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Enhancing Images with Coupled Low-Resolution and Ultra-Dark
Degradations: A Tri-level Learning Framework

Anonymous Authors

ABSTRACT
Due to device constraints and lighting conditions, captured images
frequently exhibit coupled low-resolution and ultra-dark degrada-
tions. Enhancing the visibility and resolution of ultra-dark images
simultaneously is crucial for practical applications. Current ap-
proaches often address both tasks in isolation or through simplistic
cascading strategies, while also relying heavily on empirical and
manually designed composite loss constraints, which inevitably
results in compromised training efficacy, increased artifacts, and di-
minished detail fidelity. To address these issues, we propose TriCo,
the first to adopt a Tri-level learning framework that explicitly
formulates the bidirectional Cooperative relationship and devises
algorithms to tackle coupled degradation factors. In the optimiza-
tion across Upper (U)-Middle (M)-Lower (L) levels, we model the
synergistic dependencies between illumination learning and super-
resolution tasks within the M-L levels. Moving to the U-M levels,
we introduce hyper-variables to automate the learning of beneficial
constraints for both learning tasks, moving beyond the traditional
trial-and-error pitfalls of the learning process. Algorithmically, we
establish a Phased Gradient-Response (PGR) algorithm as our train-
ing mechanism, which facilitates a dynamic, inter-variable gradient
feedback and ensures efficient and rapid convergence. Moreover,
we present the Integrated Hybrid Expert Modulator (IHEM), which
merges inherent illumination priors with universal semantic model
features to adaptively guide pixel-level high-frequency detail re-
covery. Extensive experimentation validates the framework’s broad
generalizability across challenging ultra-dark scenarios, outper-
forming current state-of-the-art methods across 4 real and synthetic
benchmark datasets over 8 metrics (e.g., 5.8%↑ in PSNR, 26.6%↑ in
LPIPS, and 13.9%↑ in RMSE).

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
Nighttime vision, super-resolution, coupled degradations, bi-level

1 INTRODUCTION
Enhancing visibility and enlarging the resolution of ultra-dark im-
ages simultaneously is a daunting task with substantial real-world
significance for fields such as intelligent surveillance and nocturnal
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Figure 1: Visual comparison of advanced LLE [28, 37] and SR
methods [3, 53] applied both independently and in a cascaded
manner to inputs with coupled degradations.

autonomous driving [19, 27, 36, 38]. Due to inherent limitations in
imaging devices and constraints posed by environmental lighting
conditions, captured data frequently exhibits coupled degradations
characterized by low resolution and extreme darkness. Imaging
devices may struggle to capture clear details in poorly lit environ-
ments, resulting in images of low resolution; concurrently, insuf-
ficient ambient lighting exacerbates the darkness of the images,
making content difficult to discern. This paper addresses the inte-
grated challenge of enhancing brightness and increasing resolution
in ultra-dark images plagued by these intertwined degradations.

Capturing images in ultra-low-light settings introduces a plethora
of challenges that amplify the complexity of this joint task, includ-
ing uneven exposure resulting in highly irregular lighting, diminished
contrast, color inaccuracies, and an overflow of artifacts. Standard
image Super-Resolution (SR) techniques [11, 21, 39, 41], crafted
with modular techniques for image resolution enhancement under
normal-lighting scenarios, cannot be straightforwardly adapted to
enhance the luminance and resolution of images captured in low-
light conditions. Indeed, the direct application of these techniques
would inevitably amplify hidden noise, blur, and artifacts present
in darkness, leading to unnatural edges and textures and deviating
from the primary goal of super-resolution. Contrarily, recent Low-
Light Enhancement (LLE) methods [19, 26, 43], while capable of
brightening, fall short in concurrently amplifying resolution and
authentically enhancing high-frequency details. This prompts a
further inquiry: Can LLE and SR be effectively combined in a sim-
ple “A+B” cascaded format to achieve the desired outcomes? Upon
evaluation, we ascertain that this direct “A+B” does not address the
entangled degradation factors at the data level, possibly akin to a
"A×B" degraded form, with ongoing shortcomings in enhancing
brightness and rendering texture details.

As illustrated in Fig. 1, we present a visual comparison of two
cutting-edge LLE methods – SCI [28] and LLFormer [37] – along-
side two normal-light SR techniques, HAT [3] and SRFormer [53].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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A closer examination reveals that employing HAT and SRFormer
independently falls short in recapturing fine details, producing
blurred artifacts. Similarly, cascaded LLE⇒SR approaches (e.g.,
SCI⇒HAT, LLFormer⇒HAT) also fail to restore adequate bright-
ness, exacerbating noise and structural distortions when magnified.
In stark contrast, our proposed method generates natural and au-
thentic exposure and color fidelity, alongside improved structural
clarity and texture detail. In addition to the methods previously
mentioned, a few recent studies have emerged focusing on super-
resolution within low-light scenes [5, 10]. They tend to rely on
simple brightness corrections and resolution scaling on synthetic
datasets, leading to poor generalization in real-world scenarios.
Thus, we summarize the two primary shortcomings limiting the
efficacy of existing methods: (i) The failure to recognize the intrica-
cies of degradation-coupled data, which extends beyond a simplistic
additive enhancement model. This overlooks the intrinsic bidirectional
cooperation necessary for joint processing. (ii) A heavy reliance on
empirical network design and manual aggregation of losses. Such
methods disregard the guiding principles of physical image formation,
and overlook the crucial role that suitably chosen loss constraints play
in facilitating cooperative learning between intertwined tasks.

