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Abstract

Pre-trained language models such as BERT001
have been successful at tackling many natural002
language processing tasks. However, the unsu-003
pervised sub-word tokenization methods com-004
monly used in these models (e.g., byte-pair005
encoding – BPE) are sub-optimal at handling006
morphologically rich languages. Even given007
a morphological analyzer, naive sequencing008
of morphemes into a standard BERT architec-009
ture is inefficient at capturing morphological010
compositionality and expressing word-relative011
syntactic regularities. We address these chal-012
lenges by proposing a simple two-tier BERT013
architecture that leverages a morphological an-014
alyzer and explicitly represents morphologi-015
cal compositionality. Despite the success of016
BERT, most of its evaluations have been con-017
ducted on high-resource languages, obscur-018
ing its applicability on low-resource languages.019
We evaluate our proposed method on the low-020
resource morphologically rich Kinyarwanda021
language, naming the proposed model archi-022
tecture KinyaBERT. A robust set of experi-023
mental results reveal that KinyaBERT outper-024
forms solid baselines by 2% F1 score on a025
named entity recognition task and by 4.3%026
average score of a machine-translated GLUE027
benchmark. KinyaBERT fine-tuning has bet-028
ter convergence and achieves more robust re-029
sults on multiple tasks even in the presence030
of translation noise. Code and datasets are031
released at https://anonymous.4open.032
science/r/kinyabert-acl033

1 Introduction034

Recent advances in natural language processing035

(NLP) through deep learning have been largely en-036

abled by vector representations (or embeddings)037

learned through language model pre-training (Ben-038

gio et al., 2003; Mikolov et al., 2013; Pennington039

et al., 2014; Bojanowski et al., 2017; Peters et al.,040

2018; Devlin et al., 2019). Language models such041

as BERT are pre-trained on large text corpora and042

then fine-tuned on downstream tasks, resulting in 043

better performance on many NLP tasks. Despite 044

attempts to make multilingual BERT models (Con- 045

neau et al., 2020), research has shown that mod- 046

els pre-trained on high quality monolingual cor- 047

pora outperform multilingual models pre-trained 048

on large Internet data (Scheible et al., 2020; Vir- 049

tanen et al., 2019). This has motivated many re- 050

searchers to pre-train BERT models on individ- 051

ual languages rather than adopting the “language- 052

agnostic” multilingual models. This work is partly 053

motivated by the same findings, but also pro- 054

poses an adaptation of the BERT architecture to 055

address other challenges that are specific to low 056

resource morphologically-rich languages such as 057

Kinyarwanda. 058

In order to handle rare words and reduce the 059

vocabulary size, BERT-like models use statistical 060

sub-word tokenization algorithms such as byte pair 061

encoding (BPE) (Sennrich et al., 2015). While 062

these techniques have been widely used in language 063

modeling and machine translation, they are not op- 064

timal for morphologically rich languages. In fact, 065

BPE cannot efficiently handle non-concatenative 066

morphology because it is solely based on the sur- 067

face forms of words. For example, as shown in 068

Table 1, a BPE model trained on 390 million to- 069

kens of Kinyarwanda text cannot extract the true 070

sub-word lexical units (i.e. morphemes) for the 071

given words. This work addresses the above prob- 072

lem by proposing a language model architecture 073

that explicitly represents most of the input words 074

with morphological parses produced by a morpho- 075

logical analyzer. In this architecture BPE is only 076

used to handle words which cannot be decomposed 077

by the morphological analyzer such as misspellings 078

and foreign language words. 079

Given the output of a morphological analyzer, 080

a second challenge is in how to incorporate the 081

produced morphemes into the model. One naive 082

approach is to feed the produced morphemes to a 083

1

https://anonymous.4open.science/r/kinyabert-acl
https://anonymous.4open.science/r/kinyabert-acl
https://anonymous.4open.science/r/kinyabert-acl


Word Morphemes Monolingual BPE Multilingual BPE

twagezeyo ’we arrived there’ tu . a . ger . ye . yo twag . ezeyo _twa . ge . ze . yo
ndabyizeye ’I hope so’ n . ra . bi . izer . ye ndaby . izeye _ ndab . yiz . eye
umwarimu ’teacher’ u . mu . arimu umwarimu _um . wari . mu

Table 1: Comparison between morphemes and BPE-produced sub-word tokens. Stems are underlined.

