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Abstract

Comparing conditional probability distributions, P (Y |X) and Q(Y |X), is a fundamental
problem in machine learning, crucial for tasks like causal inference, detecting dataset shift,
and model validation. The predominant approach, based on Conditional Kernel Mean Em-
beddings (KCMEs), suffers from significant drawbacks: it relies on strong and often unver-
ifiable assumptions on the kernel to be a metric, incurs high computational costs, and may
exhibit reduced sensitivity to higher-order distributional differences. We introduce Condi-
tional Kernel Quantile Embeddings (CKQEs), a novel and robust framework for representing
conditional distributions in a Reproducing Kernel Hilbert Space (RKHS). Throughout, we
assume PX = QX for conditional comparisons, and we require only that the output-space
kernel be quantile-characteristic. From CKQEs, we construct the Conditional Kernel Quan-
tile Discrepancy (CKQD), a new family of probability metrics. We prove that CKQD: (1)
is a metric under substantially weaker and more practical kernel conditions than KCME-
based distances, namely requiring only a quantile-characteristic kernel; (2) possesses a clear
geometric interpretation, recovering a conditional version of the Sliced Wasserstein distance
in a special case; and (3) admits a computationally efficient, statistically consistent non-
parametric estimator with proven finite-sample convergence rates. By addressing the core
weaknesses of the KCME framework, CKQE provides a more versatile and theoretically
sound foundation for conditional two-sample testing.

1 Introduction

1.1 The Challenge of Comparing Conditional Distributions

The ability to compare conditional probability distributions is a cornerstone of modern statistical machine
learning. Formally, this involves testing the null hypothesis H0 : P (Y |X) = Q(Y |X) against the general
alternative H1 : P (Y |X) 6= Q(Y |X). We work under the standard covariate shift setting PX = QX . This
test is fundamental to a vast array of problems, including off-policy evaluation in reinforcement learning,
detecting covariate and concept drift in deployed models, performing constraint-based causal discovery, and
auditing algorithms for fairness (Song et al., 2009; Zhang et al., 2011; Massiani et al., 2025). A robust
and efficient test for this hypothesis allows us to answer critical questions: Has the data-generating process
changed? Does a treatment affect the entire outcome distribution, not just its mean? Are two causal
mechanisms identical?

1.2 Limitations of the KCME Framework

The prevailing non-parametric methodology for this task is based on Conditional Kernel Mean Embeddings
(KCMEs)(Song et al., 2009; Grünewälder et al., 2012; Park & Muandet, 2020). In a Reproducing Kernel
Hilbert Space (RKHS), KCMEs show a conditional distribution P (Y |x) as a single element, which is the
conditional mean of a feature map. The distance between these embeddings is then used as a test statistic.
This framework is strong, but it has some major flaws that make it less useful in practice.
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KCME-based metrics require the Y -kernel to be mean-characteristic (Fukumizu et al., 2007; Sriperumbudur
et al., 2010) so the mean embedding is injective at the population level—a strong assumption that can be
nontrivial to verify in applications. Classical operator-based estimators involve solving linear systems with
an n × n Gram matrix on X, which in naive dense implementations scales as O(n3).1 More recent work
reinterprets CME via a measure-theoretic, vector-valued regression view (Park & Muandet, 2020), relaxing
operator assumptions and admitting standard fast solvers. Although a characteristic kernel implies that
the mean element determines the conditional law in principle, in finite samples KCME-based tests can be
less sensitive to differences that primarily affect higher-order aspects, especially at moderate effect sizes
and with practical kernel/hyperparameter choices. This empirical observation motivates our quantile-based
alternative.

1.3 An Alternative Path: From Means to Quantiles

Recently, Naslidnyk et al. (2025) introduced Kernel Quantile Embeddings (KQEs) as a compelling alternative
for comparing unconditional distributions. By embedding distributions via their directional quantiles in an
RKHS, the resulting Kernel Quantile Discrepancy (KQD) is a metric under much weaker, more practical
conditions (requiring a quantile-characteristic kernel) and connects naturally to the geometry of the Sliced
Wasserstein distance (Kolouri et al., 2019).We view CKQD as complementary to recent conditional tests
based on nearest-neighbor kernels, de-biased U-statistics, KRR-confidence-bound testing, and conformal
prediction, which emphasize different guarantees or computational regimes(Chatterjee et al., 2024; Chen &
Lei, 2025; Hu & Lei, 2023).

Figure 1: CKQD captures structural differences missed by mean-based methods by aggregating the discrep-
ancy between 1D quantile functions (equivalent toW1 distance for p = 1) over all projection directions h and
all conditions x. When two conditional distributions have identical means but different shapes (bimodal vs
unimodal), mean-based methods are less sensitive while CKQD succeeds by examining multiple projection
directions.

1.4 Our Contributions

In this paper, we bridge this gap by extending the powerful KQE framework to the conditional setting.
We introduce Conditional Kernel Quantile Embeddings (CKQEs) and the associated Conditional Kernel
Quantile Discrepancy (CKQD). Our contributions are:

1. A rigorous definition of CKQEs and the CKQD metric for comparing conditional probability distri-
butions.

1E.g., dense Cholesky for kernel ridge regression. In practice, iterative and randomized solvers (e.g., conjugate gradients,
Nyström, pivoted Cholesky) reduce wall-clock cost.
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2. A proof that CKQD is a metric under significantly weaker assumptions than existing KCME-based
metrics, namely requiring only a quantile-characteristic kernel on the output space (Theorem 1).

3. A theoretical result establishing a direct link between CKQD and the conditional Sliced Wasserstein
distance, clarifying its geometric properties (Theorem 2).

4. A novel, consistent, and computationally efficient non-parametric estimator for CKQD with proven
finite-sample convergence rates (Theorem 3).

Table 1 provides a structured comparison of CKQD with leading alternatives, highlighting the unique com-
bination of properties it offers.

Table 1: Comparison of Conditional Two-Sample Testing Methods
Method Provable

Metric?
Kernel Condi-
tion

Estimator
Cost

Key Properties

CKQD Yes Quantile-Char. O(n2) +
O(Lmn log n)a

Sensitive to broad
distributional struc-
ture beyond means;
Sliced Wasserstein
link

KCME-RBF Yes Mean-Char. O(n3)b Mean in RKHS only

C2ST No None Classifier-dep. learned test

aIn our implementation m = 2n denotes the number of evaluation points (the pooled x grid); we compute exact NW weights.
bClassical implementation with O(n3) complexity; runtime exceeds 7 seconds at n = 1600. Modern regression-based
approaches (Park & Muandet, 2020) can leverage fast solvers.

2 Preliminaries: From Mean to Quantile Embeddings in RKHS

We first review the necessary concepts from kernel methods, establishing notation and focusing on the
progression from mean-based to quantile-based embeddings of probability distributions.

