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Abstract

Vector-valued Gaussian mixtures form an important special subset of vector-1

valued distributions. In general, vector-valued distributions constitute natural rep-2

resentations for physical entities, which can mutate or transit among alternative3

manifestations distributed in a given space. A key example is color imagery. In4

this note, we vectorize the Gaussian mixture model and study several different op-5

timal mass transport related problems associated to such models. The benefits of6

using vector Gaussian mixture for optimal mass transport include computational7

efficiency and the ability to preserve structure.8

1 Introduction9

Finite mixture models can describe a wide range of statistical phenomena. They have been success-10

fully applied to numerous fields including biology, economics, engineering, and the social sciences11

[14]. The first major use and analysis of mixture models is perhaps due to the mathematician and12

biostatistician Karl Pearson over 120 years ago, who explicitly decomposed a distribution into two13

normal distributions for the characterization of the non-normal attributes of forehead to body length14

ratios in female shore crab populations [16]. The literature on analyzing and applying mixture mod-15

els is growing due to their simplicity, versatility and flexibility. One of the most commonly used16

mixture models is the Gaussian mixture model (GMM), which is a weighted sum of Gaussian dis-17

tributions.18

Optimal mass transport (OMT) has been a major subject of mathematical research, originating with19

the French civil engineer and mathematician Gaspard Monge in 1781 [19, 20]. OMT allows one to20

define a distance between two probability distributions, which makes it a very powerful tool to ana-21

lyze the geometry of distributions. Its applications include but not limited to signal processing, ma-22

chine learning, computer vision, meteorology, statistical physics, quantum mechanics, and network23

theory [3, 13, 17, 2]. Milestones of this subject include the seminal work of Leonid Kantorovich24

[19, 20], who relaxed the original problem so that it can be solved through linear programming, and25

Benamou and Brenier [4] who introduced a computational fluid dynamics (CFD) approach to OMT.26

More recent developments involve extensions of the theory to the vector-valued, matrix-valued and27

unbalanced cases [7, 6, 5, 9].28

The problem that motivated the present work arose when the authors were working with certain29

medical image data. The object was to compute optimal mass transport while preserving key struc-30

tures. The authors of [8] studied OMT for GMM, which however can only work on single layered31

data, e.g., gray scale images. The need for working directly on the original color images with the32

potential of capturing more information inspired us to generalize the OMT setting from the one-33

layered case to the three-layered case. More generally, in this note, we develop optimal transport for34

vector-valued Gaussian mixture models, which can have any dimension and any general connection35
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structures among the layers. Furthermore, corresponding to unbalanced OMT, we also develop an36

unbalanced version for Gaussian mixture models.37

There have several relevant works in the literature describing various versions of OMT to GMMs and38

vector-valued data as well as extending the theory to manifolds, which we would like to review here39

in order to put the present work in proper perspective. First of all, Fitschen, Laus, and Schmitzer40

[12] develop a rigorous transport theory for manifold-valued images. Delon and Desolneux [10]41

study a version of OMT for GMMs (with some beautiful examples), essentially equivalent to the42

work proposed in [8] and followed in the present work. Fitschen, Laus and Steidl [11] formulate a43

dynamical model of transport for discrete RGB color images inspired by the work Benamou-Brenier44

[4]. In the work of Thorpe et al. [18], a transport-based distance is defined and studied, which is45

directly applicable to general, non-positive and multi-channel signals.46

In what follows, we will first give some background on GMM and OMT. Next, we summarize some47

of the work of [8], and then introduce two different approaches for the vector-valued case. We48

investigate the unbalanced GMM problem and conclude with some illustrative numerical results.49

2 Gaussian mixture models50

A Gaussian mixture model is one of the most important examples of a mixture model. Mathemati-51

cally, a GMM is a probability distribution which is the weighted sum of several Gaussian distribu-52

tions in RN . Namely, an n-component Gaussian mixture model (GMM) is given by53

µ = p1ν1 + p2ν2 + · · ·+ pnνn. (1)