standard transformer encoder as a single monolithic084

sequence. This approach is used in (Mohseni and085

Tebbifakhr, 2019). One problem with this method086

is that mixing sub-word information and sentence-087

level tokens in a single sequence does not encour-088

age the model to learn the actual morphological089

compositionality. Another problem is that posi-090

tion encoding mechanisms used in BERT might091

become less effective due to the large number of092

morphemes appearing everywhere in the sequence.093

We hypothesize that this mixing might make it dif-094

ficult to learn sentence-level syntactic regularities095

that would otherwise benefit from relative posi-096

tion information between different parts of speech097

(POS). We address these issues by proposing a098

simple yet effective two-tier transformer encoder099

architecture for expressing morphological compo-100

sitionality. The first tier encodes morphological in-101

formation, which is then transferred to the second102

tier to encode sentence level information. We call103

this new model architecture KinyaBERT because104

it uses BERT’s masked language model objective105

for pre-training and is evaluated on the morpholog-106

ically rich Kinyarwanda language.107

This work also represents progress in low re-108

source NLP. Advances in human language technol-109

ogy are most often evaluated on the main languages110

spoken by major economic powers such as English,111

Chinese and European languages. This has exac-112

erbated the language technology divide between113

the highly resourced languages and the underrepre-114

sented languages. It also hinders progress in NLP115

research because new techniques are mostly evalu-116

ated on the mainstream languages and some NLP117

advances become less informed of the diversity of118

the linguistic phenomena (Bender, 2019). Specif-119

ically, this work provides the following research120

contributions:121

• A simple yet effective two-tier BERT archi-122

tecture for representing morphologically-rich123

languages.124

• New evaluation datasets for Kinyarwanda lan-125

guage including a machine-translated subset126

of the GLUE benchmark (Wang et al., 2018) 127

and a news categorization dataset. 128

• Experimental results which set a bench- 129

mark for future studies on Kinyarwanda lan- 130

guage understanding, and on using machine- 131

translated versions of the GLUE benchmark. 132

• Code and datasets that are made publicly avail- 133

able for reproducibility1. 134

2 Morphology-aware Language Model 135

Our modeling objective is to be able to express 136

morphological compositionality in a Transformer- 137

based (Vaswani et al., 2017) language model. 138

For morphologically rich languages such as 139

Kinyarwanda, a set of morphemes (typically a stem 140

and a set of functional affixes) combine to produce 141

a word with a given surface form. This requires 142

an alternative to the ubiquitous BPE tokenization, 143

through which exact sub-word lexical units (i.e. 144

morphemes) are used. For this purpose, we use a 145

morphological analyzer which takes a sentence as 146

input and, for every word/token, produces a stem, 147

zero or more affixes and assigns a POS tag to each 148

word/token. This section describes how this mor- 149

phological information is obtained and then inte- 150

grated in a two-tier transformer architecture (Fig- 151

ure 1) to learn morphology-aware input representa- 152

tions. 153

2.1 Morphological Analysis and 154

Part-of-Speech Tagging 155

Our morphological analyzer for Kinyarwanda was 156

built following finite-state two-level morphology 157

principles (Koskenniemi, 1983; Beesley and Kart- 158

tunen, 2000, 2003). For every inflectable word 159

type, we maintain a morphotactics model using a 160

directed acyclic graph (DAG) that represents the 161

regular sequencing of morphemes. We effectively 162

model all inflectable word types in Kinyarwanda 163

which include verbals, nouns, qualitative adjectives, 164

1https://anonymous.4open.science/r/
kinyabert-acl
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    V5   tu ara ha mu bon yeNP35 John

Morphological Analyser

John twarahamubonye biradutangaza

   V9   bi  ra  tu tangar y a

Sentence/Document-Level Encoder

Morphology Encoder Morphology Encoder Morphology Encoder

John bon tangar

(We were surprised to find John there)

Figure 1: KinyaBERT model architecture: Encoding of the sentence ’John twarahamusanze biradutangaza’ (We
were surprised to find John there). The morphological analyzer produces morphemes for each word and assigns
a POS tag to it. The two-tier transformer model then generates contextualized embeddings (blue vectors at the
top). The red colored embeddings correspond to the POS tags, yellow is for the stem embeddings, green is for the
variable length affixes while the purple embeddings correspond to the affix set.

possessive and demonstrative pronouns, numerals165

and quantifiers. The morphological analyzer also166

includes many hand-crafted rules for handling mor-167

phographemics and other linguistic regularities of168

the Kinyarwanda language. Similar to (Nzeyimana,169

2020), we use a classifier trained on a stemming170

dataset to disambiguate between competing out-171

puts of the morphological analyzer. Furthermore,172

we improve the disambiguation quality by lever-173

aging a part-of-speech (POS) tagger at the phrase174

level so that the syntactic context can be taken into175

consideration.176

We devise an unsupervised part-of-speech tag-177

ging algorithm which we explain next. Let178

x = (x1, x2, x3, ...xn) be a sequence of tokens (e.g.179

words) to be tagged with a corresponding sequence180

of tags y = (y1, y2, y3, ...yn). A sample of actual181

POS tags used for Kinyarwanda is given in the182

Appendix. Using Bayes’ rule, the optimal tag se-183

quence y∗ is given by the following equation:184

y∗ = argmax
y

P (y|x)

= argmax
y

P (x|y)P (y)
P (x)

= argmax
y

P (x|y)P (y)

(1)185

A standard hidden Markov model (HMM) can186

decompose the result of Equation 1 using first187

order Markov assumption and independence as-188

sumptions into P (x|y) =
∏n

t=1 P (xt|yt) and189

P (y) =
∏n

t=1 P (yt|yt−1). The tag sequence y∗190

can then be efficiently decoded using the Viterbi al- 191

gorithm (Forney, 1973). A better decoding strategy 192

is presented below. 193

Inspired by (Tsuruoka and Tsujii, 2005), we de- 194

vise a greedy heuristic for decoding y∗ using the 195

same first order Markov assumptions but with bidi- 196

rectional decoding. 197

First, we estimate the local emission probabili- 198

ties P (xt|yt) using a factored model given in the 199

following equation: 200

P (xt|yt) ∝ P̃ (xt|yt)
P̃ (xt|yt) = P̃m(xt|yt)P̃p(xt|yt)P̃a(xt|yt)

