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Abstract

Pre-trained language models such as BERT
have been successful at tackling many natural
language processing tasks. However, the unsu-
pervised sub-word tokenization methods com-
monly used in these models (e.g., byte-pair
encoding — BPE) are sub-optimal at handling
morphologically rich languages. Even given
a morphological analyzer, naive sequencing
of morphemes into a standard BERT architec-
ture is inefficient at capturing morphological
compositionality and expressing word-relative
syntactic regularities. We address these chal-
lenges by proposing a simple two-tier BERT
architecture that leverages a morphological an-
alyzer and explicitly represents morphologi-
cal compositionality. Despite the success of
BERT, most of its evaluations have been con-
ducted on high-resource languages, obscur-
ing its applicability on low-resource languages.
We evaluate our proposed method on the low-
resource morphologically rich Kinyarwanda
language, naming the proposed model archi-
tecture KinyaBERT. A robust set of experi-
mental results reveal that KinyaBERT outper-
forms solid baselines by 2% F1 score on a
named entity recognition task and by 4.3%
average score of a machine-translated GLUE
benchmark. KinyaBERT fine-tuning has bet-
ter convergence and achieves more robust re-
sults on multiple tasks even in the presence
of translation noise. Code and datasets are
released at https://anonymous.4open.
science/r/kinyabert-acl

1 Introduction

Recent advances in natural language processing
(NLP) through deep learning have been largely en-
abled by vector representations (or embeddings)
learned through language model pre-training (Ben-
gio et al., 2003; Mikolov et al., 2013; Pennington
et al., 2014; Bojanowski et al., 2017; Peters et al.,
2018; Devlin et al., 2019). Language models such
as BERT are pre-trained on large text corpora and

then fine-tuned on downstream tasks, resulting in
better performance on many NLP tasks. Despite
attempts to make multilingual BERT models (Con-
neau et al., 2020), research has shown that mod-
els pre-trained on high quality monolingual cor-
pora outperform multilingual models pre-trained
on large Internet data (Scheible et al., 2020; Vir-
tanen et al., 2019). This has motivated many re-
searchers to pre-train BERT models on individ-
ual languages rather than adopting the “language-
agnostic” multilingual models. This work is partly
motivated by the same findings, but also pro-
poses an adaptation of the BERT architecture to
address other challenges that are specific to low
resource morphologically-rich languages such as
Kinyarwanda.

In order to handle rare words and reduce the
vocabulary size, BERT-like models use statistical
sub-word tokenization algorithms such as byte pair
encoding (BPE) (Sennrich et al., 2015). While
these techniques have been widely used in language
modeling and machine translation, they are not op-
timal for morphologically rich languages. In fact,
BPE cannot efficiently handle non-concatenative
morphology because it is solely based on the sur-
face forms of words. For example, as shown in
Table 1, a BPE model trained on 390 million to-
kens of Kinyarwanda text cannot extract the true
sub-word lexical units (i.e. morphemes) for the
given words. This work addresses the above prob-
lem by proposing a language model architecture
that explicitly represents most of the input words
with morphological parses produced by a morpho-
logical analyzer. In this architecture BPE is only
used to handle words which cannot be decomposed
by the morphological analyzer such as misspellings
and foreign language words.

Given the output of a morphological analyzer,
a second challenge is in how to incorporate the
produced morphemes into the model. One naive
approach is to feed the produced morphemes to a
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Word Morphemes

Monolingual BPE Multilingual BPE

twagezeyo 'we arrived there’
ndabyizeye I hope so’
umwarimu ’feacher’

tu.a.ger.ye.yo
n.ra. bi. izer. ye
u.mu. arimu

twag . ezeyo
ndaby . izeye
umwarimu

_twa.ge.ze.yo
_ndab. yiz . eye
_um . wari . mu

Table 1: Comparison between morphemes and BPE-produced sub-word tokens. Stems are underlined.

standard transformer encoder as a single monolithic
sequence. This approach is used in (Mohseni and
Tebbifakhr, 2019). One problem with this method
is that mixing sub-word information and sentence-
level tokens in a single sequence does not encour-
age the model to learn the actual morphological
compositionality. Another problem is that posi-
tion encoding mechanisms used in BERT might
become less effective due to the large number of
morphemes appearing everywhere in the sequence.
We hypothesize that this mixing might make it dif-
ficult to learn sentence-level syntactic regularities
that would otherwise benefit from relative posi-
tion information between different parts of speech
(POS). We address these issues by proposing a
simple yet effective two-tier transformer encoder
architecture for expressing morphological compo-
sitionality. The first tier encodes morphological in-
formation, which is then transferred to the second
tier to encode sentence level information. We call
this new model architecture KinyaBERT because
it uses BERT’s masked language model objective
for pre-training and is evaluated on the morpholog-
ically rich Kinyarwanda language.