Stemming from these insights, this paper seeks to explore a
tri-level optimization perspective that formulates the cooperative
relationships and devises a corresponding solution strategy. We pro-
pose TriCo, aiming to automate the optimization of these weighted
constraints with hyper-variable and the coupling dependencies
between two entangled tasks, striving to achieve a unified enhance-
ment. Specifically, we initiate the process with an illumination inter-
polation mapping inspired by Retinex theory, yielding a brightened
reflectance that serves as the foundation for subsequent feature-
level super-resolution enhancement. We leverage universal founda-
tional semantic model priors and illumination features under the
self-regularized luminance constraint to provide dual guidance for
the super-resolution process, specifically targeting the compensa-
tion of high-frequency details. On the algorithmic front, we have
crafted a phased gradient-response algorithm as our training mech-
anism, meticulously designed to synergize the optimization of three
key variables while offering dynamic gradient feedback throughout
the training phase, thereby ensuring streamlined training efficiency
and rapid convergence. In summary, our contributions are fourfold:

• We propose TriCo, the first to introduce a Tri-level opti-
mization perspective that explicitly models the bidirectional
Cooperative relationship of illumination learning and super-
resolution, formulating a solution to synergistically brighten
and enlarge images afflicted with coupled low-resolution
and ultra-dark degradations.
• We establish an Upper (U)-Middle (M)-Lower (L) level nested
formulation, which in its M-L level, explicitly delineates the
collaborative dependency of two entangled tasks. In the U-M
level, we integrate hyper-variables to autonomously enforce
positive constraint feedback, thus dismantling the reliance
on manual trial-and-error intervention.
• We propose a Phased Gradient-Response (PGR) algorithm as
the training mechanism, designed to synergistically optimize
three variables while providing dynamic gradient feedback,
thus achieving efficient training and rapid convergence.

• We propose an Integrated Hybrid Expert Modulator (IHEM)
that acts as a conduit between illumination prior cues (i.e.,
intrinsic attributes) and generic semantic model features (i.e.,
SAM), facilitating an adaptive pixel-level guidance for the
restoration of high-frequency details.

Extensive experimentation validates the framework’s broad gener-
alizability and performance advantages across 4 real and synthetic
benchmark datasets over 8 metrics (e.g., 5.8%↑ in PSNR, 26.6%↑ in
LPIPS, and 13.9%↑ in RMSE).

2 RELATEDWORK
Enhancing Low-Light Images. LLE’s goal is to make images
engulfed in darkness visible. Early works generally concentrated on
leveraging handcrafted priors and empirical insights for LLE, such
as Retinex model [13, 17] for separate treatment of illumination and
reflection. Recent advancements have been seen with models based
on convolutional neural networks, addressing these fundamental
challenges [9, 26, 28]. Typically, such techniques always rely on
manually selecting complex losses. Instead, we introduce the tri-
level automated strategy to pinpoint beneficial constraint feedback,
diverging from the reliance on empirical hyperparameter tuning.

Normal/Low-light Image Super-Resolution. Normal-light
SR task generates high resolution images from low resolution inputs
under standard lighting conditions. Recently, a large number of
methods based on convolutional neural networks have emerged to
continuously refresh the performance [11, 21, 42].With the growing
popularity of transformer-based technologies, many leading-edge
methods [3, 4, 22, 53] have been developed for super-resolution
enhancement, including SwinIR [22], Restormer [46], the recently
proposed SRFormer [53] and HAT [3]. Drawing on this, we fuse
semantic cues from universal models [15, 48] with illumination at-
tributes for modulation, meticulously steering the detail restoration
of reflectance features and maintaining color consistency.

Moreover, recent forays into super-resolution focused on low-
light imagery, have yet to yield satisfactory results [5, 10, 32]. For
instance, Cheng et al. [5] proposed a light-guided and cross-fusion
U-Net, featuring an intensity estimation unit, targets uneven-light
image super-resolution. Yet, its sole reliance on pixel shuffling for
resolution enlargement introduces notable color distortion and a
lack of clarity in structure. A potential reason is that previous ap-
proaches did not account for the coupled collaboration between the
two tasks, treating them in isolation. Hence, we employ hierarchical
optimization to model and solve this multi-tiered coupled task.

Bi-level Optimization. Bi-level Optimization is the hierarchical
mathematical program, where the feasible region of upper-level
task is restricted by the solution set mapping of lower-level task
and the two task are mutually reinforced [16]. Subsequently, the
bi-level optimization framework has been investigated in view
of many important applications in the fields of machine learning
and computer vision e.g., hyper-parameter optimization [12, 29],
multi-task and meta learning [29, 35], neural architecture search
[45, 54], and image processing and analysis [24, 25]. Motivated by
the above observations, We explicitly consider the collaborative
relationship between super-resolution and brightness adjustment
tasks, constructing a novel perspective with tri-level optimization
for modeling and solving.
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Figure 2: The overall TriCo framework. (a) initiates with an interpolation-based illumination regulator 𝑁𝑖𝑟 (parameterized by
𝝎𝒊), producing a lit-up reflectance 𝒗. Then 𝒗 feeds into a frozen SAM for multi-scale semantic prompts, while concurrently
undergoing refinement for the LFR (𝑁𝑓 𝑟 parameterized by 𝝎𝒔 ) with guidance from IHEM. (b) establishes tri-level learning
paradigm with a phased gradient-response algorithm to foster a collaborative, automated, and efficient training process.

3 METHODOLOGY
Our TriCo aims to transform extremely dim, low-resolution images
x𝑙𝑙 into luminance-friendly, super-resolution counterparts y𝑛𝑠 . In
the following, we firstly delve into the architecture of our model,
followed by the details of the proposed learning strategy.

