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ABSTRACT

Concept Bottleneck Models (CBMs) have garnered much attention for their ability
to elucidate the prediction process through a human-understandable concept layer.
However, most previous studies focused on cases where the data, including con-
cepts, are clean. In many scenarios, we always need to remove/insert some training
data or new concepts from trained CBMs due to different reasons, such as privacy
concerns, data mislabelling, spurious concepts, and concept annotation errors. Thus,
the challenge of deriving efficient editable CBMs without retraining from scratch
persists, particularly in large-scale applications. To address these challenges, we
propose Editable Concept Bottleneck Models (ECBMs). Specifically, ECBMs
support three different levels of data removal: concept-label-level, concept-level,
and data-level. ECBMs enjoy mathematically rigorous closed-form approximations
derived from influence functions that obviate the need for re-training. Experimental
results demonstrate the efficiency and effectiveness of our ECBMs, affirming their
adaptability within the realm of CBMs.

1 INTRODUCTION

Modern deep learning models, such as large language models (Zhao et al., 2023; Yang et al., 2024a;b;
Xu et al., 2023; Yang et al., 2024c) and large multimodal (Yin et al., 2023; Ali et al., 2024; Cheng
et al., 2024), often exhibit intricate non-linear architectures, posing challenges for end-users seeking
to comprehend and trust their decisions. This lack of interpretability presents a significant barrier
to adoption, particularly in critical domains such as healthcare (Ahmad et al., 2018; Yu et al., 2018)
and finance (Cao, 2022), where transparency is paramount. To address this demand, explainable
artificial intelligence (XAI) models (Das & Rad, 2020; Hu et al., 2023b;a) have emerged, offering
explanations for their behavior and insights into their internal mechanisms. Among these, Concept
Bottleneck Models (CBMs) (Koh et al., 2020) have gained prominence for explaining the prediction
process of end-to-end AI models. CBMs add a bottleneck layer for placing human-understandable
concepts. In the prediction process, CBMs first predict the concept labels using the original input and
then predict the final classification label using the predicted concept in the bottleneck layer, which
provides a self-explained decision to users.

Existing research on CBMs predominantly addresses two primary concerns: Firstly, CBMs heavily
rely on laborious dataset annotation. Researchers have explored solutions to these challenges in
unlabeled settings (Oikarinen et al., 2023; Yuksekgonul et al., 2023; Lai et al., 2023). Secondly,
the performance of CBMs often lags behind that of original models lacking the concept bottleneck
layer, attributed to incomplete information extraction from original data to bottleneck features.
Researchers aim to bridge this utility gap (Sheth & Ebrahimi Kahou, 2023; Yuksekgonul et al.,
2023; Espinosa Zarlenga et al., 2022). However, few of them considered the adaptivity or editability
of CBMs, crucial aspects encompassing annotation errors, data privacy considerations, or concept
updates. Actually, these demands are increasingly pertinent in the era of large models. We delineate
the editable setting into three key aspects (illustrated in Figure 1):

• Concept-label-level: In most scenarios, concept labels are annotated by humans or experts.
Thus, it is unavoidable that there are some annotation errors, indicating that there is a need
to correct some concept labels in a trained CBM.

• Concept-level: In CBMs, the concept set is pre-defined by LLMs or experts. However, in
many cases, evolving situations demand concept updates, as evidenced by discoveries such
as chronic obstructive pulmonary disease as a risk factor for lung cancer, and doctors have
the requirements to add related concepts. For another example, recent research found a new
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Figure 1: An illustration of Editable Concept Bottleneck Models with three settings.

factor, obesity (Sattar et al., 2020) are risky for severe COVID-19 and factors (e.g., older
age, male gender, Asian race) are risk associated with COVID-19 infection (Rozenfeld et al.,
2020). On the other hand, one may also want to remove some spurious or unrelated concepts
for the task. This demand is even more urgent in some rapidly evolving domains like the
pandemic.

• Data-level: Data issues can arise in CBMs when training data is erroneous or poisoned. For
example, if a doctor identifies a case as erroneous or poisoned, this data sample becomes
unsuitable for training. Therefore, it is essential to have the capability to completely delete
such data from the learned models. We need such an editable model that can interact
effectively with doctors.

The most direct way to address the above three problems is retraining from scratch on the data after
correction. However, retraining models in such cases prove prohibitively expensive, especially in
large models, which is resource-intensive and time-consuming. Therefore, developing an efficient
method to approximate prediction changes becomes paramount. Providing users with an adaptive
and editable CBM is both crucial and urgent.

We propose Editable Concept Bottleneck Models (ECBMs) to tackle these challenges. Specifically,
compared to retraining, ECBMs provide a mathematically rigorous closed-form approximation for
the above three settings to address editability within CBMs efficiently. Leveraging the influence
function (Cook, 2000; Cook & Weisberg, 1980), we quantify the impact of individual data points,
individual concept labels, and the concept for all data on model parameters. Despite the growing
attention and utility of influence functions in machine learning (Koh & Liang, 2017), their appli-
cation in CBMs remains largely unexplored due to their composite structure, i.e., the intermediate
representation layer.

To the best of our knowledge, we are the first to work to fill this gap by demonstrating the effectiveness
of influence functions in elucidating the behavior of CBMs, especially in identifying mislabeled data
and discerning the data influence. Comprehensive experiments on benchmark datasets show that our
ECBMs are efficient and effective. Our contributions are summarized as follows.

• We delineate three different settings that need various levels of data or concept removal in
CBMs: concept-label-level, concept-level, and data-level. To the best of our knowledge, our
research marks the first exploration of data removal issues within CBMs.

• To make CBMs able to remove data or concept influence without retraining, we propose
the Editable Concept Bottleneck Models (ECBMs). Our approach in ECBMs offers a math-
ematically rigorous closed-form approximation. Furthermore, to improve computational
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efficiency, we present streamlined versions integrating Eigenvalue-corrected Kronecker-
Factored Approximate Curvature (EK-FAC).

• To showcase the effectiveness and efficiency of our ECBMs, we conduct comprehensive
experiments across various benchmark datasets to demonstrate our superior performance.

2 RELATED WORK

Concept Bottleneck Models. CBM (Koh et al., 2020) stands out as an innovative deep-learning
approach for image classification and visual reasoning. It introduces a concept bottleneck layer
into deep neural networks, enhancing model generalization and interpretability by learning specific
concepts. However, CBM faces two primary challenges: its performance often lags behind that of
original models lacking the concept bottleneck layer, attributed to incomplete information extraction
from the original data to bottleneck features. Additionally, CBM relies on laborious dataset annotation.
Researchers have explored solutions to these challenges. Chauhan et al. (2023) extend CBM into
interactive prediction settings, introducing an interaction policy to determine which concepts to label,
thereby improving final predictions. Oikarinen et al. (2023) address CBM limitations and propose a
novel framework called Label-free CBM. This innovative approach enables the transformation of any
neural network into an interpretable CBM without requiring labeled concept data, all while maintain-
ing high accuracy. Post-hoc Concept Bottleneck models (Yuksekgonul et al., 2023) can be applied
to various neural networks without compromising model performance, preserving interpretability
advantages. CBMs work on the image field also includes the works of Havasi et al. (2022),Kim et al.
(2023),Keser et al. (2023),Sawada & Nakamura (2022) and Sheth & Kahou (2023). Despite many
works on CBMs, we are the first to investigate the interactive influence between concepts through
influence functions. Our research endeavors to bridge this gap by utilizing influence functions in
CBMs, thereby deciphering the interaction of concept models and providing an adaptive solution to
concept editing. For more related work, please refer to Appendix I.

3 PRELIMINARIES

Concept Bottleneck Models. In this paper, we consider the original CBM, and we adopt the
notations used by Koh et al. (2020). We consider a classification task with a concept set denoted
as {p1, · · · , pk} with each pi being a concept given by experts or LLMs, and a training dataset
represented as D = {zi}ni=1, where zi = (xi, yi, ci). Here, for i ∈ [n], xi ∈ Rdi represents the
input feature vector, yi ∈ Rdo denotes the label (with do corresponding to the number of classes)
and ci = (c1i , · · · , cki ) ∈ Rk represents the concept vector. In this context, cji represents the label
of the concept pj of the i-th data. In CBMs, our goal is to learn two representations: one called
concept predictor that transforms the input space into the concept space, denoted as g : Rd

i → Rk,
and the other called label predictor which maps the concept space to the prediction space, denoted
as f : Rk → Rdo . Usually, here the map f is linear. For each training sample zi = (xi, yi, ci), we
consider two empirical loss functions: concept predictor ĝ and label predictor f̂ :

ĝ = argmin
g

n∑
i=1

k∑
j=1

gj(xi)
⊤ log(cji ), (1)

where gj(∗) is the predicted j-th concept. For brevity, write the loss function as LC(g(xi), ci) =∑k
j=1 L

j
C(g(xi), ci) for data (xi, ci). Once we obtain the concept predictor ĝ, the label predictor is

defined as:

f̂ = argmin
f

n∑
i=1

LY

(
f(ĝ(xi)), yi

)
, (2)

where LY represents the cross-entropy loss, similar to equation 1. CBMs enforce dual precision in
predicting interpretable concept vectors ĉ = ĝ(x) (matching concept c) and final outputs ŷ = f̂(ĉ)
(matching label y), ensuring transparent reasoning through explicit concept mediation. Furthermore,
in this paper, we focus primarily on the scenarios in which the label predictor ff is a linear transfor-
mation, motivated by their interpretability advantages in tracing concept-to-label relationships. For
details on the symbols used, please refer to the notation table in Appendix 2.
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Influence Function. The influence function measures the dependence of an estimator on the value
of individual point in the sample. Consider a neural network θ̂ = argminθ

