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Abstract

Offline safe reinforcement learning (OSRL) involves learning
a decision-making policy to maximize rewards from a fixed
batch of training data to satisfy pre-defined safety constraints.
However, adapting to varying safety constraints during deploy-
ment without retraining remains an under-explored challenge.
To address this challenge, we introduce constraint-adaptive
policy switching (CAPS), a wrapper framework around exist-
ing offline RL algorithms. During training, CAPS uses offline
data to learn multiple policies with a shared representation that
optimize different reward and cost trade-offs. During testing,
CAPS switches between those policies by selecting at each
state the policy that maximizes future rewards among those
that satisfy the current cost constraint. Our experiments on 38
tasks from the DSRL benchmark demonstrate that CAPS con-
sistently outperforms existing methods, establishing a strong
wrapper-based baseline for OSRL. The code is publicly avail-
able at https://github.com/yassineCh/CAPS.

1 Introduction
Online reinforcement learning (RL) has shown great suc-
cesses in applications where the agent can continuously in-
teract with the environment to collect new feedback data to
improve its decision-making policy (Mnih et al. 2015; Silver
et al. 2018; Li 2017). However, in many real-world domains
such as agriculture, smart grid and healthcare, executing ex-
ploratory decisions is costly and/or dangerous, but we have
access to pre-collected datasets. Offline RL (Levine et al.
2020) is an emerging paradigm to learn decision policies
solely from such offline datasets, eliminating the need for ad-
ditional interaction with the environment. The key challenge
in offline RL is addressing the distributional shift between the
state-action distribution of the offline dataset and the learned
policy, as this shift results in extrapolation error. Existing of-
fline RL methods typically employ the principle of pessimism
in the face of uncertainty (i.e., some form of penalization to
deal with out-of-distribution states/actions) to address this
challenge (Levine et al. 2020).

In many safety-critical domains (e.g., agriculture and smart
grid), the agent behavior needs to also satisfy some cost con-
straints in addition to maximizing reward. Most of the prior
work on offline RL focuses on the unconstrained setting
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where the policy is optimized to maximize rewards. There is
relatively less work on offline constrained/safe RL and the
majority of these methods assume that the cost constraint is
known during the training phase (as elaborated in the related
work section). However, in many applications, the cost con-
straints can change at deployment depending on the use-case
scenario. For example, in agricultural drones, the reward is
the area covered during spraying, and the cost is the bat-
tery/power consumption. The goal is to maximize efficiency
for a given agricultural field by optimizing coverage based
on the available battery power.

This paper studies the problem of offline safe RL (OSRL)
where the safety/cost constraints can vary after deployment.
We propose Constraint-Adaptive Policy Switching (CAPS),
an algorithm that can be wrapped around existing offline
RL methods and is easy to implement. CAPS handles the
challenge of unknown cost constraint threshold as follows.
At training time, we learn multiple policies with a shared
representation with the goal of achieving different reward
and cost trade-offs: one centered on reward maximization,
one on cost minimization, and other policies optimized for
varied linear scalarizations of costs and rewards. At testing
time, CAPS switches between the decisions from the trained
policies at each state, selecting the one that maximizes future
rewards from the ones that satisfy the cost constraint. We
also theoretically analyze the conditions under which CAPS
decision-making process has safety guarantees.

We perform experiments on 38 tasks from the DSRL
benchmark (Liu et al. 2024) to compare CAPS with state-of-
the-art OSRL baselines and our main findings are as follows.
First, CAPS wrapped around two qualitatively different of-
fline RL algorithms exhibits safe behavior (first-order objec-
tive) on a larger fraction of tasks compared to baselines across
different cost threshold constraints. Prior methods struggle
even with known cost constraints, potentially because of es-
timation errors in value functions and/or instability in the
Lagrange multiplier. Second, the implicit Q-learning instan-
tiation of CAPS demonstrates safe performance in 34/38
tasks (89%) and achieves the highest rewards in 18 of those
tasks compared to the baselines.. Third, CAPS using shared
representation performs significantly better than CAPS with
independently trained policies. Finally, increasing the number
of policies improves the overall performance of CAPS, but
CAPS with two policies (one for reward maximization and
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one for cost minimization) is competitive, has the advantage
of removing extra hyperparameters, and stands as a strong
minimalist approach for effective offline safe RL.

Contributions. The key contribution is the development and
evaluation of CAPS framework for offline safe RL with vary-
ing cost constraints. Specific contributions include:
• Development of CAPS to handle any test-time cost thresh-

old constraint. CAPS can be wrapped around existing
offline RL algorithms and easy to implement.

• Theoretical analysis to understand the conditions under
which CAPS decision policy has safety guarantees.

• Experiments and ablations on 38 DSRL tasks, demon-
strate the effectiveness of CAPS over prior methods.

2 Problem Setup
RL problems with safety constraints are naturally formu-
lated within the Constrained Markov Decision Process
(CMDP) framework. A CMDP is defined by a tuple M =
(S,A, P, r, c, µ0), where S is the state space, A is the ac-
tion space, P : S × A × S → [0, 1] is the state transition
probability function, r : S ×A→ R defines the reward func-
tion, and c : S → [0, Cmax] quantifies the costs associated
with states, where Cmax is the maximum possible cost, and
µ0 : S → [0, 1] is the initial state distribution. For simplicity
of notation, we define cost function on states noting that it
is easy to define an equivalent CMDP with costs associated
with state-action pairs.

In offline safe RL problems, we are given a fixed pre-
collected dataset D={(s, a, r, c, s′)i}ni=1 from one or more
(unknown) behavior policies, where each training example
i contains the action a taken at state s, reward received r,
cost incurred c, and the next state s′. The goal is to learn a
policy π : S → A from the offline dataset D to maximize
the expected reward while satisfying a specified cost/safety
constraint. This problem is mathematically formulated as:

max
π

Eτ∼π[R(τ)] subject to Eτ∼π[C(τ)] ≤ κ,

Here, κ ∈ [0,+∞) is the cost threshold for safety con-
straint, τ = {s1, a1, r1, c1, . . . , sT , aT , rT , cT } denotes a
trajectory sampled by executing the policy π, T is the length
of episode, R(τ) =

∑T
t=1 rt is the total accumulated reward,

and C(τ) =
∑T
t=1 ct is the total incurred cost.

The majority of prior work on OSRL assumes that the cost
threshold κ for safety constraint is known at the training time
and remains same at deployment. However, this assumption
is violated in many real-world applications where the safety
requirements can change during deployment based on the op-
erating conditions or environmental factors. For example, in
agricultural crop management, the goal may be to maximize
yield under constraints on water and/or nitrogen application
depending on time-varying regulations. Additionally, in a
decision-support scenario, it can be useful for decision mak-
ers to quickly explore the impact of different cost thresholds
without requiring retraining.

Other application domains where this problem setting
arises include healthcare, power systems, and robotics. Con-
sequently, OSRL methods that learn a single policy tailored

to a specific cost constraint are ill-equipped to handle varying
test-time cost constraints.

The goal of this paper is to fill this knowledge gap in the
current literature by studying a variant of the OSRL problem
where the cost constraint κ can vary during deployment.

3 Related Work

Online Safe RL. RL with safety constraints in the online
setting, where the agent can interact with the environment
to collect feedback data, is extensively studied (Garcıa and
Fernández 2015; Gu et al. 2024). However, most of these
methods assume a fixed constraint threshold during both
training and deployment. Constraint-conditioned policy op-
timization (Yao et al. 2023), addresses this limitation and
adapts to changing constraints using two strategies: approxi-
mating value functions under unseen constraints and encod-
ing arbitrary constraint thresholds during policy optimization.

Offline RL. The goal in offline RL is to learn effective
policies from fixed static datasets without any additional
interaction with the environment. Prior work has tackled
the key challenge of distribution shift in offline RL (Levine
et al. 2020; Figueiredo Prudencio, Maximo, and Colombini
2024). Some representative techniques include incorporating
regularization in value function estimation (Fujimoto and
Gu 2021; Kostrikov, Nair, and Levine 2022; Kumar et al.
2019; Lyu et al. 2022; Yang et al. 2022), sequential model-
ing formulations (Janner, Li, and Levine 2021; Wang et al.
2022), uncertainty-aware methods (An et al. 2021; Bai et al.
2022), divergence based policy constraints (Wu, Tucker, and
Nachum 2020; Jaques et al. 2020; Wu et al. 2022), and ex-
tensions of model based RL (Kidambi et al. 2020; Yu et al.
2020; Rigter, Lacerda, and Hawes 2022) and imitation learn-
ing (Xu et al. 2022). SfBC (Chen et al. 2023) and IDQL
(Hansen-Estruch et al. 2023) filter candidate actions using
Q-function evaluations and reweight them for selection. In
contrast, CAPS avoids reweighting by directly selecting the
best safe action using two Q-functions. PEX (Zhang, Xu, and
Yu 2023) is a offline-to-online RL approach that adds a new
expansion policy to the offline policy, unlike CAPS, which
dynamically switches between pre-trained policies for safety.

Offline Safe RL. Recent work has studied the offline safe RL
problem, aiming to learn a safe policy from a given offline
dataset (Liu et al. 2024). These methods include finding cost-
conservative policies for better actual constraint satisfaction
via some form of constrained policy optimization formula-
tion (Polosky et al. 2022; Lee et al. 2022), Lagrangian based
approaches to handle cost constraints (Xu, Zhan, and Zhu
2022), and the constrained decision transformer (CDT) (Liu
et al. 2023), which exploits the advances in sequential mod-
eling by learning from a dataset of trajectories. TREBI (Lin
et al. 2023) and FISOR (Zheng et al. 2024) leverage diffu-
sion models for creating safe policies: TREBI generates safe
trajectories, while FISOR uses a diffusion actor to select ac-
tions within feasible regions. However, these methods, with
the exception of CDT, rely on fixed cost thresholds during
training, limiting their flexibility for deployment scenarios
with varying cost threshold constraints.



4 Constraint-Adaptive Policy Switching
In this section, we first describe the reasoning procedure
behind the Constraint-Adaptive Policy Switching (CAPS) ap-
proach of handling unknown constraints at testing time. Next,
we describe the training process and the design choices that
enable effective decision-making in CAPS.

4.1 Decision-Making in CAPS
One way to handle dynamically changing cost constraints
would be to: 1) train a large set of K policies that span a
wide spectrum of cost-reward trade-offs, and 2) at each test-
time state, select the best of those policies that satisfies the
current cost constraint. While this makes sense in concept,
there are at least two key practical issues. First, there is a high
computational cost involved in optimizingK policies via safe
offline RL. Second, and more importantly, step (2) requires
accurately assessing the safety of a given policy and also
selecting the best among the safe ones. This requires accurate
cost and value functions for each policy, which would need
to be estimated using off-policy evaluation (OPE) techniques
with the available dataset. Unfortunately, as our experimental
results show, current OPE techniques are not reliable enough
to ensure test-time safety (Figueiredo Prudencio, Maximo,
and Colombini 2024). The key idea of CAPS is to address
these two issues by creating a set of K diverse policies at a
much smaller computational cost, while avoiding a reliance
on OPE to provide test-time safety.