This work also represents progress in low re-
source NLP. Advances in human language technol-
ogy are most often evaluated on the main languages
spoken by major economic powers such as English,
Chinese and European languages. This has exac-
erbated the language technology divide between
the highly resourced languages and the underrepre-
sented languages. It also hinders progress in NLP
research because new techniques are mostly evalu-
ated on the mainstream languages and some NLP
advances become less informed of the diversity of
the linguistic phenomena (Bender, 2019). Specif-
ically, this work provides the following research
contributions:

* A simple yet effective two-tier BERT archi-
tecture for representing morphologically-rich
languages.

* New evaluation datasets for Kinyarwanda lan-
guage including a machine-translated subset

of the GLUE benchmark (Wang et al., 2018)
and a news categorization dataset.

* Experimental results which set a bench-
mark for future studies on Kinyarwanda lan-
guage understanding, and on using machine-
translated versions of the GLUE benchmark.

* Code and datasets that are made publicly avail-
able for reproducibility’.

2 Morphology-aware Language Model

Our modeling objective is to be able to express
morphological compositionality in a Transformer-
based (Vaswani et al., 2017) language model.
For morphologically rich languages such as
Kinyarwanda, a set of morphemes (typically a stem
and a set of functional affixes) combine to produce
a word with a given surface form. This requires
an alternative to the ubiquitous BPE tokenization,
through which exact sub-word lexical units (i.e.
morphemes) are used. For this purpose, we use a
morphological analyzer which takes a sentence as
input and, for every word/token, produces a stem,
zero or more affixes and assigns a POS tag to each
word/token. This section describes how this mor-
phological information is obtained and then inte-
grated in a two-tier transformer architecture (Fig-
ure 1) to learn morphology-aware input representa-
tions.

2.1 Morphological Analysis and
Part-of-Speech Tagging

Our morphological analyzer for Kinyarwanda was
built following finite-state two-level morphology
principles (Koskenniemi, 1983; Beesley and Kart-
tunen, 2000, 2003). For every inflectable word
type, we maintain a morphotactics model using a
directed acyclic graph (DAG) that represents the
regular sequencing of morphemes. We effectively
model all inflectable word types in Kinyarwanda
which include verbals, nouns, qualitative adjectives,
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John twarahamubonye biradutangaza
(We were surprised to find John there)

Figure 1: KinyaBERT model architecture: Encoding of the sentence ’John twarahamusanze biradutangaza’ (We
were surprised to find John there). The morphological analyzer produces morphemes for each word and assigns
a POS tag to it. The two-tier transformer model then generates contextualized embeddings (blue vectors at the
top). The red colored embeddings correspond to the POS tags, yellow is for the stem embeddings, green is for the
variable length affixes while the purple embeddings correspond to the affix set.

possessive and demonstrative pronouns, numerals
and quantifiers. The morphological analyzer also
includes many hand-crafted rules for handling mor-
phographemics and other linguistic regularities of
the Kinyarwanda language. Similar to (Nzeyimana,
2020), we use a classifier trained on a stemming
dataset to disambiguate between competing out-
puts of the morphological analyzer. Furthermore,
we improve the disambiguation quality by lever-
aging a part-of-speech (POS) tagger at the phrase
level so that the syntactic context can be taken into
consideration.

We devise an unsupervised part-of-speech tag-
ging algorithm which we explain next. Let
x = (x1, x2, 3, ..., ) be a sequence of tokens (e.g.
words) to be tagged with a corresponding sequence
of tags y = (y1, Y2, Y3, ---Yn). A sample of actual
POS tags used for Kinyarwanda is given in the
Appendix. Using Bayes’ rule, the optimal tag se-
quence y* is given by the following equation:

y* = argmax P(y|x)
Y

— argmax P(z]y)P(y)

y P(z)
= argmax P(zy)P(y)

y

A standard hidden Markov model (HMM) can
decompose the result of Equation 1 using first
order Markov assumption and independence as-
sumptions into P(z|ly) = [[}_; P(x¢|y:) and
P(y) = [I;=; P(y|yt—1). The tag sequence y*

(D

can then be efficiently decoded using the Viterbi al-
gorithm (Forney, 1973). A better decoding strategy
is presented below.

Inspired by (Tsuruoka and Tsujii, 2005), we de-
vise a greedy heuristic for decoding y* using the
same first order Markov assumptions but with bidi-
rectional decoding.