2.1 Global Notation

Let X and Y be topological spaces. We denote probability measures on these spaces by P,Q ∈ P(X ) or
P,Q ∈ P(Y). A kernel on X is a function k : X × X → R, with its associated Reproducing Kernel Hilbert
Space (RKHS) denoted by Hk. The feature map is φ(x) := k(x, ·) ∈ Hk. The inner product in Hk is 〈·, ·〉Hk

.
The unit sphere in an RKHS H is SH := {h ∈ H : ‖h‖H = 1}. For a 1D cumulative distribution function
(CDF) F , its quantile function is QF (α) = inf{z ∈ R : F (z) ≥ α} for α ∈ (0, 1).

2.2 Reproducing Kernel Hilbert Spaces (RKHS)

Let X be a non-empty set. A function k : X×X → R is a positive definite kernel if it is symmetric and for any
n ∈ N, any {xi}ni=1 ⊂ X , and any {αi}ni=1 ⊂ R, we have

∑n
i,j=1 αiαjk(xi, xj) ≥ 0. By the Moore-Aronszajn

theorem, every such kernel k is associated with a unique Hilbert space of functions Hk ⊂ RX , called an
RKHS (Aronszajn, 1950). The key property of an RKHS is the reproducing property: for any x ∈ X and any
f ∈ Hk, we have f(x) = 〈f, k(x, ·)〉Hk

. This implies that point evaluation is a continuous linear functional.
The function φ(x) := k(x, ·) is the feature map, mapping points in X to functions in Hk.

2.3 Kernel Mean Embeddings and MMD

The kernel mean embedding (KME) represents a probability distribution as a single point in an RKHS
(Berlinet & Thomas-Agnan, 2004; Smola et al., 2007).
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Definition 1 (Kernel Mean Embedding) Let k be a bounded continuous kernel on a topological space
X , and let P ∈ P(X ) be a Borel probability measure. The kernel mean embedding of P into Hk is the element
µP ∈ Hk defined by

µP :=
∫
X
k(x, ·)dP (x) = EX∼P [k(X, ·)].

Definition 2 The Maximum Mean Discrepancy (MMD) between two probability measures P and Q is the
distance between their mean embeddings in Hk:

MMDk(P,Q) := ‖µP − µQ‖Hk
.

A crucial property is that MMDk defines a metric on the space of probability measures if and only if the
kernel k is characteristic (Sriperumbudur et al., 2010). Characteristic kernels ensure that the map P 7→ µP
is injective.

2.4 Kernel Quantile Embeddings and KQD

Naslidnyk et al. (2025) proposed an alternative to KMEs based on quantiles. Instead of a single mean
element, a distribution is represented by a family of directional quantiles.

Definition 3 Let (Hk, 〈·, ·〉Hk
) be an RKHS and let SHk

be its unit sphere. For a probability measure P on
X , a direction h ∈ SHk

, and α ∈ (0, 1), the α-quantile of P along h is

QP,h(α) := QPh
(α),

where Ph is the pushforward measure of P under the map x 7→ 〈k(x, ·), h〉Hk
.

Definition 4 Let p ≥ 1 and let ν be a Borel probability measure on the sphere SHk
with full support. The

expected Kernel Quantile Discrepancy (e-KQD) between P and Q is

e-KQDpp(P,Q) :=
∫
SHk

∫ 1

0
|QP,h(α)−QQ,h(α)|p dαdν(h).

Definition 5 (Quantile-Characteristic Kernels) A continuous kernel k on a topological space X is
called quantile-characteristic if for any two probability measures P,Q on X , we have QP,h(α) = QQ,h(α)
for all h ∈ SHk

and all α ∈ (0, 1) if and only if P = Q (Naslidnyk et al., 2025).

The key result of Naslidnyk et al. (2025) is that e-KQD is a metric if the kernel k is quantile-characteristic, a
condition that is strictly weaker than being mean-characteristic. For instance, continuous, separating kernels
on compact spaces are quantile-characteristic.

3 Conditional Kernel Quantile Embeddings: Theory and Properties

We now extend the KQE framework to the conditional setting, providing a new tool for comparing conditional
distributions P (Y |X) and Q(Y |X).

3.1 Intuition: From a Single Embedding to a Field of Embeddings

The core idea is to move from representing a distribution as a single point (the mean embedding) to a
richer object. For each conditioning value x ∈ X , we characterize the conditional distribution P (Y |x) not
by its mean, but by its complete quantile structure in the feature space. The Conditional Kernel Quantile
Embedding (CKQE) can thus be viewed as a function, or a "field," that maps each condition x to a full
geometric description—the set of all directional quantiles—of the corresponding output distribution P (Y |x).
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3.2 Formal Definitions

Let X and Y be the spaces for the conditioning and target variables, respectively. Let kY be a kernel on Y
with RKHS HY .

Assumption 1 The target space Y is a Hausdorff, separable, and σ-compact metrizable space. The kernel
kY is bounded and continuous.

Definition 6 For a fixed condition x ∈ X , a direction h ∈ SHY
, and a quantile level α ∈ (0, 1), the

conditional directional quantile of P (Y |X) is

QP |x,h(α) := QPh(·|x)(α),

where Ph(·|x) is the pushforward of the conditional distribution P (Y |x) under the projection map y 7→
〈kY (y, ·), h〉HY

.

Definition 7 (Conditional Kernel Quantile Embedding) The Conditional Kernel Quantile Embed-
ding (CKQE) of the conditional distribution P (Y |X) is the function QP : X → Lp([0, 1] × SHY

) that maps
each condition x ∈ X to its full set of directional quantiles:

QP (x) := ((α, h) 7→ QP |x,h(α)).

The CKQE is understood as an equivalence class a.e. in (α, h) because quantiles are defined up to λ-null sets
and ν-null directions.

Finally, we define the distance between two conditional distributions, P (Y |X) and Q(Y |X), by measuring the
expected discrepancy between their CKQEs. We make the standard assumption for conditional two-sample
testing that the conditioning variables are drawn from the same distribution, i.e., PX = QX .

Definition 8 Let p ≥ 1, and let ν be a Borel probability measure on SHY
with full support. The Conditional

Kernel Quantile Discrepancy (CKQD) between P (Y |X) and Q(Y |X) is defined as

CKQDpp(P,Q) :=
∫
X
e-KQDpp(P (·|x), Q(·|x))dPX(x)

=
∫
X

(∫
SHY

∫ 1

0

∣∣QP |x,h(α)−QQ|x,h(α)
∣∣p dαdν(h)

)
dPX(x).

3.3 Main Theoretical Guarantee: CKQD is a Metric

We now establish the main theoretical property of CKQD, highlighting its advantages over KCME-based
approaches.

All equalities between conditional laws are to be understood for PX -almost every x.

Theorem 1 Let the conditions of Assumption 1 hold. Let kY be a quantile-characteristic kernel on Y, and
let ν be a measure on SHY

with full support. Then for any p ≥ 1, CKQDp(P,Q) is a metric on the space of
conditional probability distributions on Y given X .