(2) 201

In Equation 2, P̃m(xt|yt) corresponds to the 202

probability/score returned by a morphological dis- 203

ambiguation classifier, representing the uncertainty 204

of the morphology of xt. P̃p(xt|yt) corresponds 205

to a local precedence score between competing 206

POS tags. These precedence weights are manually 207

crafted through qualitative evaluation. P̃a(xt|yt) 208

quantifies the local neighborhood syntactic agree- 209

ment between Bantu class markers. Like most 210

Bantu languages, Kinyarwanda has 16 class mark- 211

ers (KIMENYI, 1978) that are included in in nouns, 212

verbs, adjectives and pronouns. We leverage this 213

agreement information to improve disambiguation. 214

When there are two or more agreeing class mark- 215

ers in neighboring words, the tagger should be 216

more confident of the agreeing parts of speech. 217

Each of the above unnormalized measures P̃ is 218

mapped to the [0, 1] range using a sigmoid function 219
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σ(z|zA, zB) given in Equation 3, where z is the220

score of the measure and [zA, zB] is its estimated221

active range.222

σ(z|zA, zB) = [1 + exp(−8 z − zA
zB − zA

)]−8 (3)223

After estimating the local emission model, we224

greedily decode y∗t = argmax ytP̃ (yt|x) in de-225

creasing order of P̃ (xt|yt) using a first order bidi-226

rectional inference of P̃ (yt|x) as given in the fol-227

lowing equation:228

P̃ (yt|x) =

P̃ (xt|yt)P̃ (yt|y∗t−1, y
∗
t+1)P̃ (y

∗
t−1|x)P̃ (y∗t+1|x)

if both y∗t−1 and y∗t+1 have been decoded;
P̃ (xt|yt)P̃ (yt|y∗t−1)P̃ (y

∗
t−1|x)

if only y∗t−1 has been decoded;
P̃ (xt|yt)P̃ (yt|y∗t+1)P̃ (y

∗
t+1|x)

if only y∗t+1 has been decoded;
P̃ (xt|yt) otherwise

(4)