First, we estimate the local emission probabili-
ties P(x|y;) using a factored model given in the
following equation:

P(wt|ye) o< P(a|ys)
P(xt]yt) = pm(ﬂﬂt\?Jt)pp(mt\yt)pa(iﬂdyt)

In Equation 2, Py, (z|y;) corresponds to the
probability/score returned by a morphological dis-
ambiguation classifier, representing the uncertainty
of the morphology of x;. P,(x¢|y;) corresponds
to a local precedence score between competing
POS tags. These precedence weights are manually
crafted through qualitative evaluation. P, (z|y;)
quantifies the local neighborhood syntactic agree-
ment between Bantu class markers. Like most
Bantu languages, Kinyarwanda has 16 class mark-
ers (KIMENYI, 1978) that are included in in nouns,
verbs, adjectives and pronouns. We leverage this
agreement information to improve disambiguation.
When there are two or more agreeing class mark-
ers in neighboring words, the tagger should be
more confident of the agreeing parts of speech.
Each of the above unnormalized measures P is
mapped to the [0, 1] range using a sigmoid function

(@)



o(z|za, zB) given in Equation 3, where z is the
score of the measure and [z 4, zp] is its estimated
active range.
)
After estimating the local emission model, we
greedily decode y; = argmaxy,P(y;|x) in de-
creasing order of P(x|y;) using a first order bidi-
rectional inference of P(y;|x) as given in the fol-
lowing equation:

(2|24, 2p) = [1 + exp(-8

P(yt]x) =

P(xelye) P(yslyis yfﬂ)p(y;‘_l\x)]—:’(y;;l\x)
if both y;_; and y;, ; have been decoded;

P(wtlye) P(yelyi1 )P (v |z)
if only y;_; has been decoded;

P(xt’yt)fa(yt‘yf+1)]5(yf+1|95)
if only y;, ; has been decoded;

P(x|y;) otherwise
4

_ The first order transition measures P(yilye—1),

P(y¢|ye+1) and P(ye|yi—1, yi+1) are estimated us-
ing count tables computed over the entire cor-
pus by aggregating local emission marginals
P(y;) = > oe, P(xy,y;) obtained by morphologi-
cal analysis and disambiguation.

2.2 Morphology Encoding

The overall architecture of our model is depicted
in Figure 1. This is a two-tier transformer encoder
architecture made of a token-level morphology en-
coder that feeds into a sentence/document-level
encoder. The morphology encoder is made of a
small transformer encoder that is applied to each
analyzed token separately in order to extract its
morphological features. The extracted morpho-
logical features are then concatenated with the
token’s stem embedding to form the input vec-
tor fed to the sentence/document encoder. The
sentence/document encoder is made of a standard
transformer encoder as used in other BERT models.
The sentence/document encoder uses untied posi-
tion encoding with relative bias as proposed in (Ke
et al., 2020).

The input to the morphology encoder is a set of
embedding vectors, 3 vectors relating to the part-of-
speech, 1 vector for the stem and 1 vector for each
affix when available. The transformer encoder oper-
ation is applied to these embedding vectors without
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any positional information, in a “bag-of-tokens’
fashion. This is due to the fact that positional infor-
mation at the morphology level is inherent because
no morpheme repeats and each morpheme always
occupies a known(i.e. fixed) morpheme slot in
the morphotactics model. The extracted morpho-
logical features are the 4 encoder output vectors
corresponding to the 3 POS embeddings and 1 stem
embedding. Vectors corresponding to the affixes
are left out since they are of variable length and
the affixes role is to be attended to by the stem and
the part-of-speech so that morphological informa-
tion can be captured. The 4 morphological output
feature vectors are further concatenated with an-
other stem embedding at the sentence level to form
the input vector for the main sentence/document
encoder.

The choice of this transformer-based architec-
ture for morphology encoding is motivated by two
factors. First, (Zaheer et al., 2020) has demon-
strated the importance of having “global tokens”
such as [CLS] token in BERT models. These are
tokens that attend to all other tokens in the modeled
sequence. These “global tokens” effectively encap-
sulate some “meaning” of the encoded sequence.
Second, the POS tag and stem represent the high
level information content of a word. Therefore,
having the POS tag and stem embeddings be trans-
formed into morphological features is a viable op-
tion. The POS tag and stem embeddings thus serve
as the “global tokens” at the morphology encoder
level since they attend to all other morphemes that
can be associated with them.

In order to capture subtle morphological infor-
mation, we make one of the 3 POS embeddings
span an affix set that is a subset of all affixes power
set. We form an affix set vocabulary V, that is
made of N most frequent affix combinations in the
corpus. In fact, the morphological model of the
language enforces constraints on which affixes can
go together for any given part-of-speech, resulting
in an affix set vocabulary that is much smaller than
the power set of all affixes. Even with limiting the
affix set vocabulary V, to a fixed size, we can still
map any affix combination to V, by dropping zero
or very few affixes from the combination. Note that
the affix set embedding still has to attend to all mor-
phemes at the morphology encoder level, making
it adapt to the whole morphological context. The
affix set embedding is depicted by the purple units
in Figure 1.