CAPS relies on two key components for its decision-
making to handle unknown cost constraints. First, a set of
K ≥ 2 policies P = {πr, π1, . . . , πK−2, πc} that are trained
using the offline dataset D to cover actions with different re-
ward and cost trade-offs. At one extreme, πr is trained to
maximize reward via standard Offline-RL, while ignoring the
cost objective. At the other extreme, πc is trained to minimize
cost via standard Offline-RL, while ignoring reward. In this
sense, πc is maximally safe, while πr is cost agnostic. The re-
mainingK−2 policies are trained with the intent of covering
actions that achieve a variety of reward and cost trade-offs,
while avoiding the full computational cost of Offline-RL for
each one. Second, CAPS retains from Offline-RL the learned
Q-functions Qrt and Qct which we assume are non-stationary
given the finite time horizon:

Qrt (s, a) =E[
T∑
t

rt|st = s, at = a] (1)

Qct(s, a) =E[
T∑
t

ct|st = s, at = a], (2)

where the expectation is taken over the corresponding policy
with respect to randomness from reward/cost functions and
state transitions. Intuitively, CAPS will use Qct to help filter
out unsafe decisions from the K policies and Qrt is employed
to select the best decision from the unfiltered ones. Note
that these Q-functions are an artifact of policy optimization,
rather than OPE of an arbitrary policy. This is a subtle, but
important, aspect of CAPS, since it has been observed that
value estimates of arbitrary policies via OPE tends to be

less reliable (Figueiredo Prudencio, Maximo, and Colombini
2024).

Given K policies P={πr, π1, . . . , πK−2, πc}, two Q-
functions Qr and Qc, cost threshold constraint κ, and ac-
cumulated cost c≤t up to current state st, CAPS selects an
action as follows:

1. Filter: Identify the subset of feasible actions Ft ⊆
{πr(st), π1(st), . . . , π

K−2(st), π
c(st)} selected by the

K policies and are safe in st according to Qc and cost
threshold κ:

Ft = {π(st) | Qct(st, π(st)) + c≤t ≤ κ, π ∈ P} (3)

2. Select: Among the feasible actions Ft, pick the one that
that maximizes the estimated reward according to Qr:

a∗t = argmax
a∈Ft

Qrt (st, a) (4)

If the filter step results in an empty set of feasible actions
(Ft = ∅), CAPS selects the action associated with the policy
that minimizes the estimated cost:

a∗t = π∗
t (st), where π∗

t = argmin
π∈P

Qct(st, π(st))

Intuitively, the first filtering step keeps any action selected
by a policy such that it is safe to take that action and then
follow πc thereafter. That is, after the action is taken there is
an assurance in expectation that πc is a safe fallback policy.
The selection step then heuristically selects the action that
looks best from a reward maximization point of view.

4.2 Training Algorithm for CAPS
Given an offline dataset D = {(si, ai, ri, ci, s′i)}ni=1, the
CAPS approach aims to efficiently learn a set of policies
P={πr, π1, . . . , πK−2, πc} and the two Q-value functions
Qr and Qc that yield strong test time performance. A key
feature of CAPS is that training is done via a reduction to
standard Offline-RL. In particular, CAPS can be combined
with any Offline-RL algorithm that produces a Q-function
and a mechanism to extract a policy for that Q-function. In
what follows, we first describe the high-level training schema
and then provide two concrete instantiations that are used
in our experiments. Finally, we discuss the design choice of
network architecture, including shared structure between the
K policies.

Reduction to Offline RL. The training approach for CAPS
can be wrapped around existing offline RL algorithms with
minimal changes, making it straightforward to implement.
The general recipe consists of the following two steps:
1. Train the reward-only value funcion Qr and cost-only

value function Qc. For Qc, we train using cost data from
the offline dataset by defining the rewards as costs.

2. Extract the reward maximizing policy πr from Qr, the
cost minimizing policy πc from Qc, and the other K − 2,
πk, policies with different reward and cost trade-offs from
the mixture Q-value function Qr − λkQ

c following the
same policy extraction procedure in the offline RL method,
where λk is the scalarization parameter.



Thus, the approach requires just two full runs of an Offline
RL algorithm and K runs of the much cheaper policy ex-
traction step. It is important to note that the Q-functions for
costs and rewards are not learned for each πk, which means
that the precise cost-reward trade-off of each policy is un-
known. Thus, this approach to producing each πk is a fast
heuristics for identifying a set of policies that are likely to
span a range of cost-reward trade-offs. Another advantage of
this reduction approach is that we can leverage better offline
RL algorithms to further improve the performance of CAPS
and our experiments demonstrate this advantage. While it is
possible to apply OPE methods to learn these Q-functions
and use them for decision making, our experiments show
that while safety is maintained, the rewards are significantly
lower compared to our CAPS decision procedure.

Two CAPS Instantiations. Our two instantiations of
CAPS training are based on two state-of-the-art offline RL
methods: IQL and SAC+BC.

IQL Instantiation: We employ the Implicit Q-Learning
(IQL) algorithm (Kostrikov, Nair, and Levine 2022) as fol-
lows. Given the offline dataset D = {(si, ai, ri, ci, s′i)}ni=1,
we additionally train a value function V c and a Q-value func-
tion Qc for costs. These functions are trained similarly to
the original IQL reward value V r and Q-value Qr functions
by minimizing the expectile loss, thereby avoiding explicit
value queries for unseen actions. Next, we extract each policy
π ∈ P by maximizing the following objective.

Jπk(ϕ) = Es,a∼D [exp(β(Ar − λkA
c)) log πϕ(a|s)] (5)

where the advantages are defined as:

Ar = Qrθ(s, a)− V rψ (s), Ac = Qcθ(s, a)− V cψ(s) (9)

where θ and ψ correspond to the parameters of the Q-value
and value function network representation. Note that for πr
and πc, we only use Ar and −Ac respectively.

SAC+BC Instantiation: (Fujimoto and Gu 2021)) recently
described a general framework for developing offline RL
algorithms by combining an off-policy RL with a behavior
cloning (BC) regularization term. We follow the same princi-
ple but employ soft-actor-critic (SAC) (Haarnoja et al. 2018)
algorithm as the off-policy RL component instead of the TD3
algorithm used in the original paper. Following the offline
reduction recipe, we update the actor network to incorporate
K heads and define an additional Q-value function for costs.
We then learn each policy πk by maximizing the following
objective:

Jπk(ϕ) = Es,a∼D,ã∼πϕ(·|s)

[
Qk(s, ã)− α log πϕ(ã|s)

− (ã− a)2
] (6)

where Qk(s, ã) = Qrθr (s, ã)− λkQ
c
θc(s, ã). For πr and πc,

we use Qr and −Qc to update their corresponding heads.

Improving CAPS via Shared Actor Representation. To
enhance knowledge transfer and/or training efficiency, we
utilize a shared neural network architecture for the K dif-
ferent policies. Instead of training separate networks, we

employ a common body with parameters ϕs that learns
a unified state representation fϕs(s). This body is paired
with distinct output heads (one for each of the K policies),
each with its own parameters ϕk, which specialize in pre-
dicting the action distributions for their respective policies:
πk(a|s) = gϕk

(fϕs
(s)),∀k ∈ [K].

There are two synergistic benefits of a shared policy rep-
resentation. First, this approach captures general features
relevant to both reward and cost objectives, leading to knowl-
edge transfer across policies. Second, CAPS requires only
one round of training to adapt to different cost constraint
thresholds. This saves significant training time compared to
methods that need re-training for each cost constraint.

5 Safety Guarantee
This section describes conditions under which the CAPS
decision-making process has safety guarantees. For simplic-
ity, we consider the case where the optimal-cost Q-function is
perfectly estimated, noting that it is straightforward to modify
our result to account for bounded estimation error.

We focus on the finite-horizon setting with horizon T and
let Qct and V ct denote the cost optimal Q and value functions
for time step t ∈ {0, . . . , T} respectively. Here we treat these
functions as positive cost accumulation functions that are
minimized during optimization. We consider policies of the
form πt(s, c<t) where s is the current state and c<t is the
accumulated cost before arriving at time step t. For a given
cost safety bound κ, our guarantee applies to any policy that
is κ-admissible.

Assumption 1 A policy π is κ-admissible if for any state
s, any time step t, and any accumulated cost c<t, we have
Qct(s, πt(s, c<t)) ≤ max{V ct (s), κ− c<t}.

Note that by assuming a perfect Qc, the switching policy
defined for CAPS is κ-admissible since it either picks an
action a such that Qct(s, a) ≤ κ− c<t if possible, or resorts
to choosing the least cost action, which has a value of V ct (s)
since Qc and V c are cost optimal. This is true of CAPS for
any set of K policies P that contains the cost optimal policy
πc and any reward value function Qrt .

Our safety guarantees are specified in terms of a parameter
ϵ that characterizes the underlying Markov decision process
(MDP). In particular, safety in terms of expected cost is chal-
lenging when stochastic state transitions can result in a set of
possible next states that have wildly different values of V c.
Indeed, counter examples to safety can be constructed that
involve transitions with very small probabilities of reaching
enormous values of V c while the remaining probability mass
results in very small costs. For this purpose, we define the
notion of optimal-cost variation.

Assumption 2 Given an MDP M , let N(s, a) =
{s′ | P (s, a, s′) > 0} be the set of possible next states
after taking action a in state s. M has an optimal-cost varia-
tion of ϵ if each state-action-timestep tuple (s, a, t) satisfies
maxs′∈N(s,a) V

c
t (s

′)−mins′∈N(s,a) V
c
t (s

′) ≤ ϵ.

Note that any deterministic MDP has ϵ = 0. Also note that
this assumption places no constraints between the optimal
costs of states resulting from different (s, a, t) tuples. We can



now state our main result which bounds the total cost of a
policy π, denoted V π,ct .
Theorem 1 For any MDP M with optimal-cost variation ϵ
and any κ-admissible policy π, we have that for any state s,
time step t, and accumulated cost c<t,

V π,ct (s) ≤ max{V ct (s), κ− c<t}+ (T − t)ϵ

See the supplementary material for the full proof.
This result says that up to a constant factor either the

expected total cost of policy π will be bounded by κ over a
horizon of T or if that is not possible, it will be bounded by
the lowest possible expected cost V ct (s). Based on this result,
if one has an estimate of ϵ for the system, an appropriate
value of κ can be selected to provide a desired guarantee. The
constant factor (T −t)ϵ is simply a constant of ϵ accumulated
over the remaining horizon T − t. Note that for time step 0,
we get a bound of κ when it is possible to achieve that safety
factor. Also, note that in the deterministic case, the bound is
tight since ϵ = 0.

6 Experiments and Results
This section presents experimental evaluation of the CAPS
approach and comparison with state-of-the-art methods.

6.1 Experimental Setup

Benchmarks. We employ 38 sequential decision-making
benchmarks of varying difficulty from Safety-Gymnasium
(Ray, Achiam, and Amodei 2019; Ji et al. 2024), Bullet-
Safety-Gym (Gronauer 2022), and MetaDrive (Li et al. 2022)
within the DSRL framework (Liu et al. 2024). Further details
are provided in Appendix C.1.

Configuration of CAPS. We consider two instantiations
of CAPS training with different offline RL methods:
CAPS(IQL) employs IQL (Kostrikov, Nair, and Levine
2022) and CAPS(SAC+BC) employs soft-actor-critic based
off-policy RL combined with a behavior cloning regulariza-
tion term (Haarnoja et al. 2018; Fujimoto and Gu 2021) as
described in the technical section. We consider CAPS with
different number of policies K ∈ {2, 4, 8} to determine the
best configuration in terms of computational cost and quality
of decisions. We provide the details of the neural network
structure used for value and Q-functions, policy heads, and
hyper-parameters in the Appendix C.3.

Baseline methods. We compare CAPS with several state-of-
the-art baseline methods. 1) BC (Behavior Cloning) serves
as a straightforward baseline where policies are learned by
mimicking the behavior observed in the training data. 2)
BEAR-Lag integrates BEAR (Wu, Tucker, and Nachum
2020), an offline RL method, with a Lagrangian approach
to address safety constraints. 3) Constraints-penalized Q-
learning (CPQ) treats out-of-distribution actions as unsafe
and updates the Q-value function using only safe state-action
pairs (Xu, Zhan, and Zhu 2022). 4) COptiDICE builds
upon the distribution correction estimation (DICE) method to
incorporate cost constraints in offline RL (Lee et al. 2022) . 5)
CDT employs a decision transformer framework to consider
safety constraints for safe decision-making (Liu et al. 2023).