Proof. A high-level sketch is as follows (full proof in Appendix B). The proof relies on the fact that
since kY is quantile-characteristic and ν has full support, the inner term, e-KQDp(P (·|x), Q(·|x)), is a metric
on the space of unconditional probability measures on Y (Naslidnyk et al., 2025). If CKQDp(P,Q) = 0,
the non-negativity of the integrand implies that the inner term must be zero for PX -almost every x. Since
e-KQDp is a metric, this means P (Y |x) = Q(Y |x) for almost every x, which implies P (Y |X) = Q(Y |X). The
other metric properties (non-negativity, symmetry, triangle inequality) follow directly from the properties of
the Lp norm over the product measure space, specifically invoking Minkowski’s inequality. �
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Remark 1 (Practical Advantage over KCME) Theorem 1 is a significant improvement over KCME-
based metrics. It does not require the kernel to be mean-characteristic. Continuous, separating kernels
on compact spaces are quantile-characteristic, thus satisfying the conditions of Theorem 1. This allows
practitioners to use a wider and more familiar class of kernels while retaining rigorous theoretical guarantees.

4 Geometric Interpretation and the Sliced Wasserstein Connection

4.1 The Geometry of "Slicing"

The Sliced Wasserstein distance (SWD) is a powerful yet computationally efficient proxy for the true Wasser-
stein distance, a fundamental metric in optimal transport theory. The core idea behind SWD is to avoid the
high-dimensional complexity of optimal transport by instead comparing many one-dimensional projections
(or "slices") of two high-dimensional distributions (Rabin et al., 2011; Bonneel et al., 2015). Our CKQD
framework naturally recovers a conditional version of this idea.

4.2 Equivalence to Conditional Sliced Wasserstein Distance

Our second main result provides a clear geometric interpretation for CKQD by connecting it directly to the
Conditional Sliced Wasserstein distance.

Theorem 2 Let Y = Rd and let kY (y, y′) = y>y′ be the linear kernel, so HY ∼= Rd. Let ν be the uniform
measure σ on the unit sphere Sd−1. Then for p = 1, the CKQD1 is equivalent to the Conditional Sliced-
Wasserstein-1 Distance:

CSW1(P,Q) :=
∫
X

∫
Sd−1

W1(h>#P (·|x), h>#Q(·|x))dσ(h)dPX(x),

where W1 is the 1-Wasserstein distance on R, and h>#P is the pushforward of P under the linear projection
y 7→ h>y. For p > 1, CKQDp gives an Lp-averaged sliced-Wasserstein distance.

Proof. A sketch of the proof is as follows (full proof in Appendix C). First, for the linear kernel kY (y, y′) =
y>y′, the RKHS projection 〈kY (y, ·), h〉HY

simplifies to the standard linear projection y 7→ y>h. Second,
a well-known property of the 1-Wasserstein distance (W1) between two 1D distributions with CDFs F and
G is that it equals the L1 distance between their quantile functions: W1(F,G) =

∫ 1
0 |QF (α)−QG(α)| dα.

Substituting these two facts into the definition of CKQD1 (Def. 8) reveals that the inner integral over α is
precisely the W1 distance between the 1D projected conditional distributions. Integrating over all directions
h ∈ Sd−1 then yields the Sliced-Wasserstein distance for the conditional slice at x. The final outer integral
over PX averages these conditional sliced distances, recovering the exact definition of CSW1. �

5 Estimation and Statistical Analysis

We now propose a practical, non-parametric estimator for CKQD and analyze its statistical properties. Given
i.i.d. samples {(xi, yi)}ni=1 ∼ PXY and {(x′j , y′j)}mj=1 ∼ QXY , our goal is to estimate CKQDpp(P,Q). For
simplicity, we assume n = m and pool the conditioning variables {xi}2n

i=1 to estimate the outer expectation.

5.1 A Non-Parametric Estimator for CKQD

The main challenge is to estimate the conditional quantile function QP |x,h(α) for a given x. We propose a
direct approach that bypasses conditional density estimation. We use a Nadaraya-Watson kernel smoother
to form a local, weighted empirical distribution that approximates P (Y |x). Let KX be a kernel on X with
bandwidth γ. For a test point x, the weight for sample i is

wi(x) = KX(x, xi)∑n
k=1 KX(x, xk) .

6
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For a fixed direction h ∈ SHY
, we compute the projected values zi = 〈kY (yi, ·), h〉HY

. The conditional
quantile QP |x,h(α) is then estimated by the weighted empirical quantile of the set {zi}ni=1 with weights
{wi(x)}ni=1. Let this be Q̂P |x,h(α). A similar estimate Q̂Q|x,h(α) is computed using samples from Q. The
full CKQD estimator is a nested Monte Carlo procedure, where we sample a set of directions {hl}Ll=1 ⊂ SHY

and approximate the integrals with empirical averages.

Unless stated otherwise, we set the bandwidth of KX by the median heuristic on pairwise ‖xi − xj‖; this
choice is fixed across methods and experiments for fairness.

Algorithmic details. A full pseudocode listing and complexity analysis are provided in Appendix A.

5.2 Statistical Guarantees

We establish the consistency of our proposed estimator under standard regularity conditions.

Assumption 2 1. The spaces X ,Y are compact subsets of Euclidean spaces.

2. The kernels kY (on Y) and KX (on X ) are bounded and Lipschitz continuous.

3. The conditional quantile functions x 7→ QP |x,h(α) are Lipschitz continuous, uniformly in h and α.

4. The bandwidth γ satisfies γ → 0 and nγdx →∞ as n→∞, where dx is the dimension of X .

These regularity assumptions are not needed for the metric property (Thm. 1); they are used only to derive
finite-sample convergence rates of our estimator in Thm. 3.

Theorem 3 Under Assumption 2, the empirical estimator ĈKQD
p

p is a consistent estimator of
CKQDpp(P,Q).

That is,

ĈKQD
p

p
p−→ CKQDpp(P,Q) as n→∞.

Moreover, the convergence rate is O(n−2/(dx+2)) under optimal bandwidth selection.

Proof. A sketch of the proof is as follows (full proof in Appendix D). The total error is decomposed into: (i)
the Monte Carlo error from sampling directions hl and conditioning points xi, which vanishes as L, n→∞
by the Law of Large Numbers; and (ii) the estimation error of the conditional quantiles Q̂. The error in
Q̂ is controlled by analyzing the bias and variance of the Nadaraya-Watson estimator. The bias is of order
O(γ) under the Lipschitz assumption on the quantile functions, while the variance is of order O(1/(nγdx)).
The integral over (α, h) is bounded by dominated convergence because of bounded kernels and Lipschitzness.
Balancing bias and variance with an optimal bandwidth choice of γ ∝ n−1/(dx+2) yields the stated rate. �

6 Experiments

We present a comprehensive empirical evaluation of CKQD against state-of-the-art conditional two-sample
testing methods. Our experiments are designed to answer three fundamental questions about CKQD’s
practical performance: Can CKQD detect subtle distributional changes that go beyond mean differences,
particularly in higher-order moments? How does CKQD’s runtime scale with sample size compared to
existing methods? Does CKQD maintain proper Type I error control while achieving competitive power?