∑n
i=1 ℓ(zi; θ) with loss

function ℓ and dataset D = {zi}ni=1. If we remove zm from the training dataset, the parameters
become θ̂−zm = argminθ

∑
i̸=m ℓ(zi; θ). The influence function provides an efficient model

approximation by defining a series of ϵ-parameterized models as θ̂ϵ,−zm = argmin
∑n

i=1 ℓ(zi; θ) +
ϵℓ(zm; θ). By performing a first-order Taylor expansion on the gradient of the objective function
corresponding to the argmin process, the influence function is defined as:

Iθ̂ (zm) ≜
dθ̂ϵ,−zm

dϵ

∣∣∣∣∣
ϵ=0

= −H−1

θ̂
· ∇θℓ(zm; θ̂),

where H−1

θ̂
= ∇2

θ

∑n
i=1 ℓ(zi; θ̂) is the Hessian matrix. When the loss function ℓ is twice-

differentiable and strongly convex in θ, the Hessian Hθ̂ is positive definite and thus the influ-
ence function is well-defined. For non-convex loss functions, Bartlett (1953) proposed replac-
ing the Hessian Hθ̂ with Ĥ = Gθ̂ + δI , where Gθ̂ is the Fisher information matrix defined as∑n

i=1 ∇θℓ(zi; θ)
T∇θℓ(zi; θ), and δ is the damping term used to ensure the positive definiteness of

Ĥ . We can employ the Eigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-FAC)
method to further accelerate the computation. See Appendix C for additional details.

4 EDITABLE CONCEPT BOTTLENECK MODELS

In this section, we introduce our EBCMs for the three settings mentioned in the introduction,
leveraging the influence function. Specifically, at the concept-label level, we calculate the influence
of a set of data samples’ individual concept labels; at the concept level, we calculate the influence of
multiple concepts; and at the data level, we calculate the influence of multiple samples.

4.1 CONCEPT LABEL-LEVEL EDITABLE CBM

In many cases, certain data samples contain erroneous annotations for specific concepts, yet their
other information remains valuable. This is particularly relevant in domains such as medical imaging,
where acquiring data is often costly and time-consuming. In such scenarios, it is common to correct
the erroneous concept annotations rather than removing the entire data from the dataset. Estimating
the retrained model parameter is crucial in this context. We refer to this scenario as the concept
label-level editable CBM.

Mathematically, we have a set of erroneous data De and its associated index set Se ⊆ [n]× [k] such
that for each (w, r) ∈ Se, (xw, yw, cw) ∈ De with crw is mislabeled and c̃rw is corrected concept label.
Our goal is to estimate the retrained CBM. The retrained concept predictor and label predictor are
represented as follows:

ĝe = argmin
g

∑
(i,j)/∈Se

Lj
C (g(xi), ci)

+
∑

(i,j)∈Se

Lj
C (g(xi), c̃i) ,

(3)

f̂e = argmin
f

n∑
i=1

LY (f (ĝe (xi)) , yi) . (4)

For simple neural networks, we can use the influence function approach directly to estimate the
retrained model. However, for CBM architecture, if we intervene with the true concepts, the concept
predictor ĝ fluctuates to ĝe accordingly. Observe that the input data of the label predictor comes from
the output of the concept predictor, which is also subject to change. Therefore, we need to adopt a
two-stage editing approach. Here we consider the influence function for equation 3 and equation 4
separately. We first edit the concept predictor from ĝ to ḡe, and then edit from f̂ to f̄e based on our
approximated concept predictor. To begin, we provide the following definitions:
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Definition 4.1. Define the gradient of the j-th concept predictor and the label predictor for the i-th
data point xi as:

Gj
C(xi, ci; g) ≜ ∇gL

j
C (g(xi), ci) ,

GY (xi; g, f) ≜ ∇fLY (f(g(xi)), yi) .

Theorem 4.2. The retrained concept predictor ĝe defined by (3) can be approximated by ḡe, defined
by:

ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(Gr
C(xw, c̃w; ĝ)−Gr

C(xw, cw; ĝ)) ,

where Hĝ = ∇ĝ

∑
i,j G

j
C(xi, ci; ĝ) is the Hessian matrix of the loss function with respect to ĝ.

Theorem 4.3. The retrained label predictor f̂e defined by equation 4 can be approximated by f̄e,
defined by:

f̂ +H−1

f̂
·

n∑
i=1

(
GY (xi; ĝ, f̂)−GY (xi; ḡe, f̂)

)
,

where Hf̂ = ∇f̂

∑n
i=1 GY (xi; ĝ, f̂) is the Hessian matrix, and ḡe is given in Theorem 4.2.

Difference from Test-Time Intervention. The ability to intervene in CBMs allows human users to
interact with the model during the prediction process. For example, a medical expert can directly
replace an erroneously predicted concept value ĉ and observe its impact on the final prediction ŷ.
However, the underlying flaws in the concept predictor remain unaddressed, meaning similar errors
may persist when applied to new test data. In contrast, under the editable CBM framework, not
only can test-time interventions be performed, but the concept predictor of the CBM can also be
further refined based on test data that repeatedly produces errors. Our ECBM method incorporates the
corrected test data into the training dataset without requiring full retraining. This approach extends
the rectification process from the data level to the model level.

4.2 CONCEPT-LEVEL EDITABLE CBM

In this case, a set of concepts is removed due to incorrect attribution or spurious concepts, termed
concept-level edit. 1Specifically, for the concept set, denote the erroneous concept index set as
M ⊂ [k], we aim to delete these concept labels in all training samples. We aim to investigate the
impact of updating the concept set within the training data on the model’s predictions. It is notable
that compared to the above concept label case, the dimension of output (input) of the retrained concept
predictor (label predictor) will change. If we delete t concepts from the dataset, then g becomes
g′ : Rdi → Rk−t and f becomes f ′ : Rk−t → Rdo . More specifically, if we retrain the CBM with
the revised dataset, the corresponding concept predictor becomes:

ĝ−pM
= argmin

g′

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci). (5)

The variation of the parameters in dimension renders the application of influence function-based
editing challenging for the concept predictor. This is because the influence function implements
the editorial predictor by approximate parameter change from the original base after ϵ-weighting
the corresponding loss for a given sample, and thus, it is unable to deal with changes in parameter
dimensions.

To overcome the challenge, our strategy is to develop some transformations that need to be performed
on ĝ−pM

to align its dimension with ĝ so that we can apply the influence function to edit the CBM.
We achieve this by mapping ĝ−pM

to ĝ∗−pM
≜ P(ĝ−pM

), which has the same amount of parameters
as ĝ and has the same predicted concepts ĝ∗−pM

(j) as ĝ−pM
(j) for all j ∈ [di] −M . We achieve

this effect by inserting a zero row vector into the r-th row of the matrix in the final layer of ĝ−pM

for r ∈ M . Thus, we can see that the mapping P is one-to-one. Moreover, assume the parameter
1For convenience, in this paper, we only consider concept removal; our method can directly extend to concept

insertion.
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space of ĝ is T and that of ĝ∗−pM
, T0 is the subset of T . Noting that ĝ∗−pM

is the optimal model of the
following objective function:

ĝ∗−pM
= argmin

g′∈T0

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci), (6)

i.e., it is the optimal model of the concept predictor loss on the remaining concepts under the constraint
T0. Now we can apply the influence function to edit ĝ to approximate ĝ∗−pM

with the restriction on
the value of 0 for rows indexed by M with the last layer of the neural network, denoted as ḡ∗−pM

.
After that, we remove from ḡ∗−pM

the parameters initially inserted to fill in the dimensional difference,
which always equals 0 because of the restriction we applied in the editing stage, thus approximating
the true edited concept predictor ĝ−pM

. We now detail the editing process from ĝ to ĝ∗−pM
using the

following theorem.
Theorem 4.4. For the retrained concept predictor ĝ−pM

defined in equation 5, we map it to ĝ∗−pM
as

equation 6. And we can edit the initial ĝ to ĝ∗−pM
, defined as:

ḡ∗−pM
≜ ĝ −H−1

ĝ ·
∑
j /∈M

n∑
i=1

Gj
C(xi, ci; ĝ),

where Hĝ = ∇g

∑
j /∈M

∑n
i=1 G

j
C(xi, ci; ĝ). Then, by removing all zero rows inserted during the

mapping phase, we can naturally approximate ĝ−pM
≈ P−1(ĝ∗−pM

).