229

The first order transition measures P̃ (yt|yt−1),230

P̃ (yt|yt+1) and P̃ (yt|yt−1, yt+1) are estimated us-231

ing count tables computed over the entire cor-232

pus by aggregating local emission marginals233

P̃ (yt) =
∑

xt
P̃ (xt, yt) obtained by morphologi-234

cal analysis and disambiguation.235

2.2 Morphology Encoding236

The overall architecture of our model is depicted237

in Figure 1. This is a two-tier transformer encoder238

architecture made of a token-level morphology en-239

coder that feeds into a sentence/document-level240

encoder. The morphology encoder is made of a241

small transformer encoder that is applied to each242

analyzed token separately in order to extract its243

morphological features. The extracted morpho-244

logical features are then concatenated with the245

token’s stem embedding to form the input vec-246

tor fed to the sentence/document encoder. The247

sentence/document encoder is made of a standard248

transformer encoder as used in other BERT models.249

The sentence/document encoder uses untied posi-250

tion encoding with relative bias as proposed in (Ke251

et al., 2020).252

The input to the morphology encoder is a set of253

embedding vectors, 3 vectors relating to the part-of-254

speech, 1 vector for the stem and 1 vector for each255

affix when available. The transformer encoder oper-256

ation is applied to these embedding vectors without257

any positional information, in a “bag-of-tokens” 258

fashion. This is due to the fact that positional infor- 259

mation at the morphology level is inherent because 260

no morpheme repeats and each morpheme always 261

occupies a known(i.e. fixed) morpheme slot in 262

the morphotactics model. The extracted morpho- 263

logical features are the 4 encoder output vectors 264

corresponding to the 3 POS embeddings and 1 stem 265

embedding. Vectors corresponding to the affixes 266

are left out since they are of variable length and 267

the affixes role is to be attended to by the stem and 268

the part-of-speech so that morphological informa- 269

tion can be captured. The 4 morphological output 270

feature vectors are further concatenated with an- 271

other stem embedding at the sentence level to form 272

the input vector for the main sentence/document 273

encoder. 274

The choice of this transformer-based architec- 275

ture for morphology encoding is motivated by two 276

factors. First, (Zaheer et al., 2020) has demon- 277

strated the importance of having “global tokens” 278

such as [CLS] token in BERT models. These are 279

tokens that attend to all other tokens in the modeled 280

sequence. These “global tokens” effectively encap- 281

sulate some “meaning” of the encoded sequence. 282

Second, the POS tag and stem represent the high 283

level information content of a word. Therefore, 284

having the POS tag and stem embeddings be trans- 285

formed into morphological features is a viable op- 286

tion. The POS tag and stem embeddings thus serve 287

as the “global tokens” at the morphology encoder 288

level since they attend to all other morphemes that 289

can be associated with them. 290

In order to capture subtle morphological infor- 291

mation, we make one of the 3 POS embeddings 292

span an affix set that is a subset of all affixes power 293

set. We form an affix set vocabulary Va that is 294

made of N most frequent affix combinations in the 295

corpus. In fact, the morphological model of the 296

language enforces constraints on which affixes can 297

go together for any given part-of-speech, resulting 298

in an affix set vocabulary that is much smaller than 299

the power set of all affixes. Even with limiting the 300

affix set vocabulary Va to a fixed size, we can still 301

map any affix combination to Va by dropping zero 302

or very few affixes from the combination. Note that 303

the affix set embedding still has to attend to all mor- 304

phemes at the morphology encoder level, making 305

it adapt to the whole morphological context. The 306

affix set embedding is depicted by the purple units 307

in Figure 1. 308
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2.3 Pre-training Objective309

Similar to other other BERT models, we use a310

masked language model objective. Specifically,311

15% of all tokens in the training set are considered312

for prediction, of which 80% are replaced with313

[MASK] tokens, 10% are replaced with random to-314

kens and 10% are left unchanged. When prediction315

tokens are replaced with [MASK] or random to-316

kens, the corresponding affixes are randomly omit-317

ted 70% of the time or left in place for the other318

30% of the time while the units corresponding to319

POS tags and affix sets are also masked. The pre-320

training objective is then to predict stems and the321

associated affixes for all tokens considered for pre-322

diction using a two-layer feed-forward module on323

top of the encoder output.324

For the affix prediction task, we face a multi-325

label classification problem where for each predic-326

tion token, we predict a variable number of affixes.327

In our experiments, we tried two methods. For one,328

we use the Kullback–Leibler (KL) divergence loss329

function to solve regression task of the N -length330

continuous affix distribution vector. For this case,331

we use a target affix probability vector at ∈ RN in332

which each target affix index is assigned 1
m proba-333

bility and 0 probability for non-target affix indices,334

where m is the total number of target affixes and335

N is the total number of all affixes in the language.336

We call this method “Affix Distribution Regression”337

(ADR) and model variant KinyaBERTADR. Alter-338

natively, we use cross entropy loss and just predict339

the affix set associated with each word; we call this340

method “Affix Set Classification” (ASC) and the341

model variant KinyaBERTASC .342

3 Experiments343

In order to evaluate the proposed architecture,344

we pre-train KinyaBERT (101M parameters for345

KinyaBERTADR and 129M for KinyaBERTASC)346

on a 2.4 GB of Kinyarwanda text along with 3 base-347

line BERT models. The first baseline is a BERT348

model pre-trained on the same Kinyarwanda cor-349

pus and with the same position encoding (Ke et al.,350

2020), same batch size and pre-training steps, but351

using the standard BPE tokenization. We call this352

first baseline model BERTBPE (120M parameters).353

The second baseline is a similar BERT model pre-354

trained on the same Kinyarwanda corpus but tok-355

enized by a morphological analyzer. For this model,356

the input is just a sequence of morphemes, in a simi-357

lar fashion to (Mohseni and Tebbifakhr, 2019). We358

call this second baseline model BERTMORPHO 359

(127M parameters). For BERTMORPHO, we found 360

that predicting 30% if the tokens achieves better 361

results than using 15% because of the many affixes 362

generated. The third baseline is XLM-R (Con- 363

neau et al., 2020) (270M parameters) which is pre- 364

trained on 2.5 TB of multilingual text. We evaluate 365

the above models by comparing their performance 366

on downstream NLP tasks. 367

Language Kinyarwanda
Publication Period 2011 - 2021
Websites/Sources 370
Documents/Articles 840K
Sentences 16M
Tokens/Words 390M
Text size 2.4 GB

Table 2: Summary of the pre-training corpus.

3.1 Pre-training details 368

KinyaBERT model was implemented using Py- 369

torch version 1.9. The morphological analyzer 370

and part-of-speech tagger were implemented in 371

a shared library using POSIX C. Morphological 372

parsing of the corpus was performed as a pre- 373

processing step, taking 20 hours to segment the 374

390M-token corpus on an 12-core desktop machine. 375

Pre-training was performed using RTX 3090 and 376

RTX 2080Ti desktop GPUs. Each KinyaBERT 377

model takes on average 22 hours to train for 1000 378

steps on one RTX 3090 GPU or 29 hours on one 379

RTX 2080Ti GPU. Baseline models (BERTBPE 380

and BERTMORPHO) were pre-trained on cloud 381

tensor processing units (TPU v3-8 devices each 382

with 128 GB memory) using an PyTorch/XLA 383

package and a TPU-optimized fairseq toolkit (Ott 384

et al., 2019). Pre-training on TPU took 2.3 hours 385

per 1000 steps. The baselines were trained on TPU 386

because there were no major changes needed to the 387

existing Roberta(base) architecture implemented in 388

fairseq and the TPU resources were available and 389

efficient. In all cases, pre-training batch size was 390

set to 2560 sequences, with maximum 512 tokens 391

in each sequence. The maximum learning rates 392

was set to 4× 10−4 which is achieved after 2000 393

steps and then linearly decays to 0 at targeted 200K 394

steps. Our main results and ablation results were 395

obtained from models pre-trained for 32K steps in 396

all cases. Other pre-training details, model archi- 397

tectural dimensions and other hyper-parameters are 398

given in the Appendix. 399
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Task: MRPC QNLI RTE SST-2 STS-B WNLI
#Train examples: 3.4K 104.7K 2.5K 67.4K 5.8K 0.6K
Translation score: 2.7/4.0 2.9/4.0 3.0/4.0 2.7/4.0 3.1/4.0 2.9/4.0

