2% < e¢~* and
the fact that log is an increasing function. The odd case is then a weighted average of the even case
and a term that exactly equals the DNC term, and so is still strictly smaller.

We can also compute the regularization loss for our low-rank solutions, giving
1
for K = 2m: R(Zir(8)) = 5 (L + 1)mA(26Vn) 757,

for K = 2m + 1: R(Zx(8)) = 5(L+ DA [m(28vm) 77 + (3v/m) 77

Again, if we set the scales equal, then the inequality R(Zir(a)) < R(Zpnc(e)) reduces in both
cases to:
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m(204/n) T < (2m — 1)(av/n) 7T,

which is equivalent to:

2 2m —1

2TH <

m

This equation holds when m > 2, L > 3 or m > 3, L = 2. equivalently stating this in terms of K,
this holds when K > 4, L. > 3or K > 6,L = 2.

We can now put this all together, we have that for the given values of K and L

,C(ZLR(Oé)) < ﬁ(ZDNc(Oé)).

If we define auin = argmin, {£(Zpnc())}, then this implies

ming{L(Z1r(8))} < L(Z1r (min)) < ming {L(Zpne (@)},

and so the low-rank solution outperforms the DNC solution, so long as we have K > 4, L > 3 or
K>6,L=2.

Result by Dang et al.

A similar loss function was considered by Dang et al. [6] in Appendix A of their work. The model
they study is essentially the same as ours, with the exception that they include a bias vector in the
final layer of the network. It is stated, in Theorem A.1 of their work, that at a global optima both
Wr,...W1 and H; will align with a simplex ETF shape, S = I'x — %1 K 11T<. Whilst it isn’t explicitly
stated in the theorem, since the product of two simplex ETF’s returns a simplex ETF, this implies
that Z also forms a simplex ETF at global optima, which appears to contradict with our Theorem
1. Whilst their model is slightly different, they do state that if the regularization term of the bias is
non-zero, then the bias itself is zero at optima and so the loss function reduces to the same as ours at
global optima.

The proof by Dang et al. proceeds similarly to the proof by Zhu et al. [58]] for the L = 1 case.
Specifically, they produce a series of lower bounds for the loss arriving at an expression like

L>E(s1,,SK, A1),

where s1, ..., Sk are the singular values of H;, and c; is an arbitrary constant. They also show this
bound is only attained when c; takes a specific value in terms of si, ..., Sx and constants of the
problem, and the matrices Wi, ..., Wi, H; obey a series of properties that characterize DNC. They
then show that the minimum of £ occurs at finite values of these s;, and so the bound can be attained,
and is only done so for a DNC solution.

One issue with this specific bound is that for a simplex ETF the s; are not freely specified. For the
simplex ETF we have s = 0, and s; = p for i # K, for some constant p > 0. If £ has its minimum
at a point where this property does not hold, then this line of argument will not work.

To make this clear, let us assume c; is written in terms of the s1, ..., sk as they detail, and we suppress
the A\ dependence in our notation, so & = £(sy, ..., sx ). Let the optimal DNC structure be {sPNC},
and Epne = E(sPNC, ..., sENC), with the loss of the optimal DNC solution being Lpnc. Denote the
global minimal structure for £ by LR in the same way as we have for DNC. Whilst they show that
Lpne = Epnes it is entirely possible that Lpne > Lir if Epne > ELr. In fact, if one considers the
structure based on our low-rank solution from Theorem 1, then it can be shown that the minimal
low-rank structure has a lower value of £ than the minimal DNC structure, so this concern actually
holds.

In the L = 1 case Zhu et al. reduce to a similar expression, but in terms of ||W||%, rather than the s;.
Since the Frobenius norm is a freely specified quantity for the DNC solution, the above concern does
not arise, and so the L = 1 proof avoids this issue.
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B.4 Proof of Theorem 2

Suppose the non-zero singular values of X and M are yiq, ..., ytp, and v1, ..., v, respectively. We
choose to write 5 = ya. We also write £, for our loss, to make the dependence on the hyper-
parameter L explicitly clear in this section. The losses of solutions built from these matrices are given
by:

2

Ly, (aX)-g(aX)-i— /\ (L+1

1 2 o 2
Lr(yaM) = g(yaM) + QA(L + Dzt Z(WVi)m-
i=1
First We compare the fit term of each solution. We denote the columns of X as x;. ordered by class
as previously, and similar for M by m;.. The fit terms are given by

n K K
1
glyaM) = 2% > Jlog [ 1+ D exp (ya((mic)e — (mic).)) |
i=1 c=1 c'#c
1 n K K
I 1 ic)c’ — ic)c
22 2e 1+ 3 explaf(oide = (5

Since M is diagonally superior, we know (m.)e — (m;.). < 0 for all ¢,¢’ # ¢ and for all 7. Choose
a fixed v > 0 so that

Y((mic)er — (Mic)e) < (Tic)er — (Tic)e, foralle,d #c, andforalli € {1,...,n}.

Hence, due to the monotonicity of exp and log, for this fixed v we have

g(yaM) < g(aX),

where equality only occurs when o = 0.

Next we consider the regularization term. First note we can Taylor expand the exponential, since we
are only looking at non-zero singular values:

2 1 [2log(z)]"
T TH :Zn'[ 11 =1+o0(1),

n=0

where we consider this as an expansion in L~ 1 as L. - co. Hence, in the large L limit we have

Since g < p we have that there exists some L € N, such that for L > L

2

q P
2 Om) <3l
i=1 i=1



and hence

q

1 p
GML A+ Dot ;wm ML+ 1)at Zu

[\J\)—‘

where again equality only occurs when o = 0.

Putting this all together we have that for oo > 0

Lp(yaM) < Li(aX),
with equality only at o = 0. Define %) = argmin,,»o{Lr(aX)}. Then we know
min{£ (M)} < L1 (3 aga M) < Li(ag)X) = min{£1(aX)},

and equality can only occur if the minimum is at « = 8 = 0.

B.5 Proof of Theorem 3

In this proof we will relabel L+1 — L and %)\ — A. This change is purely for notational convenience
and does not affect the underlying results.

Note, the deep linear UFM must attain its global minimum at a finite-valued optimum, since the
regularization term diverges as any parameter tends to infinity. We can define our optimization
objective at a critical point for a given depth L as

K
2
Lr(Z)=g(Z)+ L\ Z L
where {3;}X | are the singular values of Z. We begin by proving claim (i).
Proof of (i)

We consider the case )\Zl = o(L). Since the minimizer of £, is unchanged if we re-scale the loss by
a constant, we can consider the equivalent objective:

L 2
Lr=17 Zg

Consider the solution Z;, = 0, for which ¢(0) = log(K), and all singular values are zero. This
solution has loss

z:L<o>fL—§Llog< ) = o(1).

Denote by Z7 an optimal matrix at layer number L, and suppose it has 7, many non-zero singular
values. This solution must perform at least as well as the zero solution, hence

L0(Z3) <o(l) = Z;E.gou) — 5, =o(1).

Writing 57, ; = exp(3v;(L)L), for some value 7;(L), we obtain:
exp(:(L)) = o(1),
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and this only occurs if 7;(L) — —oo. This tells us that each singular value of Z; is either 0, or
converges to 0 at a rate faster than exp(—/3L) for any 5 > 0, meaning faster than exponentially.

Proof of (ii)

Now consider the case that LA;, = o(1). We first show that, for sufficiently large L, any global
minimizer Z7 must be diagonally superior.