3.1 Illumination-Guided Integrated Network
Acknowledging the consensus that direct enlarging of dark images
can result in the loss of details, noise amplification, and artifacts,
we meticulously crafted an illumination-guided integrated network.
This network does not merely cascade brightness adjustment with
resolution enhancement modules; instead, it adopts a more pro-
found integration approach to ensure a holistic improvement. As
depicted in Fig. 2, our network adopts a top-down integration ap-
proach, seamlessly incorporating an illumination adjustment sub-
network for initial brightness enhancement and a feature-level
refinement sub-network for resolution upscaling. A pivotal bridg-
ing component (i.e., Integrated Hybrid Expert Modulator, IHEM)
is introduced within this structure, leveraging illumination and
semantic priors as cues for guided refinement. This architecture is
summarized into two phases: (i) the Learning Interpolated Illumi-
nance (LII), focusing on adjusting the initial luminance, and (ii) the
Learning Feature Refinement (LFR) for super-resolution, dedicated
to enhancing and enlarging the image details at the feature level.

From LII to LFR. LII performs the initial mapping from “low-
light” to “normal-light”. Based on Retinex theory, the normalized
illumination map satisfies the inequality within the dynamic range:
0 ≤ x𝑙𝑙 ≤ u ≤ 𝐼 . Thus, LII is designed to construct an interpolation
mapping to estimate the illumination map u. Finally, the initial
reflectance map v is obtained by applying element-wise division to
u. The initial reflectance map v is then input to the LFR sub-network
(i.e., 𝑁𝑓 𝑟 ) for fine-grained feature modulation, ensuring that the
upsampling process generates more high-frequency details:{

u = 𝜶 · x𝑙𝑙 + 𝜷 · I, {𝜶 , 𝜷} = 𝑁𝑖𝑟 (𝝎𝒊 ; x𝑙𝑙 ),
v = x𝑙𝑙 ⊘ u, y𝑛𝑠 = 𝑁𝑓 𝑟 (𝝎𝒔 ; v),

(1)

where the interpolation factors 𝜶 and 𝜷 are generated by the un-
derlying Unet-style illumination regulator 𝑁𝑖𝑟 and satisfy the con-
straints within the unit interval, with their sum equaling 1. 𝝎𝒊 and
𝝎𝒔 are network parameters of 𝑁𝑖𝑟 and 𝑁𝑓 𝑟 , respectively. Finally,
we introduce a dynamic grid up-sampling module [7] to enlarge
the image dimensions. For specific architectural details of 𝑁𝑖𝑟 and
𝑁𝑓 𝑟 , please refer to the Supplementary Material. The uniqueness of
LII lies in its reliance solely on a single luminance loss1 for unsu-
pervised learning, eliminating cumbersome training with multiple
stages and losses.

Also, we feed v into a pre-trained large-scale base semantic
model (i.e., SAM [15, 48]) to extract multi-layer semantic features:
𝑁𝑠𝑎𝑚 [v|Θ∗𝑠𝑎𝑚] = [𝑓

[1]
𝑠 , · · · , 𝑓 [𝑜 ]𝑠 , · · · , 𝑓 [ 𝐽 ]𝑠 ], 𝑜 = 0, · · · , 𝐽 .We note

that the multi-scale illuminance features and semantic features can
serve as expert cues containing degradation priors (i.e., exposure
and color information of different local areas). Therefore, we de-
sign the Integrated Hybrid Expert Modulator (IHEM) to modulate
reflectance features layer-by-layer within the LFR sub-network’s
decoder, guiding the generation of high-frequency texture details.

IHEM. As illustrated in Fig. 3, the structural details of the IHEM
are showcased. Denote each layer’s reflectance feature in the de-
coder as 𝑓 [𝑜 ]𝑟 . First, 𝑓 [𝑜 ]𝑠 and 𝑓 [𝑜 ]𝑟 undergo layer normalization,
1×1 convolution, and 3×3 depth-wise convolution, leading to the
formation of semantic query (𝑄𝑠 ∈ R�̃��̃� ×�̃� ), reflection key (𝐾𝑟 ∈
R�̃�×�̃��̃� ), and reflection value (𝑉𝑟 ∈ R�̃��̃� ×�̃� ) projections. Follow-
ing this, we derive the Semantic-Induced Attention (S-InA) map,
AS−InA ∈ R�̃�×�̃� , which is normalized via Softmax. The reflectance
feature 𝑓 [𝑜 ]𝑟 is subsequently updated via the transposed Semantic-
Induced Response (S-InR,𝑊S−InR):

𝑊S−InR = Conv[𝑉𝑟 ⊗ Softmax
( AS−InA︷           ︸︸           ︷
(𝑄𝑠 ⊗ 𝐾𝑟 )/𝜏1

)
] + 𝑓 [𝑜 ]𝑟 , (2)

where 𝜏1 represents a learnable scaling factor that adjusts the mag-
nitude of the product of 𝐾𝑟 and 𝑄𝑠 . ⊗ denotes the element-wise

1Please refer to the self-regularized luminance loss in Eq. (8).
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multiplication. Then, a feed-forward network 𝐹𝐹𝑁 [14, 46] is em-
ployed to facilitate improved content reconstruction, denoted as:
𝑓
[𝑜 ]
𝑟 = 𝐹𝐹𝑁

(
𝑊S−InR

)
. For architectural specifics of 𝐹𝐹𝑁 , please

consult the Supplementary Material.
Similarly, we output multi-layer illumination features 𝑓 [𝑜 ]