This is the only baseline that allows varying cost constraints
at test-time. We run each over three seeds.

Evaluation methodology. We evaluate CAPS and the above-
mentioned baseline methods using normalized return and
normalized cost, where a normalized cost below 1 indicates
that safety constraints are satisfied. In line with the DSRL
guidelines, safety is our primary evaluation metric and our
goal is to maximize rewards while adhering to cost con-
straints. We evaluate each algorithm using three different
target cost threshold configurations, three random seeds, and
twenty episodes. The configurations are: {10, 20, 40}, {20,
40, 80}, where the second cost limit set applies to the more
challenging Safety-Gymnasium environments. We compute
the average normalized reward and cost to assess the perfor-
mance. Note that, for all baseline methods except CDT, a
separate agent is trained for each cost threshold.

6.2 Results and Discussion

Ablation for number of policies. Tables 3 and 4 in the Ap-
pendix B.1 show the results of CAPS-K with K ∈ {2, 4, 8}
heads/policies. We make the following observations. 1)
CAPS-4 with four policies achieves better results than CAPS-
2 with two policies. CAPS-8 with eight policies despite its
potential for increased capacity, does not lead to substantial
improvements over CAPS-4. The diminishing returns demon-
strate that the incremental benefit of adding more policies
is decreasing, with CAPS-4 providing an optimized balance
of flexibility and complexity. Eight policies introduce some
redundancy and potentially exacerbates stochasticity, rather
than providing additional value. 2) CAPS-2 with two poli-
cies also demonstrates impressive results and is preferred as
our main approach due to its simplicity and computational
efficiency. Switching between reward-maximizing and cost-
minimizing policies is very effective for managing varying
test-time cost constraints. In contrast, CAPS variant with
more than two heads involve optimizing additional policies
for combined reward and cost objectives with extra scalar-
ization hyper-parameters λk. Therefore, we use CAPS with
two policies (one for reward maximization and one for cost
minimization) for the rest of our experimental analysis.

Ablation for shared policy representation. We investigate
the advantages of using a shared policy representation archi-
tecture compared to training separate agents for reward and
cost objectives respectively. A shared representation allows
different heads/policies to utilize common state features, to
potentially improve the overall performance. The intuition
behind this idea is that the shared network enables the cost
head to achieve higher rewards and the reward head to incur
lower costs compared to independently learned policies.

For instance, Figure 1 compares the performance of sepa-
rate agents and shared agents in the CarGoal1 environment
using the two offline RL instantiations: SAC+BC (left plot)
and IQL (right plot). The focus is on understanding how shar-
ing impacts the behavior of cost agents and reward agents
when run uniformly.

In the case of separately trained agents, joined by the red
line in both plots, the reward agent maximizes rewards with-



Table 1: Results for normalized rewards and costs. The cost threshold is 1. The ↑ symbol denotes that higher the rewards, the
better. The ↓ symbol denotes that the lower the costs (up to threshold 1), the better. Each value is averaged over 3 distinct cost
thresholds, 20 evaluation episodes, and 3 random seeds. Bold: Safe agents whose normalized cost ≤ 1. Gray: Unsafe agents.
Blue: Safe agent with the highest reward. We compare CAPS instantiations with other baselines, not with each other.

Task BC BEAR-Lag CPQ CDT COptiDICE CAPS (SAC+BC) CAPS (IQL)

reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓
PointButton1 0.11 1.06 0.24 1.95 0.64 3.31 0.53 2.99 0.12 1.43 0.10 1.23 0.03 0.50
PointButton2 0.25 2.30 0.41 2.63 0.57 4.47 0.45 2.85 0.17 1.93 0.21 1.54 0.14 0.75
PointCircle1 0.81 4.97 0.69 3.04 0.45 1.14 0.58 0.82 0.85 5.39 0.53 0.36 0.50 0.78
PointCircle2 0.71 5.49 0.70 4.64 0.09 4.97 0.63 1.33 0.87 8.70 0.61 1.38 0.51 0.80
PointGoal1 0.56 0.91 0.74 1.20 0.57 0.66 0.71 1.03 0.49 1.54 0.17 0.11 0.47 0.53
PointGoal2 0.54 2.72 0.70 3.12 0.52 1.86 0.55 1.98 0.41 1.83 0.20 0.55 0.33 0.80
PointPush1 0.18 0.77 0.21 0.92 0.26 0.75 0.26 0.94 0.13 1.08 0.19 0.38 0.19 0.29
PointPush2 0.15 1.39 0.17 1.16 0.09 1.57 0.21 1.13 0.04 1.17 0.15 0.70 0.13 0.64
CarButton1 0.00 1.54 0.22 2.76 0.42 10.20 0.21 2.71 -0.09 1.36 0.01 1.17 -0.01 0.30
CarButton2 -0.03 1.38 0.00 2.00 0.36 12.65 0.19 3.53 -0.06 1.27 -0.14 1.17 -0.08 0.32
CarCircle1 0.71 5.67 0.76 5.39 0.09 1.10 0.59 2.90 0.70 5.86 0.64 3.24 0.54 1.51
CarCircle2 0.73 7.60 0.74 6.68 0.47 2.34 0.65 4.22 0.75 8.34 0.66 4.98 0.50 1.55
CarGoal1 0.39 0.42 0.60 1.10 0.80 1.51 0.67 1.18 0.38 0.53 0.28 0.47 0.33 0.38
CarGoal2 0.23 0.78 0.29 1.27 0.56 3.64 0.48 2.17 0.22 0.82 0.21 0.75 0.16 0.62
CarPush1 0.19 0.39 0.21 0.45 0.11 1.11 0.31 0.81 0.16 0.46 0.22 0.34 0.20 0.31
CarPush2 0.13 1.27 0.11 1.06 0.19 4.59 0.19 1.88 0.09 1.48 0.14 0.82 0.07 0.75
SwimmerVelo 0.51 2.62 0.27 1.83 0.18 2.04 0.63 0.88 0.61 6.31 0.41 0.51 0.43 1.58
HopperVelo 0.54 2.80 0.36 5.47 0.12 1.73 0.71 0.75 0.10 1.45 0.62 0.71 0.41 0.70
HalfCheetahVelo 0.96 5.26 0.98 6.55 0.34 0.66 0.98 0.16 0.62 0.00 0.95 0.21 0.94 0.77
Walker2dVelo 0.74 1.85 0.89 4.16 0.03 0.23 0.79 0.10 0.12 0.86 0.80 0.04 0.80 0.62
AntVelo 0.98 2.58 -1.01 0.00 -1.01 0.00 0.99 0.50 1.00 2.99 0.89 0.67 0.95 0.64
SafetyGym Avg 0.45 2.56 0.39 2.73 0.28 2.88 0.54 1.66 0.37 2.61 0.37 1.02 0.36 0.72
BallRun 0.67 3.16 0.02 3.11 0.30 2.36 0.38 1.02 0.57 3.38 0.24 0.60 0.19 0.94
CarRun 0.97 0.11 0.40 7.65 0.93 0.94 0.98 0.63 0.93 0.00 0.97 0.00 0.97 0.25
DroneRun 0.32 1.44 0.42 3.85 0.36 2.62 0.62 0.74 0.67 4.27 0.54 0.39 0.47 2.19
AntRun 0.72 2.76 0.04 0.08 0.02 0.01 0.72 0.82 0.62 1.00 0.53 0.25 0.61 0.90
BallCircle 0.76 2.70 0.80 2.22 0.62 0.57 0.78 1.20 0.70 2.63 0.59 0.19 0.69 0.59
CarCircle 0.62 3.15 0.76 2.78 0.71 0.27 0.75 0.91 0.48 2.93 0.61 0.29 0.69 0.65
DroneCircle 0.71 2.70 0.80 3.93 -0.23 0.36 0.62 1.02 0.25 1.02 0.42 0.14 0.55 0.67
AntCircle 0.65 4.67 0.64 5.23 0.00 0.00 0.48 2.34 0.18 4.33 0.47 0.42 0.41 0.15
BulletGym Avg 0.68 2.59 0.49 3.61 0.34 0.89 0.67 1.09 0.55 2.45 0.55 0.29 0.57 0.79
easysparse 0.18 0.82 0.03 0.71 -0.06 0.08 0.25 0.26 0.92 5.33 0.54 2.14 0.11 0.34
easymean 0.05 0.18 0.02 0.50 -0.06 0.06 0.49 1.18 0.73 4.35 0.16 0.41 0.01 0.20
easydense 0.20 0.31 -0.01 0.39 -0.06 0.08 0.41 0.51 0.53 3.02 0.11 0.15 0.10 0.19
mediumsparse 0.65 1.56 -0.01 0.31 -0.09 0.06 0.55 1.03 0.79 2.65 0.65 0.99 0.60 0.74
mediummean 0.74 1.55 -0.04 0.10 -0.08 0.07 0.48 1.31 0.78 2.52 0.13 0.23 0.66 0.94
mediumdense 0.63 1.08 0.08 0.63 -0.07 0.05 0.21 0.29 0.63 2.17 0.69 0.80 0.69 0.56
hardsparse 0.19 0.54 0.02 0.24 -0.04 0.08 0.26 0.63 0.38 2.31 0.10 0.18 0.45 0.72
hardmean 0.47 2.32 0.01 0.26 -0.05 0.07 0.19 0.35 0.36 2.37 0.19 0.30 0.28 0.25
harddense 0.36 1.62 0.07 3.86 -0.04 0.05 0.28 0.69 0.23 1.46 0.22 0.45 0.37 0.67
MetaDrive Avg 0.39 1.11 0.02 0.78 -0.06 0.07 0.35 0.69 0.59 2.91 0.31 0.63 0.36 0.51

out much consideration for the cost objective, resulting in
high costs for achieving high rewards. For instance, in the
SAC+BC algorithm, the reward agent’s point shows a high
cost of around 80 and a moderate reward of about 0.1, indi-
cating a reckless pursuit of rewards. Similarly, in the IQL al-
gorithm, the reward agent incurs a cost of about 25 to achieve
a reward of approximately 0.34. Conversely, the cost agent in
the separate agents’ scenario aggressively minimizes costs,
leading to low rewards as it avoids actions that could increase
costs. This conservative behavior is evident the SAC+BC
case, where the cost agent achieves low rewards of around
-0.1 and costs near 0, and the IQL, where the cost agent’s
rewards are around 0.3 with costs around 10.

In contrast, the shared agents, joined by the blue lines, ex-
hibit a more balanced approach. The shared policy representa-
tion helps cost agent become less conservative, encouraging

them to seek higher rewards even if it means incurring some
costs. For example, in the SAC+BC algorithm, the shared cost
agent achieves more rewards of about 0.33 with increased
costs of around 20, showing a willingness to balance both
objectives. Similarly, in the IQL algorithm, the shared cost
agent achieves higher rewards of approximately 0.36 with
moderate costs of around 15. A similar balanced approach is
also evident for the reward agent under sharing.

Tables 6, 7, 8 and 9 in the Appendix B.2 shows the re-
sults for shared vs. independent policies ablations on all 38
benchmarks for IQL and SAC+BC. Additionally, the per-
formance of CAPS with and without sharing is detailed in
Table 5. These results demonstrate the benefits of the shared
policy representation. Therefore, we use CAPS with shared
representation for two policies for baseline comparison.
Comparison with baselines. Table 1 compares the two



Figure 1: Ablation results for shared architecture vs. indepen-
dently trained reward and cost optimized policies.