Let Z € REXEn be any matrix that is not diagonally superior. We consider the fit term for this
matrix

1 n K K
9(Z) = Kn Z Zlog 1+ Z exp((zic)er — (Zic)e)
i=1 c=1 c'#c

Since Z is not diagonally superior, there exists a value of 4, ¢, ¢’ # ¢ such that (z;c)er — (2ic)e > 0.
In this case we see from the above that we can bound the fit term below

1
7)) > —log(2
9(Z) 2 77 108(2),
and the whole loss is then also bounded
1
L (Z) > mlOg(2)~

Now let Z' € RE*K" be any diagonally superior matrix, and denote its singular values {s}X ;.
Consider the sequence of solutions for each L

K
Li(LZ") = g(LZ') + LALLE Y (s))E.
=1

First looking at the fit term we have (2],) — (2},)c < 0 for all 4, ¢, ¢’ # c. Hence

1 n K K 1 K
9(LZ') = 7= DD log [ 14D exp(L((zhe)er — (2le)e)) | = 7 > log(1 +o(1)) = o(1).
1 c=1

' #c

i=1 c=
In addition, LT = 1+ o(1) and Zfil(s;)% = rank(Z’) + o(1). Hence

Lr(LZ")=0(1) 4+ LAL(1+ o(1))(rank(Z’) + o(1)) = o(1).

This sequence attains arbitrarily small loss. In particular, when L is large enough that this loss is less
than ﬁ log(2), it outperforms any matrix that is not diagonally superior. Hence for L larger than
this the optimal Z must be diagonally superior.

It remains to show the condition on the singular values of a normalized optimal solution Zz.

Let X € REXKn be a lowest rank diagonally superior matrix, and label its rank by gx. Choose its
scale so that we have for all i, ¢, ¢’ # c that (2;c) — (i) < —2. Suppose the optimal solution at
each L is Z7. We can seperate the scale of Z7 from its frame by writing

* 5 %
ZL - aLZL,

where o, = || Z7 || . Zz = HZZ# Note in particular since the zero matrix is not diagonally superior
L
we have that the scale is non-zero and this decomposition is well defined when L large enough.

32



Note the elements of Z} are constrained such that |(Z});;| < 1, and so for all 4, ¢, ¢’ # ¢ we have

(%,m)e/ - (%,m)c > =2> (Tic)er — (Tic)e-
This means that for L large enough
glarZ;) > glarX).

Now compare the losses of the sequence Z7 with the sequence o7, X. Denoting the rank of Zz by
[, its non-zero singular values by 5y, ;, and the non-zero singular values of X by 11;, we have

Lr(apZi) =glaLZ;) —|—L/\ozL ZSL o

=1

h\m

Lr(apX)=g(larX)+ L)\aL Zu

i=1

Using our inequality for the fit term, and the fact that Z7 is the minimum, we have that

and hence

Z L%7<Z:u‘z _qK+ (1)

=1

Again write 51, ; = exp(37;(L)L), for some function ~;(L), we have

ZCXP(%(L)) < qx +o(1).

— 4+l

Now define the quantity § > 0 to be such that e™* = 2517,

Suppose the number of y; (L) that are greater than —9 is py,, then

> exp(n(L)) = pre”?,
and hence

pre”® <qx +o(1) = prlgx +1) < qrlgr +2) +o(1).

When the o(1) term is less than , this equation is only satisfied if p;, < gx. This is since py, qK
are both integers, pr,(¢x + 1) is an increasing function in py, and (qx + 1)? > qx(qx +2) + 1.
Hence, when L is large enough, all but at most g singular value of ZZ satisfy

1
0< 5, <exp (—25L> ,

where § > 0 is independent of L. This means that these singular values are either 0, or converge to 0
at a rate at least exponential in L.

33



B.6 Proof of Theorem 4

We begin by showing that DNC solutions at a specific scale satisfy the critical point conditions of the
deep linear UFM when the regularization parameter A > 0 is sufficiently small. Recall from Equation
(7) in Appendix B.1 that the first order derivatives of the loss are given by:

oL 1
- o Al (P = Y)H + AW,

where the matrices A; 1, P,Y and H; are defined at the start of Appendix B. Hence, the critical point
condition is for 0 <[ < L:

1

W, = ——
PTKna

Al (Y - P)H]. (12)

Recall our DNC solution satisfies, for some o > 0:

1
Z=aS® 12, where S := [ — Elklig.

As a consequence, the softmax probability matrix P is given by

e 1 ... 1
1 1 e o1 T

Pk D7 L. 13

1 1 . e

We can then compute the error matrix Y — P, which gives
K

Y-P=———(S®1F 14
(Kf 1) +ea( ® 'n,)7 ( )

and so we see the error matrix also aligns with a simplex ETF.

We will now start to simplify our critical point conditions in Equation (I2), starting with 1 <[ <
L — 1, by writing each matrix in terms of its SVD. Recall that we define the following matrices

D e R4 D e RExd D e RIXEn D' ¢ REXK where each has its top K x K block given by
diag(1,1,...,1,0), with all other entries being 0.

First write the singular value decomposition of the simplex matrix:

S®1% = \/nQDDRT,

where DD € RE*K" and @, R are orthogonal matrices. We also have for the DNC solution that
UL=Q,Vo =R

Using the definition of A;; and Hj, as well as Lemma 1, we have for 1 <[ < L — 1:

W, = (a/n) =71 U, DU, (15)
Appr = UL SSE710T = (an/n) T1 UL DUT (16)
H =U_ 127 'SVT = (a/n) 77U, DV, (17)

where we used that 3, 3 and ¥ are written in terms of the singular values of the parameter matrices,
. 1
and for DNC the singular values are s; = ... = sg_1 = (ay/n)T+1, sg = 0.

Hence our critical point condition in Equation (12)) for 1 <[ < L — 1 becomes

34



1 1 Vn . o _
(av/n) T U DU | = (a/n) T Hm(UlDTULTQDDRTVODTUfj1).

We can pre and post multiply by U/, U, respectively, and use that UF'Q = RTV; = I to give

D = (ay/n) T+ T;m(DTDDDT).

Then using that DT DDDT = D, this reduces to

-1 1 Vn
D= Il ———~—— D 18
and this holds when
P S S 19
n “E-Dteo QIFT, (19)

If we write f(«) for the RHS of Equation (T9)), this function satisfies: f(0) = 0, limg—00{ f(a)} =0,
and f(«) > 0 for @ > 0. In addition, f has a unique maximum in « > 0, since

L-1 L-1
"(a) = ) (K-1)=|a—(—)| e
F@=0 & (1) E-0=|a- G|
which has exactly one solution in o > 0.

Therefore Equation has two positive solutions when AT+ is smaller than the value of the
maximum. One solution satisfies &« — 0 as A — 0. This solution has a high loss in this limit and lies
very close to the zero solution, so we won’t consider it further. The other solution has o — oo as
A — 0, which attains arbitrarily small loss in this limit.

This provides a solution that satisfies the critical point conditions for 1 <[ < L—1.Thel=L,l =0

cases produce the same equation as Equation (T8]), but with D or D in place of D, which reduces to
Equation (I9) also.

Hence we have shown that there are DNC solutions that are critical points of the model, so long as A
is suitably small, with a scale that diverge as A — 0.

It remains to show the positive semi-definiteness of the Hessian of this solution. We start by computing
the second-order derivatives of the loss. We then specialize to the DNC case. We will begin with the
block diagonal terms. Recalling the form of the first-order derivative from Equation (7)), we find

9L 1 OP,
—— = A0uOpa + — AT Vow—=d (HTY.p.
OW1)abO(W1)ea "7 Kn ;;( 1) 3(W1)cd( wp
By the chain rule, we have:
0P, 0P,y 0Zy,

8(Wl)cd B o aZuv a(Wl)cd.

The partial derivative of the logit matrix Z was calculated in Equation (6). It remains to compute the
P partial derivative.