Here54

νi(x) =
1√

(2π)N |Σi|
exp{−1

2
(x−mi)

TΣ−1
i (x−mi)}, (2)

where mi ∈ RN is the mean and Σi ∈ RN×N is the positive definite covariance matrix for 1 ≤ i ≤55

n. Further,56
n∑
i=1

pi = 1, pi > 0,∀i ∈ {1, ..., n} (3)

so that µ is a probability distribution.57

We denote the set of all the GMMs in RN by G(RN ). It is a dense subset of the set of all the probabil-58

ity distributions in the sense of the weak∗ topology [1]. Thus one can use GMM to fit a distribution59

with arbitrarily small error. Of course, this may involve a very large number of Gaussians.60

3 Optimal mass transport61

In this section we sketch the basics of optimal mass transport. See [19, 20] for all the details as62

well as an extensive list of references. In the present work, we only consider absolutely continu-63

ous measures, which thus have density functions representations. By slight abuse of notation and64

terminology, we will identify the given measure with its density function representation.65

The original formulation of OMT due to Gaspard Monge may be expressed as follows:66

inf
T
{
∫
E

c(x, T (x))ρ0(x)dx | T#ρ0 = ρ1}, (4)

where c(x, y) is the cost of moving unit mass from x to y, which is a lower semi-continuous and67

bounded below, T is the transport map, and ρ0, ρ1 are two probability distributions defined on E, a68

subdomain of Rn. T# denotes the push-forward of T of corresponding measures of the distributions.69

As pioneered by Leonid Kantorovich, the Monge formulation of OMT may be relaxed replacing70

transport maps T by couplings π:71

inf
π∈Π(ρ0,ρ1)

∫
E×E

c(x, y)π(dx, dy), (5)
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where Π(ρ0, ρ1) denotes the set of all the couplings between ρ0 and ρ1 (joint distributions whose72

marginal distributions are ρ0 and ρ1).73

The discrete Kantorovich form may be written as follows:74

min
π∈Π(ρ0,ρ1)

∑
i

∑
j

c(i, j)π(i, j), (6)

where ρ0 ∈ Rm+ , ρ1 ∈ Rn+ are two discrete probability density functions (
∑m
i ρ0(i) =

∑n
j ρ1(j) =75

1), Π(ρ0, ρ1) is the set of matrices {π ∈ Rm×n+ |π~1n = ρ0, π
T~1m = ρ1}, and ~1m and ~1n are76

vectors all 1’s of length m and n, respectively. c(·, ·) is a discrete cost function. Kantorovich form77

is guaranteed to have a optimal solution (ρ0 ⊗ ρT1 ∈ Π(ρ0, ρ1)) while in some cases Monge form78

might admit no feasible solution.79

One may show that for c(x, y) = ‖x − y‖2 (square of distance function), the Kantorovich and80

Monge formulations are equivalent in the absolutely continuous measure case; see [19, 20] and the81

references therein. Moreover for c(x, y) = ||x − y||2, the specific infimum is called Wasserstein-282

distance (W2).83

4 Optimal mass transport for Gaussian mixture models84

We are interested in looking at optimal interpolation paths from GMM to another, that is geodesic85

paths in the space of probability distributions [15]. The problem is that for general GMMs with more86

than one summands, the optimal path goes out of the subspace of GMMs, that is, the GMM structure87

is lost. This was exactly the motivation underlying the work of [8]. There are several advantages of88

preserving the GMM structure including greatly saving computational cost via dimension reduction.89

4.1 OMT between Gaussian distributions90

For two Gaussian distributions µi, i = 0, 1 whose means and covariances are mi and Σi, respec-91

tively, it is well-known [19, 20] that theW2 distance between µ0 and µ1 has a closed form solution:92

W2(µ0, µ1)2 = ||m0 −m1||2 + trace(Σ0 + Σ1 − 2(Σ
1/2
0 Σ1Σ

1/2
0 )1/2). (7)

For each t ∈ [0, 1], the distribution µt on the geodesic path is a Gaussian whose mean and covariance93

matrix are defined as follows:94

mt =(1− t)m0 + tm1 (8)

Σt =Σ
−1/2
0 ((1− t)Σ0 + t(Σ

1/2
0 Σ1Σ

1/2
0 )1/2)2Σ

−1/2
0 . (9)

4.2 OMT between GMMs95

Let µ0, µ1 be two Gaussian mixture models of the form96

µi = p1
i ν

1
i + p2

i ν
2
i + · · ·+ pni

i ν
ni
i , i = 0, 1.