For the second stage of training, assume we aim to remove concept pr for r ∈ M and the new
optimal model is f̂−pM

. We will encounter the same difficulty as in the first stage, i.e., the number of
parameters of the label predictor will change. To address the issue, our key observation is that in the
existing literature on CBMs, we always use linear transformation for the label predictor, meaning
that the dimensions of the input with values of 0 will have no contribution to the final prediction. To
leverage this property, we fill the missing values in the input of the updated predictor with 0, that is,
replacing ĝ−pM

with ĝ∗−pM
and consider f̂pM=0 defined by

f̂pM=0 = argmin
f

n∑
i=1

LY

(
f
(
ĝ∗−pM

(xi)
)
, yi
)
. (7)

In total, we have the following lemma:

Lemma 4.5. In the CBM, if the label predictor utilizes linear transformations of the form f̂ · c with
input c, then, for each r ∈ M , we remove the r-th concept from c and denote the new input as c′; set
the r-th concept to 0 and denote the new input as c0. Then we have f̂−pM

· c′ = f̂pM=0 · c0 for any
input c.

Lemma 4.5 demonstrates that the retrained f̂−pM
and f̂pM=0, when given inputs ĝ−pM

(x) and
ĝ∗−pM

(x) respectively, yield identical outputs. Consequently, we can utilize f̂pM=0 as the editing
target in place of f̂−pM

.

Theorem 4.6. For the revised retrained label predictor f̂pM=0 defined by equation 7, we can edit the
initial label predictor f̂ to f̄pM=0 by the following equation as a substitute for f̂pM=0:

f̂pM=0 ≈ f̄pM=0 ≜ f̂ −H−1

f̂
·

n∑
l=1

GY (xl; ḡ
∗
−pM

, f̂),

where Hf̂ = ∇f̂

∑n
i=1 GY (xl; ḡ

∗
−pM

, f̂) is the Hessian matrix. Deleting the r-th dimension of
f̄pM=0 for r ∈ M , then we can map it to f̄−pM

, which is the approximation of the final edited label
predictor f̂−pM

under concept level.

4.3 DATA-LEVEL EDITABLE CBM

In this scenario, we are more concerned about fully removing the influence of data samples on CBMs
due to different reasons, such as the training data involving poisoned or erroneous issues. Specifically,

6
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we have a set of samples to be removed {(xi, yi, ci)}i∈G with G ⊂ [n]. Then, we define the retrained
concept predictor as

ĝ−zG = argmin
g

k∑
j=1

∑
i∈[n]−G

Lj
C(g(xi), ci), (8)

which can be evaluated by the following theorem:
Theorem 4.7. For dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr), r ∈ G to be
removed. Suppose the updated concept predictor ĝ−zG is defined by equation 8, then we have the
following approximation for ĝ−zG

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

M∑
j=1

Gj
C(xr, cr; ĝ), (9)

where Hĝ = ∇g

∑
i,j G

j
C(xi, ci; ĝ) is the Hessian matrix of the loss function with respect to ĝ.

Based on ĝ−zG , the label predictor becomes f̂−zG which is defined by

f̂−zG = argmin
f

∑
i∈[n]−G

LY (f(ĝ−zG (xi) , yi) . (10)

Compared with the original loss before unlearning in equation 2, we can observe two changes in
equation 10. First, we remove |G| data points in the loss function LY . Secondly, the input for the loss
is also changed from ĝ(xi) to ĝ−zG . Therefore, it is difficult to estimate directly with an influence
function. Here we introduce an intermediate label predictor as

f̃−zG = argmin
∑

i∈[n]−G

LY (f(ĝ(xi), yi), (11)

and split the estimate of f̂−zG − f̂ into f̂−zG − f̃−zG and f̃−zG − f̂ .
Theorem 4.8. For dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr), r ∈ G to be
removed. The intermediate label predictor f̃−zG is defined in equation 11. Then we have

f̃−zG − f̂ ≈ H−1

f̂

∑
i∈[n]−G

GY (xi; ĝ, f̂) ≜ AG.

We denote the edited version of f̃−zG as f̄∗
−zG ≜ f̂ +AG. Define BG as

−H−1
f̄∗
−zG

∑
i∈[n]−G

GY (xi; ḡ−zG , f̄
∗
−zG)−GY (xi; ĝ, f̄

∗
−zG),

where Hf̄∗
−zG

= ∇f̄

∑
i∈[n]−G GY (xi; ĝ, f̄

∗
−zG) is the Hessian matrix concerning f̄∗

−zG . Then f̂−zG

can be estimated by f̃−zG + BG. Combining the above two-stage approximation, then, the final
edited label predictor f̄−zG can be obtained by

f̄−zG = f̄∗
−zG +BG = f̂ +AG +BG. (12)

Acceleration via EK-FAC. As mentioned in Section 3, the loss function in CBMs is non-convex,
meaning the Hessian matrices in all our theorems may not be well-defined. To address this, we adopt
the EK-FAC approach, where the Hessian is approximated as Ĥθ = Gθ + δI . Here, Gθ represents
the Fisher information matrix of the model θ, and δ is a small damping term introduced to ensure
positive definiteness. For details on applying EK-FAC to CBMs, see Appendix C.1. Additionally,
refer to Algorithms 6-8 in the Appendix for the EK-FAC-based algorithms corresponding to our three
levels, with their original (Hessian-based) versions provided in Algorithms 1-3, respectively.

Theoretical Bounds. We provide error bounds for the concept predictor between retraining and
ECBM across all three levels; see Appendix D.1, E.2 and F.1 for details. We show that under certain
scenarios, the approximation error becomes tolerable theoretically when leveraging some damping
term δ regularized in the Hessian matrix.
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5 EXPERIMENTS

In this section, we demonstrate our main experimental results on utility evaluation, edition efficiency,
and interpretability evaluation. Details and additional results are in Appendix H due to space limit.

5.1 EXPERIMENTAL SETTINGS

Dataset.We utilize three datasets: X-ray Grading (OAI) (Nevitt et al., 2006), Bird Identification
(CUB) (Wah et al., 2011), and the Large-scale CelebFaces Attributes Dataset (CelebA) (Liu et al.,
2015). OAI is a multi-center observational study of knee osteoarthritis, comprising 36,369 data
points. Specifically, we configure n=10 concepts that characterize crucial osteoarthritis indicators
such as joint space narrowing, osteophytes, and calcification. Bird identification (CUB)2 consists of
11,788 data points, which belong to 200 classes and include 112 binary attributes to describe detailed
visual features of birds. CelebA comprises 202,599 celebrity images, each annotated with 40 binary
attributes that detail facial features, such as hair color, eyeglasses, and smiling. As the dataset lacks
predefined classification tasks, following Espinosa Zarlenga et al. (2022), we designate 8 attributes as
labels and the remaining 32 attributes as concepts. For all the above datasets, we follow the same
network architecture and settings outlined in Koh et al. (2020).

Ground Truth and Baselines. We use retrain as the ground truth method. Retrain: We retrain the
CBM from scratch by removing the samples, concept labels, or concepts from the training set. We
employ two baseline methods: CBM-IF, and ECBM. CBM-IF: This method is a direct implementation
of our previous theorems of model updates in the three settings. See Algorithms 1-3 in Appendix
for details. ECBM: As we discussed above, all of our model updates can be further accelerated
via EK-FAC, ECBM corresponds to the EK-FAC accelerated version of Algorithms 1-3 (refer to
Algorithms 6-8 in Appendix).

Evaluation Metric. We utilize two primary evaluation metrics to assess our models: the F1 score and
runtime (RT). F1 score measures the model performance by balancing precision and recall. Runtime,
measured in minutes, evaluates the total running time of each method to update the model.

Implementation Details. Our experiments utilized an Intel Xeon CPU and an RTX 3090 GPU. For
utility evaluation, at the concept level, one concept was randomly removed for the OAI dataset and
repeated while ten concepts were randomly removed for the CUB dataset, with five different seeds.
At the data level, 3% of the data points were randomly deleted and repeated 10 times with different
seeds. At the concept-label level, we randomly selected 3% of the data points and modified one
concept of each data randomly, repeating this 10 times for consistency across iterations.

Table 1: Performance comparison of different methods on the three datasets.

Edit Level Method OAI CUB CelebA
F1 score RT (minute) F1 score RT (minute) F1 score RT (minute)

Concept Label
Retrain 0.8825±0.0054 297.77 0.7971±0.0066 85.56 0.3827±0.0272 304.71
CBM-IF(Ours) 0.8639±0.0033 4.63 0.7699±0.0035 1.33 0.3561±0.0134 5.54
ECBM(Ours) 0.8808±0.0039 2.36 0.7963±0.0050 0.65 0.3845±0.0327 2.49

Concept
Retrain 0.8448±0.0191 258.84 0.7811±0.0047 87.21 0.3776±0.0350 355.85
CBM-IF(Ours) 0.8214±0.0071 4.94 0.7579±0.0065 1.45 0.3609±0.0202 5.51
ECBM(Ours) 0.8403±0.0090 2.36 0.7787±0.0058 0.59 0.3761±0.0280 2.48

Data
Retrain 0.8811±0.0065 319.37 0.7838±0.0051 86.20 0.3797±0.0375 325.62
CBM-IF(Ours) 0.8472±0.0046 5.07 0.7623±0.0031 1.46 0.3536±0.0166 5.97
ECBM(Ours) 0.8797±0.0038 2.50 0.7827±0.0088 0.65 0.3748±0.0347 2.49

5.2 EVALUATION OF UTILITY AND EDITING EFFICIENCY

Our experimental results, as illustrated in Table 1, demonstrate the effectiveness of ECBMs compared
to traditional retraining and CBM-IF, particularly emphasizing computational efficiency without
compromising accuracy. Specifically, ECBMs achieved F1 scores close to those of retraining (0.8808
vs. 0.8825) while significantly reducing the runtime from 297.77 minutes to 2.36 minutes. This pattern
is consistent in the CUB dataset, where the runtime was decreased from 85.56 minutes for retraining to
0.65 minutes for ECBMs, with a negligible difference in the F1 score (0.7971 to 0.7963). These results
highlight the potential of ECBMs to provide substantial time savings—approximately 22-30% of

2The original dataset is processed. Detailed explanation can be found in H.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a paper at DATA-FM workshop @ ICLR 2025

the computational time required for retraining—while maintaining comparable accuracy. Compared
to CBM-IF, ECBM also showed a slight reduction in runtime and a significant improvement in F1
score. The former verifies the effective acceleration of our algorithm by EK-FAC. This efficiency is
particularly crucial in scenarios where frequent updates to model annotations are needed, confirming
the utility of ECBMs in dynamic environments where running time and accuracy are critical.