𝑖
from

the LII decoder, which, along with the semantically guided fea-
tures 𝑓 [𝑜 ]𝑟 , jointly undergo the Illumination-Induced Attention
(I-InA, AI−InA ∈ R�̃�×�̃� ) process. Initially, each is processed via
layer normalization, 1×1 convolution, and 3×3 depth-wise convolu-
tion, leading to the formation of illumination query (𝑄𝑖 ∈ R�̃��̃� ×�̃� ),
reflection key (𝐾𝑟 ∈ R�̃�×�̃��̃� ), and reflection value (𝑉𝑟 ∈ R�̃��̃� ×�̃� )
projections. Then 𝑓 [𝑜 ]𝑟 undergoes dynamic enhancement via the
transposed Illumination-Induced Response (I-InR,𝑊I−InR):

𝑊I−InR = Conv[Φ𝑅 ⊗ Softmax
( AI−InA︷           ︸︸           ︷
(𝑄𝑖 ⊗ 𝐾𝑟 )/𝜏2

)
] + 𝑓 [𝑜 ]𝑟 , (3)

where 𝜏2 is a learnable scaling factor. Subsequently,𝑊I−InR is pro-
cessed by 𝐹𝐹𝑁 , yielding the doubly modulated reflection feature
𝑓 𝑟 [𝑜 ] = 𝐹𝐹𝑁

(
𝑊I−InR

)
.

3.2 Tri-level Optimization Formulation
Bidirectional Co-op Dependency. Existing methods often focus
on a single task, either brightness adjustment or resolution enhance-
ment, seldom considering the interdependent coupling between
the two. Recognizing that LII and LFR, can mutually reinforce each
other—where precise luminance improvement by LII can facilitate
better super-resolution outcomes in LFR, and conversely, the de-
tailed enhancement by LFR can enhance the illumination learning
in LII—we model these consecutive learning tasks as a hierarchical
optimization problem, formalized as follows:

min
𝝎𝒊

Φ𝑢𝑙
(
𝝎𝒊,𝝎∗𝒔 ; {D𝑢𝑙 }

)
, 𝑠 .𝑡 ., 𝝎∗𝒔 ∈ P𝑙 (𝝎𝒊),

P𝑙 (𝝎𝒊) := arg min
𝝎𝒔

Φ𝑙𝑙 (𝝎𝒊,𝝎𝒔 ; {D𝑙𝑙 }),
(4)

whereP𝑙 (·) denotes the solution set, withD𝑙𝑙 andD𝑢𝑙 representing
the lower and upperlevel datasets, respectively.

The hierarchical formulation explicitly delineates the collabora-
tive training modality between 𝑁𝑖𝑟 and 𝑁𝑓 𝑟 . This collaboration is
heavily contingent upon the judicious selection of lower and upper
level objectives, ensuring that the sub-networks can reciprocally
foster enhancement and positive feedback. This raises a pivotal
question: How can we automate the assignment of high hyperpa-
rameters that significantly foster positive influences on the learning
tasks? Delving deeper into this inquiry, we transcend the confines
of the hierarchical optimization framework and venture into an
expanded horizon—establishing a nested optimization problem that
encompasses both lower and upper levels, aimed at the autonomous
learning of beneficial constraints for two learning tasks.

Tri-level Constraint Modeling. Evidently, to automate the de-
termination of constraints that significantly influence the learning
tasks through weight allocation, we introduce a novel concept, the
hyper-variable 𝝇. This hyper-variable, along with the two preceding
variables 𝝎𝒊 and 𝝎𝒔 , forms a new set of constraint relationships,
thereby constituting a hierarchical optimization problem based on
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Figure 3: The detailed architecture of IHEM.

three variables, as shown below:
min
𝝇

Φ𝑢𝑙
(
𝝇,𝝎∗𝒊 ,𝝎

∗
𝒔 ; {D𝑢𝑙 }

)
, 𝑠 .𝑡 ., (𝝎∗𝒊 ,𝝎

∗
𝒔 ) ∈ P𝑙 (𝝇),

P𝑙 (𝝇) := arg min
𝝎𝒊,𝝎𝒔

Φ𝑙𝑙 (𝝇,𝝎𝒊,𝝎𝒔 ; {D𝑙𝑙 }),
(5)

where 𝝎∗𝒊 and 𝝎∗𝒔 represent the best-reponse for a given 𝝇. These
three variables are highly interdependent and dynamically influ-
ence each other throughout the training process. This modeling ap-
proach offers significant advantages: firstly, it explicitly defines the
mathematical relationships betweenmultiple variables, allowing for
dynamic feedback during training, thereby enhancing training effi-
ciency. Secondly, it automates the determination of constraints’ pos-
itive feedback, overcoming the reliance on manual hyper-parameter
tuning based on empirical knowledge, thereby reducing the need
for extensive manual intervention.

3.3 Algorithmic Procedure
Moving forward, we devise a Phased Gradient-Response (PGR) al-
gorithm that iterates from the upper to the lower layers, serving
as the training strategy. Specifically, we define a comprehensive
function as the weighted sum of multiple losses related to the hyper-
variables 𝝇, addressing various specific attributes (e.g., brightness,
color, exposure, smoothness, and content) pertinent to multi degra-
dation restoration tasks. The total loss is defined as follows:

L𝑡𝑜𝑡𝑎𝑙 (𝝇,𝝎𝒊,𝝎𝒔 ; {D}) =
𝑁∑︁
𝑢=1

𝝇𝑢 · L𝑢 (𝝇,𝝎𝒊,𝝎𝒔 ), L𝑢 ∈ T, (6)

where the hyper-variable is denoted as 𝝇 := {𝝇𝑢 }𝑁𝑢=1 ∈ R
𝑁 . T

represents the loss selection set. Please refer to Sec. 3.4 for T. To
prevent ambiguous solutions during training and safeguard against
overfitting, we introduce a regularization constraint term for 𝝇,
thereby reformulating the total loss as: L𝑡𝑜𝑡𝑎𝑙 (𝝇,𝝎𝒊,𝝎𝒔 ; {D}) =∑𝑁
𝑢=1

1
2𝝇𝑢 · L𝑢 (𝝇,𝝎𝒊,𝝎𝒔 ) + ln(1 + 𝝇2

𝑢 ) . The training set is divided
into proportions denoted by 𝜂, thus the upper and lower levels
are abstractly defined as: Φ𝑢𝑙 := L𝑡𝑜𝑡𝑎𝑙 (𝝇,𝝎𝒊,𝝎𝒔 ;D𝑢𝑙 ), Φ𝑙𝑙 :=
L𝑡𝑜𝑡𝑎𝑙 (𝝇,𝝎𝒊,𝝎𝒔 ;D𝑙𝑙 ). Next, we decompose the problem into two
stages of hierarchical optimization to solve the tri-level coupled
problem step by step.
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Algorithm 1 Optimization strategy for TriCo.