Following [8, 10], the distance between µ0, µ1 is defined as97

d(µ0, µ1)2 = min
π∈Π(p0,p1)

∑
i,j

c(i, j)π(i, j), (10)

where98

c(i, j) =W2(νi0, ν
j
1)2. (11)

As νi0 and νj1 are Gaussian distributions, theW2 distance may be computed as in (7). In [8, 10], it is99

proven that d(·, ·) is indeed a metric on G(RN ). Further, the geodesic on G(RN ) connecting µ0 and100

µ1 is given by101

µt =
∑
i,j

π∗(i, j)νijt , (12)

where νijt is the displacement interpolation in (8) between νi0 and νj1 . π∗(·, ·) is the optimal solution102

of (10).103
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5 Vector-valued GMM104

In this section, we extend the definition of GMM to the vector-valued case, based on which we will105

formulate generalizations of the work of [8].106

5.1 Vector-valued distributions107

A vector-valued distribution has a corresponding density function which is vector-valued. Formally,108

a vector-valued distribution, ρ = [ρ1, ..., ρM ] on RN , is a map from RN to RM+ such that109

M∑
i=1

∫
RN

ρi(x)dx = 1,

with the connections among its M channels, defined by a connected graph G = (V,E), which has110

M nodes and whose edges determine the connections. Thus, ρmay be considered as a general distri-111

bution on RN ×G, where V = {1, 2, · · · ,M} with E defining the connections among the channels112

(layers). As described in [7], it may represent a physical entity that may mutate or be transported113

among several alternative manifestations with certain relationships among its M channels.114

The Euclidean structure of RN and graph structure of E together give a complete metric structure115

for RN ×G,116

dp((x, u), (y, w)) = ||x− y||p + γdpG(u,w),

where (x, u), (y, w) ∈ RN × G, are two points in the space, p > 0, || · || is the norm of RN and117

dG(·, ·) is the graph distance which is defined as the length of shortest path on G. The vector-valued118

OMT problem deals with transport on such a metric space.119

5.2 Vector GMMs as a subset of vector-valued distributions120

Vector-valued GMMs are those vector-valued distributions such that the distribution in each layer is121

a weighted sum of Gaussians and the weights of the Gaussians sum up to 1. Formally,122

ρ = p1ν1~δq1 + p2ν2~δq2 + · · ·+ pnνn~δqn , (13)

where ~δk is a column vector which is the kth column of the M by M identity matrix and qi is the123

index of channel where the ith Gaussian lies in. We will always assume that the latter is a probability124

distribution, i.e.,125
n∑
i=1

pi = 1. (14)

6 Generalization of the OMT GMM framework to vector-valued GMMs126

Consider two vector-valued GMMs ρ0 and ρ1:127

ρi =p1
i ν

1
i
~δq1i + p2

i ν
2
i
~δq2i + · · ·+ pni

i ν
ni
i
~δqni

i
, i = 0, 1.