We can also see that the original version of ECBM, i.e., CBM-IF, also has a lower runtime than
retraining but a lower F1 score than ECBM. Such results may be due to different reasons. For example,
our original theorems depend on the inverse of the Hessian matrices, which may not be well-defined
for non-convex loss. Moreover, these Hessian matrices may be ill-conditioned or singular, which
makes calculating their inverse imprecise and unstable.
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Figure 2: Impact of edition ratio on three settings on CUB dataset.

Editing Multiple Samples. To comprehensively evaluate the editing capabilities of ECBM in various
scenarios, we conducted experiments on the performance with multiple samples that need to be
removed. Specifically, for the concept label/data levels, we consider the different ratios of samples
(1-10%) for edit, while for the concept level, we consider removing different numbers of concepts
∈ {2, 4, 6, · · · , 20}. We compared the performance of retraining, CBM-IF, and ECBM methods. As
shown in Figure 2, except for certain cases at the concept level, the F1 score of the ECBM method is
generally around 0.0025 lower than that of the retrain method, which is significantly better than the
corresponding results of the CBM-IF method. Recalling Table 1, the speed of ECBM is more than
three times faster than that of retraining. Consequently, ECBM is an editing method that achieves a
trade-off between speed and effectiveness.

5.3 RESULTS ON INTERPRETABILITY

ECBM can measure concepts importance. The original motivation of the influence function is to
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(a) Results on the 1-10 most influential concepts
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(b) Results on the 1-10 least influential concepts

Figure 3: F1 score difference after removing most and least influential concepts given by ECBM.

calculate the importance score of each sample. Here, we will show that the influence function for
the concept level in Theorem 4.4 can be used to calculate the importance of each concept in CBMs,
which provides an explainable tool for CBMs. In detail, we conduct our experiments on the CUB
dataset. We first select 1-10 most influential and 1-10 least influential concepts by our influence
function. Then, we will remove these concepts and update the model via retraining or our ECBM and
analyze the change (F1 Score Difference) w.r.t. the original CBM before removal.
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The results in Figure 3a demonstrate that when we remove the 1-10 most influential concepts identified
by the ECBM method, the F1 score decreases by more than 0.025 compared to the CBM before
removal. In contrast, Figure 3b shows that the change in the F1 score remains consistently below
0.005 when removing the least influential concepts. These findings strongly indicate that the influence
function in ECBM can successfully determine the importance of concepts. Furthermore, we observe
that the gap between the F1 score of retraining and ECBM is consistently smaller than 0.005, and
even smaller in the case of least important concepts. This further suggests that when ECBM edits
various concepts, its performance is very close to the ground truth.

ECBMs can erase data influence. For the data level, ECBMs aim to facilitate an efficient removal
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(a) RMIA Score Before Editing
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(b) RMIA Score After Editing

Figure 4: RMIA scores of data before and after removal.

of samples. We perform membership inference attacks (MIAs) to provide direct evidence that ECBMs
can indeed erase data influence. MIA is a privacy attack that aims to infer whether a specific data
sample was part of the training dataset used to train a model. The attacker exploits the model’s
behavior, such as overconfidence or overfitting, to distinguish between training (member) and non-
training (non-member) data points. In MIAs, the attacker typically queries the model with a data
sample and observes its prediction confidence or loss values, which tend to be higher for members of
the training set than non-members (Shokri et al., 2017).

To quantify the success of these edits, we calculate the RMIA (Removed Membership Inference
Attack) score for each category. The RMIA score is defined as the model’s confidence in classifying
whether a given sample belongs to the training set. Lower RMIA values indicate that the sample
behaves more like a test set (non-member) sample Zarifzadeh et al. (2024). This metric is especially
crucial for edited samples, as a successful ECBM should make the removed members behave similarly
to non-members, reducing their membership vulnerability. See Appendix H for its definition.

We conducted experiments by randomly selecting 200 samples from the training set (members)
and 200 samples from the test set (non-members) of the CUB dataset. We calculated the RMIA
scores for these samples and plotted their frequency distributions, as shown in Figure 4a. The
mean RMIA score for non-members was 0.049465, while members had a mean score of 0.063505.
Subsequently, we applied ECBMs to remove the 200 training samples from the model, updated the
model parameters, and then recalculated the RMIA scores. After editing, the mean RMIA score for
the removed-members decreased to 0.052105, significantly closer to the non-members’ mean score.
This shift in RMIA values demonstrates the effectiveness of ECBMs in editing the model, as the
removed members now exhibit behavior closer to that of non-members. The post-editing RMIA score
distributions are shown in Figure 4b. These results provide evidence of the effectiveness of ECBMs
in editing the model’s knowledge about specific samples.

6 CONCLUSION

In this paper, we propose Editable Concept Bottleneck Models (ECBMs). ECBMs can address
issues of removing/inserting some training data or new concepts from trained CBMs for different
reasons, such as privacy concerns, data mislabelling, spurious concepts, and concept annotation errors
retraining from scratch. Furthermore, to improve computational efficiency, we present streamlined
versions integrating EK-FAC. Experimental results show our ECBMs are efficient and effective.
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A NOTATION TABLE

Symbol Description

c = {p1, . . . , pk} Set of concepts provided by experts or LLMs.
D = {zi}ni=1 Training dataset, where zi = (xi, yi, ci).
xi ∈ Rm Feature vector for the i-th sample.
yi ∈ Rdz Label for the i-th sample, with dz being the number of classes.
ci = (c1i , . . . , c

k
i ) ∈ Rk Concept vector for the i-th sample.

c̃rw Corrected concept label for the w-th sample and r-th concept.
cji Weight of the concept pj in the concept vector ci.
g : Rm → Rk Concept predictor mapping input space to concept space.
f : Rk → Rdz Label predictor mapping concept space to prediction space.
LC(g

j(x), cj) Loss function for the j-th concept predictor.
LCj (g(x), c) Loss function for the j-th concept predictor(for simplicity).
LY (f(ĝ(x)), y) Loss function from concept space to output space.
LYi

(f, ĝ) Loss function for the i-th input based on f , ĝ(for simplicity).
Hθ̂ Hessian matrix of the loss function with respect to θ̂.
Gθ̂ Fisher information matrix of model θ̂.
λ Damping term for ensuring positive definiteness of the Hessian.
ĝ Estimated concept predictor.
f̂ Estimated label predictor.
ĝe Retrained concept predictor after correcting erroneous data.
f̂e Retrained label predictor after correcting erroneous data.
ĝ−pM

Retrained concept predictor after removing concepts indexed by M .
ĝ∗−pM

Mapped concept predictor with the same dimensionality as ĝ.
ḡ−pM

Approximation of the retrained concept predictor ĝ−pM
.

f̂pM=0 Label predictor after setting the r-th concept to zero for r ∈ M .
f̄pM=0 Approximation of the label predictor f̂pM=0.
Hĝ Hessian matrix of the loss function with respect to ĝ.
Hf̂ Hessian matrix of the loss function with respect to f̂ .
M ⊂ [k] Set of erroneous concept indices to be removed.
G ⊂ [n] Set of indices of samples to be removed from the dataset.
zr = (xr, yr, cr) Data sample to be removed, where r ∈ G.
ĝ−zG Retrained concept predictor after removing samples indexed by G.
ḡ−zG Approximation of the retrained concept predictor ĝ−zG .
f̃−zG Intermediate label predictor.
f̄−zG Final edited label predictor after removing samples indexed by G.