Require: Initialize𝜔 := {𝝎𝒊,𝝎𝒔 }, with 𝝇 as a unit vector. Learning
rate:𝜸𝒖 ,𝜸𝒍 , 𝒐𝒖 and 𝒐𝒍 ; Total iterationsK . Split {D} := {D𝑢𝑙 }∪
{D𝑙𝑙 } with partition ratio 𝑠 . Set candidate loss space T .

Ensure: The optimal parameters 𝝇, 𝜔 .
1: % % S1: Automated learning for 𝝇.
2: while not converged do
3: % % Upper-level variable probe:
4: �̂� ← 𝝎 −𝜸𝒍

𝜕Φ𝑙𝑙 (𝝇,𝝎 )
𝜕𝝎 , 𝝎± ← 𝝎 ± 𝜆 𝜕Φ

𝑙𝑙 (𝝇,�̂� )
𝜕𝝎

5: A𝜔 ← 1
2𝜆 (

𝜕Φ𝑙𝑙 (𝝇,𝝎+ )
𝜕𝝇 − 𝜕Φ𝑙𝑙 (𝝇,𝝎− )

𝜕𝝇 )

6: 𝝇 ← 𝝇 −𝜸𝒖 𝜕Φ
𝑢𝑙 (𝝇,�̂� )
𝜕𝝇 +𝜸𝒍A𝜔

7: % % Middle-level variable probe:
8: 𝝎 ← 𝝎 −𝜸𝒍

𝜕Φ𝑙𝑙 (𝝇,𝝎 )
𝜕𝝎

9: end while
10: % % S2: Optimization for {𝝎𝒊,𝝎𝒔 } with frozen 𝝇.
11: while not converged do
12: % % Middle-level variable probe:
13: 𝝎𝒔 ← 𝝎𝒔 − 𝒐𝒍

𝜕Φ𝑙𝑙 (𝝎𝒊,𝝎𝒔 )
𝜕𝝎𝒔

, 𝝎± ← 𝝎𝒔 ± 𝜆 𝜕Φ
𝑙𝑙 (𝝎𝒊,𝝎𝒔 )
𝜕𝝎𝒔

14: B𝜔𝑠
← 1

2𝜆 (
𝜕Φ𝑙𝑙 (𝝎𝒊,𝝎+𝒔 )

𝜕𝜔𝑖
− 𝜕Φ𝑙𝑙 (𝝎𝒊,𝝎−𝒔 )

𝜕𝜔𝑖
)

15: 𝜔𝑖 ← 𝜔𝑖 − 𝒐𝒖 𝜕Φ
𝑢𝑙 (𝝎𝒊,�̂� )
𝜕𝜔𝑖

+ 𝒐𝒍B𝜔𝑠

16: % % lower-level variable probe:
17: 𝝎𝒔 ← 𝝎𝒔 − 𝒐𝒍

𝜕Φ𝑙𝑙 (𝝎𝒊,𝝎𝒔 )
𝜕𝝎𝒔

18: end while

Gradient-Response Algorithm. Following the first-order gra-
dient algorithm based on hierarchical optimization [24], we com-
pute the composite upper gradients based on the best-response from
the lower optimization. We first calculate the upper-level gradient:

∇𝝇Φ𝑢𝑙
(
𝝇,𝝎

)
=
𝜕Φ𝑢𝑙

(
𝝇,𝝎∗ (𝝇 )

)
𝜕𝝇

+
𝜕Φ𝑢𝑙

(
𝝇,𝝎∗ (𝝇 )

)
𝜕𝜔

∇𝝇𝝎∗ (𝝇 ) . (7)

For simplicity, we define the lower-level variables as𝝎 := {𝝎𝒊, 𝝎𝒔 }.
The second term, the coupled gradient, is denoted as A𝜔 . Subse-
quently, based on a single-step gradient descent to approximate the
best-response, we calculate the finite difference approximation [23]
for the coupled gradientA𝜔 asA𝜔 = 1

2𝜆 (
𝜕Φ𝑙𝑙 (𝝇,𝝎+ )

𝜕𝝇 − 𝜕Φ
𝑙𝑙 (𝝇,𝝎− )
𝜕𝜍 ),

where 𝝎± ← 𝝎 ± 𝜆 𝜕Φ
𝑙𝑙 (𝝇,𝝎 )
𝜕𝝎 , and 𝜆 denotes a constant learning

rate. For the second phase, a similar derivation to the first phase is
implemented. Given the optimal hyper-variable 𝝇∗ obtained from
the first stage, we compute the upper-level gradient with respect to

the variable 𝝎𝒊 : ∇𝝎𝒊Φ
𝑢𝑙
(
𝝎𝒊,𝝎𝒔

)
=
𝜕Φ𝑢𝑙

𝝇∗
(
𝝎𝒊,𝝎∗

𝒔 (𝝎𝒊 )
)

𝜕𝝎𝒊
+ B𝜔𝑠

, where

B𝜔𝑠
=
𝜕Φ𝑢𝑙

𝝇∗
(
𝝎𝒊,𝝎∗

𝒔 (𝝎𝒊 )
)

𝜕𝝎𝒔
∇𝝎𝒊𝝎

∗
𝒔 (𝝎𝒊). Ultimately, the optimization

process across both stages is amalgamated to form our training
strategy, which is summarized in Alg. 1.