Through carefully designed experiments, we demonstrate that CKQD offers a compelling balance of sta-
tistical power and computational efficiency, with particular advantages in detecting complex distributional
differences.

7



Under review as submission to TMLR

6.1 Experimental Setup

6.1.1 Methods Under Comparison

We compare three fundamentally different approaches to conditional two-sample testing. CKQD (our
method) leverages the geometric structure of conditional distributions through directional quantiles in an
RKHS. The method aggregates evidence across multiple projection directions and quantile levels, making
it sensitive to differences in distributional shape beyond means and variances. We use the RBF kernel
kY (y, y′) = exp(−γ‖y − y′‖2) with bandwidth selected via the median heuristic, ensuring the kernel is
quantile-characteristic and CKQD is a proper metric.

KCME-RBF represents the classical kernel-based method for conditional two-sample testing (Song et al.,
2009; Grünewälder et al., 2012). It embeds conditional distributions as mean elements in an RKHS and
measures their distance. While theoretically elegant, KCME-RBF requires solving linear systems of size
n × n, leading to O(n3) computational complexity in naive implementations. The method uses an RBF
kernel with bandwidth set by the median heuristic and regularization parameter λ = 0.01.

C2ST (Lopez-Paz & Oquab, 2017) takes a fundamentally different approach by training a binary classifier
to distinguish between samples from the two conditional distributions. The test statistic is based on clas-
sification accuracy, with the intuition that better classification performance indicates greater distributional
differences. We implement C2ST using a two-layer neural network with hidden sizes 64 and 32, trained with
early stopping to prevent overfitting.

6.1.2 Evaluation Protocol

Our evaluation protocol is designed to ensure fair comparison while respecting the computational constraints
of each method. We ensure PX = QX by sampling X identically for both distributions, focusing purely on
conditional differences. All methods use permutation testing with 199 permutations to compute p-values,
ensuring valid Type I error control without distributional assumptions.

We evaluate performance across sample sizes ranging from 50 to 1600 and effect sizes from 0.0 to 1.5, using a
significance level of α = 0.05. For CKQD, we use 20 projections and 7 quantiles linearly spaced in [0.1, 0.9].
Results are averaged over multiple independent trials—200 for Type I error analysis and 100 for power
analysis—to ensure statistical reliability.

6.2 Test Scenarios: Probing Different Aspects of Conditional Distributions

We design three complementary scenarios that test different aspects of conditional distributional differences.
These scenarios are chosen to highlight both the strengths and limitations of each method.

Scenario 1: Location Shift. This scenario tests the most basic form of distributional difference—a shift
in conditional mean:

P (Y |x) : Y ∼ N ([2x, x2]T , I2) (1)
Q(Y |x) : Y ∼ N ([2x+ δ, x2]T , I2) (2)

where X ∼ Uniform(−1, 1). This serves as a baseline scenario where all methods should perform well, as
mean differences are the easiest to detect. The comparison reveals the relative efficiency of each method in
the simplest case.

Scenario 2: Scale Shift. Here we test sensitivity to variance differences while keeping the conditional
mean fixed:

P (Y |x) : Y ∼ N ([2x, x2]T , I2) (3)
Q(Y |x) : Y ∼ N ([2x, x2]T , (1 + δ)I2) (4)

This scenario challenges mean-based methods, as the first moment remains unchanged. We expect CKQD
to show advantages here due to its sensitivity to the full quantile structure.
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Scenario 3: Shape Shift. The most challenging scenario involves a change from unimodal to bimodal
distributions with identical conditional means:

P (Y |x) : Y ∼ N ([2x, x2]T , I2) (5)
Q(Y |x) : Y ∼ 0.5N ([2x+ δ, x2 + δ]T , 0.5I2) (6)

+ 0.5N ([2x− δ, x2 − δ]T , 0.5I2) (7)

This bimodal mixture is carefully constructed to maintain the same conditional mean as P (Y |x), making it
particularly difficult for mean-based methods to detect. This scenario best demonstrates CKQD’s ability to
capture higher-order distributional differences.

6.3 Results and Analysis

We present our results in order of increasing complexity, building a comprehensive picture of each method’s
capabilities.

6.3.1 Type I Error Control

Before examining power, we verify that all methods maintain proper Type I error control. Figure 2 shows
that all three methods keep their Type I error rates within the acceptable range [0.025, 0.075] around the
nominal level α = 0.05. This validation is crucial as it ensures that our power comparisons are meaningful—a
method with inflated Type I error would show artificially high power.

Figure 2: Type I error control validation. All methods maintain proper error rates within the acceptable
range (red shaded area). Error bars show 95% Wilson confidence intervals. CKQD exhibits valid calibration
with an observed rate of 0.045, near the nominal α = 0.05 level.

Notably, CKQD achieves an observed rate of 0.045, very close to the nominal level, demonstrating the validity
of our theoretical guarantees in finite samples.

6.3.2 Power Analysis: A Tale of Three Scenarios

Figure 3 presents our main power results across all scenarios. The patterns reveal important insights about
each method’s strengths.

For location shifts (left column), all methods perform well, achieving near-perfect power for δ ≥ 1.2. CKQD
shows a slight advantage at weaker effect sizes (δ = 0.2, 0.5), reaching high power faster than the alternatives.
This suggests that even for mean differences, the multi-directional approach of CKQD provides benefits.

In scale shifts (middle column), we see a dramatic difference in performance. CKQD achieves perfect power
already at δ = 0.5, while C2ST struggles, reaching similar power only at δ ≥ 1.5. This confirms our
theoretical intuition that examining multiple quantiles provides superior sensitivity to variance changes.
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Figure 3: Comprehensive power analysis across three distributional scenarios. Top row shows power vs.
effect size at n = 200; bottom row shows power vs. sample size at δ = 0.75. Shaded regions indicate 95%
confidence intervals. CKQD consistently achieves high power across all scenarios, with particular advantages
in detecting scale and shape differences.

The shape shift scenario (right column) highlights key performance distinctions. Figure 4 provides a detailed
view of this case:

Figure 4: Sensitivity analysis comparing method performance on shape differences. Panel A shows synthetic
data illustrating unimodal (blue) vs. bimodal (red) distributions with identical means. Panel B shows
statistical power for detecting these shape differences at effect size δ = 1.0. CKQD demonstrates superior
sensitivity to higher-order distributional structure.

At δ = 1.0, CKQD achieves perfect power (1.00) while KCME-RBF reaches 0.93 and C2ST achieves 0.92.
The superiority of CKQD is consistent across all effect sizes, demonstrating its unique ability to detect
complex distributional changes that preserve the mean.