2.3 Pre-training Objective

Similar to other other BERT models, we use a
masked language model objective. Specifically,
15% of all tokens in the training set are considered
for prediction, of which 80% are replaced with
[MASK] tokens, 10% are replaced with random to-
kens and 10% are left unchanged. When prediction
tokens are replaced with [MASK] or random to-
kens, the corresponding affixes are randomly omit-
ted 70% of the time or left in place for the other
30% of the time while the units corresponding to
POS tags and affix sets are also masked. The pre-
training objective is then to predict stems and the
associated affixes for all tokens considered for pre-
diction using a two-layer feed-forward module on
top of the encoder output.

For the affix prediction task, we face a multi-
label classification problem where for each predic-
tion token, we predict a variable number of affixes.
In our experiments, we tried two methods. For one,
we use the Kullback—Leibler (KL) divergence loss
function to solve regression task of the N-length
continuous affix distribution vector. For this case,
we use a target affix probability vector a; € RY in
which each target affix index is assigned % proba-
bility and O probability for non-target affix indices,
where m is the total number of target affixes and
N is the total number of all affixes in the language.
We call this method “Affix Distribution Regression”
(ADR) and model variant KinyaBERT 4pg. Alter-
natively, we use cross entropy loss and just predict
the affix set associated with each word; we call this
method “Affix Set Classification” (ASC) and the
model variant KinyaBERT 4g¢.

3 Experiments

In order to evaluate the proposed architecture,
we pre-train KinyaBERT (101M parameters for
KinyaBERT 4 pr and 129M for KinyaBERT 45¢)
on a 2.4 GB of Kinyarwanda text along with 3 base-
line BERT models. The first baseline is a BERT
model pre-trained on the same Kinyarwanda cor-
pus and with the same position encoding (Ke et al.,
2020), same batch size and pre-training steps, but
using the standard BPE tokenization. We call this
first baseline model BERT g pr (120M parameters).
The second baseline is a similar BERT model pre-
trained on the same Kinyarwanda corpus but tok-
enized by a morphological analyzer. For this model,
the input is just a sequence of morphemes, in a simi-
lar fashion to (Mohseni and Tebbifakhr, 2019). We

call this second baseline model BERT y;orpHO
(127M parameters). For BERT y;orp o, we found
that predicting 30% if the tokens achieves better
results than using 15% because of the many affixes
generated. The third baseline is XLM-R (Con-
neau et al., 2020) (270M parameters) which is pre-
trained on 2.5 TB of multilingual text. We evaluate
the above models by comparing their performance
on downstream NLP tasks.

Language Kinyarwanda
Publication Period 2011 - 2021
Websites/Sources 370
Documents/Articles 840K
Sentences 16M
Tokens/Words 390M
Text size 2.4 GB

Table 2: Summary of the pre-training corpus.

3.1 Pre-training details

KinyaBERT model was implemented using Py-
torch version 1.9. The morphological analyzer
and part-of-speech tagger were implemented in
a shared library using POSIX C. Morphological
parsing of the corpus was performed as a pre-
processing step, taking 20 hours to segment the
390M-token corpus on an 12-core desktop machine.
Pre-training was performed using RTX 3090 and
RTX 2080Ti desktop GPUs. Each KinyaBERT
model takes on average 22 hours to train for 1000
steps on one RTX 3090 GPU or 29 hours on one
RTX 2080Ti GPU. Baseline models (BERT gpg
and BERT y;orpro) were pre-trained on cloud
tensor processing units (TPU v3-8 devices each
with 128 GB memory) using an PyTorch/XLA
package and a TPU-optimized fairseq toolkit (Ott
et al., 2019). Pre-training on TPU took 2.3 hours
per 1000 steps. The baselines were trained on TPU
because there were no major changes needed to the
existing Roberta(base) architecture implemented in
fairseq and the TPU resources were available and
efficient. In all cases, pre-training batch size was
set to 2560 sequences, with maximum 512 tokens
in each sequence. The maximum learning rates
was set to 4 x 10~4 which is achieved after 2000
steps and then linearly decays to 0 at targeted 200K
steps. Our main results and ablation results were
obtained from models pre-trained for 32K steps in
all cases. Other pre-training details, model archi-
tectural dimensions and other hyper-parameters are
given in the Appendix.