3.4 Loss Candidate Space
As illustrated in Fig. 2, we propose a set of five specific loss objec-
tives constituting a candidate space that encapsulates the model’s
constraints on brightness, color, exposure, smoothness, and content
attributes, denoted as the set T, as follows:

• Self-regularized luminance loss: To ensure that the gener-
ated reflectance aligns with the luminance attributes of large-
scale natural ImageNet dataset [8] in a consistent distribu-
tion, we design L𝑠𝑟𝑙 :

L𝑠𝑟𝑙 (v) = 𝑒 |v̄𝑐−𝝁𝑐−𝝈𝑐 | − 1, 𝑐 ∈ {𝑅,𝐺, 𝐵}, (8)

where v̄𝑐 signifies the operation of computing the mean
across channels. Channel means and standard deviations are
𝝁𝑐 = [0.485, 0.456, 0.406] and 𝝈𝑐 = [0.229, 0.224, 0.225].
• Content reconstruction loss: We employ the standard recon-
struction loss between y𝒏𝒔 and z𝒏𝒉 utilizing the 𝐿1 norm:

L𝑐 (y𝒏𝒔 , z𝒏𝒉 ) =
1

ℎ𝑤𝑐

∑︁
𝑖,𝑗,𝑘 |y𝑛𝑠𝑖,𝑗,𝑘 − z𝑛ℎ𝑖,𝑗,𝑘 |, (9)

where ℎ,𝑤 , 𝑐 are the height, width, and channel count.
• Semantic perceptual loss: We utilize a perceptual loss func-
tion to maintain semantic congruence between y𝒏𝒔 and z𝒏𝒉:

L𝑝 (y𝒏𝒔 , z𝒏𝒉 ) = | |VGG19𝑗 (y𝒏𝒔 ) − VGG19𝑗 (z𝒏𝒉 ) | |1, (10)

where 𝑗 indicates the j-th feature extraction layer, which
includes layers from conv1, · · · , conv5.
• Structural similarity loss: We employ the SSIM loss L𝑠𝑠𝑖𝑚
to maintain the structural similarity between y𝒏𝒔 and y𝒏𝒉 .
• Smoothness loss:We incorporate a total variation metric [33]
to reduce noise and enhance image smoothness:

L𝑡𝑣 (y𝒏𝒔 ) =
∑︁

𝜉 ∈𝜋 ( |∇ℎy𝒏𝒔
𝜉
| + |∇𝑣y𝒏𝒔

𝜉
| ), (11)

where 𝜋 = {𝑅,𝐺, 𝐵}, ∇ℎ and ∇𝑣 are the horizontal and verti-
cal gradient operators, respectively.

4 EXPERIMENTS
4.1 Experimental Settings
Datasets and Metrics. We evaluated the benchmark performance
of all compared methods across four datasets: 1) RELLISUR [1]2,
2) DarkFace [44]3, 3) Dark-Zurich [34], and 4) Cityscapes [6]. Due
to space constraints, please refer to the Supplementary Material
for details on the data preparation of four datasets. In the evalu-
ation phase, we employ five full-reference metrics to assess the
performance, namely PSNR [2], SSIM [40], Learned Perceptual Im-
age Patch Similarity (LPIPS) [50], Root Mean Square Error (RMSE),
Feature-based Similarity Index (FSIM) [49]. Additionally, we in-
troduce three no-reference assessments, namely Natural Image
Quality Evaluator (NIQE) [31], Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE) [30] and MetaIQA [55], to evaluate
non-paired metrics.

Implementation Details.We adhere to the tri-level learning
strategy as outlined in Alg. 1 for our network training, with the total
number of iterations set to 150,000. We utilize the Adam optimizer
with beta values configured at [0.9, 0.999]. The initial learning
rates for the upper and lower layers of the two stages are set to
𝜸𝒖 = 1𝑒−4, 𝜸𝒍 = 2𝑒−4, 𝒐𝒖 = 1𝑒−4 and 𝒐𝒍 = 1𝑒−4, respectively. A
cosine annealing restart strategy is implemented for cyclic learning
rate scheduling. The dataset {D} is partitioned into {D𝑢𝑙 } ∪ {D𝑙𝑙 }
and at a distribution ratio of 1 : 5. Experiments are conducted

2https://vap.aau.dk/rellisur/
3https://flyywh.github.io/CVPRW2019LowLight/
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Table 1: Quantitative comparison on RELLISUR dataset for @×2 and @×4 tasks. The best three results are bolded in red, green,
and blue, indicating first, second, and third places, respectively.