We want to compute an OMT based distance and a displacement interpolation between these two128

vector-valued distributions with the requirement that the vector GMM structure is preserved along129

the interpolation path. In short, we want to construct the analogous framework of [8], but replace130

scalar-valued GMMs with vector-valued GMMs.131

As above, let Π(p0, p1) denote the set of joint probabilities with given marginals p0 and p1. Given132

a graph structure, the most straightforward approach is to require only certain parts of Π to be133

nonzero, namely only when the the source and target Gaussians are in the same channel or when134

they are located in adjacent channels. A more detailed description is given in Appendix A.135

Unfortunately, this natural (and perhaps most straightforward) generalization may not admit a136

solution. Indeed, the newly added constraints on Π may not work for general graph structures (See137

Appendix B for detailed explanations of why the basic generalization doesn’t work). Thus, the only138

other choice left in (10) is to modify the cost matrix c(·, ·).139
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7 Continuous version of G(RN ×G)140

For vector-valued GMMs, one cannot directly apply the same OMT framework as in the scalar case141

[8] since the last index is taken discretely. Therefore, we will generalize the framework by making142

the last index continuous as well. The basic idea is to consider a continuous problem and view the143

vector-valued distribution as a projection of the continuous solution onto the original discrete space.144

More precisely, we propose to extend each point on the edges of the given graph G instead of only145

taking values on vertices of the graph. Moreover, we extend each edge half-way from both ends,146

so that newly added points are centered at the original vertices of the graph. Thus, we consider the147

following point set of a continuous version of the graph G:148

Gc = {u+ t(w − u)|u,w ∈ V (G), u ∼ w, t ∈ [−0.5, 0.5]}. (15)

Here u,w ∈ V (G) are taken as abstract vertices, not as integers. In addition, we assign a length to149

each edge, γ, so that we are able to perform integration on that set. (We may consider the use of150

nonuniform edge lengths, in case we are given specific edge weights.)151

In fact, we do not need to realize the global structure of the complicated space RN ×Gc as a whole.152

Instead, we can just consider the local structure. A natural and simple way to do that is to impose a153

manifold structure, which we will now elucidate. We denote the manifold byM.154

In order to defineM, we need to specify its atlas:155

A = {RN × p|p ∈ [Gc]0}, (16)

where [Gc]0 is a subset of all continuous paths on Gc which have no cycles (no recurring vertices of156

G on the path). We can characterize the charts as we stack layers (like “bricks”), where we follow157

the order of the path on Gc. It is clear that each p is homeomorphic to R, so that each chart is158

homeomorphic to RN+1.159

We want to define a distribution onM in such a manner that the original distribution is the projection160

of each layer’s range. The projection is defined as the integral of the last index:161

Pu(f(x, z)) =
∑
w∼u

∫ 0.5

−0.5

f(x, u+ t(w − u))dt, (17)

where Pu(·) is the projection of the range of layer u, and f is a distribution on the manifold. The162

integral range of the last index is the intersection of a ball centered at u which has half-edge radius163

with Gc (layer u’s range). Note that for different w’s which are connected to u, the ranges are like164

different orbits centered at u.165

One of the simplest choices for lifting the original distribution to the manifold is a “Gaussian cylin-166

der,” i.e., a product of a Gaussian distribution and a uniform distribution within the range of the167

layer. Thus, we accordingly thicken each Gaussian.168

Figure 1: Left hand side is one of the layers of vector GMM. Right hand side is the chart centered
at that layer. Gaussians in the original layer become ”Gaussian cylinders” on the manifold.
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If a layer has more than one edge connected to it, then the original distribution may be lifted to169

multiple “Gaussian cylinders” (located at all the possible orbits that are centered at the given layer)170

with combined weights. Notice that even though the “Gaussian cylinders” project to be the same171

vector-valued distribution within the given layer, they may have different potentials to transport to172

different directions on the graph.173

Let us briefly summarize the optimal transport problem we are going to solve on the manifoldM174

with the approach we just introduced. Given the projection of each layer’s range for the source (start-175

ing) and target (terminal) distributions, we want to find corresponding source and target distributions176

on M such that the transport cost is optimally low. As before, we first consider the sub-problem177

where the starting and terminal vector-valued distributions are two Gaussian distributions, which178

may be located on different layers.179

Figure 2: When we consider the transport map from the red Gaussian distribution to the green
Gaussian, we consider the transport problem on all the charts that cover both Gaussian distributions.
The above figure gives two of the charts.