Task: MRPC QNLI RTE SST-2 STS-B WNLI
#Train examples: 34K 104.7K 2.5K 67.4K 5.8K 0.6K
Translation score: 2.7/4.0 2.9/4.0 3.0/4.0 2.7/4.0 3.1/4.0 2.9/4.0
Model Validation Set

XLM-R 84.2/78.3+0.8/1.0 79.0+0.3 58.4+3.2 78.7+0.6 77.7/77.840.7/0.6 55.4+2.0
BERTgpE 83.3/76.6+0.8/1.4 81.9+0.2 59.24+1.5 80.1+04 75.6/75.7+7.8/7.3 55.4+1.9
BERT y;orPHO 84.3/77.440.6/1.1 81.6+0.2 59.2+1.5 81.6+0.5 76.8/77.0+£0.8/0.7 54.2+2.5
KinyaBERT 4pgr 87.1/82.1+0.5/0.7 81.6+0.1 61.841.4 81.8+0.6 79.6/79.5+0.4/0.3 54.542.2
KinyaBERT 45¢ 86.6/81.3+0.5/0.7 82.3+0.3 64.3+1.4 82.4405 80.0/79.9+0.5/0.5 56.2+0.8
Model Test Set

XLM-R 82.6/76.0+0.6/0.6 78.1+£0.3 56.4+3.2 76.3+0.4 69.5/68.9+1.0/1.1 63.7+3.9
BERTgpE 82.8/76.2+0.6/0.8 81.1+0.3 55.6+2.8 79.1+0.4 68.9/67.8+1.8/1.7 63.4+4.1
BERT yvyorPHO 82.7/75.440.8/1.3 80.8+0.4 56.7+1.0 80.7+0.5 68.9/67.841.5/1.3 65.0+0.3
KinyaBERT 4pgr 84.4/78.7+0.5/0.6 81.2+0.3 58.1+1.1 80.9+0.5 73.2/72.0+0.4/0.3 65.1+0.0
KinyaBERT 45¢ 84.6/78.4+0.2/0.3 822406 58.8+0.7 81.4+0.6 74.5/73.5+0.2/02 65.0+0.2

Table 3: Performance results on the machine translated GLUE benchmark (Wang et al., 2018). The translation
score is the sample average translation quality score assigned by volunteers. For MRPC, we report accuracy and
F1. For STS-B, we report Pearson and Spearman correlation. For all others, we report accuracy. The best results

are shown in bold while equal top results are underlined.

Task: NER

#Train examples: 2.1K

Model Validation Set Test Set
XLM-R 80.3+£1.0 71.841.5
BERTgpE 83.440.9 74.840.8
BERT y;orPHO 83.240.9 72.840.9
KinyaBERT 4ppr 87.1+0.8 77.2+1.0
KinyaBERT 45¢ 86.240.4 76.34+0.5

Table 4: Micro average F1 scores on Kinyarwanda
NER task (Adelani et al., 2021).

Task: NEWS

#Train examples: 18.0K

Model Validation Set Test Set
XLM-R 83.8+0.3 84.0+0.2
BERT gpE 87.6+0.4 88.3+0.3
BERT vorPHO 86.9+0.4 86.9+0.3
KinyaBERT 4ppr 88.8+0.3 88.0+0.3
KinyaBERT 45¢ 88.4+0.3 88.0+0.2

Table 5: Accuracy results on Kinyarwanda NEWS cat-
egorization task.

3.2 Evaluation tasks

Machine translated GLUE benchmark — The
General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018) has been
widely used to evaluate pre-trained language mod-

els. In order to assess KinyaBERT performance
on such high level language tasks, we used Google
Translate API to translate a subset of the GLUE
benchmark (MRPC, QNLI, RTE, SST-2, STS-B
and WNLI tasks) into Kinyarwanda. CoLA task
was left because it is English-specific. MNLI and
QQP tasks were also not translated because they
were too expensive to translate with Google’s com-
mercial API. While machine translation adds more
noise to the data, evaluating on this dataset is still
relevant because all models compared have to cope
with the same noise. To understand this transla-
tion noise, we also run user evaluation experiments,
whereby 4 volunteers proficient in both English and
Kinyarwanda evaluated a random sample of 6000
translated GLUE examples, and assigned a score to
each example on a scale from 1 to 4 (See Table 11
in Appendix). These scores help us characterize
the noise in the data and contextualize our results
with regards to other GLUE evaluations. Results
on these GLUE tasks are shown in Table 3.

Named entity recognition (NER) — We use
the Kinyarwanda subset of the MasakhaNER
dataset (Adelani et al., 2021) for NER task. This
is a high quality NER dataset annotated by native
speakers for major African languages including
Kinyarwanda. The task requires predicting four en-
tity types: Persons (PER), Locations (LOC), Orga-
nizations (ORG), and date & time (DATE). Results
on this NER task are presented in Table 4.



News Categorization Task (NEWS) — For a
document classification experiment, we collected
a set of categorized news articles from seven
major news websites that regularly publish in
Kinyarwanda. The authors had already categorized
the articles, therefore no more manual labeling was
needed. This dataset is similar to (Niyongabo et al.,
2020), but in our case, we limited the number col-
lected articles per category to 3000 in order to have
a more balanced label distribution (See Table 10 in
the Appendix). The final dataset contains a total of
25.7K articles spanning 12 categories and has been
split into training, validation and test sets in the
ratios of 70%, 5% and 25% respectively. Results
on this NEWS task are presented in Table 5.