0P,y _ exp(Zyy) P
0Zuy D exp(Zery) Ty

exp(Zay)
m Z eXp(ZC”y)(Suc” 61;3/
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- P»Ly(svy[éx,u - Puy]

If we choose to write Py, = (py ), so that py is the y™ column of P, then

Ozu(Py)e = diag(Py)au,  (Py)a(Py)u = (pypgj;):rm

giving
OP, )
aZ’uj: = 5’l)y[d1ag(py) - pypg]xu
Hence
0L
o A = Maclbdt (AL D aw (HE) o (A1) ue (H ) awboy [diag(py) — pyp? low
8(VVI)aba(Wl)c bd+ Z l+1 l)yb( H—l) ( l)d J[ lag(pJ) pypy]

T,Y, U,V
1 T (1 T

= AacOpa + Kn Xy:(AHl[dlag(Py) — PyDy ]Al+1)aC(Hl)by(Hl)dy~

We also choose to write (H;)p, = (hg(,l))b, so that hg(f) is column y of H;. This gives

L) 0*L

s 1 T : T 1 nT
Hess ;i = m = MacOpa + Kn zy:(Al-f-l[dlag(py) - pypy]Al-l-l)ac(hz(;)hz(J) )bd

(20)

Next we compute the off-diagonal blocks. Taking wlog r < [, we have

oL _ 1 8(HT) apzy
AT = T 5o | ATl =V G+ (Al 01 )

The second of these two terms we can compute in exactly the same way we did for the second term
of the diagonal blocks, giving

1 0P, 1 . r
e AL e g U D = g ST AGing(s) = ) A el
T ) CH y

We now compute the first term. Note that

T T
L LI 7 ik b RO

= (H?)yd[(Wl—l-~-W7'+1)T}cba
and so the first term is

T
o Sl P=Y)a G = (AT s(P = V) ol Wi W2 e

Combining both terms, we arrive at for r < [:
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Hess(;") = <Al+1<P —Y)HD ) ad(Wie 1o Wy 1) et

1

Kn Z[AITJA (diag(py) — pypg)ArJrl]ac[hg(/l)hy(f)T]bd' (21
Yy

This gives the general forms of the blocks of the Hessian matrix. We now show that the Hessian of
the scale divergent DNC solution has no negative eigenvalues when A is small enough. To show this
we can demonstrate that

Vo e RP v Hess v > 0,

where Hess is the full Hessian after the blocks have been flattened into matrices, and p is the
total number of parameters. Writing v7" = (vy, ..., vz )T, where each component is of appropriate
dimensions, this is equivalent to

Zv Hess”v > 0.

Denoting the matrix X; to be the pre-flattened version of vy, this can be written as

Z Z Xl abHeSSabZ;(Xr)cd > 0, (22)
l,r abed

or equivalently

Z Z(Xl)abHeSSabcd Xl cd + QZ Z X abHeSSabp()i(Xr) > 0.

Il abed r<l abed

Both summations have two terms due to the form of the on and off diagonal layer-wise Hessians
described in Equations and (2T). We will make a series of transformations of the matrices X
that leave the range of these matrices as X varies unchanged, and show how this impacts each term
individually.

Starting with the off-diagonal terms, and working with the second term arising from Equation (21},
this gives a contribution

2y Z = Tr(Afy 1 pyAr 1 Xo RO RPT X, (23)

r<l y
where we now choose to denote p, = diag(p,) — pypg.

The first transformation is X; — U; XU, ﬂ 1- Since the matrices U; are invertible this does not affect
the validity of the inequality. Doing this, and using the expressions for A; .1, H; in Equations (T6)
and (T7), transforms Equation 23) into:

1 . - _
23" o (av/n) T Te(DTUT p, U DX, DV e, eI Vo DT XT),

r<l vy

where e, are the standard basis vectors in RE™, Now we perform the transformation X; — oTXx,0,
where

UL 0
O—[o I]'

In this expression the dimensions of the 0 and I blocks are designed to match the dimensions of Xj.
Again this is invertible. Using that
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oDTUl =

our contributing term becomes:

2221{ (a/n) L+1Tr<[ py[S 0]X, [S%ln}ey (5@ 1T O]XIT>

r<l vy

7222K (ay/m) BT <{SpyS 8] X, {(S®1T)ey0 TS@1n) 8} X1T>

r<l vy

=23 (V) P TS, SXU(S @ 1)ey e (5 © 1) (X)),

r<l y

where we define the top K x K block of X; to be X]. Hence only the top K x K block of the
transformed matrices emerges in the expression. These steps are exactly the same for the the second
term in the on-diagonal block, just with [ = 7.

The only remaining difficult term is the first term in the off diagonal Hessian. This is given, before
transformations, by

QZK AL (P-YVHE XTI Wi W) T XE).

r<l

Performing both transformations, and using that the matrix P — Y is proportional to S ® 17 =
VUL DDV{ as stated in Equation (T4), and W, has SVD given by Equation (I3), a similar
calculation to previous gives that this term is

23 T eV TS () TS (),

and so this term also only features the top K x K block. We also identify the coefficient in the sum
as \ via Equation (19), reducing this to:

—2X 3 " Te(S(X))TS(x)T).

r<l

This gives us finally the expression for the positive semi-definite condition of the Hessian, stated in
Equation (22)), is equivalent to:

SOATH(XT X)) + %ﬁ(am% > S HSRSXI(5 @ h)eyef (58 LX)
l

—2A > Te(S(X)"S(X) )+ —(av/n) 13N T(Sp, SXL(S@1T eyl (S®1,)(X))T) > 0.

r<l r<l Yy

The only place the entries not belonging to the top K x K block of X; contribute is in the first term,
and they clearly contribute a quantity that is non-negative, hence we can drop them and work with the
reduced inequality. We do this, and now drop the primes from the matrices X/, using X; to denote
just the top K x K block. In addition, notice the second term in both lines are the same and so can
be combined into a sum over all 7, [. This reduces our positive semi-definiteness condition to

1 2L
> oaTr(x/) Xl)+ﬁ(a\/ﬁ)m D Te(SpySX(S@1))e ey (S@1,) X ) =20 > Tr(SXTSX/]) >
l

Y r<l
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Now note that the sum over y = 1, ..., K'n can be replaced by asumover: = 1,....,nandc =1, ... K.
Additionally, we have

Pic = Pec; (S ® 171;)61'0 = S¢,

where here we use p. = diag(p.) — p.p’, where p, are the softmax probabilities of the network
output means, and s.. are the columns of the matrix S (this is a departure from the rest of the document
where we use s; to denote singular values). Using this our condition simplifies to:

K
1 2L
Z MTr( X7 X)) + E(a\/ﬁ)m Z ZTr(SpCSX,.SCsZXZT) — 2/\ZTr(SX,.TSXlT) > 0.
1

l,r c=1 r<l

Defining the matrix X = ), X, this then reduces further to

> OATe(X[ X)) + %(a\/ﬁ)% D Tr(SpeSXsest XT) =20 ) Te(SXTSX[) > 0.

l r<l

We can perform a similar trick with the final term, but now we must add the missing diagonal terms,
giving us that our positive semi-definite condition is:

S ONTH (X X)HAD Te(SXSX] )+%(a\/ﬁ)% > Tr(SpeSXsest XT)-ATr(SXTSXT) > 0.
l l c
(24)

We first show that the first two terms together are non-negative. Note we can use I = S + %1 k1%
to write the first term as:

A Te(SXiSX]) + Tr(1g 15 Xl 1 X[ + Tr(SXi 1 13 X]) + Tr(1e 15 XS X)),
l

The last three terms are all non-negative, since each can be written as the Frobenius norm of a matrix.
Hence to show the sum of the first two terms in Equation (24)) is non-negative it is sufficient to show
the following is non-negative:

D OATH(SXSX)) + A Tr(SX[SX[)
l l

= A Tr(SX/[S(SX,S + SX['S9)),
l

where we used that S = S. Note the right matrix in the trace is the symmetrization of the transpose
of the left matrix (up to a factor of two). Since the trace of a symmetric matrix times an antisymmetric
matrix is zero, this just becomes equal to the sum over [ of the Frobenius norms squared of the
symmetric part of 205 XS, and hence is clearly non-negative.