CAPS variants, namely, CAPS(IQL) and CAPS(SAC+BC)
against all baseline methods. Each method’s performance is
displayed across two objectives: reward maximization and
cost minimization. The table includes results for various tasks
and aggregated performance for the three environment cate-
gories (SafetyGym Avg, BulletGym Avg, MetaDrive Avg).
We make the following observations. 1) Both CAPS instan-
tiations significantly outperform the baselines, meeting cost
constraints in 34 out of 38 tasks for CAPS(IQL) and 30 out
of 38 tasks for CAPS(SAC+BC). This is remarkable given
that safety is the primary metric. In contrast, the second-best
method, CDT, only manages to satisfy the constraints in 19
out of 38 tasks. 2) CAPS(IQL) achieves the highest reward
in 18 out of 38 tasks, demonstrating superior performance
in reward maximization while meeting the safety/cost con-
straints. This result shows that CAPS can leverage better
offline RL algorithms to further improve the performance in
OSRL. 3) Results in Appendix C.2 show that the training
time of CAPS with increasing number of heads/policies is
significantly lower than CDT. Other baseline methods will
be worse as they need to be trained for every cost constraint.
4) CAPS with two policies is a minimalist approach and a
strong wrapper based baseline for OSRL.

Ablation on cost limits. To evaluate the performance of
CAPS under various cost limits, we compare both CAPS
variants with CDT. The results in Table 2 demonstrate that
CAPS handles different cost constraints better than CDT.

Table 2: Performance of CAPS(IQL) and CAPS(SAC+BC)
for different cost limit configurations.

Cost Limits CAPS(IQL) CAPS(SAC+BC) CDT
{ 5, 10 } 18 / 38 15 / 38 11 / 38
{10, 20} 28 / 38 24 / 38 16 / 38
{15, 30} 31 / 38 29 / 38 19 / 38
{20, 40} 33 / 38 32 / 38 20 / 38
{30, 60} 33 / 38 34 / 38 22 / 38
{40, 80} 33 / 38 35 / 38 25 / 38

For a cost limit configuration of {5, 10}, where the cost
limit is 10 for SafetyGym environments and 5 for the other
two categories, CAPS(IQL) maintains safety in 18 out of 38
tasks, while CAPS(SAC+BC) achieves safety in 15 out of

38 tasks (compared to 11 for CDT). Although these num-
bers might appear modest, they are reasonable given that
the benchmark was designed with higher cost thresholds for
evaluation. When the cost limit is increased to {10, 20}, both
CAPS variants show significant improvement: CAPS(IQL)
ensures safety in 28 out of 38 tasks, and CAPS(SAC+BC)
in 24 out of 38 tasks. With a configuration of {15, 30},
CAPS(IQL) achieves safety in 31 out of 38 tasks, while
CAPS(SAC+BC) secures safety in 29 out of 38 tasks. Per-
formance peaks at the {20, 40}, {30, 60}, and {40, 80}
configurations. CAPS(IQL) maintains safety in 33 out of
38 tasks at all three configurations, while CAPS(SAC+BC)
shows consistent improvement, achieving safety in 32, 34,
and 35 out of 38 tasks, respectively. The results demonstrates
that both CAPS instantiations can effectively adapt to var-
ious cost limits without requiring retraining. In contrast to
other methods, which often necessitate specific training for
each cost limit, both CAPS variants demonstrate flexibility
and robustness, consistently outperforming CDT across all
cost limit configurations. Full results comparing CDT and
CAPS(IQL) can be found in Appendix B.3.

Off-policy evaluation. We implemented a variant of CAPS
with off-policy evaluation for the two policies/heads configu-
ration, comparing this method to our original approach. We
trained two Q-functions for each head/policy (i.e., πr and
πc) using fitted Q-evaluation (FQE) (Le, Voloshin, and Yue
2019): Q̂r for rewards and Q̂c for costs, applying the same
logic for policy switching. In Appendix B.4, we present re-
sults comparing the original CAPS method to two variants:
1) CAPS with FQE based Q̂r and Q̂c for both πr and πc
(reward-cost FQE), and 2) CAPS with FQE based Q̂r for πr
and πc (reward FQE). The reward-cost FQE method yields
overly conservative results with low rewards. The learned Q̂c
corresponding to respective policies πr and πc frequently es-
timates that actions exceed the cost limit, defaulting to select-
ing the action with the lowest cost Q-value. Our results also
show that reward FQE method which use Q̂r functions from
FQE and Qc from offline RL method yields better perfor-
mance than reward-cost FQE and is comparable to the origi-
nal CAPS (usesQc andQr from offline RL). We hypothesize
that this behavior is due to estimation errors in off-policy
evaluation as noted by prior literature (Figueiredo Prudencio,
Maximo, and Colombini 2024). The FQE based Q̂r functions
effectively differentiate between actions without needing a
precise estimation (unlike cost where precision matters to
check safety of decisions at a state). These findings support
the robust choice of applying Qc in the filtering stage of
CAPS decision-making.

7 Summary and Future Work
This paper introduces CAPS, a novel offline safe RL frame-
work that dynamically adapts to varying safety constraints by
training multiple diverse policies. CAPS switches between
actions from policies during deployment, ensuring safety
while maximizing rewards. Empirical results show that CAPS
outperforms existing methods. Future work could integrate
CAPS into online learning for real-time gains.
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A Proof of Theorem 1 for Safety Guarantee of CAPS

Theorem 1 For any MDP M with optimal-cost variation ϵ and any κ-admissible policy π, we have that for any state s, time
step t, and accumulated cost c<t,

V π,ct (s) ≤ max{V ct (s), κ− c<t}+ (T − t)ϵ

Proof: We use proof by induction on the time step t with a base case of T .
Base Case (t = T ): The base case states that for any s and c<t V

π,c
T (s) ≤ max{V cT (s), κ− c<T }. This follows directly from

the facts that for all s, V π,cT (s) = c(s) and that V cT (s) = c(s).
Inductive Step: Here we assume the theorem holds for time step t+ 1 and show that it follows for time step t. Our inductive

hypothesis states that for all s
V π,ct+1(s) ≤ max{V ct+1(s), κ− c<t+1}+ (T − t− 1)ϵ (7)

Next expand the value function for t,
V π,c
t (s) = c(s) +

∑
s′

P (s, πt(s, c<t), s
′)V π,c

t+1(s
′)

≤ c(s) +
∑
s′

P (s, πt(s, c<t), s
′) ·max{V c

t+1(s
′), κ− c<t − c(s)}

+ (T − t− 1)ϵ

=
∑
s′

P (s, πt(s, c<t), s
′) ·max{V c

t+1(s
′) + c(s), κ− c<t}

+ (T − t− 1)ϵ (8)
The first inequality follows from the inductive hypothesis (7) and the the fact that in the context of s, c<t+1 = c<t + c(s). The
next equality follows by simply pushing c into the expectation noting that c(s) =

∑
s′ P (s, a, s

′)c(s) for any s and a.
We now use the assumption that π is κ-admissible, which implies that,

Qct(s, πt(s, c<t)) = c(s) +
∑
s′

P (s, πt(s, c< t), s′)V ct+1(s
′)

≤ max{V ct (s), κ− c<t}
which we rewrite to ∑

s′

P (s, πt(s, c< t), s′) ·
(
V ct+1(s

′) + c(s)
)

≤ max{V ct (s), κ− c<t}
We can now combine this with the assumption that our MDP has optimal-cost variation ϵ. Since the sum is an expectation this
implies that for any s′

V ct+1(s
′) + c(s) ≤ max{V ct (s), κ− c<t}+ ϵ (9)

By combining (8) and (9) we conclude
V π,c
t (s) ≤

∑
s′

P (s, πt(s, c<t), s
′) ·max{V c

t (s), κ− c<t}+ ϵ

+ (T − t− 1)ϵ

= max{V c
t (s), κ− c<t}+ (T − t)ϵ

which completes the proof. □

A.1 Discussion on Assumptions for Safety Guarantees of CAPS
Assumptions 1 and 2 are essential for achieving safety guarantees under CAPS. Intuitively, Assumption 1 ensures that there
exists at least one safe action at any intermediate step such that future costs can satisfy the cost constraint based on already
observed costs. Having more heads theoretically ensures better coverage of the action space for each agent. Without such a safe
action, no algorithm can guarantee safety. We include this assumption to generalize the theorem, making it applicable to other
policies or strategies that meet the same condition, not just CAPS. This broadens the applicability of our theoretical analysis.

Assumption 2 helps define the types of Markov Decision Processes (MDPs) for which we can ensure safety guarantees.
Without this assumption, we can easily create pathological counterexamples where guarantees would fail. In practice, most of
our experimental benchmark environments comply with Assumption 2 with only a small epsilon value. This reflects realistic
conditions where good policies demonstrate some degree of recoverability and avoid extreme scenarios such as falling into
irrecoverable states or encountering unexpected high rewards.

These assumptions help frame the theoretical results, ensuring that CAPS is validated under reasonable conditions applicable
to our benchmark environments.



B Ablation Results for CAPS

B.1 Results of CAPS with Varying Number of Heads
Table 3 compares the performance of the CAPS(IQL) instantiation with varying numbers of heads: 2, 4, and 8. As the number
of heads increases, there is a slight improvement in rewards, but this comes with increased complexity and some potential
risk. The 2-head configuration is the simplest and safest, consistently maintaining safety across most tasks while delivering
reasonable rewards. The 4-head configuration strikes a good balance, offering slightly better rewards than the 2-head setup
while still maintaining safety. In contrast, the 8-head configuration, although it achieves the highest rewards in some tasks,
introduces greater complexity and sometimes exceeds the safety threshold, marking certain agents as unsafe. For example, in the
“PointButton2” task, while the reward remains constant at 0.14 across all configurations, the cost exceeds the safety threshold
(1.01) only in the 8-head configuration, highlighting the increased risk associated with more complex setups.

Table 4 compares the performance of the CAPS(SAC+BC) method across 2, 4, and 8-head configurations. The results indicate
that while increasing the number of heads can lead to slight improvements in rewards, it often results in variations in cost, with
some configurations occasionally exceeding the safety threshold.

The 2-head variant consistently achieves a strong balance between reward and safety, keeping costs well within the acceptable
limits. Furthermore, the 2-head setup is less computationally demanding, making it more efficient and faster to train and deploy,
solidifying it as a strong choice free from hyper-parameters.

B.2 Results for Shared Architecture Ablation

CAPS with shared backbone agents vs. separate agents. Table 5 compares the performance of SAC+BC and IQL instantia-
tions of CAPS using separate versus shared backbones across various tasks. The results highlight the significant benefits of using
a shared backbone, particularly for SAC+BC variant.

CAPS(SAC+BC). SAC+BC agents with separate backbones often struggle, as seen in tasks such as CarGoal1 and AntVelocity.
In CarGoal1, the reward jumps from 0.00 with separate agents to 0.28 with a shared backbone, while costs are well managed in
both cases. Similarly, in AntVelocity, the reward increases dramatically from -0.78 with separate agents to 0.89 with a shared
backbone, highlighting how separate backbones lead to poor performance. This is due to SAC’s training process, where separate
agents result in different Q-function updates, degrading the performance. However, sharing the backbone stabilizes these updates
and significantly improves overall decisions.

CAPS(IQL). For IQL, the impact of backbone sharing is less pronounced but still positive. Since IQL doesn’t query actions
outside the dataset during training, the Q-functions are the same whether agents are shared or not. For example, in CarGoal2, the
reward slightly improves from 0.15 to 0.16 when using a shared backbone. Although the gains are modest, they suggest that even
IQL agents benefit from the consistency of a shared backbone.

Sharing the backbone is crucial for SAC+BC agents, as it prevents performance degradation seen with separate agents. For IQL
agents, while the improvements are smaller, shared backbones still offer a slight edge in performance. These findings emphasize
the importance of considering backbone sharing to enhance agent performance, particularly in algorithms that rely on querying
out-of-distribution actions.