3.3 Main results

The main results are presented in Table 3, Table 4,
and Table 5. Each result is the average of 10 in-
dependent fine-tuning runs. Each average result is
shown with the standard deviation of the 10 runs.
Except for XLM-R, all other models are pre-trained
on the same corpus (See Table 2) for 32K steps us-
ing the same hyper-parameters.

On the GLUE task, KinyaBERT 45 achieves
4.3% better average score than the strongest base-
line. KinyaBERT 45¢c also leads to more ro-
bust results on multiple tasks. It is also shown
that having just a morphological analyzer is not
enough: BERT ,;orpro still under-performs even
though it uses morphological tokenization. Multi-
lingual XLLM-R achieves least performance in most
cases, possibly because it was not pre-trained on
Kinyarwanda text and uses inadequate tokeniza-
tion.

On the NER task, KinyaBERT 4pr achieves
best performance, about 3.2% better average F1
score than the strongest baseline. One of the ar-
chitectural differences between KinyaBERT 4pr
and KinyaBERT 4g¢ is that KinyaBERT 4 p g uses
3 POS tag embeddings while KinyaBERT 45¢ uses
2. Assuming that POS tagging facilitates named
entity recognition, this empirical result suggests
that increasing the amount of POS tag information
in the model, possibly through diversification (i.e.
multiple POS tag embedding vectors per word),
can lead to better NER performance.

The NEWS categorization task resulted in dif-
fering performances between validation and test
sets. This may be a result that solving such task
does not require high level language modeling but

rather depends on spotting few keywords. Previous
research on a similar task (Niyongabo et al., 2020)
has shown that simple classifiers based on TF-IDF
features suffice to achieve best performance.

The morphological analyzer and part of speech
tagger used, inherently have some level of noise
because they do not always perform with perfect
accuracy. While we did not have a simple way of
assessing the impact of POS tagger noise in this
work, we can logically expect that the lower the
noise the better the results could be. Improving the
POS tagger and quantitatively evaluating its accu-
racy is part of future work. Even though our POS
tagger uses some heuristic methods and was eval-
uated mainly through qualitative exploration, we
can still see its positive impact on the pre-trained
language model.

Additional results, which are added to the ap-
pendix, indicate that KinyaBERT fine-tuning has
better convergence (See Figure 2 in Appendix for
the loss curves). It is also shown that positional
attention (Ke et al., 2020) learned by KinyaBERT
has more uniform and smoother relative bias while
BERTBPE and BERTMORPHO have more noisy
relative positional bias (See Figure 3 in Appendix).
This is possibly an indication that KinyaBERT al-
lows learning better part-of-speech -relative syntac-
tic regularities.

3.4 Ablation study

We conducted an ablation study to clarify some of
the design choices made for KinyaBERT architec-
ture. We make variations along two axes: (i) mor-
phology input and (ii) pre-training task which gave
us four variants that we pre-trained for 32K steps
and evaluated on the same 8 downstream tasks.

* AFS—STEM+ASC: Morphological features
are captured by 2 POS tag and 1 affix set
vectors. We predict both the stem and affix
set. This corresponds to KinyaBERT 45 pre-
sented in the main results.

* POS—STEM+ADR: Morphological fea-
tures are carried by 3 POS tag vectors and we
predict the stem and affix probability vector.
This corresponds to KinyaBERT 4 p .

* AVG—STEM+ADR: Morphological fea-
tures are captured by 2 POS tag vectors and
the average of affix hidden vectors from the
morphology encoder. We predict the stem and
affix probability vector.



Task: MRPC QNLI RTE SST-2 STS-B  WNLI NER NEWS
Morphology—Prediction Validation Set

AFS—STEM+ASC 86.6/81.3 823 643 824 80.0/79.9 562 86.2 88.4
POS—STEM+ADR 87.1/82.1 816 61.8 81.8 79.6/79.5 545 871 88.8
AVG—STEM+ADR 85.5/80.3 814 630 82.1 79.6/79.5 55.8 86.6 88.3
STEM—STEM 86.4/81.5 804 634 775 79.7/779.5 504  86.6 88.0
Morphology— Prediction Test Set

AFS—STEM+ASC 84.6/78.4 822 588 814 745/73.5 650 763 88.0
POS—STEM+ADR 84.4/78.7 812 581 809 73.2/72.0  65.1 77.2 88.0
AVG—STEM+ADR 84.0/78.2 817 594 80.7 73.6/72.6 650 769 88.2
STEM—STEM 84.2/786 803 598 775 73.3/720 59.6 764 88.4

Table 6: Ablation results: each result is an average of 10 independent fine-tuning runs. Metrics, dataset sizes and

noise statistics are the same as for the main results in Table 3, Table 4 and Table 5.

* STEM—STEM: We omit the morphology
encoder and train a model with only the stem
parts without affixes and only predict the stem.