It only remains to show that the last two terms in Equation (24)) are non-negative. For this we need to
compute p.. We detail the ¢ = 1 case, the general case can be inferred from this. Using Equation
(13), we have
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K-1 -1 -1 -1 0 0 0 0
1 -1 1 0 0 0 K-2 -1 -1
p1 = m e” -1 0 1 0]14+10 -1 K-2 .. -1
-1 0 0o .. 1 0 -1 -1 .. K-2
Ph Py
(25)

Label the first matrix by p} and the second by p/. For general y we get a matrix similar in both cases,
but crucially p! is always positive semi-definite. We hence have that the remaining terms in our
positive semi-definite condition are:

1 2L 1
_ T T = @« - / T T
ATr(SX*SX )+K(a\/ﬁ)L+le (K—1tec) Ec Tr(Sp.SXscs. X")
1 2L 1
T Tr(SpSXsest XT) > 0.
+ (a\/ﬁ)u( ey r(Spe SXscs; X)) >0

Since p!/ is positive semi-definite, this last term is non-negative and can be dropped from the
expression. We also can use the expression for A in Equation (T9) to simplify the coefficient, leaving
us with the following condition

1 a

We now use Lemma 2, detailed at the end of the section, which gives us that Sp.S = K scsz + S.
Also using that Zc scscT = G, the above condition becomes:

(0%

—)\Tr(SXTSXT)JriomAeiTr(SXSXT)Jrom)\K

e
T 1 o T CTX('TXT > 0.
K K—1+e~ _1+ea; I'(SASC ScSe )_

Since s.s! is positive semi-definite, the last term is again non-negative and can be dropped. The
remaining two terms can be written as:

an e
T L XSxT xT XS —Sx7T > 0.
A(1{1{1+ea )Tr(s SX7) +ATe(SXTS(SXS - 5X75)) >0

A similar argument by considering the symmetric and antisymmetric parts of the matrix SX .S shows
that the last term is up to a positive scale equal to the Frobenius norm squared of the antisymmetric
part of SX .S, which is always non-negative. The first term is non-negative, so long as we have:

an e*

—_——>1
KK-1+ex ™~
Since « diverges as A — 0, this holds when A is small enough.

Hence there exists a Ag such that when A < )\ there is a DNC solution that is an critical point of the
model, with scale that diverges as A — 0, and with Hessian that is positive semi-definite.

It only remains to prove the following Lemma:

Lemma 2: The matrix p., as defined in Equation (23)), satisfies
Sp.S = Ks.sX + 8,
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where S = I — %lKlﬂ, and s. is column c of the matrix S.

Proof: Note that the entries of p/, are given by

K-1, ifi=j=c¢

1, ifi=j+#c

—1, ifi=c¢,orj=c, buti#j
0, otherwise

(P/c)ij =

Similarly the entries of Ks.s! and S are given by

D ifi—j=c

T 1 . L,
(Ksese )ij =4 —L2L, ifi=c orj=c buti£j
+, otherwise
K—1 ¢:_ .
SH_{ =, ifi=j
ijg =y _ 1 h .
7> otherwise

Looking at this case by case, it is clear that p/, = K s.s! + S. Since the columns of S are invariant
under transformation by S, we have Sp.S = p...

B.7 Proof of Theorem 5

Recall, from Lemma 1, we have the following SVDs for our parameter matrices at a critical point:
W, =UXUE, forl=1,...,L—1,

Wy, =ULSUT

Hy = UpXV,

where Uy, € REXK v ¢ REnxEn 17, ... Uy € R™? are all orthogonal matrices, ¥ € R4¥9,

¥ € RE*d and 32 € R¥ K™ all have their top K x K block given by diag(sy, ..., sx ), with all other
entries being zero. Also, as a consequence, Z = Wy...W; H; has the form:

Z = WL...W1H1 = UL [diElg(SlL—H7 ...,S%(—H) OKX(n—l)K} VOT.

Suppose we have some structure Z* which is a critical point for some specific choice of scale,
and we want to assess the dimension of the space of solutions that correspond to this structure.
Let us denote the rank of this critical point by rank(Z*) = r. First note that specifying Z* fully
determines s1, ..., Sk, and as a consequence X, and X. It also specifies Uy, Vj, up to some
potential reparametrization of the singular spaces that we will account for later. Also note, for
intuition purposes, that none of these depend on d when d > K, the impact of this parameter
ultimately is not in the loss of any given structure.

The only remaining quantities that are not determined are Uy, _1, ..., Uy € R%*?, The only constraint
is that they must be orthogonal matrices. On the surface it appears that each choice of Z* has the
same degeneracy, since each just requires orthogonal matrices for the U;. However, there are two
forms of degeneracy. The first leads to a different point in the parameter space, whilst the second
leads to a different expression of the same point in the parameter space. We only aim to count the
first. To demonstrate this let us look at a single [ € {1, ..., L. — 1}. We have:

W, =UxUl | = Zsiugl)ugl—l)T’
i—1

where ugl) are the columns of U;. We see that only the singular vectors corresponding to non-zero

singular values contribute to the expression of W;. So instead of specifying a full orthogonal matrix,
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we must specify r orthonormal vectors, since changing the zero singular-vectors does not change the
parameter matrix.

Whilst we must specify r orthonormal vectors, we must account for potential degenerate singular
values, since this means there are transformations of the degenerate singular vectors that leave the
matrix unchanged. Indeed this is precisely the case for the DNC solution. We consider the two
extreme ends:

All singular values are different: When all non-zero singular values are different, we are picking an
orthogonal 7-frame in R?. The space of such solutions is known as the Stiefel manifold St(r, d), and
it is a standard result that this space has dimension given by:

dim(St(r, d)) = rd — %r(r +1).

This is the largest the matrix U; can have its degeneracy as a function of r.

All singular values are equal: When all singular values are equal, we are picking a r-dimensional
vector subspace. The space of such solutions is known as the Grassmannian manifold Gr(r, d). It is a
standard result that this space has dimension given by:

dim(Gr(r,d)) = rd — r%.
This is the smallest the matrix U; can have its degeneracy as a function of 7.

This gives the degeneracy for a single U;, we have the same degeneracy for each of Uy _1, ..., Up.
Denoting the dimension of the space of solutions corresponding to the structure Z* as Dz« (d), we
have

L(rd —1?*) < Dg«(d) < L (rd - %r(r + 1)) .

Where exactly it falls in this range depends on the number of degeneracies of the singular values,
but in all cases we get a value of the form rd — C(r), for some function C(r) obeying 7 (r + 1) <

C(r) <r2

Also note that the reparametrizations of Uy, V| are now accounted for since they correspond to
reparametrizations of the other matrices as are accounted for in the above.

In the case of DNC, the dimension is exactly
Dpne(d) = L((K — 1)d — (K —1)?),
and so we can consider the ratio of this dimension to the dimension of our other critical point Z*:

(K — 1)d — (K — 1)?
rd — r2 ’

(K —1)d— (K —1)2 < Dpne(d)

<
rd—gr(r+1) = Dgz-(d) ~

from which it immediately follows that as d — oo we have

Doxc(d) (K —1)
Dy o+

It remains to show that the ratio is monotonic increasing and starts below 1 initially. First note that
our upper bound on the ratio is less than 1 when:

(K —1)d— (K —1)?

rd — r2

<l <= d<K+r-1,

and since K + r — 1 > K, this gives that the ratio starts below 1. For monotonicity, it is sufficient to
note that the function
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(K —1)d— (K —1)?