Rollout of shared backbone agents vs. separate ones. The results validate our intuition. Using the IQL algorithm, we found
that in 23 tasks, the shared IQL reward head incurred lower costs compared to a separate IQL reward agent. Similarly, the shared
SAC+BC reward head incurred lower costs in 17 tasks compared to its separate counterpart. Furthermore, the SAC+BC shared
reward head collected more rewards in 30 tasks, whereas the separate agent’s disregard for cost information led to sub-optimal
performance. This behavior was observed in only 11 tasks when using IQL, highlighting IQL’s robustness compared to SAC+BC.

Additionally, in 23 tasks, the shared IQL cost head collected higher rewards compared to a separate IQL cost agent. Even
more impressively, in 34 tasks, the shared SAC+BC cost head collected higher rewards compared to its separate counterpart.
These findings underscore the effectiveness of a shared network in enhancing both cost and reward performance, confirming our
hypothesis that a shared representation leads to superior outcomes in multi-objective learning scenarios. Results are shown in
Tables 6, 7, 8, and 9.

B.3 Cost Limit Ablations

Table 10 compares the performance of CAPS(IQL) and CDT across different extra cost configurations {5, 10}, {15, 30}, and
{30, 60}, revealing that CAPS(IQL) consistently outperforms CDT in maintaining safety while delivering competitive rewards.
CAPS(IQL) effectively manages costs across all configurations, ensuring they remain within the safety threshold, even as costs
decreases. In contrast, CDT, while occasionally achieving higher rewards, often does so at the expense of significantly higher
costs, leading to many unsafe outcomes. Specifically, CAPS(IQL) achieves safe outcomes in 18, 31, and 33 instances for the
three different cost settings, respectively, while CDT manages safety only 11, 19, and 22 times under the same conditions. This



Table 3: Complete evaluation results of normalized reward and cost across different head configurations (2 Heads, 4 Heads,
8 Heads) for the CAPS (IQL) instantiation. The cost threshold is 1. The ↑ symbol denotes that higher reward is better. The ↓
symbol denotes that lower cost (up to threshold 1) is better. Each value is averaged over 3 distinct cost thresholds, 20 evaluation
episodes, and 3 random seeds. Bold: Safe agents whose normalized cost is smaller than 1. Gray: Unsafe agents.

CAPS(IQL) 2 Heads 4 Heads 8 Heads

Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓
PointButton1 0.03 0.5 0.06 0.5 0.08 0.57
PointButton2 0.14 0.75 0.14 0.82 0.14 1.01
PointCircle1 0.5 0.78 0.52 0.7 0.5 0.76
PointCircle2 0.51 0.8 0.51 0.7 0.5 0.63
PointGoal1 0.47 0.53 0.5 0.6 0.45 0.48
PointGoal2 0.33 0.8 0.35 0.83 0.36 0.85
PointPush1 0.19 0.29 0.17 0.29 0.15 0.46
PointPush2 0.13 0.64 0.13 0.57 0.12 0.62
CarButton1 -0.01 0.3 0 0.47 -0.01 0.25
CarButton2 -0.08 0.32 -0.06 0.33 -0.17 0.35
CarCircle1 0.54 1.51 0.56 1.64 0.52 1.41
CarCircle2 0.5 1.55 0.43 0.96 0.52 2
CarGoal1 0.33 0.38 0.35 0.42 0.35 0.45
CarGoal2 0.16 0.62 0.19 0.73 0.16 0.6
CarPush1 0.2 0.31 0.17 0.35 0.18 0.27
CarPush2 0.07 0.75 0.07 0.65 0.06 0.84
SwimmerVelocity 0.43 1.58 0.38 2.62 0.42 0.97
HopperVelocity 0.41 0.7 0.26 0.46 0.35 0.5
HalfCheetahVelocity 0.94 0.77 0.95 0.79 0.95 0.73
Walker2dVelocity 0.8 0.62 0.79 0.61 0.8 0.74
AntVelocity 0.95 0.64 0.96 0.5 0.97 0.54
SafetyGym Avg 0.36 0.72 0.35 0.74 0.35 0.72
BallRun 0.19 0.94 0.26 0.77 0.23 1.13
CarRun 0.97 0.25 0.98 0.83 0.97 0.26
DroneRun 0.47 2.19 0.5 1.55 0.47 1.56
AntRun 0.61 0.9 0.61 0.82 0.62 0.79
BallCircle 0.69 0.59 0.7 0.63 0.7 0.64
CarCircle 0.69 0.65 0.67 0.68 0.68 0.71
DroneCircle 0.55 0.67 0.57 0.7 0.57 0.7
AntCircle 0.41 0.15 0.42 0.15 0.42 0.14
BulletGym Avg 0.57 0.79 0.59 0.77 0.58 0.74
easysparse 0.11 0.34 0.16 0.21 0.32 1.58
easymean 0.01 0.2 0.23 0.5 0.03 0.09
easydense 0.1 0.19 0.22 0.51 0.18 0.53
mediumsparse 0.6 0.74 0.56 1 0.61 0.28
mediummean 0.66 0.94 0.77 0.47 0.44 0.47
mediumdense 0.69 0.56 0.27 0.29 0.29 0.3
hardsparse 0.45 0.72 0.34 0.74 0.24 0.85
hardmean 0.28 0.25 0.34 0.88 0.3 0.46
harddense 0.37 0.67 0.33 0.55 0.25 0.42
MetaDrive Avg 0.40 0.54 0.36 0.57 0.29 0.43

demonstrates that CAPS(IQL) is a more reliable and robust method for balancing performance with safety, making it particularly
suitable for environments where cost management and risk mitigation are critical. Table 11 presents the SAC+BC instantiation
for the extra cost configurations.

Note that CDT requires specifying return and cost targets to generate trajectories. However, the authors do not provide a clear
methodology for selecting these return targets; the values are hand-coded for each environment without any explanation of the
rationale behind these choices. To address this, we used the provided return targets for the cost sets {10, 20, 40} and {20, 40,



Table 4: Complete evaluation results of normalized reward and cost across different head configurations (2 Heads, 4 Heads, 8
Heads) for the CAPS (SAC+BC) instantiation. The cost threshold is 1. The ↑ symbol denotes that higher reward is better. The ↓
symbol denotes that lower cost (up to threshold 1) is better. Each value is averaged over 3 distinct cost thresholds, 20 evaluation
episodes, and 3 random seeds. Bold: Safe agents whose normalized cost ≤ 1. Gray: Unsafe agents.

CAPS(SAC+BC) 2 Heads 4 Heads 8 Heads

Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓
PointButton1 0.1 1.23 0.06 0.81 0.05 0.75
PointButton2 0.21 1.54 0.15 0.90 0.15 0.87
PointCircle1 0.53 0.36 0.56 0.46 0.56 0.58
PointCircle2 0.61 1.38 0.61 1.35 0.55 0.51
PointGoal1 0.17 0.11 0.11 0.06 0.07 0.06
PointGoal2 0.20 0.55 0.18 0.47 0.15 0.46
PointPush1 0.19 0.38 0.15 0.47 0.17 0.37
PointPush2 0.15 0.70 0.14 1.00 0.16 0.76
CarButton1 0.01 1.17 0.04 0.97 0.03 0.62
CarButton2 -0.14 1.17 -0.14 0.92 -0.15 0.97
CarCircle1 0.64 3.24 0.66 3.64 0.66 3.81
CarCircle2 0.66 4.98 0.62 4.32 0.65 4.68
CarGoal1 0.28 0.47 0.35 0.50 0.23 0.37
CarGoal2 0.21 0.75 0.18 0.67 0.15 0.52
CarPush1 0.22 0.34 0.21 0.61 0.22 0.60
CarPush2 0.14 0.82 0.09 1.09 0.06 0.97
SwimmerVelocity 0.41 0.51 0.40 0.13 0.39 0.22
HopperVelocity 0.62 0.71 0.80 0.32 0.40 0.45
HalfCheetahVelocity 0.95 0.21 0.95 0.35 0.95 0.20
Walker2dVelocity 0.80 0.04 0.73 0.00 0.80 0.26
AntVelocity 0.89 0.67 0.95 0.77 0.96 0.73
SafetyGym Avg 0.37 1.02 0.37 0.94 0.34 0.89
BallRun 0.24 0.60 0.25 0.41 0.16 0.38
CarRun 0.97 0.00 0.97 0.00 0.96 0.00
DroneRun 0.54 0.39 0.57 0.30 0.58 0.57
AntRun 0.53 0.25 0.38 0.03 0.26 0.12
BallCircle 0.59 0.19 0.68 0.31 0.69 0.35
CarCircle 0.61 0.29 0.67 0.42 0.63 0.80
DroneCircle 0.42 0.14 0.50 0.30 0.51 0.33
AntCircle 0.47 0.42 0.42 0.02 0.47 0.06
BulletGym Avg 0.55 0.29 0.56 0.22 0.53 0.32
Easysparse 0.54 2.14 0.09 0.58 0.09 0.49
Easymean 0.16 0.41 0.16 0.44 0.47 1.94
Easydense 0.11 0.15 0.20 0.71 0.26 1.24
mediumsparse 0.65 0.99 0.50 0.87 0.37 0.65
mediummean 0.13 0.23 0.59 1.47 0.80 1.66
mediumdense 0.69 0.80 0.59 1.23 0.41 0.62
hardsparse 0.10 0.18 0.13 0.25 0.30 0.48
hardmean 0.19 0.30 0.11 0.34 0.25 0.56
harddense 0.22 0.45 0.16 0.27 0.15 0.24
MetaDrive Avg 0.31 0.63 0.28 0.68 0.34 0.88

80} to interpolate or extrapolate return targets for the additional cost sets {5, 15, 30} and {10, 30, 60}. This approach helps
ensure consistency across different cost sets, although it may introduce some uncertainty in the resulting trajectories.

B.4 Results for Fitted-Q Evaluation (FQE) Variants of CAPS

The table in Appendix 12 showcases the ablation study on off-policy evaluation (OPE) by providing a detailed comparison of
the performance of different Q-value function configurations within the CAPS framework across all environments. The table



Table 5: Comparison of evaluation results for normalized reward and cost across different environments of SAC+BC and IQL
agents, examining the impact of using separate versus shared backbones. The cost threshold is set to 1. The ↑ symbol indicates
that a higher reward is better, while the ↓ symbol indicates that a lower cost (up to the threshold of 1) is better. Each value is
averaged over 3 distinct cost thresholds, 20 evaluation episodes, and 3 random seeds.