6.3.3 Computational Scalability

Figure 5 addresses a critical practical concern: how do these methods scale to large datasets? Our runtime
analysis reveals that CKQD shows near-quadratic growth consistent with our complexity analysis of O(n2)+
O(Lmn logn). KCME-RBF exhibits the steepest growth, becoming prohibitively expensive for large n,
with runtime exceeding 7 seconds at n = 1600, matching the theoretical O(n3) complexity of solving linear
systems. The O(n3) complexity arises from the need to invert or decompose the n× n kernel matrix on the
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conditioning variables, a fundamental bottleneck in the classical KCME formulation. C2ST shows the best
scalability, benefiting from mini-batch training and GPU acceleration, though this computational advantage
must be weighed against its lower statistical power.

Figure 5: Computational scalability comparison showing runtime (seconds, log scale) vs. sample size. CKQD
exhibits near-quadratic growth and competitive runtimes across sample sizes.

The key insight is that CKQD offers a favorable trade-off: substantially better scaling than KCME-RBF
while maintaining superior statistical power.

6.3.4 Understanding CKQD’s Design Choices

To provide deeper insights into CKQD’s behavior, we conducted ablation studies examining key hyperpa-
rameters. Table 2 reveals that location and scale detection saturate quickly (5-10 projections suffice), while
shape detection benefits from more projections (L ≥ 20). This motivated our default choice of L = 20,
balancing computational cost with the ability to detect complex shape changes.

Table 2: Effect of Number of Projections on CKQD Power (n = 200, δ = 1.0)
Scenario Number of Projections (L)

5 10 20 30 50
Location 1.00 1.00 1.00 1.00 1.00
Scale 1.00 1.00 1.00 1.00 1.00
Shape 0.88 0.88 0.98 0.98 1.00

The heatmap in Figure 6 (Appendix E.3.4) provides a comprehensive view of the power landscape. CKQD
shows more uniform high power across the parameter space, while other methods show irregular patterns
with “dead zones” where power remains low despite reasonable effect sizes or sample sizes.

6.4 Key Findings

Our experiments reveal several important findings. First, CKQD excels at detecting non-mean differences:
while competitive for location shifts, CKQD shows significant advantages for scale and shape changes, vali-
dating our theoretical motivation. Second, with near-quadratic scaling, CKQD remains tractable for sample
sizes where KCME-RBF becomes prohibitive. Third, the number of projections can be adapted based on
the expected type of distributional difference, offering flexibility in practice. Finally, even CKQD requires
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moderate effect sizes (δ ≥ 0.5) to reliably detect shape changes, highlighting the inherent difficulty of this
problem.

These results establish CKQD as a powerful and practical method for conditional two-sample testing, par-
ticularly when distributional differences extend beyond simple mean shifts.

7 Discussion and Limitations

Discussion. Across the three shift families, the empirical results follow a consistent pattern. For location
changes, all methods achieve near-unit power once the effect size is considerable (e.g., δ≥ 1.2 at n= 200),
with small advantages for CKQD at the weakest settings; this aligns with the fact that mean differences are
easily detected by both RKHS- and classifier-based tests. For scale changes, CKQD attains higher power at
moderate effect sizes (e.g., δ = 0.5), with the alternatives catching up only as δ grows; this indicates that
aggregating directional conditional quantiles over α and directions h improves sensitivity to dispersion at
fixed mean. For shape differences under equal means (unimodal vs. bimodal), CKQD reaches high power
at smaller δ than the baselines; however, the KCME baseline does not fail—it is simply less sensitive at
these moderate effects and approaches unit power as the effect strengthens. Type-I error is controlled at the
nominal level for all tests under our permutation calibration. On the computational side, CKQD exhibits
near-quadratic growth in n and remains practical at the largest sample sizes evaluated, while dense KCME
becomes costly; C2ST is faster overall in our setup. An ablation on the number of projections L shows that
location/scale settings saturate quickly, whereas shape detection benefits from L≥20, which motivated our
default.

Limitations. Several limitations should be acknowledged:

• PX = QX assumption: Our framework requires identical conditioning variable distributions, which
may not hold in some applications.

• Bandwidth sensitivity: The Nadaraya-Watson smoother requires careful bandwidth selection,
particularly the choice of γ.

• Projection count L: Complex shape shifts require more projections, increasing computational
cost.

• Curse of dimensionality: The convergence rate degrades with the dimension dx of the conditioning
space due to local smoothing.

• Extreme quantiles: Potential numerical instability at extreme quantile levels (we restrict to
[0.1, 0.9]).

8 Conclusion and Future Work

We have introduced Conditional Kernel Quantile Embeddings (CKQEs) and the associated Conditional
Kernel Quantile Discrepancy (CKQD), a novel framework for the non-parametric comparison of conditional
probability distributions. Our work makes several key contributions. Theoretically, we proved that CKQD
is a metric under substantially weaker kernel conditions than its mean-based counterparts and established
a clear geometric link to the conditional Sliced Wasserstein distance. Practically, we developed a consistent
and computationally efficient non-parametric estimator for CKQD.

Future work can proceed in several promising directions. First, the framework can be extended to test
for conditional independence (X ⊥ Y |Z) by testing the equality of P (Y |Z) and P (Y |X,Z). Second, deep
kernel variants could be developed, where the kernel kY is parameterized by a neural network and learned
to maximize test power. Finally, more advanced scalable estimators could be designed, for instance by using
random Fourier features to approximate the RKHS projections.
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A Algorithm and Complexity

Algorithm 1 lays out the complete CKQD workflow.

Algorithm 1 Empirical CKQD Estimator
Input: Samples DP = {(xi, yi)}ni=1, DQ = {(x′j , y′j)}mj=1.
Hyperparameters: Kernels kY ,KX ; bandwidth γ; number of projections L; exponent p.
Output: ĈKQD

p

p, an estimate of CKQDpp(P,Q).
Sample L directions {hl}Ll=1 from SHY

.
Let Xpool = {xi}ni=1 ∪ {x′j}mj=1. Let N = n+m.
Initialize total discrepancy D ← 0.
for each xeval ∈ Xpool do
Compute weights {wi(xeval)}ni=1 for DP using KX , γ.
Compute weights {w′j(xeval)}mj=1 for DQ using KX , γ.
Initialize point discrepancy Dxeval ← 0.
for each direction hl ∈ {hl}Ll=1 do
Project data: zi = 〈kY (yi, ·), hl〉HY

for i = 1..n.
Project data: z′j =

〈
kY (y′j , ·), hl

〉
HY

for j = 1..m.
Estimate Q̂P |xeval,hl

(·) from {zi, wi(xeval)}.
Estimate Q̂Q|xeval,hl

(·) from {z′j , w′j(xeval)}.
Compute ∆l =

∫ 1
0

∣∣∣Q̂P |xeval,hl
(α)− Q̂Q|xeval,hl

(α)
∣∣∣p dα.