J(d) = rd — C(r)

is monotonic on d > K if (K —1)r > C(r), which is the case since we know C(r) < 72 < r(K —1).

B.8 Proof of Theorem 6

We begin by showing that the low-rank solutions described previously are indeed critical points of
the model when the level of regularization A is sufficiently small. The logit matrix of our low-rank
solution is

X 0
Zzﬂf(@lz, where X = 0 X . , withX:[l1 _11},
0o 0 .. X
and we assume the parameter matrices satisfy the structural properties of Lemma 1. Also, note the
matrix Z has K/2 non-zero singular values, each equal to 25+/n.

Recall from Equation (I2) in Appendix B.6 that, at any critical point, we require for{ = 0, ..., L:

1

Wi = Kn\

AL (Y - P)H]. (26)

We focus on the case 1 <! < L — 1, noting the boundary cases can be handled similarly.

From Lemma 1, and the definitions of A;;; and H;, we have:
W, =UXUL,, A =U S22l H =0, 8718y
Substituting into the criticality condition of Equation (26) yields:
Kn\USUL | = Ut~ 15Tyl (v — pyvp2tsi-tul .
Pre and post multiplying by U;"', U;_1, respectively, reduces this to:
Kn\Y = =157yl (y — p)vpaTel-t

We now, for the purpose of this section only, define D € R**4 D e RE*4 D ¢ RI*Kn D/ ¢
REXK to be matrices where the top K /2 x K /2 block is the identity matrix, with all other entries
being zero. We can now pull out the scales of the matrices in our previous equation, giving:

KnAD = (28vn) 1 DTUL (Y — P)VoDT.

We now perform a conjugate transform by the orthogonal matrix:

[, o
o=t 2]

This reduces both sides of our criticality condition to only having their top K x K block being
non-zero. The reduced expression is then:

Kn\U,D'UF = (28v/n)T51 U, D'UL (Y — P)Vo[D, Orxr(mn-1] UL

We then note that
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1

= ——Xol1t
2/n @ hns

1 ~
ULD'UL = 5X, ULlD' Ogxic(u-nIVo|

and so this reduces further to:

o (28VM)TT .
Kn\X = TX(Y - P)(X®1,).

Calculating the probability matrix for this specific logit matrix, we get, written in block form,

P11
— 1 1 P ... 1 T ;o B B
P—Kf2+eﬁ+efﬂ | @, where P= L_ﬁ e
1 1 ... P
Then:
E 1 1
1 1 B .. 1 v oae
Y -P= 1 6% o1
K_2+€ﬁ+676 ® n te ® n |
1 1 ... FE
where

s=[557 )]

Explicit computation then gives:

n(2(K—2)—|—4e‘B)X
K—-2+ef+e P 77

XY -P)(X®1h) =
and so our criticality condition reduces to

1

Roageiges K 242X,

1~ 1 L—1
AT X = —(28)I+1
n —(26)
which holds when:

T
K—-2+ef +e b

1

AT — %(2@%

K —2+2e77). (27)

Plots of the RHS function in § for characteristic L, K reveal there is a single solution 3 such that
B — oo as A — 0. To see the existence of such a solution theoretically, note that if 3 is large this
equation reduces to a similar one to what we saw for the DNC case in the proof of Theorem 4, as
described in Equation (I9). A similar argument then shows that there is a solution for which g
diverges as A — 0. Thus, this structure is a critical point of the model for small enough A, with a
scale that diverges as A — 0.

We now turn to the comparison of the Hessian of this low-rank solution versus that of a DNC solution,
and analyze the asymptotic scaling behavior in the limit A — 0.

Recall from the proof of Theorem 4 (Equation (20)) that the on-diagonal Hessian blocks (pre-
flattening) are given by:

0*L

1
SN A ac — (AL py AL Dac(RORDOT
OW) a0 (W) ca AdacOd + K Z( 1+1Py A1) (h‘y hy, )bd

Y

while the off-diagonal blocks for r < [ are given by (Equation (Z1)):
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0*L

1 1 )
W) asd (W, )o = ?(AlTH(P*Y)HrT)ad[(qu---Wr+1)T}cb+—Z(AalpyAfH)ac(h(yl)hé MY,

K
Y

where p, = diag(py) — pypg, with p, the 4™ column of the softmax probability matrix P.

We argue the first term in each block is O()), whilst the second is O(SA), and so in the A — 0 limit
the first term becomes small compared to the second and does not contribute to any flatness metric.
Clearly for the on-diagonal Hessian blocks, the first term is O(\). For the off-diagonal, note, all
dependence on A to leading order is given by the scaling constant, with that scaling being

1 1

L1l _l—r
31 ATFT l—r—1 _
preipreis K—-2+4+ef+ehB K-2+eP+e

L1
,ﬁBLJrl ~ >\a

where we used Equation to relate 5 to A. Hence, this is also O(\) as claimed.

To evaluate the scale of the second terms of the block Hessians, we need to know how p,, depends on
A. Doing the computation explicitly for p; gives:

K-2 0 -1 -1
5 0 0 0 0

e (K —2+ef +eF)2 -1 0 1 0| +0(e)
10 0 .1

This scale is representative for all y. The scale of the second block Hessian term for any [, r is then:

B
(K —2+ef +eh)

1

L—1 L—r l T
L+1 L+1 L+1 L+1 ~u
PR pET fE s K—2+éef+e

SBTIT ~ B

Since 3 diverges, this term dominates, and we can safely ignore the first terms of the block Hessians
in the A — 0 limit.

We have found that each block of the Hessian is, to leading order, a fixed object (i.e. no A dependence),
multiplied by SA. Since each of our norms allow a scaling constant to be pulled out, we arrive at the
scale of the Hessian being asymptotically proportional to S\ in the limit A — 0.

The exact same steps for DNC lead to the same implications, with each leading term in the block
Hessian being proportional to a), and so the scale of the DNC Hessian is also asymptotically
proportional to aA to leading order.

We now need only understand how the two scales o and /5 depend on the parameter A. This is
described in Equations (T9), (27), which when written as asymptotic relations give:

1 K -2 L—1 1 L—1
MTH ~ ——=(20)TF e P AnTH ~ aFte @,

K
Starting with the 8 equation, taking logarithms gives:

—log(\) L—-1log(B) 1 //L-1 K 1
5 ~'TIT1 B _ﬂ(LHlog(?)_lOg(K—?) log(n))

and since 8 — oo, we arrive at 5 ~ — log(\).

Similarly for the o equation:

—log(A) 1 L—1log(a) 1

~1— - 1
a L+1 « +a{L+10g(n)}’

and since « also diverges, we find o ~ — log(\) also. Hence the ratio of the scales is:
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Ay,

BA
Since the two deterministic matrices are different, the constant of proportionality is not 1, but we
conclude that the ratio of any norm of the Hessian must tend to a constant as A — 0. This constant is
clearly dependent on the choice of norm. We also note that since Alog(A\) — 0 as A — 0, both these
scales do tend to zero in the limit. This completes the proof.

B.9 Proof of Theorem 7

We aim to show that no solution with DNC structure in the deep ReLU UFM can be globally optimal
for the values of K and L stated in Theorem 7, under the given technical assumption. We will first
demonstrate that the loss attained by a DNC solution in the deep linear UFM serves as a lower bound
for the loss of a DNC solution in the ReLU case.