Method Public. RELLISUR @ ×2 RELLISUR @ ×4
❶PSNR↑ ❷SSIM↑ ❸LPIPS↓ ❹RSME↓ ❺FSIM↑ ❶PSNR↑ ❷SSIM↑ ❸LPIPS↓ ❹RMSE↓ ❺FSIM↑

SRResNet CVPR’17 18.153 0.667 0.451 0.128 0.483 17.597 0.684 0.581 0.137 0.410
RDN CVPR’18 18.794 0.701 0.455 0.120 0.501 18.219 0.701 0.584 0.128 0.428
SRFBN CVPR’19 18.427 0.662 0.510 0.125 0.476 17.676 0.665 0.640 0.136 0.407
PAN ECCV’20 18.789 0.693 0.450 0.119 0.491 18.106 0.700 0.559 0.129 0.427
MIRNet ECCV’20 21.052 0.720 0.436 0.095 0.501 19.784 0.704 0.599 0.109 0.419
SwinIR ICCV’21 18.383 0.640 0.577 0.125 0.464 17.531 0.663 0.688 0.139 0.418
Restormer CVPR’22 21.217 0.727 0.385 0.095 0.505 20.290 0.720 0.492 0.106 0.425
LCUN TCSVT’22 18.911 0.684 0.531 0.131 0.476 18.463 0.657 0.644 0.131 0.370
SRFormer CVPR’23 19.554 0.704 0.469 0.110 0.492 18.792 0.705 0.613 0.121 0.430
HAT CVPR’23 20.213 0.719 0.454 0.103 0.501 19.751 0.715 0.561 0.110 0.421

†ZeroDCE⇒‡HAT 12.927 0.354 0.698 0.194 0.412 12.524 0.321 0.739 0.197 0.362
†SCI⇒‡HAT 14.963 0.439 0.591 0.200 0.405 14.776 0.452 0.697 0.205 0.362

‡LLFormer⇒†HAT 21.218 0.720 0.455 0.093 0.499 20.135 0.718 0.575 0.105 0.429
Ours - 22.456 0.744 0.304 0.080 0.508 21.056 0.731 0.432 0.006 0.429

† signifies training using the ×1 low-light RELLISUR dataset for LLIE. ‡ indicates training using the ×2 or ×4 for normal-light SR.

Figure 4: Visual assessments using RELLISUR examples for a ×2 magnification task. The signal plots depict variations in pixel
intensities between the produced images and the benchmark image, traced across arbitrarily chosen line segments.

using PyTorch version 2.0.1, which supports CUDA 11.7, on a single
NVIDIA RTX A6000 GPU with 48GB of RAM.

Compared Methods. To substantiate the efficacy of our pro-
posed methodology, we conduct a comprehensive comparison with
a diverse array of SOTA methods in LLE and SR. Specifically, we
meticulously benchmark against 3 emblematic LLE techniques,
namely ZeroDCE [20], SCI [28], and LLFormer [37], alongside
10 SR algorithms, which include 9 under normal lighting condi-
tions—SRResNet [18], RDN [51], SRFBN [21], PAN [52], SwinIR [22],
MIRNet [47], Restormer [46], SRFormer [53], and HAT [3]—and

one dedicated to low-light scenarios, LCUN [5]. Notably, the en-
hancement results on the RELLISUR dataset for the sole low-light
SR method, LCUN, were furnished by the authors themselves. To
ensure a fair comparison, we retrain the publicly available codes of
all competing methods on the training set of the RELLISUR dataset.
We opt for HAT as the subsequent magnification model, cascading
it with three distinct LLE methods. It is noteworthy that, given Ze-
roDCE and SCI operate in an unsupervised manner, we train them
on the ×1 low-light RELLISUR dataset for the initial “brightening”
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Figure 5: Illustrating (Above) the probability density histogram trends and (Below) enhancement outcomes for the same sample
(i.e., 00018) under five different levels of darkness. Note that from -2.5EV to -4.5EV indicates increasing darkness.

Figure 6: Visual comparisons (Left) and quantitative results on three metrics (Right) for enhancing brightness and enlarging
low-light images on real nighttime Dark-Zurich samples. Note here, LLFormer⇒HAT is abbreviated as LLF⇒HAT.

Figure 7: Illustrating the convergence curve of the hyper-variable {𝝇𝑢 }5𝑢=1 and the total loss L𝑡𝑜𝑡𝑎𝑙 , based on Alg. 1.

task. Moreover, considering HAT serves as a post-processing mod-
ule for super-resolving the enhanced images, it is trained on the
×2 and ×4 normal-light RELLISUR datasets, designated as ‡HAT,
to differentiate from the original HAT configuration.

4.2 Algorithmic Mechanism Evaluation
Following Alg. 1, we undertake a tri-level automated training regi-
men to sequentially optimize the three variables. Fig. 7 illustrates
the convergence trend of the outermost variable and the overall loss
function throughout the iterations. During the S1 cycle in Alg. 1
(refer to steps 1 to 8), the upper-level variable {𝝇𝑢 }5𝑢=1 evolves
from an initial unit vector to eventually converge to [0.473, 2.177,
0.181, 0.901, 0.195]. This convergence elucidates that the constraints
positively influencing the learning task, as hypothesized by our
algorithm, are indeed effective. It is possible to autonomously iden-
tify which constraints significantly foster a positive impetus for the
learning task through adaptive weight allocation. Notably, the top
three constraints—perceptual constraint, smoothness constraint,
and reconstruction constraint—play a pivotal role in augmenting
performance, underscoring the efficacy of our proposed approach
in leveraging these constraints for enhanced learning outcomes.

4.3 Comparisons with State-of-the-Art
Evaluation on RELLISUR. Tab. 1 presents the quantitative re-
sults for low-light super-resolution tasks at ×2 and ×4 scales on
the RELLISUR dataset. While cascading strategies prove effective,
the improvement is not drastic. Relative to the second-best method,
our approach achieves significant enhancements across all metrics
(e.g., a 5.8% increase in PSNR, a 2.3% boost in SSIM, a 21.0% leap
in LPIPS, a 13.9% advancement in RMSE, and a 0.6% rise in FSIM).
The substantial improvements in LPIPS and RMSE underscore our
method’s capability to refine textures and robustly adapt to various
extreme low-light conditions. Fig. 4 showcases a visual compar-
ison on RELLISUR for simultaneous brightness adjustment and
×2 upscaling. The majority of the compared methods suffer from
significant noise and blur issues, especially observable in SwinIR,
LCUN, and SRFormer. Some cascaded approaches exhibit severe
color bias and insufficient brightness enhancement. In contrast, our
method is capable of producing images with vivid luminance and
excellent restoration of high-frequency structural details. Signal
plots intuitively confirm the consistency between our method and
the reference images at the pixel intensity level.
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Table 2: Computational efficiency of SOTA methods. Note ×
indicates the fold increase of the corresponding metric.