Table 2: Notation Table

B INFLUENCE FUNCTION

Consider a neural network θ̂ = argminθ
∑n

i=1 ℓ(zi, θ) with loss function L and dataset D = {zi}ni=1.
That is θ̂ minimize the empirical risk

R(θ) =

n∑
i=1

L(zi, θ)

Assume R is strongly convex in θ. Then θ is uniquely defined. If we remove a point zm from
the training dataset, the parameters become θ̂−zm = argminθ

∑
i ̸=m L(zi, θ). Up-weighting zm

by ϵ small enough, then the revised risk R(θ)
′
= 1

n

∑n
i=1 L(zi; θ) + ϵL(zm; θ) is still strongly

convex. Then the response function θ̂ϵ,−zm = R(θ)
′

is also uniquely defined. The parameter change
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is denoted as ∆ϵ = θ̂ϵ,−zm − θ̂. Since θ̂ϵ,−zm is the minimizer of R(θ)
′
, we have the first-order

optimization condition as

∇θ̂ϵ,−zm
R(θ) + ϵ · ∇θ̂ϵ,−zm

L(zm, θ̂ϵ,−zm) = 0

Since θ̂ϵ,−zm → θ̂asϵ → 0, we perform a Taylor expansion of the right-hand side:[
∇R(θ̂) + ϵ∇L(zm, θ̂)

]
+
[
∇2R(θ̂) + ϵ∇2L(zm, θ̂)

]
∆ϵ ≈ 0

Noting ϵ∇2L(zm, θ̂)∆ϵ is o(∥∆ϵ∥) term, which is smaller than other parts, we drop it in the following
analysis. Then the Taylor expansion equation becomes[

∇R(θ̂) + ϵ∇L(zm, θ̂)
]
+∇2R(θ̂) ·∆ϵ ≈ 0

Solving for ∆ϵ, we obtain:

∆ϵ = −
[
∇2R(θ̂) + ϵ∇2L(z, θ̂)

]−1 [
∇R(θ̂) + ϵ∇L(z, θ̂)

]
.

Remember θ minimizes R, then ∇R(θ̂) = 0. Dropping o(ϵ) term, we have

∆ϵ = −ϵ∇2R(θ̂)−1∇L(z, θ̂).

dθ̂ϵ,−zm

dϵ

∣∣∣∣∣
ϵ=0

=
d∆ϵ

dϵ

∣∣∣∣
ϵ=0

= −H−1

θ̂
∇L(z, θ̂) ≡ Iup,params(z).

Besides, we can obtain the approximation of θ̂−zm directly by θ̂−zm ≈ θ̂ + Iup,params(z).

C ACCELERATION FOR INFLUENCE FUNCTION

EK-FAC. EK-FAC method relies on two approximations to the Fisher information matrix, equiva-
lent to Gθ̂ in our setting, which makes it feasible to compute the inverse of the matrix.

Firstly, assume that the derivatives of the weights in different layers are uncorrelated, which implies
that Gθ̂ has a block-diagonal structure. Suppose ĝθ can be denoted by ĝθ(x) = gθL ◦ · · · ◦ gθl ◦ · · · ◦
gθ1(x) where l ∈ [L]. We fold the bias into the weights and vectorize the parameters in the l-th layer
into a vector θl ∈ Rdl , dl ∈ N is the number of l-th layer parameters. Then Gθ̂ can be reaplcaed

by
(
G1(θ̂), · · · , GL(θ̂)

)
, where Gl(θ̂) ≜ n−1

∑n
i=1 ∇θ̂l

ℓi∇θlℓ
T
i . Denote hl, ol as the output and

pre-activated output of l-th layer. Then Gl(θ) can be approximated by

Gl(θ) ≈ Ĝl(θ) ≜
1

n

n∑
i=1

hl−1 (xi)hl−1 (xi)
T ⊗ 1

n

n∑
i=1

∇olℓi∇olℓ
T
i ≜ Ωl−1 ⊗ Γl.

Furthermore, in order to accelerate transpose operation and introduce the damping term, perform
eigenvalue decomposition of matrix Ωl−1 and Γl and obtain the corresponding decomposition results
as QΩΛΩQ

⊤
Ω and QΓΛΓQ

⊤
Γ . Then the inverse of Ĥl(θ) can be obtained by

Ĥl(θ)
−1 ≈

(
Ĝl (ĝ) + λlIdl

)−1

=
(
QΩl−1

⊗QΓl

) (
ΛΩl−1

⊗ ΛΓl
+ λlIdl

)−1 (
QΩl−1

⊗QΓl

)T
.

Besides, George et al. (2018) proposed a new method that corrects the error in equation 13 which sets
the i-th diagonal element of ΛΩl−1

⊗ ΛΓl
as Λ∗

ii = n−1
∑n

j=1

((
QΩl−1

⊗QΓl

)
∇θlℓj

)2
i
.

C.1 EK-FAC FOR CBMS

In our CBM model, the label predictor is a single linear layer, and Hessian computing costs are
affordable. However, the concept predictor is based on Resnet-18, which has many parameters.
Therefore, we perform EK-FAC for ĝ.

ĝ = argmin
g

k∑
j=1

LCj
= argmin

g

k∑
j=1

n∑
i=1

LC(g
j(xi), c

j
i ),
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we define Hĝ = ∇2
ĝ

∑
i,j LCj

(g(xi), ci) as the Hessian matrix of the loss function with respect to
the parameters.

To this end, consider the l-th layer of ĝ which takes as input a layer of activations {aj,t} where
j ∈ {1, 2, . . . , J} indexes the input map and t ∈ T indexes the spatial location which is typically a
2-D grid. This layer is parameterized by a set of weights W = (wi,j,δ) and biases b = (bi), where
i ∈ {1, . . . , I} indexes the output map, and δ ∈ ∆ indexes the spatial offset (from the center of the
filter).

The convolution layer computes a set of pre-activations as

[Sl]i,t = si,t =
∑
δ∈∆

wi,j,δaj,t+δ + bi.

Denote the loss derivative with respect to si,t as

Dsi,t =
∂
∑

LCj

∂si,t
,

which can be computed during backpropagation.

The activations are actually stored as Al−1 of dimension |T | × J . Similarly, the weights are stored as
an I × |∆|J array Wl. The straightforward implementation of convolution, though highly parallel
in theory, suffers from poor memory access patterns. Instead, efficient implementations typically
leverage what is known as the expansion operator J·K. For instance, JAl−1K is a |T | × J |∆| matrix,
defined as

JAl−1Kt,j|∆|+δ = [Al−1](t+δ),j = aj,t+δ,

In order to fold the bias into the weights, we need to add a homogeneous coordinate (i.e. a column
of all 1’s) to the expanded activations JAl−1K and denote this as JAl−1KH. Concatenating the bias
vector to the weights matrix, then we have θl = (bl,Wl).

Then, the approximation for Hĝ is given as:

G(l)(ĝ) =E [Dwi,j,δDwi′,j′,δ′ ] = E

[(∑
t∈T

aj,t+δDsi,t

)(∑
t′∈T

aj′,t′+δ′Dsi′,t′

)]

≈E
[
JAl−1K⊤HJAl−1KH

]
⊗ 1

|T |
E
[
DS⊤

l DSl

]
≜ Ωl−1 ⊗ Γl.

Estimate the expectation using the mean of the training set,

G(l)(ĝ) ≈ 1

n

n∑
i=1

(
JAi

l−1K
⊤
HJAi

l−1KH
)
⊗ 1

n

n∑
i=1

(
1

|T |
DSi

l

⊤DSi
l

)
≜ Ω̂l−1 ⊗ Γ̂l.

Furthermore, if the factors Ω̂l−1 and Γ̂l have eigen decomposition QΩΛΩQ
⊤
Ω and QΓΛΓQ

⊤
Γ , respec-

tively, then the eigen decomposition of Ω̂l−1 ⊗ Γ̂l can be written as:

Ω̂l−1 ⊗ Γ̂l = QΩΛΩQ
⊤
Ω ⊗QΓΛΓQ

⊤
Γ

= (QΩ ⊗QΓ) (ΛΩ ⊗ ΛΓ) (QΩ ⊗QΓ)
⊤
.

Since subsequent inverse operations are required and the current approximation for G(l)(ĝ) is PSD,
we actually use a damped version as

Ĝl(ĝ)
−1

= (Gl (ĝ) + λlIdl
)
−1

=
(
QΩl−1

⊗QΓl

) (
ΛΩl−1

⊗ ΛΓl
+ λlIdl

)−1 (
QΩl−1

⊗QΓl

)T
.

(13)

Besides, George et al. (2018) proposed a new method that corrects the error in equation 13 which sets
the i-th diagonal element of ΛΩl−1

⊗ ΛΓl
as

Λ∗
ii = n−1

n∑
j=1

((
QΩl−1

⊗QΓl

)
∇θlℓj

)2
i
.
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D PROOF OF CONCEPT-LABEL-LEVEL INFLUENCE

We have a set of erroneous data De and its associated index set Se ⊆ [n] × [k] such that for each
(w, r) ∈ Se, we have (xw, yw, cw) ∈ De with crw is mislabeled and c̃rw is its corrected concept label.
Thus, our goal is to approximate the new CBM without retraining.

Proof Sketch. Our goal is to edit ĝ and f̂ to ĝe and f̂e. (i) First, we introduce new parameters ĝϵ,e
that minimize a modified loss function with a small perturbation ϵ. (ii) Then, we perform a Newton
step around ĝ and obtain an estimate for ĝe. (iii) Then, we consider changing the concept predictor at
one data point (xic , yic , cic) and retraining the model to obtain a new label predictor f̂ic , obtain an
approximation for f̂ic . (iv) Next, we iterate ic over 1, 2, · · · , n, sum all the equations together, and
perform a Newton step around f̂ to obtain an approximation for f̂e. (v) Finally, we bring the estimate
of ĝ into the equation for f̂e to obtain the final approximation.