Recall under the DNC structure, defined in Section 3.4, the matrices H; and H 1, (as defined in Section
2) take the form:

H=M®e1%, H=M®cI1T,

and the matrices M; — ug), M, — ﬁg) align with the simplex ETF. We will denote these globally

centered class mean matrices as M, l(G) =M, - ,u(é) and Ml(G) =M, - ﬂ(é) respectively.
We write S = I — %1 x1E = QD'QT, Where Q is an orthogonal matrix that diagonalizes S, and
D' = diag(1,1,...,1,0) € REXK,

The alignment of M Z(G), M l(G) with the simplex ETF implies that we can write their SVDs as
G ~ ~(G 5
M@ = aqRrD"QT, M =B RDTQT,
where R;, Ry € R%*? are orthogonal matrices, D = [D, O x(4—x)] € RE*? and oy, B; > 0 are

scales that give the non-zero singular values of each matrix respectively.

Recall, also by definition of a DNC solution, we can write the logit matrix Z =
Wro(..Weo(W1Hy)...), as Z = ar+1S ® 11, Inputting this into our loss function, we find
the loss of a DNC solution is given by

L
—a 1 1
Lone = log(1+ (K = e ) 4 A H[[F + 52D Wil (28)
=1

We now seek to express ar,+; in terms of the singular values of the parameter matrices.

First note that for each | we have the equation H; = Wl_lﬂ' 1—1. By using repeated columns and
global centering both sides, we deduce:

M =wi_, w9, (29)

Let the first K singular values of W;_; be denoted by wglfl) fori =1, ..., K, where as usual these
are in decreasing order. Note all other singular values of W;_; must be zero by the third DNC
property.

We quote the following lemma from Horn & Johnson [16] about the singular values of a matrix
product in terms of the singular values of the components.

Lemma: Given two matrices A € R™** and B € RF*", and denoting the i singular value of a
matrix by s;(-) in descending order, we have

46



$i(AB) < s;(A)s1(B).

(@)

Recall that the singular values of M, are o;; with multiplicity K — 1, and 0 with multiplicity 1, and

the singular values of M, l(i) are ;1 with multiplicity K — 1, and 0 with multiplicity 1. Therefore,
applying the Lemma to Equation (29), this gives us the following inequality for 2 <[ < L + 1 and
1<i<K-1

-1
o < wi( 'B11.
In particular since wl(l_l) > w%__ll) for 1 < i < K — 1, the strongest of these inequalities is

-1
a; < wl(;(_l)ﬂz—y

This gives us an inequality relating a; to 8;—1, we will now get an inequality that relates 8,1 to ay—1
using the technical assumption.

From the definition of Hl we have
“r(G ~(O)qT G )T
Ml( ) +M(G)1K = O'(Wfl( ) —‘r/L(G)lK).

Taking Frobenius norms on both sides and using the fact that the ReLU activation satisfies
llo(M)| r < ||[M||F for any matrix M, we get:

G, =~ G )
IS+ g el < 1M+ ) Tk
Now using the fact that M, l(G) 1x = M, I(G) 1x = 0, the above becomes

(G (G
I3 + KA 13 < 1MD 13 + K |ul 13
Now define the ratios
)
B 1112 - ||u ||2
) "=
169 [P

Using these ratios, and the expressions for the Frobenius norms in terms of the singular values, we
can write:

1+ Kr?
2< 2 !
Br < e [1+Kfl2}’

and using the technical assumption this gives

B <ap, for2<I1<L.

If we define H 1 = Hj, then this inequality extends to [ = 1.
Using our two inequalities involving «y, 3; we can recursively derive a bound on the output scale:
_1)

-1 !
o < Wﬁ(,l)ﬁlfl < w%,l 1.

Iterating this repeatedly yields:
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L 1
ar4+1 < alw%ll...w%)_l.

We can now return to the DNC loss given by Equation (28). Using the fact that the function
g(z) =log(l + (K — 1)e™*) is a strictly decreasing function, we have that:

L L
~ 1 1
Lone = § <a1 Hwﬁ?_1> + MR+ 52 [WallE-
=1 =1

Next, we construct a lower bound on the Frobenius norm terms.

From the fact that Ml(G) 1x = 0, we have:

G 1 G
M2 = [MED )% + K(|ul )2 > [ MD|% = (K - 1)a?,

and hence:

1H[|% = nl[Mi]fF > (K — 1)na.

For the weight matrices, recall that wgl) > wgp_l fort=1,..., K — 1, giving that

K 2 2
IWilE =" () = (k= 1) (W)

=1

Combining everything, we conclude that the loss of a DNC solution satisfies:

L
- 1 1 2
EDNC Z g (()41 ng?_1> + 5)\([( — l)na? + 5)\(K - 1) Z (wg?_1> .

=1 =1

We will now show that this lower bound is attainable by a linear model DNC solution, and thus, the
loss attained at a DNC solution in the non-linear model cannot outperform the global minimum of a
DNC solution in the linear case.

First consider the function on the right hand side of the previous inequality and for notational
convenience, relabel

1
a1v/n — g, W%)q — 5.

Then the DNC loss lower bound becomes:

L

L
RHS = § (\/15 Hml> + %)\(K 1) af.
=0

=0

Note any global-minimum of this structure occurs for finite x;, since the regularization term diverges
otherwise. Hence the sum ZlL:O x; is finite at all global minima. Now note, since g is a decreasing
function, it is minimized when all x; are equal given that their sum is finite, this follows from the
AM-GM inequality. In addition since the quadratic function is convex, Jensen’s inequality says that
the regularization term is minimized when all the z; are equal. Hence the total loss is minimized
when all z; take the same value. Setting z; = (a+/n) T , we find the minimum DNC loss is lower
bounded by the following

Lpne > I(IIZH& {g(a) + %)\(K —1)(L+ 1)(a\/ﬁ)L2+1} .

48



Note if the minimum occurs at o = 0, then this is attainable by setting all the parameter matrices
to zero, which is not a DNC solution, and so DNC is not optimal in this case. Hence we assume
minimum occurs at a 7 0.

This is precisely the loss attained by the deep linear UFM at the best performing DNC solution, as
derived in the proof of Theorem 1 in Appendix B.3. Thus, we can compare to the following loss
parameterized by a scale o > 0

L5 (0) = log(1 + (K — 1)) + AL+ 1)(K ~ 1)(aym) 7.

We will now construct a low-rank solution that can beat this loss, for any «, even for ReLU non-
linearity included.

Initially let us assume K is even. In constructing our low-rank solution, we can no longer use
the same structure as we used in the linear model. This is since for any choice of the orthogonal
matrices Uy _1, ..., Uy there will be negative entries that are zeroed out by ReLU. To address this, we
modify the construction by adding a rank-1 positive matrix to ensure all entries remain non-negative
throughout the network.

Define the matrices X,Y € RE*X as follows:

X 0 0
X = 0 X 0 whereX—{_l1 11},
0o 0 .. X
Y = 1x1%.
We observe the following key properties
XY =YX=0,

X2=2X, Y?=KY,
X% =2K, [Y|%=K
these algebraic identities will be useful in analyzing the propagation of signals throughout the layers.

We construct our solution so that for 2 < [ < L the intermediate features are of the form:

d(X +Y)

H, =
! [O(d—K)xK

]®156RWKa (30)

for some scalar ¢; > 0.

We’ll also construct our weight matrices so that for 2 < [ < L — 1 they are of the form:

_ [ X+ Y Okx-x) c Rixd
O—ryxx  Oa—K)x(d-K) ’

for some scalars ¢, x; > 0.