Ablation results presented in Table 6 indicate
that using affix sets for both morphology encoding
and prediction gives better results for many GLUE
tasks. The under-performance of “STEM—STEM”
on high resource tasks (QNLI and SST-2) is an indi-
cation that morphological information from affixes
is important. However, the utility of this informa-
tion depends on the task as we see mixed results on
other tasks.

4 Related Work

BERT-variant pre-trained language models (PLMs)
were initially pre-trained on monolingual high-
resource languages. Multilingual PLMs that in-
clude both high-resource and low-resource lan-
guages have also been introduced Devlin et al.
(2019); Conneau et al. (2020); Xue et al. (2020).
However, it has been found that these multilingual
models are biased towards high-resource languages
and use fewer low quality and uncleaned low-
resource data (Caswell et al., 2021). The included
low-resource languages are also very limited be-
cause they are mainly sourced from Wikipedia
articles, where languages with few articles like
Kinyarwanda are often left behind (Joshi et al.,
2020; V et al., 2020).

Joshi et al. (2020) classify the state of NLP for
Kinyarwanda as “Scraping-By”, meaning it has
been mostly excluded from previous NLP research,
and require the creation of dedicated resources and
models. Kinyarwanda has been studied mostly
in descriptive linguistics (Kimenyi, 1976, 1978;

KIMENYI, 1978; Kimenyi, 1988; Jerro, 2016).
Few recent NLP works on Kinyarwanda include
Morphological Analysis (Muhirwe, 2009; Nzeyi-
mana, 2020), Text Classification (Niyongabo et al.,
2020), Named Entity Recognition (Rijhwani et al.,
2020; Adelani et al., 2021; Sélevd and Lignos,
2021), POS tagging (Garrette and Baldridge, 2013;
Garrette et al., 2013; Duong et al., 2014; Fang
and Cohn, 2016; Cardenas et al., 2019), and Pars-
ing (Sun et al., 2014; Mielens et al., 2015). There
is no prior study on pre-trained language modeling
for Kinyarwanda.

There are very few works on PLMs for African
languages. To the best of our knowledge there is
currently only AfriBERT (Ralethe, 2020) that has
been pre-trained on Afrikaans, a language spoken
in South Africa. In this paper, we aim to increase
the inclusion of African languages in NLP com-
munity by introducing a PLM for Kinyarwanda.
Differently to the previous works which solely pre-
trained unmodified BERT models, we propose an
improved BERT architecture for morphologically
rich languages.

5 Conclusion

This work demonstrates the effectiveness of ex-
plicitly incorporating morphological information
in language model pre-training. The proposed two-
tier Transformer architecture allows the model to
represent morphological compositionality. Experi-
ments conducted on Kinyarwanda, a low resource
morphologically rich language, reveal significant
performance improvement on several downstream
NLP tasks when using the proposed architecture.
These findings should motivate more research into
morphology-aware language models.
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Appendix A Data Tables, Hyper-parameter Values
Hyper-parameters &

Additional results Dropout 0.1
Attention Dropout 0.1
Warmup Steps 2K
Module Values Max Steps 200K
Morphology Encoder: Weight Decay 0.01
Learning Rate Decay  Linear

Number of Layers 4 .

. Peak Learning Rate 4e-4
Attention heads 4 .

) . Batch Size 2560
Hidden Size 128 .

. . Optimizer LAMB
Attention head size 32 Adam ¢ le-6
FFN inner hidden size 512
Morphological embedding si 128 Adam f 090

orphological embedding size Adam 0.98
Sentence/Document Encoder: Gradient Clipping 0
Number of Layers 12 . -

Attention heads 12 Table 9: Pre-training hyper-parameters
Hidden Size 768
Attention head size 64 .
FFN inner hidden size 3072 Category  #Articles
Stem embedding size 256 entertainment 3000
sports 3000
Table 7: KinyaBERT Architectural dimensions. security 3000
economy 3000
health 3000
Model Size politics 3000
XLM-R: religion 2020
Sentence-Piece tokens 250K development 1813
technology 1105
BERTppE: culture 994
BPE Tokens 43K relationships 940
BERT y,0rrH0: people 852
Morphemes & BPE Tokens 51K Total 25724
KinyaBERT 4 pr: o o
Stems & BPE Tokens 34K Table 10: NEWS categorization dataset label distribu-
Affixes 0.3K ton.
POS Tags 0.2K
KinyaBERT 45 Score Translation quality
Stems & BPE Tokens 34K ) . .
1 Invalid or meaningless translation
Affix sets 34K .
Affixes 03K 2 Invalid but not totally wrong
POS Tags 02K 3 Alrr.mSt valid, but not tota.lly correct
4 Valid and correct translation

Table 8: Vocabulary sizes for embedding layers. .
Table 11: Machine-translated GLUE benchmark scor-

ing prompt levels.