Model Validation Set

XLM-R 84.2/78.3±0.8/1.0 79.0±0.3 58.4±3.2 78.7±0.6 77.7/77.8±0.7/0.6 55.4±2.0

BERTBPE 83.3/76.6±0.8/1.4 81.9±0.2 59.2±1.5 80.1±0.4 75.6/75.7±7.8/7.3 55.4±1.9

BERTMORPHO 84.3/77.4±0.6/1.1 81.6±0.2 59.2±1.5 81.6±0.5 76.8/77.0±0.8/0.7 54.2±2.5

KinyaBERTADR 87.1/82.1±0.5/0.7 81.6±0.1 61.8±1.4 81.8±0.6 79.6/79.5±0.4/0.3 54.5±2.2

KinyaBERTASC 86.6/81.3±0.5/0.7 82.3±0.3 64.3±1.4 82.4±0.5 80.0/79.9±0.5/0.5 56.2±0.8

Model Test Set

XLM-R 82.6/76.0±0.6/0.6 78.1±0.3 56.4±3.2 76.3±0.4 69.5/68.9±1.0/1.1 63.7±3.9

BERTBPE 82.8/76.2±0.6/0.8 81.1±0.3 55.6±2.8 79.1±0.4 68.9/67.8±1.8/1.7 63.4±4.1

BERTMORPHO 82.7/75.4±0.8/1.3 80.8±0.4 56.7±1.0 80.7±0.5 68.9/67.8±1.5/1.3 65.0±0.3

KinyaBERTADR 84.4/78.7±0.5/0.6 81.2±0.3 58.1±1.1 80.9±0.5 73.2/72.0±0.4/0.3 65.1±0.0

KinyaBERTASC 84.6/78.4±0.2/0.3 82.2±0.6 58.8±0.7 81.4±0.6 74.5/73.5±0.2/0.2 65.0±0.2

Table 3: Performance results on the machine translated GLUE benchmark (Wang et al., 2018). The translation
score is the sample average translation quality score assigned by volunteers. For MRPC, we report accuracy and
F1. For STS-B, we report Pearson and Spearman correlation. For all others, we report accuracy. The best results
are shown in bold while equal top results are underlined.

Task: NER
#Train examples: 2.1K

Model Validation Set Test Set

XLM-R 80.3±1.0 71.8±1.5

BERTBPE 83.4±0.9 74.8±0.8

BERTMORPHO 83.2±0.9 72.8±0.9

KinyaBERTADR 87.1±0.8 77.2±1.0

KinyaBERTASC 86.2±0.4 76.3±0.5

Table 4: Micro average F1 scores on Kinyarwanda
NER task (Adelani et al., 2021).

Task: NEWS
#Train examples: 18.0K

Model Validation Set Test Set

XLM-R 83.8±0.3 84.0±0.2

BERTBPE 87.6±0.4 88.3±0.3

BERTMORPHO 86.9±0.4 86.9±0.3

KinyaBERTADR 88.8±0.3 88.0±0.3

KinyaBERTASC 88.4±0.3 88.0±0.2

Table 5: Accuracy results on Kinyarwanda NEWS cat-
egorization task.

3.2 Evaluation tasks400

Machine translated GLUE benchmark – The401

General Language Understanding Evaluation402

(GLUE) benchmark (Wang et al., 2018) has been403

widely used to evaluate pre-trained language mod-404

els. In order to assess KinyaBERT performance 405

on such high level language tasks, we used Google 406

Translate API to translate a subset of the GLUE 407

benchmark (MRPC, QNLI, RTE, SST-2, STS-B 408

and WNLI tasks) into Kinyarwanda. CoLA task 409

was left because it is English-specific. MNLI and 410

QQP tasks were also not translated because they 411

were too expensive to translate with Google’s com- 412

mercial API. While machine translation adds more 413

noise to the data, evaluating on this dataset is still 414

relevant because all models compared have to cope 415

with the same noise. To understand this transla- 416

tion noise, we also run user evaluation experiments, 417

whereby 4 volunteers proficient in both English and 418

Kinyarwanda evaluated a random sample of 6000 419

translated GLUE examples, and assigned a score to 420

each example on a scale from 1 to 4 (See Table 11 421

in Appendix). These scores help us characterize 422

the noise in the data and contextualize our results 423

with regards to other GLUE evaluations. Results 424

on these GLUE tasks are shown in Table 3. 425

Named entity recognition (NER) – We use 426

the Kinyarwanda subset of the MasakhaNER 427

dataset (Adelani et al., 2021) for NER task. This 428

is a high quality NER dataset annotated by native 429

speakers for major African languages including 430

Kinyarwanda. The task requires predicting four en- 431

tity types: Persons (PER), Locations (LOC), Orga- 432

nizations (ORG), and date & time (DATE). Results 433

on this NER task are presented in Table 4. 434
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News Categorization Task (NEWS) – For a435