Since all entries of H; are non-negative by construction, the ReLU activation has no effect, meaning
Hy,y = Wio(H;) = W;H,. Using this, and the properties of X and Y stated above, we have for
2<I<L-1

_ 20X + KxinY

H,
b O(a—ryx K

® 1%L,

To preserve the structural form, we require that both components scale equally. This is achieved by
setting x; = %1/)1. Hence we arrive at the following recurrence relation for 2 < [ < L — 1
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b1 = 2019
In addition, for the last layer we set W, = [1.X, Ok (4— k)] € RF*4.
We want to set the scales of each of our parameter matrices to be equal, and so we need to also
calculate the appropriate choices of W7, Hy. We have our given form for Hy stated in Equation (30),
suppose its SVD is Hy = Us XV, Then we set
Wy =U,x207, Hy=Ux2Vy,

where U is any orthogonal matrix of appropriate dimensions. We then find

1Hl5 = Wil = si(Ha),

2

where s;(Hs) are the singular values of Ho. using the forms of X, Y, the non-zero singular values of
H, are K \/n¢ with multiplicity 1, and 2/n¢> with multiplicity 5. Hence we find that

|Hy[|% = W% = 2K /ngs.

For W; with 2 <[ < L — 1 we can also simply calculate the norm

_ 4 _
IWil3 = GRIXIE + =50 VI3 = 2(K + 2042,

and also clearly for the final layer we have

IWLllF = 2K97.

We now enforce equal Frobenius norms for each parameter matrix. We see for 2 <[ < L — 1 that if
the scales are equal then 1/; = 1. In addition setting the scale of W7 and W, equal to the scale of W,
for2 <1< L—1gives

K +2
- Kn

This determines all the scales of our parameter matrices up to a single scale v). We now want to
compute how this scale arises in the fit term through the output of the network.

K +2

@2 V2, P = TW

Using the previously established recurrence relation: for 2 <[ < L — 1 we have ¢;+1 = 2v;¢, this
givesthatfor2 <[ <L —1

bri1 = (20)' o,
and hence

K42

or = (20)1 20 = (24)1 22 Kvn

Since Z = Wro(Hy) = 161 (X? @ 1L), we then have

3
1 K+2\2 _
7 = (\/ﬁ) gLl Lt (;) X o1l

We now compare this low rank solution to the DNC solution, beginning with the fit term characterized
by the function g : RE*XEK" 5 R that was definied at the start of Appendix B. In the proof of
Theorem 1 in Appendix B.3, we saw that for any scale v > 0:
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~ 1
g X®1l)<g (v <IK - lelﬂ) ® 15) :

Hence if we match the scales of the output matrices, the low rank solution will strictly outperform the
DNC solution on the fit term. To match the scales, set ¢ to have the following relationship with the

scale « of the DNC solution:
1 K+2\?
+
— . 2L71 L+1 (2 T~ )
“ <\/ﬁ ) v K

This guarantees that our low-rank solution performs better on the fit term. We now assess when it
will do better on the regularization term. Computing the regularization term for the low rank solution,
we require that:

%)\(L + 1)K — 1)(av/m) T > AL+ D[2(K + 202,

DN | =

Removing the common factors, since they are positive, and using the form of « in terms of ¢, this is
equivalent to

2(L—1

3
K+ 2\ o+t )
(K —1) (;) 2T h? > 2(K + 2)1p2.
Eliminating )2, since we assume it is non-zero, and cleaning the expression slightly gives:

3
Z+1 _
(KH) 27+ (K — 1) > K +2,
K

and this holds when L = 4, K > 14, or L > 5, K > 10. Hence we find that in these cases our
low-rank solution outperforms the DNC solution when the scales of the output matrices are set equal.
Hence this is true at the optimal scale of the DNC solution, and DNC cannot be optimal. In this
proof, we assumed when minimizing the scale that « # 0 at the minima, but if the optimal o occurs
at o = 0 then DNC is not optimal, since we required o > 0 in its definition.

Hence we find that the DNC solution cannot be optimal in the deep ReLU UFM when K is even,
subject to these conditions on L and K.

It remains to cover the odd K cases. Let K = 2m + 1. We similarly define our matrices X,Y to
before, with a slight change to account for the odd dimension.

X 0O2x2 ... O2x2 O
B 02><2 X 02><2 0 1 _1
X=1 .. ve e eee | where X = {_1 1 ] ;
O2x2 O2x2 ... X O
0 0o .. 0 2

> lom1d  Ogmx1
Y — m-+2m mX .
[ O1x2m 0

These matrices now satisfy
XY =VX =0,
X?=2X, Y’=(K-1)Y,
IX|5 =2(K+1), [[V]F=(K-1)>

As before, define the intermediate features and weights to have the following form:
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P(X+Y)

for2<I<L:H = [O(d :
—K)XK

] @17 € RIEn,
fOI‘2§l§L—1:VVl: le+XlY OKX(de) G]RdXd.
O—ryxx  O@d—K)x(d—K)

To maintain the desired form of the H; matrices we now require y; = ﬁw’ and we find ¢;41 =
21¢; as before. For the final layer, define:

Wi =YX, 0k x(4—K))-

As before, define the W7, H; matrices in terms of the components of the SVD of H,. This yields

IH L[5 = [Whl% = 2K Vngs.

Computing the norms of the other parameter matrices gives

2<I< D=1 [Wilff = 2(K +3)y7,
IWellF = 2(K + D)y

Again setting each parameter matrix norm equal we find that for

K+3 K+3 ,
<]l < . — — .
2slsL-1 vi=v vr K—s—lw’ 02 K\/ﬁq’b

We then use our recurrence relation for ¢; to get ¢, = (21))*~2¢,. We hence find that the output

matrix Z is
1 K+3 K+3 -
Z=|— )2 /[ =—=)  —= | "' X.
()2 () ()

Again setting the scale of the DNC solution equal to the scale of this Z guarantees it outperforms on
the fit term, whilst the regularization term reduces to

1 2
-3 (K+3\It (K + 3\ L+t
K+3<(K—1)28 (212 ats
+3<( )2 (K+1> ( K > )

and this holds for L. = 4, K > 17, or L > 5, K > 11. Hence by the same arguments the DNC
solution cannot be optimal for odd K in these cases.

Putting these two together, we find that the DNC solution is not optimal when K, L satisfy L =
4, K > 16,or L > 5, K > 10.

C Proofs in imbalanced deep linear UFM

The proofs in this section closely follow those of the corresponding theorems in the main text. Here,
we highlight the key differences that arise due to class imbalance, while referring the reader to the
previous appendix for all other details that remain unchanged.
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C.1 Proof of Theorem Al

We follow the proof of Theorem 2, and begin by showing that there exists a constant v > 0 such that
ayM achieves a strictly lower fit loss than X for any o > 0. Let the column of X corresponding

to the i sample of class ¢ be denoted by z;., and let the corresponding column for M be mj,. Then
the respective fit losses are :

K n¢
g(yaM,Y) ZZlog 1+ Zexp ya[(Mic)er — (Mic)e)) |
c=1i=1 c’'#c
K n¢
g(aX,Y) ZZlog 1+ Z exp (a(Tic)er — (Tic)e])
c=1i=1 c'#c

To ensure Wa]\;[ yields a lower fit loss than X, it suffices that:

Ve, #ce{l,. K}, Vie{l,...,n} v(mic)e — (Mic)e] < [(@ic)er — (@ic)e)-

Since all x;.. are finite, and the differences (m;.)e — (M) < 0 for all ¢’ # ¢ due to the generalized

diagonal superiority of M, we can choose + large enough that this inequality holds for all ¢, ¢/, i.
Therefore, for this fixed -, we have:

g(yaM) < g(aX) foralla >0,

where equality only occurs when o = 0. The remainder of the proof is identical to that of Theorem 2
found in Appendix B.4.

C.2 Proof of Theorem A2

As in the proof of Theorem 3, we relabel L +1 — L and %)\ — A, and similarly apply Lemma 1 to
reduce the loss function to the following form:

K
Li(Z) = g(ZY) + LAY 5F

where {3;}X | are the singular values of Z.

The proof of claim (i) follows through exactly as in the proof of Theorem 3 found in Appendix B.5,
and we refer the reader there for details.