CAPS SAC+BC Seperate Agents SAC+BC Shared Backbone IQL Seperate Agents IQL Shared Backbone

Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓
PointButton1 -0.10 0.15 0.10 1.23 0.02 0.49 0.03 0.50
PointButton2 -0.03 0.46 0.21 1.54 0.14 0.97 0.14 0.75
PointCircle1 0.49 0.97 0.53 0.36 0.43 1.32 0.50 0.78
PointCircle2 0.14 0.34 0.61 1.38 0.51 0.80 0.51 0.80
PointGoal1 0.02 0.31 0.17 0.11 0.37 0.45 0.47 0.53
PointGoal2 -0.12 0.52 0.20 0.55 0.25 0.50 0.33 0.80
PointPush1 -0.07 0.07 0.19 0.38 0.15 0.38 0.19 0.29
PointPush2 -0.13 0.05 0.15 0.70 0.10 0.58 0.13 0.64
CarButton1 -0.09 0.36 0.01 1.17 -0.03 0.19 -0.01 0.30
CarButton2 -0.05 0.19 -0.14 1.17 -0.08 0.35 -0.08 0.32
CarCircle1 -0.08 1.16 0.64 3.24 0.55 1.62 0.54 1.51
CarCircle2 0.24 0.20 0.66 4.98 0.49 1.62 0.50 1.55
CarGoal1 0.00 0.20 0.28 0.47 0.31 0.40 0.33 0.38
CarGoal2 0.00 0.48 0.21 0.75 0.15 0.60 0.16 0.62
CarPush1 -0.20 0.02 0.22 0.34 0.19 0.36 0.20 0.31
CarPush2 -0.13 0.04 0.14 0.82 0.09 0.65 0.07 0.75
SwimmerVelocity 0.13 0.81 0.41 0.51 0.43 2.08 0.46 1.95
HopperVelocity 0.03 0.44 0.62 0.71 0.37 0.83 0.46 0.80
HalfCheetahVelocity 0.73 0.99 0.95 0.21 0.93 0.63 0.94 0.78
Walker2dVelocity 0.05 0.30 0.80 0.04 0.75 0.70 0.79 0.68
AntVelocity -0.78 0.00 0.89 0.67 0.94 0.71 0.95 0.62
SafetyGym Avg 0.00 0.38 0.37 1.02 0.34 0.77 0.36 0.75
BallRun 0.23 1.77 0.24 0.60 0.16 0.90 0.19 0.94
CarRun 0.60 0.99 0.97 0.00 0.95 0.12 0.97 0.25
DroneRun 0.46 3.49 0.54 0.39 0.47 2.47 0.47 2.19
AntRun 0.07 0.02 0.53 0.25 0.61 0.85 0.61 0.90
BallCircle 0.53 1.11 0.59 0.19 0.67 0.72 0.69 0.59
CarCircle 0.28 1.83 0.61 0.29 0.70 0.70 0.69 0.65
DroneCircle -0.21 0.67 0.42 0.14 0.55 0.76 0.55 0.67
AntCircle 0.01 0.04 0.47 0.42 0.39 0.19 0.41 0.15
BulletGym Avg 0.25 1.24 0.55 0.29 0.56 0.84 0.57 0.79
easysparse -0.04 0.17 0.54 2.14 0.11 0.30 0.11 0.34
easymean -0.06 0.08 0.16 0.41 0.01 0.20 0.01 0.20
easydense -0.05 0.10 0.11 0.15 0.11 0.19 0.10 0.19
mediumsparse -0.08 0.07 0.65 0.99 0.59 0.85 0.60 0.74
mediummean -0.06 0.13 0.13 0.23 0.64 0.90 0.66 0.94
mediumdense -0.07 0.10 0.69 0.80 0.66 0.56 0.69 0.56
hardsparse 0.03 0.42 0.10 0.18 0.43 0.72 0.45 0.72
hardmean -0.03 0.11 0.19 0.30 0.23 0.11 0.28 0.25
harddense -0.01 0.14 0.22 0.45 0.32 0.53 0.37 0.67
MetaDrive Avg -0.04 0.15 0.31 0.63 0.34 0.48 0.36 0.51

compares the original CAPS method, which uses offline RL-based Qc and Qr, with two FQE-based variants: 1) the reward-cost
FQE approach, which employs FQE-based Q̂r and Q̂c for both reward and cost policies, and 2) the reward FQE method, which
uses FQE-based Q̂r for rewards while retaining Qc from offline RL for costs. The results in the table show that the reward-cost
FQE method often produces overly conservative policies, leading to lower rewards across various environments. This is because
the Q̂c functions frequently estimate that actions exceed the cost limit, resulting in the selection of low-cost but low-reward
actions. In contrast, the reward FQE method, which uses FQE-based Q̂r combined with the offline RL-based Qc, achieves better
performance by maintaining higher rewards while still adhering to safety constraints, as indicated by the blue-highlighted entries
in the table. These findings support the ablation study’s conclusion that while FQE can effectively differentiate between actions



Table 6: SAC+BC performance comparison of shared backbone cost head and separate cost agent across different environments.

Shared Backbone Cost Head Separate Cost Agent

Environment Reward Normalized Reward Cost Episode Length Reward Return Normalized Reward Cost Episode Length

PointButton1 -0.01 0.00 18.25 1000.00 -1.57 -0.04 0.05 1000.00
PointButton2 5.89 0.14 29.85 1000.00 -2.32 -0.05 3.70 1000.00
PointCircle1 40.49 0.49 2.90 500.00 41.63 0.52 10.40 500.00
PointCircle2 38.82 0.55 9.90 500.00 35.12 0.44 0.00 500.00
PointGoal1 3.60 0.12 5.70 1000.00 -3.91 -0.13 0.00 1000.00
PointGoal2 4.39 0.16 13.65 1000.00 -3.64 -0.13 0.45 1000.00
PointPush1 2.97 0.18 17.60 1000.00 -15.80 -0.96 0.00 1000.00
PointPush2 1.76 0.12 24.00 1000.00 -0.50 -0.03 0.90 1000.00
CarButton1 0.84 0.02 72.55 1000.00 -3.06 -0.07 14.95 1000.00
CarButton2 -9.20 -0.22 23.20 1000.00 -1.25 -0.03 4.45 1000.00
CarCircle1 19.30 0.67 113.20 500.00 3.67 -0.26 0.00 500.00
CarCircle2 19.16 0.67 176.40 500.00 9.17 0.19 0.00 500.00
CarGoal1 13.06 0.33 21.50 1000.00 -3.94 -0.10 0.00 1000.00
CarGoal2 7.34 0.25 39.25 1000.00 -6.46 -0.22 0.00 1000.00
CarPush1 3.05 0.19 19.90 1000.00 -0.74 -0.05 0.00 1000.00
CarPush2 1.80 0.12 23.10 1000.00 -1.21 -0.08 23.15 1000.00
SwimmerVelocity 67.01 0.28 0.00 1000.00 -2.23 -0.01 0.00 1000.00
HopperVelocity 641.71 0.32 10.40 387.00 29.29 0.00 0.00 25.15
HalfCheetahVelocity 2397.03 0.85 0.00 1000.00 -260.81 -0.10 0.00 1000.00
Walker2dVelocity 2688.10 0.79 0.00 1000.00 -5.78 -0.01 0.00 7.00
AntVelocity 2047.74 0.69 0.00 1000.00 -1902.42 -0.64 0.00 1000.00

BallRun 140.58 0.09 0.00 100.00 387.43 0.28 0.00 100.00
CarRun 486.34 0.76 0.00 200.00 286.02 0.22 0.00 200.00
DroneRun 365.30 0.53 0.00 200.00 41.21 0.05 0.00 200.00
AntRun 425.31 0.45 0.05 200.00 31.50 0.03 0.00 200.00
BallCircle 475.28 0.54 2.30 200.00 0.43 0.00 0.00 200.00
CarCircle 279.19 0.52 0.00 300.00 166.77 0.31 0.00 300.00
DroneCircle 481.65 0.35 0.00 300.00 -23.62 -0.29 36.95 147.40
AntCircle 207.09 0.45 1.20 477.55 0.59 0.00 0.00 156.05

EasySparse 374.23 0.87 53.13 815.75 -4.16 -0.06 0.00 1000.00
EasyMean 99.72 0.19 2.24 605.95 -4.30 -0.07 1.00 18.00
EasyDense 10.01 -0.02 1.80 73.50 12.04 -0.02 1.00 85.75
MediumSparse 240.24 0.88 19.44 724.70 -3.48 -0.08 1.00 21.00
MediumMean 10.89 -0.02 1.00 119.80 0.49 -0.07 0.00 1000.00
MediumDense 182.84 0.66 6.83 717.25 -3.95 -0.07 1.00 134.00
HardSparse 9.80 -0.02 1.00 133.55 9.01 -0.02 1.00 92.00
HardMean 64.68 0.10 2.52 532.95 -0.13 -0.04 1.00 108.00
HardDense 109.53 0.20 3.57 837.05 -6.21 -0.05 1.00 311.00

in terms of rewards, it struggles with the precision required for cost estimation, which is critical for safety in decision-making.
As such, the original CAPS method, which relies on offline RL-based Qc for cost estimation, remains a robust approach for
balancing reward maximization and safety.

C Experimental Details

C.1 Environment descriptions
The environments designed for testing safe offline reinforcement learning (RL) methods are built on different simulators, each
tailored to specific tasks and agents.

Safety-Gymnasium (Ray, Achiam, and Amodei 2019; Ji et al. 2024): Developed using the Mujoco physics simulator,
Safety-Gymnasium offers a variety of environments focused on safety-critical tasks. The Car agent has several tasks, including
Button, Push, and Goal, each available in two difficulty levels, requiring the agent to navigate hazards while achieving specific
objectives. For instance, in the Goal task, the agent moves towards multiple goal positions, with each new goal randomly reset
upon completion. In the Push task, the agent must move a box to different goal positions, with new locations generated after
each success. The Button task involves navigating to and pressing goal buttons scattered across the environment. Additionally,
Safety-Gymnasium includes velocity constraint tasks for agents such as Ant, HalfCheetah, and Swimmer. In the Velocity task,
the robot coordinates leg movement to move forward, while in the Run task, it starts in a random direction and speed to reach
the opposite side of the map. The Circle task rewards agents for following a path along a green circle while avoiding the red
region outside. Tasks are named by combining the agent, task, and difficulty level (e.g., CarPush1), reflecting the complexity and
objectives of each scenario. Figure 2 illustrates these tasks.



Table 7: SAC+BC performance comparison of shared backbone reward head and separate reward agent across different
environments.

Shared Backbone Reward Head Separate Reward Agent

Environment Reward Normalized Reward Cost Episode Length Reward Return Normalized Reward Cost Episode Length

PointButton1 3.43 0.08 16.35 1000.00 3.28 0.08 26.65 1000.00
PointButton2 14.56 0.34 77.10 1000.00 0.59 0.01 107.50 1000.00
PointCircle1 47.99 0.67 189.50 500.00 49.60 0.71 193.75 500.00
PointCircle2 47.17 0.80 212.45 500.00 41.69 0.63 171.60 500.00
PointGoal1 20.11 0.67 31.45 1000.00 19.13 0.64 49.90 1000.00
PointGoal2 15.26 0.55 67.30 1000.00 -1.52 -0.05 72.65 1000.00
PointPush1 2.90 0.18 22.50 1000.00 0.32 0.02 98.40 1000.00
PointPush2 2.49 0.17 29.85 1000.00 -1.51 -0.10 28.75 1000.00
CarButton1 0.97 0.02 47.75 1000.00 4.43 0.10 276.95 1000.00
CarButton2 -4.37 -0.10 52.80 1000.00 4.38 0.10 297.45 1000.00
CarCircle1 19.94 0.70 207.10 500.00 14.15 0.36 51.95 500.00
CarCircle2 20.88 0.76 275.55 500.00 15.89 0.52 244.90 500.00
CarGoal1 15.67 0.39 35.65 1000.00 2.23 0.06 89.15 1000.00
CarGoal2 6.46 0.22 28.60 1000.00 -1.34 -0.05 69.85 1000.00
CarPush1 2.94 0.18 16.90 1000.00 0.50 0.03 0.00 1000.00
CarPush2 2.04 0.13 26.15 1000.00 0.22 0.01 139.55 1000.00
SwimmerVelocity 140.33 0.59 177.35 1000.00 72.80 0.30 95.45 1000.00
HopperVelocity 1753.94 0.92 530.80 1000.00 752.65 0.38 189.20 198.70
HalfCheetahVelocity 2744.72 0.98 86.10 1000.00 4488.50 1.60 975.70 1000.00
Walker2dVelocity 2697.91 0.79 0.00 1000.00 181.58 0.05 14.60 88.65
AntVelocity 2887.08 0.97 30.90 1000.00 -2319.29 -0.78 0.00 1000.00