Theorem 1. For any two Gaussian cylinder-shaped distributions whose projections on each layer’s180

range are simple Gaussian distributions denoted by ν0 and ν1 and located on layers u and w, re-181

spectively, the optimal transportW2 distance between them onM is given by dM =W2(ν0, ν1)2 +182

γd̃G(u,w)2183

Proof. We consider all couplings on the manifoldM denoted by Π(M). More precisely, we con-184

sider all the possible transports on the charts in A which can cover the supports of both Gaus-185

sian cylinders lifted from the two original Gaussians. Namely, we consider all the charts in186

{RN × p|p ∈ [Gc]uw0 } where [Gc]uw0 denotes the subset of [Gc]0 of those paths contain both layer u187

and layer w. With this definition, we can explicitly formulate the optimization problem:188

dM = inf
π∈Π(M)

∫
M×M

||x̃− ỹ||2π(dx̃, dỹ)

= inf
p∈[Gc]uw

0

inf
π∈Πp(RN+1)

∫
R×R

∫
RN×RN

||x− y||2 + |z1 − z2|2π(dxdz1, dydz2)

Here, Πp(RN+1) denotes the couplings in RN+1 (which is homeomorphic to RN × p) whose189

marginals are the source and target Gaussian cylinders, respectively.190

Further, because of the special structure of “Gaussian cylinders,” the first N indices and the last191

index may be treated separately. If we denote by Π1(RN ) the set of couplings in RN for which192

the two marginals are the original source and target Gaussians (which does not depend on the path193

p), and denote by Πp
2(R) the set of couplings whose two marginals are two uniform distributions194
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located in their corresponding layers, the distance expression may be divided into two parts:195

inf
p∈[Gc]uw

0

inf
π1∈Π1(RN )

∫
RN×RN

||x− y||2π1(dx, dy) + inf
p∈[Gc]uw

0

inf
π2∈Πp

2(R)

∫
R×R
|z1 − z2|2π2(dz1, dz2)

The second term is a simple 1D optimal transport problem between two uniform distributions which196

are centered at u and w, respectively, with the same radius of thickness of each layer. The optimal197

transport distance between them is simply the distance between their respective centers, which is198

easy to calculate since both centers are located on the path p. To be specific, the distance is the199

length of the path connecting u and w times the thickness of each layer. Hence,200

dM = inf
π1∈Π1(RN )

∫
RN×RN

||x− y||2π1(dx, dy) + inf
p∈[Gc]uw

0

∆pz
2

= W2(ν0, ν1)2 + γd̃G(u,w)2.

Here the relative distance ∆pz is determined by the path p. Moreover, γ is introduced as a parameter201

for the thickness of each layer’s range. We assume that the thickness of each layer is
√
γ. The202

minimum among all the possible paths is just d̃G(u,w), the shortest distance on the graphG between203

vertices u and w.204

Using the latter theorem, we can compute the minimum W2 cost of moving a source Gaussian205

distribution to a Gaussian target distribution. Indeed, for the ith and jth Gaussian cylinders onM,206

we set207

c2(i, j) =W2(νi0, ν
j
1)2 + γd̃G(qi0, q

j
1)2. (18)

If we take c2(·, ·) in (18) as the cost matrix and compute the Kantorovich formulation of OMT, we208

can derive a distance:209

dV2
(ρ0, ρ1)2 = min

π∈Π(p0,p1)

∑
i,j

c2(i, j)π(i, j). (19)

This distance is derived from the continuous manifold, but it may be shown to be a metric for our210

original vector-valued distributions. See the proof in Appendix E.211

In addition to the latter distance, we can derive the optimal transport plan π̃∗2(·, ·) from the opti-212

mal solution of (19). The transport plan gives the combination of weights for how the “Gaussian213

cylinders” are arranged at different orbits within each layer’s range.214

Based on the optimal transport plan, a geodesic (proof in Appendix F) on the manifoldM may be215

expressed in the following manner:216

ρt =
∑
i,j

π̃∗2(i, j)νijt Uz(pathG(qi0, q
j
1, t)), (20)

where Uz(z0) is the 1D uniform distribution density function centered at z0 on a path of the graphG.217