Dxeval ← Dxeval + ∆l.
end for
D ← D + (Dxeval/L).

end for
return D/N .

Direction sampling in HY . Our theory assumes a probability measure ν with full support on the unit
sphere SHY

. Because a canonical “uniform” distribution on SHY
is not available in infinite-dimensional

RKHSs, we approximate ν with a data-dependent empirical measure ν̂. Concretely, we draw random linear
combinations of representers kY (y, ·) built from the pooled outputs Ypool = {yi}ni=1 ∪ {y′j}mj=1 and normalize
each draw to unit norm, yielding directions h ∈ SHY

that provide a practical Monte-Carlo approximation to
the ν-integrals. Unless otherwise stated, all experiments use this empirical-span scheme; alternative choices
(e.g., random Fourier-feature directions for shift-invariant kY ) yield similar results.

Computational Complexity. For a fixed number of projections L and equal sample sizes n = m, the cost
has two components. (i) Computing exact Nadaraya–Watson weights for each of the 2n evaluation points
costs O(n2). (ii) For each evaluation point and each of the L directions, obtaining weighted empirical quan-
tiles requires sorting n projected values, which costsO(n logn). Thus, the total cost isO(n2)+O(LM n logn),
where m = 2n denotes the number of evaluation points (the pooled x grid). In our experiments we use exact,
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dense NW weights and do not employ k-NN sparsification or weight caching; empirically, runtimes exhibit
near-quadratic growth consistent with the dominant O(n2) term.

B Proof of Theorem 1 (CKQD is a Metric)

We need to prove that for p ≥ 1, CKQDp(P,Q) satisfies the four properties of a metric on the space of
conditional probability distributions on Y given X :

1. Non-negativity: CKQDp(P,Q) ≥ 0.

2. Identity of indiscernibles: CKQDp(P,Q) = 0⇔ P (Y |X) = Q(Y |X).

3. Symmetry: CKQDp(P,Q) = CKQDp(Q,P ).

4. Triangle inequality: CKQDp(P,R) ≤ CKQDp(P,Q) + CKQDp(Q,R).

Let’s define the directional quantile difference for a given condition x as dx,h(α) := QP |x,h(α) −QQ|x,h(α).
The CKQD can then be written as:

CKQDp(P,Q) =
(∫
X

∫
SHY

∫ 1

0
|dx,h(α)|p dαdν(h)dPX(x)

)1/p

.

1. Non-negativity. The integrand |dx,h(α)|p is always non-negative. The measures dα, dν(h), and
dPX(x) are all non-negative. Therefore, the integral is non-negative, and its p-th root is also non-negative.
So, CKQDp(P,Q) ≥ 0.

2. Identity of Indiscernibles. (⇐) If P (Y |X) = Q(Y |X), then for PX -almost every x ∈ X , we have
P (Y |x) = Q(Y |x). This implies that for any h ∈ SHY

, the projected distributions are identical: Ph(·|x) =
Qh(·|x). Consequently, their quantile functions are identical: QP |x,h(α) = QQ|x,h(α) for all α ∈ (0, 1). Thus,
the integrand |dx,h(α)|p is zero for PX ⊗ ν ⊗ λ-almost every (x, h, α), and CKQDp(P,Q) = 0.

(⇒) If CKQDp(P,Q) = 0, then the integral must be zero. Since the integrand is non-negative, this implies
that the integrand itself must be zero almost everywhere with respect to the product measure dPX(x) ⊗
dν(h)⊗ dα. This means that for PX -almost every x ∈ X , we have∫

SHY

∫ 1

0

∣∣QP |x,h(α)−QQ|x,h(α)
∣∣p dαdν(h) = 0.

This is precisely the definition of e-KQDpp(P (·|x), Q(·|x)). Because the kernel kY is assumed to be quantile-
characteristic and the measure ν has full support, e-KQDp is a strict metric on the space of unconditional
probability measures on Y (Naslidnyk et al., 2025). Therefore, e-KQDp(P (·|x), Q(·|x)) = 0 implies that
P (Y |x) = Q(Y |x). Since this holds for PX -almost every x, we conclude that P (Y |X) = Q(Y |X).

3. Symmetry. Symmetry follows directly from the absolute value in the integrand:∣∣QP |x,h(α)−QQ|x,h(α)
∣∣ =

∣∣QQ|x,h(α)−QP |x,h(α)
∣∣ .

Therefore, CKQDp(P,Q) = CKQDp(Q,P ).

4. Triangle Inequality. This property follows from Minkowski’s integral inequality. Let the product
measure space be (Ω,F , µ) = (X × SHY

× [0, 1],B, PX ⊗ ν ⊗ λ), where B is the Borel σ-algebra and λ is
the Lebesgue measure. Let the functions be f(ω) = QP |x,h(α), g(ω) = QQ|x,h(α), and j(ω) = QR|x,h(α) for
ω = (x, h, α) ∈ Ω.
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The CKQD can be viewed as the Lp(Ω,F , µ) norm of the difference of these functions by the Tonelli theorem
(which allows interchange of integration order for non-negative measurable functions):

CKQDp(P,R) = ‖f − j‖Lp(µ) .

We can add and subtract the function g:

‖f − j‖Lp(µ) = ‖(f − g) + (g − j)‖Lp(µ) .

By Minkowski’s inequality (which is the triangle inequality for Lp spaces), for p ≥ 1:

‖(f − g) + (g − j)‖Lp(µ) ≤ ‖f − g‖Lp(µ) + ‖g − j‖Lp(µ) .

Substituting back the CKQD notation:

CKQDp(P,R) ≤ CKQDp(P,Q) + CKQDp(Q,R).

All four properties are satisfied, hence CKQDp is a metric. �

C Proof of Theorem 2 (Link to Conditional Sliced Wasserstein)

We want to show that for Y = Rd, kY (y, y′) = y>y′, p = 1, and ν = σ (uniform measure on Sd−1),
CKQD1(P,Q) equals the Conditional Sliced-Wasserstein-1 distance, CSW1(P,Q).

Step 1: Analyze the projection. For the linear kernel kY (y, y′) = y>y′, the RKHS HY is isometric
to Rd itself via the identity map. An element h ∈ SHY

corresponds to a unit vector h ∈ Sd−1 ⊂ Rd. The
projection of a point y ∈ Y is:

〈kY (y, ·), h〉HY
= 〈y, h〉Rd = y>h.

This is the standard linear projection of the vector y onto the direction h. The pushforward measure Ph(·|x)
is the distribution of the 1D random variable Y >h where Y ∼ P (Y |x). We denote this projected measure
as h>#P (·|x).

Step 2: Analyze the inner integral of CKQD. Let’s consider the inner integral of the CKQD1
definition (Def. 8) for a fixed x: ∫

SHY

∫ 1

0

∣∣QP |x,h(α)−QQ|x,h(α)
∣∣ dαdν(h).