BallCircle 786.73 0.89 63.95 200.00 765.98 0.87 60.85 200.00
CarCircle 430.84 0.81 93.65 300.00 455.02 0.85 90.15 300.00
DroneCircle 851.22 0.82 90.50 300.00 48.63 -0.20 13.35 65.40
AntCircle 376.99 0.82 139.65 462.05 15.13 0.03 14.10 307.70
BallRun 1419.25 1.07 86.50 100.00 1459.21 1.10 92.00 100.00
CarRun 567.43 0.98 0.50 200.00 576.56 1.01 79.35 200.00
DroneRun 487.25 0.71 100.60 200.00 570.95 0.83 145.40 189.75
AntRun 667.27 0.70 74.55 200.00 42.55 0.04 0.00 200.00

EasySparse 134.53 0.28 28.91 254.85 -4.17 -0.06 1.00 16.00
EasyMean 59.87 0.09 11.39 152.20 6.04 -0.04 3.25 39.00
EasyDense 59.50 0.10 8.94 228.05 -4.14 -0.06 1.00 16.00
MediumSparse 108.45 0.36 25.27 160.40 9.53 -0.03 4.02 42.00
MediumMean 8.46 -0.03 2.84 46.00 -2.64 -0.08 1.09 21.00
MediumDense 15.33 0.00 3.43 74.00 3.71 -0.04 2.65 37.00
HardSparse 7.15 -0.02 1.00 110.00 1.60 -0.03 2.10 35.00
HardMean 15.38 -0.01 3.37 67.00 -0.91 -0.04 1.35 25.00
HardDense 82.38 0.14 15.24 159.65 -2.65 -0.04 1.09 21.00

Bullet-Safety-Gym (Gronauer 2022): This environment suite, created using the PyBullet physics simulator, includes four agent
types—Ball, Car, Drone, and Ant—along with two primary tasks: Circle and Run. In the Run task, agents navigate through a
corridor bounded by safety lines that they can cross without physical collision, though doing so incurs a penalty. Additionally, if
an agent exceeds a certain speed limit, it accrues extra penalties. In the Circle task, agents are required to move clockwise around
a circular path, with rewards increasing as they maintain higher speeds closer to the boundary. Penalties are given if the agent
strays outside a predefined safety zone. These environments are designed to evaluate offline reinforcement learning methods with
a focus on safety, featuring shorter, more straightforward tasks when compared to those in Safety-Gymnasium. Figure 3 provides
a visual representation of these tasks.

MetaDrive (Li et al. 2022): MetaDrive is a self-driving simulation environment based on the Panda3D game engine. It replicates
realistic driving conditions with varying levels of road complexity (easy, medium, hard) and traffic density (sparse, mean, dense).
Tasks are named according to the combination of road and vehicle conditions. This environment allows the assessment of offline
RL algorithms in scenarios that mirror real-world driving challenges. Figure 4 visualizes these tasks.

Each of these environments offers unique challenges for testing offline safe RL methods, from driving simulations to tasks that
require careful navigation and hazard avoidance.

C.2 Computation Time
The computation time comparison in Table 13 reveals that both IQL and SAC+BC instantiations of CAPS training are significantly
more efficient than CDT training, tested on the HalfCheetah task. While CDT takes approximately 154 minutes, CAPS(IQL)
completes the task in a much shorter time, ranging from 24 to 33 minutes, depending on the number of heads. Similarly,
CAPS(SAC+BC), though slightly more time-intensive than IQL, still remains considerably faster than CDT, with computation



Table 8: IQL performance comparison of shared backbone cost head and separate cost agent across different environments.

Shared Backbone Cost Head Separate Cost Agent

Environment Reward Normalized Reward Cost Episode Length Reward Return Normalized Reward Cost Episode Length

PointButton1 1.44 0.03 21.22 1000.00 -0.75 -0.02 10.43 1000.00
PointButton2 3.07 0.07 21.00 1000.00 4.53 0.11 17.73 1000.00
PointCircle1 24.33 0.10 11.37 500.00 28.70 0.21 15.60 500.00
PointCircle2 34.56 0.42 0.88 500.00 32.91 0.37 0.00 500.00
PointGoal1 5.90 0.20 9.18 1000.00 6.94 0.23 8.33 1000.00
PointGoal2 4.32 0.16 10.03 1000.00 4.45 0.16 12.78 1000.00
PointPush1 2.33 0.14 8.52 1000.00 1.34 0.08 14.20 1000.00
PointPush2 1.79 0.12 21.45 1000.00 1.34 0.09 12.85 1000.00
CarButton1 -0.57 -0.01 8.07 1000.00 -1.22 -0.03 12.62 1000.00
CarButton2 -3.28 -0.08 6.78 1000.00 -5.19 -0.12 15.62 1000.00
CarCircle1 15.69 0.45 34.85 500.00 15.41 0.44 37.63 500.00
CarCircle2 14.23 0.44 59.22 500.00 13.62 0.41 38.67 500.00
CarGoal1 14.21 0.36 14.68 1000.00 11.84 0.30 9.35 1000.00
CarGoal2 3.45 0.12 14.83 1000.00 2.11 0.07 7.18 1000.00
CarPush1 2.85 0.17 7.53 1000.00 2.21 0.13 5.90 1000.00
CarPush2 0.77 0.05 16.13 1000.00 0.62 0.04 15.00 1000.00
SwimmerVelocity 96.85 0.41 28.60 1000.00 78.59 0.33 75.28 1000.00
HopperVelocity 486.36 0.24 8.60 348.05 698.29 0.35 1.20 592.55
HalfCheetahVelocity 2413.98 0.86 0.42 1000.00 2378.76 0.85 0.12 1000.00
Walker2dVelocity 2674.55 0.78 0.07 1000.00 2682.83 0.78 2.97 1000.00
AntVelocity 2499.16 0.84 0.77 1000.00 2504.33 0.84 0.20 1000.00

BallCircle 223.10 0.25 0.50 200.00 135.04 0.15 5.07 200.00
CarCircle 50.83 0.09 0.00 300.00 27.68 0.05 0.00 300.00
DroneCircle 366.74 0.20 0.00 300.00 364.69 0.20 0.23 298.15
AntCircle 131.15 0.28 0.00 444.50 125.54 0.27 0.08 438.78
BallRun 110.83 0.06 0.00 100.00 169.66 0.11 0.00 100.00
CarRun 479.18 0.74 0.60 200.00 512.50 0.83 0.00 200.00
DroneRun 258.95 0.37 71.87 199.18 316.17 0.45 38.65 199.70
AntRun 439.12 0.46 6.05 200.00 523.04 0.55 10.28 200.00

EasySparse 46.93 0.07 3.20 376.07 115.36 0.23 3.17 782.12
EasyMean 23.90 0.00 3.66 123.93 35.04 0.03 3.14 172.10
EasyDense 61.58 0.10 1.69 452.87 98.31 0.19 0.84 794.32
MediumSparse 118.93 0.40 5.29 659.57 167.06 0.59 16.50 514.97
MediumMean 137.99 0.48 12.51 727.23 117.97 0.40 9.86 627.22
MediumDense 179.50 0.65 6.84 824.30 95.94 0.32 1.78 593.70
HardSparse 193.47 0.38 3.84 897.07 49.76 0.07 5.48 168.00
HardMean 107.38 0.19 0.54 928.90 82.52 0.14 4.73 373.23
HardDense 148.81 0.28 4.88 911.10 105.56 0.19 15.80 252.83

times ranging from 44 to 103 minutes. This demonstrates the training efficiency of both IQL and SAC+BC instantiations,
particularly when compared to CDT. All experiments were performed on an A40 GPU and an AMD EPYC 7573X 32-Core
Processor.

C.3 CAPS Hyperparameters

Table 14 presents the hyperparameters used across different environments (BulletGym, SafetyGym, and MetaDrive) for CAPS,
detailing common configurations such as cost thresholds, training steps, and network specifications.



Table 9: IQL performance comparison of shared backbone reward head and separate reward agent across different environments.

Shared Backbone Reward Head Separate Reward Agent

Environment Reward Normalized Reward Cost Episode Length Reward Return Normalized Reward Cost Episode Length

PointButton1 4.79 0.12 30.62 1000.00 5.18 0.13 33.47 1000.00
PointButton2 11.95 0.28 65.03 1000.00 12.32 0.29 69.48 1000.00
PointCircle1 50.38 0.73 176.30 500.00 51.06 0.74 192.32 500.00
PointCircle2 47.12 0.79 232.92 500.00 45.49 0.75 199.08 500.00
PointGoal1 20.28 0.67 38.15 1000.00 17.18 0.57 27.38 1000.00
PointGoal2 14.44 0.52 88.05 1000.00 13.70 0.49 73.12 1000.00
PointPush1 3.25 0.20 29.98 1000.00 3.01 0.18 30.65 1000.00
PointPush2 1.75 0.12 29.38 1000.00 1.73 0.12 40.10 1000.00
CarButton1 0.24 0.01 54.80 1000.00 2.97 0.07 43.73 1000.00
CarButton2 -3.71 -0.09 40.52 1000.00 -0.83 -0.02 58.40 1000.00
CarCircle1 20.38 0.73 190.42 500.00 20.47 0.74 197.78 500.00
CarCircle2 20.28 0.73 258.28 500.00 20.98 0.76 270.90 500.00
CarGoal1 16.47 0.41 19.22 1000.00 13.68 0.34 26.05 1000.00
CarGoal2 8.12 0.28 37.63 1000.00 6.29 0.22 35.67 1000.00
CarPush1 2.90 0.18 21.03 1000.00 3.50 0.21 17.03 1000.00
CarPush2 1.05 0.07 27.12 1000.00 1.78 0.12 28.52 1000.00
SwimmerVelocity 53.22 0.22 72.37 1000.00 48.98 0.20 56.58 1000.00
HopperVelocity 654.39 0.33 158.12 191.83 673.98 0.34 145.85 195.38
HalfCheetahVelocity 2793.41 1.00 250.60 1000.00 2797.74 1.00 187.90 1000.00
Walker2dVelocity 3078.16 0.90 206.02 959.28 3122.61 0.91 196.93 988.68
AntVelocity 2895.56 0.97 140.27 1000.00 2964.54 1.00 208.55 1000.00

BallCircle 828.74 0.94 59.08 200.00 838.51 0.95 60.42 200.00
CarCircle 513.94 0.96 92.77 300.00 508.34 0.95 91.67 300.00
AntCircle 309.75 0.67 95.95 451.78 357.56 0.78 124.58 486.78
DroneCircle 906.13 0.89 99.17 300.00 952.44 0.94 98.25 300.00
BallRun 1546.65 1.17 92.33 100.00 1568.23 1.19 92.33 100.00
CarRun 564.23 0.97 5.12 200.00 564.44 0.97 9.20 200.00
DroneRun 391.63 0.57 31.57 200.00 422.06 0.61 22.83 200.00
AntRun 925.83 0.97 146.22 199.58 961.77 1.01 159.13 200.00

EasySparse 119.32 0.24 25.35 230.28 408.73 0.96 69.40 744.73
EasyMean 40.32 0.05 10.02 84.27 303.79 0.70 52.96 728.45
EasyDense 88.30 0.17 11.30 348.38 257.20 0.58 41.75 750.50
MediumSparse 136.17 0.47 15.16 393.50 246.68 0.91 35.13 574.83
MediumMean 213.06 0.78 33.24 490.97 196.74 0.71 28.82 479.43
MediumDense 215.81 0.79 26.60 583.42 195.87 0.71 32.88 352.27
HardSparse 225.52 0.44 29.73 576.53 231.79 0.46 30.85 667.65
HardMean 158.70 0.30 11.33 715.70 208.21 0.40 25.68 605.25
HardDense 176.90 0.34 19.76 554.32 221.44 0.44 31.67 561.67



Table 10: Performance across different extra cost configurations for CAPS(IQL) and CDT. The cost threshold is 1. The ↑ symbol
denotes that a higher reward is better. The ↓ symbol denotes that a lower cost (up to threshold 1) is better. Each value is averaged
over 20 evaluation episodes, and 3 random seeds. Bold: Safe agents whose normalized cost ≤ 1. Gray: Unsafe agents.