document classification experiment, we collected436

a set of categorized news articles from seven437

major news websites that regularly publish in438

Kinyarwanda. The authors had already categorized439

the articles, therefore no more manual labeling was440

needed. This dataset is similar to (Niyongabo et al.,441

2020), but in our case, we limited the number col-442

lected articles per category to 3000 in order to have443

a more balanced label distribution (See Table 10 in444

the Appendix). The final dataset contains a total of445

25.7K articles spanning 12 categories and has been446

split into training, validation and test sets in the447

ratios of 70%, 5% and 25% respectively. Results448

on this NEWS task are presented in Table 5.449

3.3 Main results450

The main results are presented in Table 3, Table 4,451

and Table 5. Each result is the average of 10 in-452

dependent fine-tuning runs. Each average result is453

shown with the standard deviation of the 10 runs.454

Except for XLM-R, all other models are pre-trained455

on the same corpus (See Table 2) for 32K steps us-456

ing the same hyper-parameters.457

On the GLUE task, KinyaBERTASC achieves458

4.3% better average score than the strongest base-459

line. KinyaBERTASC also leads to more ro-460

bust results on multiple tasks. It is also shown461

that having just a morphological analyzer is not462

enough: BERTMORPHO still under-performs even463

though it uses morphological tokenization. Multi-464

lingual XLM-R achieves least performance in most465

cases, possibly because it was not pre-trained on466

Kinyarwanda text and uses inadequate tokeniza-467

tion.468

On the NER task, KinyaBERTADR achieves469

best performance, about 3.2% better average F1470

score than the strongest baseline. One of the ar-471

chitectural differences between KinyaBERTADR472

and KinyaBERTASC is that KinyaBERTADR uses473

3 POS tag embeddings while KinyaBERTASC uses474

2. Assuming that POS tagging facilitates named475

entity recognition, this empirical result suggests476

that increasing the amount of POS tag information477

in the model, possibly through diversification (i.e.478

multiple POS tag embedding vectors per word),479

can lead to better NER performance.480

The NEWS categorization task resulted in dif-481

fering performances between validation and test482

sets. This may be a result that solving such task483

does not require high level language modeling but484

rather depends on spotting few keywords. Previous 485

research on a similar task (Niyongabo et al., 2020) 486

has shown that simple classifiers based on TF-IDF 487

features suffice to achieve best performance. 488

The morphological analyzer and part of speech 489

tagger used, inherently have some level of noise 490

because they do not always perform with perfect 491

accuracy. While we did not have a simple way of 492

assessing the impact of POS tagger noise in this 493

work, we can logically expect that the lower the 494

noise the better the results could be. Improving the 495

POS tagger and quantitatively evaluating its accu- 496

racy is part of future work. Even though our POS 497

tagger uses some heuristic methods and was eval- 498

uated mainly through qualitative exploration, we 499

can still see its positive impact on the pre-trained 500

language model. 501

Additional results, which are added to the ap- 502

pendix, indicate that KinyaBERT fine-tuning has 503

better convergence (See Figure 2 in Appendix for 504

the loss curves). It is also shown that positional 505

attention (Ke et al., 2020) learned by KinyaBERT 506

has more uniform and smoother relative bias while 507

BERTBPE and BERTMORPHO have more noisy 508

relative positional bias (See Figure 3 in Appendix). 509

This is possibly an indication that KinyaBERT al- 510

lows learning better part-of-speech -relative syntac- 511

tic regularities. 512

3.4 Ablation study 513

We conducted an ablation study to clarify some of 514

the design choices made for KinyaBERT architec- 515

ture. We make variations along two axes: (i) mor- 516

phology input and (ii) pre-training task which gave 517

us four variants that we pre-trained for 32K steps 518

and evaluated on the same 8 downstream tasks. 519

• AFS→STEM+ASC: Morphological features 520

are captured by 2 POS tag and 1 affix set 521

vectors. We predict both the stem and affix 522

set. This corresponds to KinyaBERTASC pre- 523

sented in the main results. 524

• POS→STEM+ADR: Morphological fea- 525

tures are carried by 3 POS tag vectors and we 526

predict the stem and affix probability vector. 527

This corresponds to KinyaBERTADR. 528

• AVG→STEM+ADR: Morphological fea- 529

tures are captured by 2 POS tag vectors and 530

the average of affix hidden vectors from the 531

morphology encoder. We predict the stem and 532

affix probability vector. 533

7



Task: MRPC QNLI RTE SST-2 STS-B WNLI NER NEWS

Morphology→Prediction Validation Set

AFS→STEM+ASC 86.6/81.3 82.3 64.3 82.4 80.0/79.9 56.2 86.2 88.4
POS→STEM+ADR 87.1/82.1 81.6 61.8 81.8 79.6/79.5 54.5 87.1 88.8
AVG→STEM+ADR 85.5/80.3 81.4 63.0 82.1 79.6/79.5 55.8 86.6 88.3
STEM→STEM 86.4/81.5 80.4 63.4 77.5 79.7/79.5 50.4 86.6 88.0