The distribution νijt Uz(pathG(qi0, q
j
1, t)) at time t is supported on the chart defined by the shortest218

path that connects qi0 to qj1 on the graph, expressed in its own local continuous coordinates for the z219

index along that path.220

For each pair of Gaussians, source and target, a deformation Gaussian cylinder moves across layers221

following the shortest path on the graph. When it moves across a layer boundary, the Gaussian222

cylinder is cut into two parts belonging to the respective ranges of two adjacent layers. Each part223

remains a Gaussian cylinder. Hence after projection of each layer’s range, the projected distribution224

is still a vector GMM distribution. Now if we project (20) onto the range of each layer, we get the225

following displacement interpolation in the original space:226

ρt =
∑
i,j

π̃∗2(i, j)νijt
~δpathG(qi0,q

j
1,t)
. (21)

Note this form of displacement interpolation is very similar to (26) just with slightly different227

weights.228

We also extended our model to the unbalanced case where the mass conservation constraint is re-229

laxed (see Appendix G).230
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Remark 1: We should note that the way in which we define vector-valued GMM, already makes it a231

manifold (each layer is its own chart). However, it is impossible to define charts that contain all the232

possible paths, which is to say the atlas contains only the geometric information within each layer.233

Our manifoldM on the other hand, has an atlas that contains all the possible paths which encode234

global geometric information for which we can solve the OMT problem.235

Remark 2: This approach gives a geometric intuitive understanding of the optimal transport for236

vector-valued GMMs. Comparing to the cost matrix (24) in Approach 1, (18) just uses the sum of237

squares instead of the direct sum, in analogy to the difference between W1 and W2. It may seem238

complicated to consider all the possible paths on the graph in that approach. But for actual computa-239

tions, we only need to consider the shortest path on the G that connects two layers. Moreover, from240

the parameter γ that also appears in Approach 1, we find a clear geometric meaning: it represents241

the thickness of each layer.242

8 Numerical results243

We applied our method on several real-world data. Figure 3 gives the interpolation between two244

fitted GMMs of different moons. Figure 4 shows the geodesic path between two fitted nebulae. In245

Figure 5, a transformation between two different fonts of the word ”MATH” is computed via our246

GMM-based optimal transport method. Some additional numerical examples which further illustrate247

the properties of our model are included in Appendix H.248

Figure 3: Image example: vector-valued GMM geodesic path

Figure 4: Image example: vector-valued GMM geodesic path

Figure 5: Font transformation

9 Conclusion249

This work focuses on the optimal transport for vector-valued GMMs, which is a structured version250

of vector-valued OMT. As an extension of [8], we defined a distance and geodesic path in the vector-251

valued case. To the best of our knowledge, the present work is the first to employ a manifold-based252

approach to the problem of GMM vector-valued data. Simply applying manifold-valued OMT to253

vector-valued distributions while preserving the vector GMM structure is not completely straightfor-254

ward. In fact, just combining the vector-valued case in which the layers are connected by a general255

graph structure [7] and the GMM metric [8, 10] via adding constraints to the appropriate set of joint256

probability distributions may not work. See Appendix A below for all of the details. Thus one needs257

a manifold-based approach in the present situation, which we have shown easily extends to the un-258

balanced case. In particular, we have extended the approach of transforming the unbalanced scalar259

OMT problem to the balanced vector-valued problem from CFD [21] to a Kantorovich formulation260
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in this work. Preserving the GMM structure along a transport path both in the balanced and un-261

balanced cases may have broad applications given the prevalence of such models in many areas of262

engineering, computer science, and machine learning [14].263

The proposed transport is useful, because of its speed advantage and unique ability to preserve264

structure. This paper just investigates Gaussian mixture case, but it is quite straightforward to apply265

our framework for other mixture models. We are planning on applying our methodology to the266

analysis of medical imagery and other appropriate vector-valued distributions including multi-omic267

data.268
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