Theorem D.1. The retrained concept predictor ĝe defined by

ĝe = argmin

 ∑
(i,j)/∈Se

LC

(
gj(xi), c

j
i

)
+

∑
(i,j)∈Se

LC

(
gj(xi), c̃

j
i

) , (14)

can be approximated by:

ĝe ≈ ḡe ≜ ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(∇ĝLC (ĝr(xw), c̃
r
w)−∇ĝLC (ĝr(xw), c

r
w)) , (15)

where Hĝ = ∇2
ĝ

∑
i,j LC(ĝ

j(xi), c
j
i ) is the Hessian matrix of the loss function respect to ĝ.

Proof. For the index (w, r) ∈ Se, indicating the r-th concept of the w-th data is wrong, we correct
this concept crw to c̃rw. Rewrite ĝe as

ĝe = argmin

∑
i,j

LC

(
gj(xi), c

j
i

)
+

∑
(w,r)∈Se

LC (gr(xw), c̃
r
w)−

∑
(w,r)∈Se

LC (gr(xw), c
r
w)

 .

(16)

To approximate this effect, define new parameters ĝϵ,e as

ĝϵ,e ≜ argmin

∑
i,j

LC

(
gj(xi), c

j
i

)
+

∑
(w,r)∈Se

ϵ · LC (gr(xw), c̃
r
w)−

∑
(w,r)∈Se

ϵ · LC (gr(xw), c
r
w)

 .

(17)

Then, because ĝϵ,e minimizes equation 17, we have

∇ĝ

∑
i,j

LC

(
ĝjϵ,e(xi), c

j
i

)
+

∑
(w,r)∈Se

ϵ·∇ĝLC

(
ĝrϵ,e(xw), c̃

r
w

)
−

∑
(w,r)∈Se

ϵ·∇ĝLC

(
ĝrϵ,e(xw), c

r
w

)
= 0.

Perform a Taylor expansion of the above equation at ĝ,

∇ĝ

∑
i,j

LC

(
ĝj(xi), c

j
i

)
+

∑
(w,r)∈Se

ϵ · ∇ĝLC (ĝr(xw), c̃
r
w)−

∑
(w,r)∈Se

ϵ · ∇ĝLC (ĝr(xw), c
r
w)

+∇2
ĝ

∑
i,j

LC

(
ĝj(xi), c

j
i

)
· (ĝϵ,e − ĝ) ≈ 0. (18)

Because of equation 21, the first term of equation 18 equals 0. Then we have

ĝϵ,e − ĝ = −
∑

(w,r)∈Se

ϵ ·H−1
ĝ · (∇ĝLC (ĝr(xw), c̃

r
w)−∇ĝLC (ĝr(xw), c

r
w)) ,

18
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where
Hĝ = ∇2

ĝ

∑
i,j

LC

(
ĝj(xi), c

j
i

)
.

Then, we do a Newton step around ĝ and obtain

ĝe ≈ ḡe ≜ ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(∇ĝLC (ĝr(xw), c̃
r
w)−∇ĝLC (ĝr(xw), c

r
w)) . (19)

Theorem D.2. The retrained label predictor f̂e defined by

f̂e = argmin

[
n∑

i=1

LY (f (ĝe (xi)) , yi)

]
can be approximated by:

f̂e ≈ f̄e = f̂ +H−1

f̂
· ∇f

n∑
i=1

LYi

(
f̂ , ĝ
)
−H−1

f̂
· ∇f

n∑
i=1

LYi

(
f̂ , ḡe

)
,

where Hf̂ = ∇2
f̂

∑n
i=1 LYi

(f̂ , ĝ) is the Hessian matrix of the loss function respect to f̂ , LYi
(f̂ , ĝ) ≜

LY (f̂(ĝ(xi)), yi), and ḡe is given in Theorem D.1.

Proof. Now we come to deduce the edited label predictor towards f̂e.

First, we consider only changing the concept predictor at one data point (xic , yic , cic) and retrain the
model to obtain a new label predictor f̂ic .

f̂ic = argmin

 n∑
i=1,i̸=ic

LY (f (ĝ (xi)) , yi) + LY (f (ĝe (xic)) , yic)

 .

We rewrite the above equation as follows:

f̂ic = argmin

[
n∑

i=1

LY (f (ĝ (xi)) , yi) + LY (f (ĝe (xic)) , yic)− LY (f (ĝ (xic)) , yic)

]
.

We define f̂ϵ,ic as:

f̂ϵ,ic = argmin

[
n∑

i=1

LY (f (ĝ (xi)) , yi) + ϵ · LY (f (ĝe (xic)) , yic)− ϵ · LY (f (ĝ (xic)) , yic)

]
.

Derive with respect to f at both sides of the above equation. we have

∇f̂

n∑
i=1

LY

(
f̂ϵ,ic (ĝ (xi)) , yi

)
+ϵ·∇f̂LY

(
f̂ϵ,ic (ĝe (xic)) , yic

)
−ϵ·∇f̂LY

(
f̂ϵ,ic (ĝ (xic)) , yic

)
= 0

Perform a Taylor expansion of the above equation at f̂ ,

∇f̂

n∑
i=1

LY

(
f̂ (ĝ (xi)) , yi

)
+ ϵ · ∇f̂LY

(
f̂ (ĝe (xic)) , yic

)
− ϵ · ∇f̂LY

(
f̂ (ĝ (xic)) , yic

)
+∇2

f̂

n∑
i=1

LY

(
f̂ (ĝ (xi)) , yi

)
·
(
f̂ϵ,ic − f̂

)
= 0

19
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Then we have

f̂ϵ,ic − f̂ ≈ −ϵ ·H−1

f̂
· ∇f

(
LY

(
f̂ (ĝe (xic)) , yic

)
− LY

(
f̂ (ĝ (xic)) , yic

))
,

where H−1

f̂
= ∇2

f̂

∑n
i=1 LY

(
f̂ (ĝ (xi)) , yi

)
.

Iterate ic over 1, 2, · · · , n, and sum all the equations together, we can obtain:

f̂ϵ,e − f̂ ≈ −ϵ ·H−1

f̂
·

n∑
i=1

∇f

(
LY

(
f̂ (ĝe (xi)) , yi

)
− LY

(
f̂ (ĝ (xi)) , yi

))
.

Perform a Newton step around f̂ and we have

f̂e ≈ f̂ −H−1

f̂
·

n∑
i=1

∇f

(
LY

(
f̂ (ĝe (xi)) , yi

)
− LY

(
f̂ (ĝ (xi)) , yi

))
. (20)

Bringing the edited 19 of g into equation 20, we have

f̂e ≈f̂ −H−1

f̂
·

n∑
i=1

∇f

(
LY

(
f̂ (ḡe (xi)) , yi

)
− LY

(
f̂ (ĝ (xi)) , yi

))
=f̂ −H−1

f̂
·

n∑
i=1

∇f

(
LYi

(
f̂ , ḡe

)
− LYi

(
f̂ , ĝ
))

=f̂ +H−1

f̂
· ∇f

n∑
i=1

LYi

(
f̂ , ĝ
)
−H−1

f̂
· ∇f

n∑
i=1

LYi

(
f̂ , ḡe

)
≜ f̄e.

D.1 THEORETICAL BOUND FOR THE INFLUENCE FUNCTION

Consider the dataset D = {(xi, ci, yi}i = 1n, the loss function of the concept predictor g is defined
as:

LTotal(D; g) =

n∑
i=1

LC(g(xi), ci) +
δ

2
· ∥g∥2 =

n∑
i=1

k∑
j=1

Lj
C(g(xi), ci) +

δ

2
· ∥g∥2

=

n∑
i=1

k∑
j=1

gj(xi)
⊤ log(ci

j) +
δ

2
· ∥g∥2.

Mathematically, we have a set of erroneous data De and its associated index set Se ⊆ [n]× [k] such
that for each (w, r) ∈ Se, we have (xw, yw, cw) ∈ De with crw is mislabeled and c̃rw is corrected
concept label. Thus, our goal is to estimate the retrained CBM. The retrained concept predictor and
label predictor will be represented in the following manner.

ĝe = argmin

 ∑
(i,j)/∈Se

Lj
C (g(xi), ci) +

∑
(i,j)∈Se

Lj
C (g(xi), c̃i) +

δ

2
· ∥g∥2

 , (21)

Define the corrected dataset as D∗. Then the loss function with the influence of erroneous data De

removed becomes

L−(D∗; g) =
∑

(i,j)/∈Se

Lj
C (g(xi), ci) +

∑
(i,j)∈Se

Lj
C (g(xi), c̃i) +

δ

2
· ∥g∥2. (22)

Assume ĝ = argminLTotal(D; g) is the original model parameter, and ĝe(D∗) is the minimizer
of L−(D∗; g), which is obtained from retraining. Denote ḡe(D∗) as the updated model with the
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influence of erroneous data De removed and is obtained by the influence function method in theorem
D.1, which is an estimation for ĝe(D∗).

To simplify the problem, we concentrate on the removal of erroneous data De and neglect the process
of adding the corrected data back. Once we obtain the bound for ĝe(D∗) − ḡe(D∗) under this
circumstance, the bound for the case where the corrected data is added back can naturally be derived
using a similar approach. For brevity, we use the same notations.