With the linear kernel and ν = σ, this becomes:∫
Sd−1

∫ 1

0

∣∣∣Qh>#P (·|x)(α)−Qh>#Q(·|x)(α)
∣∣∣ dαdσ(h).

Step 3: Relate to 1-Wasserstein distance. The well-known Kantorovich-Rubinstein theorem states
that the 1-Wasserstein distance (W1) between two 1D distributions with CDFs F and G can be computed
as the L1 distance between their quantile functions:

W1(F,G) =
∫ 1

0
|QF (α)−QG(α)| dα.

Applying this to our expression, the inner integral over α is exactly the W1 distance between the projected
1D distributions h>#P (·|x) and h>#Q(·|x):∫ 1

0

∣∣∣Qh>#P (·|x)(α)−Qh>#Q(·|x)(α)
∣∣∣ dα = W1(h>#P (·|x), h>#Q(·|x)).
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Step 4: Relate to Sliced-Wasserstein distance. Substituting this back, the expression for a fixed x is
the Sliced-Wasserstein-1 distance between the conditional distributions P (Y |x) and Q(Y |x):

SW1(P (·|x), Q(·|x)) =
∫
Sd−1

W1(h>#P (·|x), h>#Q(·|x))dσ(h).

Step 5: Assemble the final expression. Finally, the full CKQD1 is the expectation of this quantity
over x ∼ PX :

CKQD1(P,Q) =
∫
X
SW1(P (·|x), Q(·|x))dPX(x)

=
∫
X

∫
Sd−1

W1(h>#P (·|x), h>#Q(·|x))dσ(h)dPX(x)

= CSW1(P,Q).

This completes the proof. �

D Proof of Theorem 3 (Consistency of the Estimator)

The proof of consistency for ĈKQD
p

p follows standard arguments from non-parametric kernel regression
theory. We outline the key steps for p = 1 and for samples from a single distribution P for simplicity, as the
extension to the two-sample case is direct. Let the true quantity be D = CKQD1(P,Q) and its estimator be
D̂ = ĈKQD1. We want to show that

∣∣∣D̂ −D∣∣∣→ 0 in probability.

Let ∆(x, h) :=
∫ 1

0
∣∣QP |x,h(α)−QQ|x,h(α)

∣∣ dα be the true discrepancy for a given (x, h), and let ∆̂(x, h) be its
empirical estimate using the Nadaraya-Watson smoothed quantiles. The true CKQD is D = EX,h[∆(X,h)],
where the expectation is over X ∼ PX and h ∼ ν. The estimator is D̂ = 1

N

∑N
i=1

1
L

∑L
l=1 ∆̂(xi, hl).

The total error can be decomposed using the triangle inequality:

∣∣∣D̂ −D∣∣∣ ≤
∣∣∣∣∣∣ 1
NL

∑
i,l

∆̂(xi, hl)−
1
NL

∑
i,l

∆(xi, hl)

∣∣∣∣∣∣︸ ︷︷ ︸
Term 1: Estimation Error

+

∣∣∣∣∣∣ 1
NL

∑
i,l

∆(xi, hl)− EX,h[∆(X,h)]

∣∣∣∣∣∣︸ ︷︷ ︸
Term 2: Monte Carlo Error

.

Term 1: Estimation Error. This term represents the error from estimating the true conditional quantiles
with their Nadaraya-Watson counterparts. For a fixed (x, h, α), the Mean Squared Error (MSE) of the
quantile estimator Q̂P |x,h(α) can be decomposed into squared bias and variance. Under Assumption 2:

• Bias: For a kernel KX satisfying standard moment and symmetry conditions and a target function
that is Lipschitz continuous, the bias of the Nadaraya-Watson estimator is of order O(γ). The
squared bias is therefore O(γ2).

• Variance: The condition nγdx → ∞ ensures the effective sample size grows, driving the variance
down. The variance is of order O(1/(nγdx)).

Term 2: Monte Carlo Error. This term represents the error from approximating the expectation EX,h[·]
with a finite sample average. Since the samples (xi, hl) are i.i.d., by the Law of Large Numbers, this term
converges to zero in probability as N,L→∞.

The total Mean Squared Error is therefore of order O(γ2 + 1/(nγdx)). To minimize this upper bound, we
balance the two terms by setting γ2 ∝ 1/(nγdx), which yields an optimal bandwidth choice of γ ∝ n−1/(dx+2).
Substituting this back into the MSE expression gives the minimax optimal rate of O(n−2/(dx+2)).

To show that Term 1 converges to zero, we need a uniform convergence result over the class of functions
indexed by (x, h, α). This can be established using empirical process theory (van der Vaart & Wellner, 1996),
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leveraging the compactness of the spaces and Lipschitzness of the functions (Assumption 2) to show that
the relevant function classes are Donsker, ensuring that the empirical estimates converge uniformly to their
true values.

Combining the convergence of both terms, we conclude that D̂ → D in probability, establishing consistency.
�

E Detailed Experimental Results

This appendix provides comprehensive details about our experimental setup, implementation choices, and
additional results that support the main findings. We organize this material to facilitate reproducibility and
provide deeper insights into the behavior of each method.

E.1 Implementation Details

E.1.1 CKQD Implementation

Our implementation of CKQD follows Algorithm 1 with several practical considerations. For direction
sampling, while our theory assumes a probability measure ν with full support on the unit sphere SHY

, in
practice we approximate this with a data-dependent empirical measure. Specifically, we draw random linear
combinations of kernel evaluations {kY (yi, ·)} from the pooled outputs, normalize each combination to unit
norm in the RKHS, and use L = 20 such directions unless otherwise specified. This empirical approach
ensures our directions are adapted to the data distribution while maintaining theoretical validity.

For quantile computation, we use 7 quantile levels linearly spaced in [0.1, 0.9], avoiding extreme quantiles
where estimation can be unstable. The weighted empirical quantiles are computed using linear interpolation
for smooth estimation. The Nadaraya-Watson kernel uses the median heuristic γ = median{‖xi−xj‖ : i 6= j}.
This choice is data-adaptive and parameter-free, consistent across all methods for fair comparison, and robust
to outliers and scale variations. We use exact Nadaraya–Watson kernel weights (dense) for all experiments;
no k-NN truncation, sparsification, or weight caching is employed.

E.1.2 KCME-RBF Implementation

The KCME-RBF baseline requires careful implementation to manage computational costs. We compute four
kernel matrices: KX1,KX2 (within-sample kernel matrices on conditioning variables), KY 1,KY 2 (within-
sample kernel matrices on response variables), and KY 12 (cross-sample kernel matrix between response
variables). All use RBF kernels with median heuristic bandwidths.

We add regularization λI to the conditioning kernel matrices before inversion, with λ = 0.01. This ensures
numerical stability while minimally affecting the test. While KCME-RBF can run on the full dataset,
its O(n3) complexity leads to rapidly increasing runtimes, reaching nearly 8 seconds at n=1600 in our
experiments.