12



0.8

0.6 § MRPC SST-2

Loss

0.695 ——XLM-R
— BERT,
BPE 15
w
3 0.69 BERT, 0rpHO
— ——KinyaBERT o 1
- KinyaBERT %
0.685 0.5 \\,\‘\ ~
\: R N —
N e —
0.68 0 -
6 0 0.2 0.4 0.6 1 2 0 5 10

Steps (x1000)

Steps (x1000) Steps (x1000) Steps (x1000)

Figure 2: Comparison of fine-tuning loss curves between KinyaBERT and baselines on the evaluation tasks.
KinyaBERT 45 achieves the best convergence in most cases, indicating better effectiveness of its model archi-
tecture and pre-training objective.

Hyperparameter MRPC  QNLI RTE SST-2 STS-B  WNLI NER NEWS
Peak Learning Rate le-5 le-5 2e-5 le-5 2e-5 le-5 5e-5 le-5
Batch Size 16 32 16 32 16 16 32 32
Learning Rate Decay Linear Linear Linear Linear Linear Linear Linear Linear
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Max Epochs 15 15 15 15 15 15 30 15
Warmup Steps proportion 6% 6% 6% 6% 6% 6% 6% 6%
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW

Table 12: Downstream task fine-tuning hyper-parameters.
Paper Language Loss Positional Input

Function Embedding Representation

Mohseni and Tebbifakhr (2019) Persian MLM+NSP Absolute Morphemes
Kuratov and Arkhipov (2019) Russian MLM+NSP Absolute BPE
Masala et al. (2020) Romanian MLM+NSP Absolute BPE
Baly et al. (2020) Arabic WWM-+NSP Absolute BPE
Koto et al. (2020) Indonesian MLM+NSP Absolute BPE
Chan et al. (2020) German WwWM Absolute BPE
Delobelle et al. (2020) Dutch MLM Absolute BPE
Nguyen and Tuan Nguyen (2020) Vietnamese MLM Absolute BPE
Canete et al. (2020) Spanish WWM Absolute BPE
Rybak et al. (2020) Polish MLM Absolute BPE
Martin et al. (2020) French MLM Absolute BPE
Le et al. (2020) French MLM Absolute BPE
Koutsikakis et al. (2020) Greek MLM+NSP Absolute BPE
Souza et al. (2020) Portuguese MLM Absolute BPE
Ralethe (2020) Afrikaans MLM+NSP Absolute BPE
This work Kinyarwanda MLM: STEM+AFFIXES TUPE-R Morphemes+BPE

Table 13: The comparison of KinyaBERT with other monolingual BERT-variant PLMs. We only compare with
the previous works that have been published in either journals or conferences, since reviewing all works is out of
the scope of this paper. NSP: Next Sentence Prediction, WWM: Whole Word Masked.
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Figure 3: Visualization of the positional attention bias (normalized) of the 12 attention heads. Each (i, j) attention
bias (Ke et al., 2020) indicates the positional correlations between the 7*" and j** words/tokens in a sentence.
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Tag Description Example

V#000 Infinitive Verb kuvuga (ku-vug-a) 'to say’
V#001 Verbal with Nominal Augment uwavuze (u-a-vug-ye) 'the one who said’
N#011 Noun without augment mwana (mu-ana) 'the child’
N#012 Noun with augment umwana (u-mu-ana) ’child’
DE#017 Demonstrative with "nka’ prefix nkawe (nka-u-e) ’like you’
DE#020 Demonstrative with 1st or 2nd person njyewe (njy-ewe) ‘me’

PO#022 Possesive without augment, with owner marker wa (u-a) ’of’

PO#025 Possesive with augment, with owner marker uwacu (u-a-cu) ‘ours’

QA#026 Qualitative adjective mwiza (mu-iza) 'good/beautiful’
NU#030 Numeral babiri (ba-biri) ‘two (persons)’
OT#031 Quantifier bose (ba-ose) ‘all’

NP#035 Proper noun Mugenzi

DI#036  Digits 1000

SP#054  Spatial haruguru "up’

PR#057  Preposition ku “on’

CJ#071  Conjunction ko ’that..”

PT#085 Punctuation mark: comma

bl

Table 14: Examples of part-of-speech tags used in KinyaBERT

Original (#0) Weapons of Mass Destruction Found in Iraq.

Translated Intwaro yo Kurimbura Misa Yabonetse muri Iraki.

Translated meaning Weapon for destroying a mass(prayer) has been found in Iraq.
Original (#299) Kerry hit Bush hard on his conduct on the war in Iragq.
Translated Kerry yakubise Bush ku myitwarire ye ku ntambara yo muri Iraki.

Translated meaning Kerry punched Bush about his conduct on the war in Iraq.

Table 15: Examples of noisy translated sentences from the RTE training set
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