Then, the loss function L−(D∗; g) becomes

L−(D∗; g) =
∑

(i,j)/∈Se

Lj
C (g(xi), ci) +

δ

2
· ∥g∥2 = LTotal(D; g)−

∑
(i,j)∈Se

Lj
C (g(xi), ci) (23)

And the definition of ḡe(D∗) becomes

ĝ +H−1
ĝ ·

∑
(w,r)∈Se

Gr
C(xw, cw; ĝ) (24)

where Hĝ = ∇2
ĝ

∑
i,j L

j
C(ĝ(xi), ci) + δ · I is the Hessian matrix of the loss function with respect to

ĝ. Here δ · I is a small damping term for ensuring positive definiteness of the Hessian. Introducing
the damping term into the Hessian is essentially equivalent to adding a regularization term to the
initial loss function. Consequently, δ can also be interpreted as the regularization strength.

In this part, we will study the error between the estimated influence given by the theorem D.1 method
and retraining. We use the parameter changes as the evaluation metric:

|(ḡe − ĝ)− (ĝe − ĝ)| = |ḡe − ĝe| (25)

Assumption D.3. The loss LC(x, c; g)

LC(x, c; g; j) = Lj
C(g(x), c)

is convex and twice-differentiable in g, with positive regularization δ > 0. There exists CH ∈ R such
that

∥∇2
gLC(x, c; g1)−∇2

gLC(x, c; g2)∥2 ≤ CH∥g1 − g2∥2
for all (x, c) ∈ D = {(xi, ci)}ni=1, j ∈ [k] and g1, g2 ∈ Γ.

Then the function L′(D, Se; g):

L′(D, Se; g) =
∑

(i,j)∈Se

Lj
C (g(xi), ci) =

∑
(i,j)∈Se

LC(xi, ci; g; j)

is convex and twice-differentiable in g, with some positive regularization. Then we have

∥∇2
gL

′(D, Se; g1)−∇2
gL

′(D, Se; g2)∥2 ≤ |Se| · CH∥g1 − g2∥2
for g1, g2 ∈ Γ.
Corollary D.4.

∥∇2
gL

−(D∗; g1)−∇2
gL

−(D∗; g2)∥2 ≤ ((nk + |Se|) · CH) ∥g1 − g2∥

Define C−
H ≜ (nk + |Se|) · CH

Definition D.5. Define |D| as the number of pairs

C ′
L = ∥∇gL

′(D, Se; ĝ)∥2 ,

σ′
min = smallest singular value of ∇2

gL
−(D∗; ĝ),

σmin = smallest singular value of ∇2
gLTotal(D; ĝ),

Based on above corollaries and assumptions, we derive the following theorem.
Theorem D.6. We obtain the error between the actual influence and our predicted influence as
follows:

∥ĝe(D∗)− ḡe(D∗)∥

≤
C−

HC ′
L
2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L.
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Proof. We will use the one-step Newton approximation as an intermediate step. Define ∆gNt(D∗)
as

∆gNt(D∗) ≜ H−1
δ · ∇gL

′(D, Se; ĝ),

where Hδ = δ · I + ∇2
gL

−(D∗; ĝ) is the regularized empirical Hessian at ĝ but reweighed after
removing the influence of wrong data. Then the one-step Newton approximation for ĝ(D∗) is defined
as gNt(D∗) ≜ ∆gNt(D∗) + ĝ.

In the following, we will separate the error between ḡe(D∗) and ĝe(D∗) into the following two parts:

ĝe(D∗)− ḡe(D∗) = ĝe(D∗)− gNt(D∗)︸ ︷︷ ︸
ErrNt, act(D∗)

+(gNt(D∗)− ĝ)− (ḡe(D∗)− ĝ)︸ ︷︷ ︸
ErrNt, if(D∗)

Firstly, in Step 1, we will derive the bound for Newton-actual error ErrNt, act(D∗). Since L−(g) is
strongly convex with parameter σ′

min + δ and minimized by ĝe(D∗), we can bound the distance
∥ĝe(D∗)− gNt(D∗)∥2 in terms of the norm of the gradient at gNt:

∥ĝe(D∗)− gNt(D∗)∥2 ≤ 2

σ′
min + δ

∥∥∇gL
− (gNt(D∗))

∥∥
2

(26)

Therefore, the problem reduces to bounding ∥∇gL
− (gNt(D∗))∥2. Noting that ∇gL

′(ĝ) = −∇gL
−.

This is because ĝ minimizes L− + L′, that is,

∇gL
−(ĝ) +∇gL

′(ĝ) = 0.

Recall that ∆gNt = H−1
δ · ∇gL

′(D, Se; ĝ) = −H−1
δ · ∇gL

−(D∗; ĝ). Given the above conditions,
we can have this bound for ErrNt, act(−D∗).∥∥∇gL

− (gNt(D∗))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt(D∗))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt
(D∗))−∇gL

− (ĝ)−∇2
gL

− (ĝ) ·∆gNt
(D∗)

∥∥
2

=

∥∥∥∥∫ 1

0

(
∇2

gL
− (ĝ + t ·∆gNt(D∗))−∇2

gL
− (ĝ)

)
∆gNt(D∗) dt

∥∥∥∥
2

≤
C−

H

2
∥∆gNt(D∗)∥22 =

C−
H

2

∥∥∥[∇2
gL

−(ĝ)
]−1 ∇gL

−(ĝ)
∥∥∥2
2

≤
C−

H

2(σ′
min + δ)2

∥∥∇gL
−(ĝ)

∥∥2
2
=

C−
H

2(σ′
min + δ)2

∥∇gL
′(ĝ)∥22

≤
C−

HC ′
L
2

2(σ′
min + δ)2

.

(27)

Now we come to Step 2 to bound ErrNt, if(−D∗), and we will bound the difference in parameter
change between Newton and our ECBM method.

∥(gNt(D∗)− ĝ)− (ḡe(D∗)− ĝ)∥

=
∥∥∥[(δ · I +∇2

gL
− (ĝ)

)−1
+
(
δ · I +∇2

gLTotal (ĝ)
)−1
]
· ∇gL

′(D, Se; ĝ)
∥∥∥

For simplification, we use matrix A, B for the following substitutions:

A = δ · I +∇2
gL

− (ĝ)

B = δ · I +∇2
gLTotal (ĝ)

And A and B are positive definite matrices with the following properties

δ + σ′
min ≺ A ≺ δ + σ′

max

δ + σmin ≺ B ≺ δ + σmax
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Therefore, we have

∥(gNt(D∗)− ĝ)− (ḡe(D∗)− ĝ)∥
=
∥∥(A−1 +B−1

)
· ∇gL

−(D∗; ĝ)
∥∥

≤
∥∥A−1 +B−1

∥∥ · ∥∥∇gL
−(D∗; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · ∥∥∇gL
−(D∗; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L

(28)

By combining the conclusions from Step I and Step II in Equations 61, 62 and 63, we obtain the error
between the actual influence and our predicted influence as follows:

∥ĝe(D∗)− ḡe(D∗)∥

≤
C−

HC ′
L
2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L.

Remark D.7. Theorem D.6 reveals one key finding about influence function estimation: The estima-
tion error scales inversely with the regularization parameter δ (O(1/δ)), indicating that increased
regularization improves approximation accuracy.
Remark D.8. In CBM, retraining is the most accurate way to handle the removal of a training data
point. For the concept predictor, we derive a theoretical error bound for an influence function-based
approximation. However, the label predictor differs. As a single-layer linear model, the label predictor
is computationally inexpensive to retrain. However, its input depends on the concept predictor, making
theoretical analysis challenging due to: (1) Input dependency: Changes in the concept predictor
affect the label predictor’s input, coupling their updates. (2) Error propagation: Errors from the
concept predictor propagate to the label predictor, introducing complex interactions. Given the label
predictor’s low retraining cost, direct retraining is more practical and accurate. Thus, we focus our
theoretical analysis on the concept predictor.

E CONCEPT-LEVEL INFLUENCE

E.1 PROOF OF CONCEPT-LEVEL INFLUENCE FUNCTION

We address situations that delete pr for r ∈ M concept removed dataset. Our goal is to estimate
ĝ−pM

, f̂−pM
, which is the concept and label predictor trained on the pr for r ∈ M concept removed

dataset.

Proof Sketch. The main ideas are as follows: (i) First, we define a new predictor ĝ∗pM
, which has

the same dimension as ĝ and the same output as ĝ−pM
. Then deduce an approximation for ĝ∗pM

. (ii)
Then, we consider setting pr = 0 instead of removing it, we get f̂pM=0, which is equivalent to f̂−pM

according to lemma E.1. We estimate this new predictor as a substitute. (iii) Next, we assume we only
use the updated concept predictor ĝ∗pM

for one data (xir , yir , cir ) and obtain a new label predictor
f̂ir, and obtain a one-step Newtonian iterative approximation of f̂ir with respect to f̂ . (iv) Finally,
we repeat the above process for all data points and combine the estimate of ĝ in Theorem E.3, we
obtain a closed-form solution of the influence function for f̂ .