E.1.3 C2ST Implementation

The classifier-based approach uses a standardized architecture across all experiments. The network consists
of an input layer with concatenated (X,Y ) features, followed by two hidden layers with 64 and 32 units
respectively using ReLU activation, and an output layer for binary classification with sigmoid activation.

Training employs the Adam optimizer with learning rate 10−3, early stopping with patience of 20 epochs
on validation loss, batch size of 32 for efficient GPU utilization, and a data split of 50% for training, 25%
validation, and 25% test. The test statistic is 2|accuracy − 0.5|, which equals 0 under the null hypothesis
(classifier cannot distinguish samples) and approaches 1 under strong alternatives.
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E.2 Experimental Parameters

Table 3 provides a complete overview of parameters used in each experimental study. These choices balance
statistical reliability with computational feasibility. We use consistent parameters across all methods to
ensure fair comparisons, with variations only introduced when studying specific aspects like the ablation
analysis.

Table 3: Experimental Parameters by Study Type
Experiment Trials Sample Size Permutations Effect Size Scenarios
Type I Error 200 200 199 0.0 All
Power Analysis 100 200 199 0.0–1.5 All
Ablation Study 50 200 99 1.0 All
Power vs Sample Size 50 50–400 99 0.75 All
Runtime Analysis 5 50–1600 – 0.5 Location

The number of permutations (199 or 99) is chosen to ensure the smallest possible p-value (1/200 or 1/100)
is below our significance level α = 0.05, while keeping computation reasonable.

Additional parameters used throughout our experiments:

• Significance level: α = 0.05

• Number of projections for CKQD: L = 20 (default), L ∈ {5, 10, 20, 30, 50} for ablation

• Number of quantiles for CKQD: 7 (linearly spaced in [0.1, 0.9])

• Kernel: RBF kernel kY (y, y′) = exp(−γ‖y − y′‖2) with median heuristic bandwidth

E.3 Additional Results and Analysis

E.3.1 Type I Error Breakdown

Table 4 provides detailed Type I error analysis with confidence intervals computed using the Wilson score
method, which provides better coverage for proportions near 0 or 1.

Table 4: Comprehensive Type I Error Analysis
Method Observed Rate 95% CI Trials Status
C2ST 0.058 [0.039, 0.085] 400 Valid
CKQD 0.045 [0.029, 0.070] 400 Valid
KCME-RBF 0.060 [0.041, 0.088] 400 Valid

All methods show valid Type I error control, with rates statistically indistinguishable from the nominal
α = 0.05. The tight confidence intervals demonstrate the reliability of our experimental setup.

E.3.2 Detailed Power Tables

Tables 5, 6, and 7 provide exact power values for each scenario. These complement the visual results in the
main paper.

Key observations from the location shift results: CKQD shows the steepest power curve, reaching 0.93 power
at δ = 0.5. All methods achieve perfect power by δ = 1.5, and even for this “easy” scenario, CKQD shows
advantages at moderate effect sizes.

The scale shift results illustrate CKQD’s advantages. At δ = 0.5, CKQD achieves 1.00 power while KCME-
RBF achieves 0.91 and C2ST achieves 0.57. The gap persists until δ > 0.8, showing CKQD’s superior
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Table 5: Statistical Power for Location Shifts (n = 200)
Method Effect Size (δ)

0.0 0.2 0.5 0.8 1.0 1.2 1.5
C2ST 0.04 0.08 0.32 0.64 0.84 0.95 1.00
CKQD 0.05 0.38 0.93 1.00 1.00 1.00 1.00
KCME-RBF 0.03 0.21 0.88 1.00 1.00 1.00 1.00

Table 6: Statistical Power for Scale Shifts (n = 200)
Method Effect Size (δ)

0.0 0.2 0.5 0.8 1.0 1.2 1.5
C2ST 0.04 0.17 0.57 0.84 0.94 0.96 1.00
CKQD 0.05 0.32 1.00 1.00 1.00 1.00 1.00
KCME-RBF 0.03 0.20 0.91 1.00 1.00 1.00 1.00

sensitivity to variance changes. C2ST and KCME-RBF show similar struggles, suggesting this is a funda-
mental limitation of mean-based approaches.

Table 7: Statistical Power for Shape Shifts (n = 200)
Method Effect Size (δ)

0.0 0.2 0.5 0.8 1.0 1.2 1.5
C2ST 0.04 0.49 0.27 0.66 0.92 1.00 1.00
CKQD 0.05 1.00 0.83 0.58 1.00 1.00 1.00
KCME-RBF 0.03 1.00 0.60 0.33 0.93 1.00 1.00

Shape shift detection also shows differences. CKQD maintains substantial power advantages across most
effect sizes. The bimodal structure with preserved mean successfully challenges mean-based approaches.

E.3.3 Runtime Analysis Details

Table 8 provides detailed runtime measurements with standard deviations, offering insights into computa-
tional variability.

Table 8: Runtime Scalability Analysis (seconds, mean ± std)
Method Sample Size

50 100 200 400 800 1600
C2ST 0.005±0.001 0.006±0.001 0.008±0.002 0.014±0.004 0.017±0.004 0.031±0.009
CKQD 0.026±0.001 0.028±0.001 0.034±0.001 0.055±0.006 0.106±0.006 0.262±0.004
KCME-RBF 0.030±0.001 0.188±0.008 0.438±0.047 0.963±0.056 2.057±0.148 7.758±0.523

Runtime observations show that CKQD has remarkably stable near-quadratic growth with low standard
deviations indicating consistent performance. The gap between CKQD and KCME-RBF widens dramatically
for n > 100, while C2ST benefits from GPU acceleration and mini-batch processing.
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E.3.4 Effect of Hyperparameters

Our ablation studies reveal how CKQD’s performance depends on key hyperparameters. The results in Table
9 show that location detection is robust to projection count (perfect power with just 5 projections), scale
detection also saturates quickly (10 projections suffice), shape detection benefits from more projections with
noticeable improvements up to 20, and beyond 30 projections, gains are marginal while computational cost
increases linearly.

Table 9: Effect of Number of Projections on CKQD Power (n = 200, δ = 1.0)
Scenario Number of Projections

5 10 20 30 50
Location 1.00 1.00 1.00 1.00 1.00
Scale 1.00 1.00 1.00 1.00 1.00
Shape 0.88 0.88 0.98 0.98 1.00

This suggests practitioners can adapt L based on their specific use case: use fewer projections (5-10) for
simple mean/variance testing, but increase to 20+ when complex shape differences are suspected.

Figure 6: Power evolution heatmap showing statistical power across effect sizes and sample sizes for all
methods and scenarios. Darker colors indicate higher power. CKQD demonstrates consistently strong
performance across all conditions.

Figure 6 reveals that CKQD requires fewer samples to achieve high power across all scenarios, with the
advantage most pronounced for scale and shape shifts. KCME-RBF shows irregular power surfaces with
unexpected low-power regions, while C2ST requires the largest sample sizes, particularly for shape detection.
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