Cost Configuration {5, 10} {15, 30} {30, 60}
CAPS IQL CDT CAPS IQL CDT CAPS IQL CDT

Environment reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓
PointButton1 0.02 1.36 0.51 9.56 0.02 0.35 0.53 3.60 0.07 0.33 0.54 1.93
PointButton2 0.14 2.84 0.42 9.33 0.15 1.09 0.47 2.95 0.13 0.52 0.43 1.62
PointCircle1 0.27 1.27 0.54 0.58 0.49 0.73 0.56 0.77 0.53 0.64 0.59 0.92
PointCircle2 0.42 0.11 0.60 1.93 0.44 0.58 0.62 1.46 0.59 1.01 0.64 1.16
PointGoal1 0.32 1.54 0.69 3.17 0.46 0.75 0.69 1.30 0.57 0.50 0.73 0.62
PointGoal2 0.22 1.12 0.43 5.30 0.27 0.72 0.49 2.12 0.37 0.62 0.59 1.39
PointPush1 0.12 0.52 0.23 3.02 0.16 0.54 0.25 1.19 0.2 0.35 0.21 0.45
PointPush2 0.09 2.08 0.20 4.54 0.10 0.90 0.20 1.45 0.15 0.45 0.23 1.02
CarButton1 -0.04 0.62 0.20 9.04 -0.02 0.24 0.20 3.32 0.01 0.24 0.18 1.67
CarButton2 -0.12 1.13 0.25 14.47 -0.11 0.36 0.24 4.93 -0.08 0.20 0.13 1.95
CarCircle1 0.46 4.21 0.54 8.50 0.49 1.55 0.54 3.19 0.59 1.30 0.65 2.33
CarCircle2 0.45 4.94 0.63 13.20 0.47 1.53 0.65 4.89 0.54 1.21 0.69 3.11
CarGoal1 0.29 1.24 0.62 3.27 0.32 0.47 0.66 1.27 0.31 0.27 0.67 0.75
CarGoal2 0.12 2.52 0.43 7.01 0.13 0.75 0.44 2.20 0.19 0.45 0.57 1.43
CarPush1 0.17 0.48 0.28 2.23 0.19 0.25 0.29 0.78 0.19 0.13 0.33 0.54
CarPush2 0.07 2.21 0.15 6.10 0.10 0.85 0.15 2.11 0.06 0.37 0.20 1.21
SwimmerVelocity 0.45 3.35 0.66 0.98 0.49 2.47 0.68 0.96 0.44 1.47 0.69 0.95
HopperVelocity 0.26 1.40 0.69 1.16 0.34 0.70 0.75 0.79 0.51 0.68 0.71 0.73
HalfCheetahVelocity 0.87 0.31 0.98 0.68 0.92 0.77 0.98 0.18 0.97 0.84 0.98 0.11
Walker2dVelocity 0.79 0.09 0.80 0.16 0.8 0.54 0.78 0.15 0.81 0.86 0.78 0.14
AntVelocity 0.87 0.22 0.98 0.71 0.94 0.60 0.99 0.52 0.99 0.72 0.99 0.46
BallCircle 0.31 0.00 0.70 2.25 0.65 0.53 0.75 1.28 0.76 0.77 0.81 0.97
CarCircle 0.41 0.02 0.72 2.01 0.7 0.62 0.72 0.87 0.72 0.81 0.77 0.96
DroneCircle 0.33 0.00 0.55 1.39 0.54 0.64 0.59 1.14 0.58 0.81 0.64 1.07
AntCircle 0.31 0.11 0.43 6.21 0.34 0.08 0.45 2.76 0.45 0.20 0.52 1.60
BallRun 0.07 0.00 0.32 2.26 0.11 1.52 0.32 0.84 0.22 1.19 0.38 0.95
CarRun 0.97 0.41 0.99 0.94 0.97 0.26 0.99 0.66 0.98 0.23 0.99 0.63
DroneRun 0.4 12.06 0.51 0.54 0.41 3.99 0.59 0.49 0.51 0.45 0.62 1.32
AntRun 0.47 1.39 0.70 1.69 0.59 0.90 0.72 0.85 0.69 0.90 0.73 0.79
EasySparse 0.09 0.77 0.07 0.00 0.10 0.32 0.18 0.00 0.19 0.54 0.52 0.74
EasyMean 0.00 0.67 0.40 3.69 0.00 0.22 0.45 1.31 0.01 0.11 0.49 0.71
EasyDense 0.10 0.53 0.29 0.21 0.11 0.18 0.42 0.25 0.10 0.12 0.44 1.19
MediumSparse 0.51 1.95 0.44 1.16 0.54 0.78 0.54 1.22 0.63 0.50 0.65 1.05
MediumMean 0.53 2.55 0.55 1.57 0.64 1.04 0.35 0.99 0.73 0.64 0.36 0.61
MediumDense 0.66 1.66 0.12 0.17 0.62 0.59 0.15 0.08 0.75 0.51 0.31 0.49
hardsparse 0.41 2.15 0.24 1.85 0.45 0.86 0.20 0.20 0.48 0.53 0.30 0.89
hardmean 0.20 0.33 0.07 0.07 0.25 0.22 0.11 0.20 0.31 0.22 0.27 0.81
harddense 0.23 0.85 0.26 2.77 0.34 0.66 0.28 0.83 0.45 0.66 0.31 0.92
# safe 18 11 31 19 33 22



Table 11: Performance across different extra cost configurations for CAPS(SAC+BC). The cost threshold is 1. The ↑ symbol
denotes that a higher reward is better. The ↓ symbol denotes that a lower cost (up to threshold 1) is better. Each value is averaged
over 20 evaluation episodes, and 3 random seeds. Bold: Safe agents whose normalized cost ≤ 1. Gray: Unsafe agents.

Cost Configuration {5, 10} {15, 30} {30, 60}
reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

PointCircle1 0.51 0.35 0.52 0.22 0.55 0.51
PointCircle2 0.59 3.88 0.60 1.37 0.61 1.05
SwimmerVelocity 0.32 0.14 0.37 0.47 0.49 0.63
HopperVelocity 0.61 2.35 0.58 0.75 0.59 0.39
HalfCheetahVelocity 0.88 0.11 0.94 0.19 0.97 0.28
AntVelocity 0.73 0.35 0.86 0.69 0.96 0.73
CarCircle 0.56 0.00 0.58 0.02 0.66 0.51
BallRun 0.25 1.56 0.25 0.67 0.26 0.68
AntRun 0.41 0.01 0.42 0.01 0.64 0.47
EasyDense 0.08 0.39 0.06 0.12 0.09 0.15
MediumMean 0.11 0.66 0.07 0.10 0.10 0.10
hardsparse 0.10 0.38 0.10 0.20 0.11 0.18

Figure 2: Visualization of the Safety-Gymnasium environments.



Table 12: Performance comparison of FQE based Q-value functions. The cost threshold is 1. The ↑ symbol denotes that a higher
reward is better. The ↓ symbol denotes that a lower cost (up to threshold 1) is better. Each value is averaged over 3 distinct cost
thresholds, 20 evaluation episodes, and 3 random seeds. Bold: Safe agents whose normalized cost is smaller than 1. Gray: Unsafe
agents. Blue: Safe agent with the highest reward.

FQE Q̂r & Q̂c Qc + FQE Q̂r Qc & Qr

Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓
Bullet Safety Gym

AntCircle 0.32 0.01 0.39 0.14 0.41 0.15
AntRun 0.43 0.36 0.6 0.88 0.61 0.90
CarCircle 0.18 0.14 0.7 0.66 0.69 0.65
DroneCircle 0.19 0.01 0.55 0.69 0.55 0.67
DroneRun 0.40 3.58 0.44 2.97 0.47 2.19
BallCircle 0.41 0.17 0.69 0.59 0.69 0.59
BallRun 0.06 0 0.13 0.58 0.19 0.94
CarRun 0.94 0.16 0.95 0.12 0.97 0.25
Safety Gymnasium Car

CarButton1 -0.01 0.44 -0.03 0.18 -0.01 0.30
CarButton2 -0.08 0.36 -0.09 0.34 -0.08 0.32
CarCircle1 0.47 1.09 0.54 1.55 0.54 1.51
CarCircle2 0.43 1.41 0.49 1.65 0.50 1.55
CarGoal1 0.25 0.31 0.29 0.42 0.33 0.38
CarGoal2 0.14 0.50 0.15 0.59 0.16 0.62
CarPush1 0.17 0.29 0.20 0.37 0.20 0.31
CarPush2 0.03 0.48 0.09 0.67 0.07 0.75
Safety Gymnasium Point

PointButton1 0.01 0.38 0.02 0.40 0.03 0.45
PointButton2 0.09 0.62 0.13 0.94 0.14 0.75
PointCircle1 0.23 0.37 0.44 1.22 0.50 0.78
PointCircle2 0.40 0.21 0.50 0.77 0.51 0.80
PointGoal1 0.25 0.36 0.37 0.42 0.47 0.53
PointGoal2 0.14 0.38 0.25 0.53 0.33 0.80
PointPush1 0.14 0.21 0.16 0.38 0.19 0.29
PointPush2 0.11 0.56 0.12 0.60 0.13 0.64
Safety Gymnasium Velocity

AntVelocity 0.87 0.18 0.95 0.7 0.95 0.64
HalfCheetahVelocity 0.87 0.18 0.94 0.66 0.94 0.77
HopperVelocity 0.24 0.25 0.43 0.72 0.41 0.70
SwimmerVelocity 0.4 0.68 0.43 2.02 0.43 1.58
Walker2dVelocity 0.76 0.06 0.71 0.72 0.80 0.62
Metadrive environments

easysparse 0.24 1.39 0.11 0.33 0.11 0.34
easymean 0 0.16 0.01 0.20 0.01 0.20
easydense 0.12 0.11 0.12 0.18 0.10 0.19
mediumsparse 0.43 0.34 0.56 0.73 0.60 0.74
mediummean 0.55 0.83 0.66 0.86 0.66 0.94
mediumdense 0.76 0.60 0.67 0.61 0.69 0.56
hardsparse 0.42 0.51 0.45 0.76 0.45 0.72
hardmean 0.20 0.06 0.23 0.06 0.28 0.25
harddense 0.28 0.39 0.30 0.53 0.37 0.67



Figure 3: Visualization of the Bullet-Safety-Gym environments.

Figure 4: Visualization of the MetaDrive environments.

Table 13: Approximate computation time comparison on Halfcheetah task (NVIDIA A40)

Method Time (min)
CDT ≈ 154

CAPS IQL
2 heads ≈ 24
4 heads ≈ 26
8 heads ≈ 33

CAPS SAC+BC
2 heads ≈ 44
4 heads ≈ 62
8 heads ≈ 103



Table 14: CAPS hyperparameters.

Common Parameters BulletGym SafetyGym MetaDrive
Cost thresholds (for evaluation) {10, 20, 40} {20, 40, 80} {10, 20, 40}
Training steps 100000 200000
discount γ 0.99
Batch size 512
Optimizer Adam
Actor, Critic, and Value Networks hidden size {512, 512}
λk k

/
((heads count − 1)/2)

seeds {0, 10, 20}
IQL instantiation
IQL Expectile τ {Vr, Vc} {0.7, 0.7} {0.5, 0.5}
IQL Inverse Temperature β 3
Actor, Critic, and Value Networks learning rate 3e-4

SAC+BC instantiation
Actor and learning rate 1e-4
Critic learning rate 1e-3