Proof of (ii)

Assume LA = o(1). We show that, for large enough L, any optimal solution Z} must be
(K;nq,...,nk) diagonally superior. Let Z € RX*N be any matrix that is not (K;nq,...,nx)
diagonally superior. Denote the columns of Z corresponding to the i sample of class ¢ by z;.. Then
the fit term is given by

ne
ZZ]Og 1+ Z eXp ch ! (zic)c)

c=11i=1 c'#c
Since Z is not (K;nq,...,nk) diagonally superior, there exists values ¢’ # ¢ € {1,..., K}, i €
{1, ...,n.} such that (z;.)e — (2ic)e > 0. This implies that the fit term is bounded below

1
9(2,Y) = 1 log(2),
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and hence the whole loss is also bounded

£4(2) >  Tos(2).

Now let Z' be any (K;ny,...,nx) diagonally superior matrix, with singular values {s}X . Let
2!, denote the column of Z’ corresponding to the i sample of class c. Consider the sequence of
solutions LZ' for each L. The loss becomes:

K
Li(LZ") = g(LZ'Y)+ LALLE Y (s})E.

i
i=1

For the fit term, note by definition of diagonally superiority, we have (z}.) — (2.) < 0 for all
d#cef{l,. K}, ie{l,..,n.}. Thus,

G(LZ¥) = 33 g {143 exp (Lo — (Lo)e)) | = 1 30D lom(1+0(1)) = o).
c=1i=1 c'#c c=1i=1

Moreover, since LZ = 1 + o(1) and Zfil(sg)% =rank(Z’) 4 o(1), we have

L (LZ") =0(1)+ LAL(1 + o(1))(rank(Z’) + o(1)) = o(1).
Thus, for sufficiently large L, the loss of LZ is strictly less than - log(2), which is a lower bound
on the loss of any matrix that is not (K’; n1, ..., nx ) diagonally superior. Therefore, any optimal Z}
must be (K;nq,...,nk ) diagonally superior.

The remainder of the proof of claim (ii) proceeds exactly as in the proof of Theorem 3 found in
Appendix B.5, once it is established that the minimal rank ¢ of a diagonally superior matrix in R¥* X
is the same as the minimal rank § of a (K;n1, ..., nx ) diagonally superior matrix in R* > First
note clearly ¢ < g since we could just column repeats of the solution in the diagonally superior case.
Also g < g, since we can just select individual columns from the (K;nq, ..., nx ) diagonally superior

case, and the resulting matrix will have at most the same rank and will be diagonally superior in
RK x K .

C.3 Proof of Theorem A3

Suppose we have some fixed (R, p)-STEP imbalanced dataset, and denote the unique global minimizer
of the corresponding single layer UFM problem by Z; € R¥*¥_ By Proposition 2 in Thrampoulidis
et al. [44], we know that the normalized matrix

Zx = Z3 /123l e

converges to the corresponding normalized SEL matrix as A — 0.

Note that any SEL matrix has rank K — 1, since its column span is identical to the standard simplex
ETF. This implies our corresponding normalized SEL matrix, has K — 1 non-zero singular values,
suppose the smallest is k1. Then, by convergence, there exists a constant A\g > 0 such that when

A < Ag, the matrix Z§ has K — 1 non-zero singular values, all greater than % WK —1-

Now let M € RE*K be a diagonally superior matrix of rank r < K — 1. Using the structure
described in the proof of Theorem 1, we know this is achievable whenever K > 4. Additionally, set
the scale of M so that for all ¢, ¢’ # ¢

Moy — Moo < —2.
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Construct the matrix M € RE*N by simply repeating the columns of M so that the first ; columns
of M are the first column of M, and so on. We now compare the loss of ozZ * to the solution oM,
with the goal of showing the latter outperforms the former. Again work with the loss written in terms
of only the logit matrix:

L(aZy) = g(aZ}) + /\(L+1)0¢L+1HZ*|I ; :
TH+1

~ ~ 1 - 2

L(all) = g(add) + AL+ DT |8 37T .
5T

Since Z % is a normalized matrix, its margins cannot be greater than 2, and so we must have g(ozZ;‘\) >

g(aM ), and so our low rank solution does perform better on the fit term. It is then sufficient that we
also outperform on the regularization term, meaning

1
A(Tﬂrl)oﬂ+1 IIMHL+1 < A(L+1)GL+1\\Z*\IL“ ;
T+1 T+1

+1 +1

after dropping positive constants, this is

For this to hold when \ < \g, it is sufficient that

1 L+1
INTIET < -0 (o)
TH+T

+1

Denoting the singular values of M by v;, ¢ = 1, ..., r, this becomes

L 1 T
> P < (K -1) <2/tK—1> .
i=1

The LHS of this inequality tends to r as L — oo, whereas the RHS tends to K —~1 > r, hence there
exists an Lg such that when L > Ly, this inequality is satisfied, and hence £(aM) < L(aZF).

Hence no generalized DNC structure in the imbalanced setting is globally optimal for K > 4, when
A < Xpand L > Ly, as claimed.

D Further experiments

Further numerical details: In most of our experiments, we present a single indicative run of the
network or model. Since our aim is to demonstrate the suboptimality of DNC, we consider a single
run sufficient. The behavior we describe is representative when using high levels of regularization, as
we did in our experiments and as is detailed in the figure captions. For the standard regularization
experiments, we apply weight decay equally at each layer in both the ResNet-20 backbone and the
fully connected head. For experiments on MNIST, we subsample 5,000 examples per class to match
the class balance of the CIFAR-10 dataset. Input data is preprocessed by subtracting the mean and
dividing by the standard deviation. We use batch gradient descent with batch size 10,000 so as to
approximate gradient descent, which is used in the model. However experiments with other batch
sizes still lead to low rank solutions when regularization was high.

We also provide here additional experiments that support our theoretical findings:

Deep UFM experiments: The left panel of Figure 5 illustrates how the rank of the solution found by
gradient descent depends on the width of the network in the deep linear UFM. As predicted by our
theory, the rank increases with width. Solutions with ranks between 5 and 9 represent a midpoint
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Figure 5: Experiments in the deep linear UFM: Left: Rank of converged solution versus width
d. Right: Rank of converged solution versus regularization A. Averaged over 10 runs; same
hyperparameters as Figure 1.
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Figure 6: Experiments in the deep ReLU UFM: Left: Loss curve for a low-rank solution against
the DNC lower bound. Right: Singular values of each feature matrix in the fully connected head.
Hyperparameters: L = 3,d = 70, A = 279 K =10, n =5, learning rate = 0.5.

between DNC and our low-rank solution, where a subset of the classes forms a restricted simplex
ETF and the remaining classes pair up in a manner similar to the low-rank structure. The right panel
of Figure 5 shows that lower levels of regularization are also associated with higher ranks.

Figure 6 presents the experiment in the deep UFM with ReL. U activations, again demonstrating that
low-rank solutions outperform DNC in this setting.

Full network experiments: The corresponding experiment using UFM-style regularization with
ReLU activations on the MNIST dataset is shown in Figure 7, with similar implications to those
observed for CIFAR-10 in the bottom row of Figure 3. Figure 8 displays the analogous experiment
on MNIST using standard regularization, again with implications consistent with those of Figure 4 in
the main text.
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Figure 7: Experiments using UFM-style regularization on MNIST: Left: Loss curve for a low-rank
solution against the DNC lower bound. Right: Singular values of each feature matrix in the fully
connected head. Hyperparameters: L = 4,d = 64, Ay =1 x 1076, A\ = 5 x 1073, learning rate
=103
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Figure 8: Experiments with standard regularization on MNIST: Left: Singular values of each feature
matrix in the fully connected head. Right: Mean logit matrix. Hyperparameters: L = 3, d = 64,
A = 1072, learning rate = 1073,
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