Method ❶Parameters (MB) ❷FLOPs (G) ❸Inference (S) ❹FPS
Restormer 26.126 35.375 0.033 26.87
SRFormer 10.162 81.797 0.218 3.01
HAT 9.473 58.990 0.184 5.31
Ours∗ 1.4246.65× 20.7741.70× 0.0241.37× 41.671.55×

Table 3: Ablation studies of the Alg. 1 (in terms of w/ or w/o
S1 and S2) and IHEM on RELLISUR dataset.

Config. Alg. 1 (w/o S1) Alg. 1 (w/o S2) w/ IHEM ❶PSNR↑ ❷SSIM↑

0 ✓ ✓ ✓ 22.456 0.744
1 ✓ ✓ 21.997↓0.459 0.727↓0.017
2 ✓ ✓ 22.243↓0.213 0.735↓0.009
3 ✓ ✓ 21.959↓0.497 0.726↓0.018

Evaluation on Real Nighttime Scenarios. We assess the gen-
eralization performance of the entire benchmark suite under two
real-world challenging scenarios: dimly lit urban streetscapes at
night and nocturnal open highway scenes. The quantitative com-
parison results for both challenging scenarios are presented in
Fig. 6, respectively. On the DarkFace dataset, we computed three
non-paired metrics to evaluate the quantitative scores. Particularly
noteworthy is our performance on the MetaIQA metric, where we
achieved a 10.5% improvement over the second-best method on
DarkFace. This underscores our method’s efficacy in effectively
restoring a variety of degradations such as noise, blur, and under-
exposure. Please refer to the Supplementary Material for qualitative
and quantitative comparisons on the DarkFace dataset. For com-
parisons on Cityscapes, see the Supplementary Material as well.

Robustness across Diverse Darkness. Fig. 5 conducts a ro-
bustness analysis across varying levels of darkness. Five distinct
levels of low exposure are generated by adjusting exposure time,
resulting in corresponding dark images (e.g., -2.5EV, -3.0EV, -3.5EV,
-4.0EV, and -4.5EV). Our method maintains consistent enhancement
across various levels of darkness. This is visually corroborated by
the probability density histograms, which demonstrate a uniform
consistency distribution across the five different levels of darkness,
highlighting the high robustness of our model to inputs under
varying levels of darkness. Furthermore, it is noteworthy that the
RMSE scores in Tab. 1 also underscore the significant generalization
capability of our method across various darkness levels.

Computational Efficiency. To evaluate model efficiency, we
present the parameters, FLOPs, inference time, and FPS of com-
pared SOTA methods in Tab. 2. The evaluations are performed on
a single 2080 Ti GPU using images of size 128 × 128. Excluding the
parameters of the frozen SAM model, our network has a parameter
count of less than 1.4MB. In conclusion, our network achieves a
favorable balance between performance and efficiency.

4.4 Ablation Analyses
Effectiveness of IHEM. When the IHEM module is removed,
as seen in Config.3 of Tab. 3, there is a noticeable performance
drop—approximately 2.2% in PSNR and 2.4% in SSIM—compared
to the optimal model, Config.0. Fig. 9 presents the ablation results
with the feature visualizations facilitated by IHEM. We visualized

Figure 8: Comparison analysis of the naive training strategy
and our TriCo strategy.

Figure 9: Illustrating of intermediate layer feature visualiza-
tion for the IHEM module.

the features before and after the IHEM process in the last three
decoding layers. Upon comparison, the features prior to IHEM
appear more sparse and scattered, with a distinct lack of textural
detail (see the discernible regions within the dashed circles: the car
wheels). Post-IHEM features, however, exhibit a more abstract and
semantically rich visual representation. This indicates that IHEM
fosters a greater focus on capturing higher-level semantics.

Analysis of the Solution Algorithm.We conduct the ablation
study to quantify the impact of the proposed algorithm compo-
nents, with comparative results detailed in Tab. 3, from Config.0
to Config.3. Omitting the S1 strategy alone leads to a performance
degradation of approximately 2% in PSNR and 2.2% in SSIM com-
pared to the best-performing model, Config.0. Similarly, removing
only the S2 strategy results in a reduction of about 0.9% in PSNR and
1.2% in SSIM relative to Config.0. This delineation underscores the
critical importance of synergistically integrating S1 and S2 strate-
gies to achieve the superior performance set forth by Config.0.
Due to space constraints, Supplementary Materials include ablation
studies (i.e., LII, LFR, loss functions, etc.).

5 CONCLUSION AND REMARKS
This investigation delves into the intricate realm of brightening
and magnifying ultra-dark images, a pursuit fraught with practi-
cal complexities due to the dual dilemmas of low resolution and
profound darkness. Our tailored TriCo, adopts a tri-level learning
strategy that intertwines the tasks of illumination enhancement and
super-resolution. By fostering the collaborative learning, TriCo ef-
fectively negates the historical deficiencies of isolated or simplistic
task handling, yielding superior clarity and artifact reduction.

Broader Impacts. TriCo’s strategic innovation extends beyond
the ultra-dark super-resolution challenge, advocating for a broader
investigation into joint low-level visual and high-level semantic
tasks under adverse conditions, which can elevate the development
of effective training strategies for a range of coupled tasks.
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