Morphology→Prediction Test Set

AFS→STEM+ASC 84.6/78.4 82.2 58.8 81.4 74.5/73.5 65.0 76.3 88.0
POS→STEM+ADR 84.4/78.7 81.2 58.1 80.9 73.2/72.0 65.1 77.2 88.0
AVG→STEM+ADR 84.0/78.2 81.7 59.4 80.7 73.6/72.6 65.0 76.9 88.2
STEM→STEM 84.2/78.6 80.3 59.8 77.5 73.3/72.0 59.6 76.4 88.4

Table 6: Ablation results: each result is an average of 10 independent fine-tuning runs. Metrics, dataset sizes and
noise statistics are the same as for the main results in Table 3, Table 4 and Table 5.

• STEM→STEM: We omit the morphology534

encoder and train a model with only the stem535

parts without affixes and only predict the stem.536

Ablation results presented in Table 6 indicate537

that using affix sets for both morphology encoding538

and prediction gives better results for many GLUE539

tasks. The under-performance of “STEM→STEM”540

on high resource tasks (QNLI and SST-2) is an indi-541

cation that morphological information from affixes542

is important. However, the utility of this informa-543

tion depends on the task as we see mixed results on544

other tasks.545

4 Related Work546

BERT-variant pre-trained language models (PLMs)547

were initially pre-trained on monolingual high-548

resource languages. Multilingual PLMs that in-549

clude both high-resource and low-resource lan-550

guages have also been introduced Devlin et al.551

(2019); Conneau et al. (2020); Xue et al. (2020).552

However, it has been found that these multilingual553

models are biased towards high-resource languages554

and use fewer low quality and uncleaned low-555

resource data (Caswell et al., 2021). The included556

low-resource languages are also very limited be-557

cause they are mainly sourced from Wikipedia558

articles, where languages with few articles like559

Kinyarwanda are often left behind (Joshi et al.,560

2020; ∀ et al., 2020).561

Joshi et al. (2020) classify the state of NLP for562

Kinyarwanda as “Scraping-By”, meaning it has563

been mostly excluded from previous NLP research,564

and require the creation of dedicated resources and565

models. Kinyarwanda has been studied mostly566

in descriptive linguistics (Kimenyi, 1976, 1978;567

KIMENYI, 1978; Kimenyi, 1988; Jerro, 2016). 568

Few recent NLP works on Kinyarwanda include 569

Morphological Analysis (Muhirwe, 2009; Nzeyi- 570

mana, 2020), Text Classification (Niyongabo et al., 571

2020), Named Entity Recognition (Rijhwani et al., 572

2020; Adelani et al., 2021; Sälevä and Lignos, 573

2021), POS tagging (Garrette and Baldridge, 2013; 574

Garrette et al., 2013; Duong et al., 2014; Fang 575

and Cohn, 2016; Cardenas et al., 2019), and Pars- 576

ing (Sun et al., 2014; Mielens et al., 2015). There 577

is no prior study on pre-trained language modeling 578

for Kinyarwanda. 579

There are very few works on PLMs for African 580

languages. To the best of our knowledge there is 581

currently only AfriBERT (Ralethe, 2020) that has 582

been pre-trained on Afrikaans, a language spoken 583

in South Africa. In this paper, we aim to increase 584

the inclusion of African languages in NLP com- 585

munity by introducing a PLM for Kinyarwanda. 586

Differently to the previous works which solely pre- 587

trained unmodified BERT models, we propose an 588

improved BERT architecture for morphologically 589

rich languages. 590

5 Conclusion 591

This work demonstrates the effectiveness of ex- 592

plicitly incorporating morphological information 593

in language model pre-training. The proposed two- 594

tier Transformer architecture allows the model to 595

represent morphological compositionality. Experi- 596

ments conducted on Kinyarwanda, a low resource 597

morphologically rich language, reveal significant 598

performance improvement on several downstream 599

NLP tasks when using the proposed architecture. 600

These findings should motivate more research into 601

morphology-aware language models. 602
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Appendix A Data Tables,894

Hyper-parameters &895

Additional results896

Module Values

Morphology Encoder:

Number of Layers 4
Attention heads 4
Hidden Size 128
Attention head size 32
FFN inner hidden size 512
Morphological embedding size 128

Sentence/Document Encoder:

Number of Layers 12
Attention heads 12
Hidden Size 768
Attention head size 64
FFN inner hidden size 3072
Stem embedding size 256

Table 7: KinyaBERT Architectural dimensions.

Model Size

XLM-R:
Sentence-Piece tokens 250K

BERTBPE:
BPE Tokens 43K

BERTMORPHO:
Morphemes & BPE Tokens 51K

KinyaBERTADR:
Stems & BPE Tokens 34K
Affixes 0.3K
POS Tags 0.2K

KinyaBERTASC:
Stems & BPE Tokens 34K
Affix sets 34K
Affixes 0.3K
POS Tags 0.2K

Table 8: Vocabulary sizes for embedding layers.

Hyper-parameter Values

Dropout 0.1
Attention Dropout 0.1
Warmup Steps 2K
Max Steps 200K
Weight Decay 0.01
Learning Rate Decay Linear
Peak Learning Rate 4e-4
Batch Size 2560
Optimizer LAMB
Adam ε 1e-6
Adam β1 0.90
Adam β2 0.98
Gradient Clipping 0

Table 9: Pre-training hyper-parameters

Category #Articles

entertainment 3000
sports 3000
security 3000
economy 3000
health 3000
politics 3000
religion 2020
development 1813
technology 1105
culture 994
relationships 940
people 852

Total 25724

Table 10: NEWS categorization dataset label distribu-
tion.

Score Translation quality

1 Invalid or meaningless translation
2 Invalid but not totally wrong
3 Almost valid, but not totally correct
4 Valid and correct translation

Table 11: Machine-translated GLUE benchmark scor-
ing prompt levels.
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Figure 2: Comparison of fine-tuning loss curves between KinyaBERT and baselines on the evaluation tasks.
KinyaBERTASC achieves the best convergence in most cases, indicating better effectiveness of its model archi-
tecture and pre-training objective.

Hyperparameter MRPC QNLI RTE SST-2 STS-B WNLI NER NEWS

Peak Learning Rate 1e-5 1e-5 2e-5 1e-5 2e-5 1e-5 5e-5 1e-5
Batch Size 16 32 16 32 16 16 32 32
Learning Rate Decay Linear Linear Linear Linear Linear Linear Linear Linear
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Max Epochs 15 15 15 15 15 15 30 15
Warmup Steps proportion 6% 6% 6% 6% 6% 6% 6% 6%
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW

Table 12: Downstream task fine-tuning hyper-parameters.

Paper Language Loss Positional Input
Function Embedding Representation

Mohseni and Tebbifakhr (2019) Persian MLM+NSP Absolute Morphemes
Kuratov and Arkhipov (2019) Russian MLM+NSP Absolute BPE
Masala et al. (2020) Romanian MLM+NSP Absolute BPE
Baly et al. (2020) Arabic WWM+NSP Absolute BPE
Koto et al. (2020) Indonesian MLM+NSP Absolute BPE
Chan et al. (2020) German WWM Absolute BPE
Delobelle et al. (2020) Dutch MLM Absolute BPE
Nguyen and Tuan Nguyen (2020) Vietnamese MLM Absolute BPE
Canete et al. (2020) Spanish WWM Absolute BPE
Rybak et al. (2020) Polish MLM Absolute BPE
Martin et al. (2020) French MLM Absolute BPE
Le et al. (2020) French MLM Absolute BPE
Koutsikakis et al. (2020) Greek MLM+NSP Absolute BPE
Souza et al. (2020) Portuguese MLM Absolute BPE
Ralethe (2020) Afrikaans MLM+NSP Absolute BPE

This work Kinyarwanda MLM: STEM+AFFIXES TUPE-R Morphemes+BPE

Table 13: The comparison of KinyaBERT with other monolingual BERT-variant PLMs. We only compare with
the previous works that have been published in either journals or conferences, since reviewing all works is out of
the scope of this paper. NSP: Next Sentence Prediction, WWM: Whole Word Masked.
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BERTBPE

BERTMORPHO

KinyaBERTADR

KinyaBERTASC

Figure 3: Visualization of the positional attention bias (normalized) of the 12 attention heads. Each (i, j) attention
bias (Ke et al., 2020) indicates the positional correlations between the ith and jth words/tokens in a sentence.
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Tag Description Example

V#000 Infinitive Verb kuvuga (ku-vug-a) ’to say’
V#001 Verbal with Nominal Augment uwavuze (u-a-vug-ye) ’the one who said’
N#011 Noun without augment mwana (mu-ana) ’the child’
N#012 Noun with augment umwana (u-mu-ana) ’child’
DE#017 Demonstrative with ’nka’ prefix nkawe (nka-u-e) ’like you’
DE#020 Demonstrative with 1st or 2nd person njyewe (njy-ewe) ’me’
PO#022 Possesive without augment, with owner marker wa (u-a) ’of’
PO#025 Possesive with augment, with owner marker uwacu (u-a-cu) ’ours’
QA#026 Qualitative adjective mwiza (mu-iza) ’good/beautiful’
NU#030 Numeral babiri (ba-biri) ’two (persons)’
OT#031 Quantifier bose (ba-ose) ’all’
NP#035 Proper noun Mugenzi
DI#036 Digits 1000
SP#054 Spatial haruguru ’up’
PR#057 Preposition ku ’on’
CJ#071 Conjunction ko ’that...’
PT#085 Punctuation mark: comma ,

Table 14: Examples of part-of-speech tags used in KinyaBERT

Original (#0) Weapons of Mass Destruction Found in Iraq.
Translated Intwaro yo Kurimbura Misa Yabonetse muri Iraki.
Translated meaning Weapon for destroying a mass(prayer) has been found in Iraq.

Original (#299) Kerry hit Bush hard on his conduct on the war in Iraq.
Translated Kerry yakubise Bush ku myitwarire ye ku ntambara yo muri Iraki.
Translated meaning Kerry punched Bush about his conduct on the war in Iraq.

Table 15: Examples of noisy translated sentences from the RTE training set
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