First, we introduce our following lemma:

Lemma E.1. For the concept bottleneck model, if the label predictor utilizes linear transformations
of the form f̂ · c with input c, then, for each r ∈ M , we remove the r-th concept from c and denote
the new input as c′. Set the r-th concept to 0 and denote the new input as c0. Then we have
f̂−pM

· c′ = f̂pM=0 · c0 for any c.
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Proof. Assume the parameter space of f̂−pM
and f̂pM=0 are Γ and Γ0, respectively, then there exists

a surjection P : Γ → Γ0. For any θ ∈ Γ, P (θ) is the operation that removes the r-th row of θ for
r ∈ M . Then we have:

P (θ) · c′ =
∑
t/∈M

θ[j] · c′[j] =
∑
t

θ[t]I{t /∈ M}c[t] = θ · c0.

Thus, the loss function LY (θ, c
0) = LY (P (θ), c′) of both models is the same for every sample in the

second stage. Besides, by formula derivation, we have, for θ′ ∈ Γ0, for any θ in P−1(θ′),

∂LY (θ, c
0)

∂θ
=

∂LY (P (θ), c′)

∂θ′

Thus, if the same initialization is performed, f̂−pM
· c′ = f̂pM=0 · c0 for any c in the dataset.

Theorem E.2. For the retrained concept predictor ĝ−pM
defined as:

ĝ−pM
= argmin

g′

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci), (29)

we map it to ĝ∗−pM
as

ĝ∗−pM
= argmin

g′∈T0

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci). (30)

And we can edit the initial ĝ to ĝ∗−pM
, defined as:

ḡ∗−pM
≜ ĝ −H−1

ĝ ·
∑
j /∈M

n∑
i=1

Dj
C(xi, ci; ĝ),

where Hĝ = ∇g

∑
j /∈M

∑n
i=1 L

j
C(ĝ(xi), ci). Then, by removing all zero rows inserted during the

mapping phase, we can naturally approximate ĝ−pM
≈ P−1(ĝ∗−pM

).

Theorem E.3. For the retrained concept predictor ĝ−pM
defined by

ĝ−pM
= argmin

g′

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci),

we map it to ĝ∗−pM
as

ĝ∗−pM
= argmin

g′∈T0

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci).

And we can edit the initial ĝ to ĝ∗−pM
, defined as:

ḡ−pM
≜ ĝ −H−1

ĝ ·
∑
j /∈M

n∑
i=1

Dj
C(xi, ci; ĝ), (31)

where Hĝ = ∇g

∑
j /∈M

∑n
i=1 D

j
C(xi, ci; ĝ). Then, by removing all zero rows inserted during the

mapping phase, we can naturally approximate ĝ−pM
≈ P−1(ĝ∗−pM

).

Proof. At this level, we consider the scenario that removes a set of mislabeled concepts or introduces
new ones. Because after removing concepts from all the data, the new concept predictor has a
different dimension from the original. We denote gj(xi) as the j-th concept predictor with xi, and cji
as the j-th concept in data zi. For simplicity, we treat g as a collection of k concept predictors and
separate different columns as a vector gj(xi). Actually, the neural network gets g as a whole.
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For the comparative purpose, we introduce a new notation ĝ∗−pM
. Specifically, we define weights of ĝ

and ĝ∗−pM
for the last layer of the neural network as follows.

ĝ−pM
(x) =


w11 w12 · · · w1di

w21 w22 · · · w2di

...
...

...
w(k−1)1 w(k−1)2 · · · w(k−1)di


︸ ︷︷ ︸

(k−1)×di

·


x1

x2

...
xdi


︸ ︷︷ ︸

di×1

=



c1
...

cr−1

cr+1

...
ck


︸ ︷︷ ︸

(k−1)×1

ĝ∗−pM
(x) =



w11 w12 · · · w1di

...
...

...
w(r−1)1 w(r−1)2 · · · w(r−1)di

0 0 · · · 0
w(r+1)1 w(r+1)2 · · · w(r+1)di

...
...

...
wk1 wk2 · · · wkdi


︸ ︷︷ ︸

k×di

·



x1

...
xr−1

xr

xr+1

...
xdi


︸ ︷︷ ︸

di×1

=



c1
...

cr−1

0
cr+1

...
ck


︸ ︷︷ ︸

k×1

,

where r is an index from the index set M .

Firstly, we want to edit to ĝ∗−pM
∈ T0 = {wfinal = 0} ⊆ T based on ĝ, where wfinal is the parameter

of the final layer of neural network. Let us take a look at the definition of ĝ∗−pM
:

ĝ∗−pM
= argmin

g′∈T0

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci).

Then, we separate the r-th concept-related item from the rest and rewrite ĝ as the following form:

ĝ = argmin
g∈T

∑
j /∈M

n∑
i=1

Lj
C(g(xi), ci) +

∑
r∈M

n∑
i=1

Lr
C(g(xi), ci)

 .

Then, if the r-th concept part is up-weighted by some small ϵ, this gives us the new parameters ĝϵ,pM
,

which we will abbreviate as ĝϵ below.

ĝϵ,pM
≜ argmin

g∈T

∑
j /∈M

n∑
i=1

Lj
C(g(xi), ci) + ϵ ·

∑
r∈M

n∑
i=1

Lr
C(g(xi), ci)

 .

Obviously, when ϵ → 0, ĝϵ → ĝ∗−pM
. We can obtain the minimization conditions from the definitions

above.

∇ĝ∗
−pM

∑
j /∈M

n∑
i=1

Lj
C(ĝ

∗
−pM

(xi), ci) = 0. (32)

∇ĝϵ

∑
j /∈M

n∑
i=1

Lj
C(ĝϵ(xi), ci) + ϵ · ∇ĝϵ

∑
r∈M

n∑
i=1

Lr
C(ĝϵ(xi), ci) = 0.

Perform a first-order Taylor expansion of equation 32 with respect to ĝϵ, then we get

∇g

∑
j /∈M

n∑
i=1

Lj
C(ĝϵ(xi), ci) +∇2

g

∑
j /∈M

n∑
i=1

Lj
C(ĝϵ(xi), ci) · (ĝ∗−pM

− ĝϵ) ≈ 0.
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Then we have

ĝ∗−pM
− ĝϵ = −H−1

ĝϵ
· ∇g

∑
j /∈M

n∑
i=1

Lj
C(ĝϵ(xi), ci).

Where Hĝϵ = ∇2
g

∑
j /∈M

∑n
i=1 L

j
C(ĝϵ(xi), ci).

We can see that:

When ϵ = 0,
ĝϵ = ĝ∗−pM

,

When ϵ = 1, ĝϵ = ĝ,

ĝ∗−pM
− ĝ ≈ −H−1

ĝ · ∇g

∑
j /∈M

n∑
i=1

Lj
C(ĝ(xi), ci),

where Hĝ = ∇2
g

∑
j /∈M

∑n
i=1 L

j
C(ĝ(xi), ci).

Then, an approximation of ĝ∗−pM
is obtained.

ĝ∗−pM
≈ ĝ −H−1

ĝ · ∇g

∑
j /∈M

n∑
i=1

Lj
C(ĝ(xi), ci). (33)

Recalling the definition of the gradient:

Gj
C(xi, ci; ĝ) = Lj

C(ĝ(xi), ci)) = ĝj(xi)
⊤ · log(cji ).

Then the approximation of ĝ∗−pM
becomes

ḡ−pM
≜ ĝ −H−1

ĝ ·
∑
j /∈M

n∑
i=1

Gj
C(xi, ci; ĝ),

Theorem E.4. For the retrained label predictor f̂−pM
defined as

f̂−pM
= argmin

f ′

n∑
i=1

LY = argmin
f ′

n∑
i=1

LY (f
′(ĝ−pM

(xi)), yi),

We can consider its equivalent version f̂pM=0 as:

f̂pM=0 = argmin
f

n∑
i=1

LY

(
f
(
ĝ∗−pM

(xi)
)
, yi
)
,

which can be edited by

f̂pM=0 ≈ f̄pM=0 ≜ f̂ −H−1

f̂
·

n∑
l=1

GY (xl; ḡ
∗
−pM

, f̂),

where Hf̂ = ∇f̂

∑n
i=1 GY (xl; ḡ

∗
−pM

, f̂) is the Hessian matrix. Deleting the r-th dimension of
f̄pM=0 for r ∈ M , then we can map it to f̄−pM

, which is the approximation of the final edited label
predictor f̂−pM

under concept level.

Proof. Now, we come to the approximation of f̂−pM
. Noticing that the input dimension of f

decreases to k − |M |. We consider setting pr = 0 for all data points in the training phase of the label
predictor and get another optimal model f̂pM=0. From lemma E.1, we know that for the same input x,
f̂pM=0(x) = f̂−pM

. And the values of the corresponding parameters in f̂pM=0 and f̂−pM
are equal.
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Now, let us consider how to edit the initial f̂ to f̂pM=0. Firstly, assume we only use the updated
concept predictor ĝ∗−pM

for one data (xir , yir , cir ) and obtain the following f̂ir, which is denoted as

f̂ir = argmin
f

[
n∑

i=1

LY (f(ĝ(xi)), yi) + LY (f(ĝ
∗
−pM

(xir)), yir)− LY (f(ĝ(xir)), yir)

]
.

Then up-weight the ir-th data by some small ϵ and have the following new parameters:

f̂ϵ,ir = argmin
f

[
n∑

i=1

LY (f(ĝ(xi)), yi) + ϵ · LY (f(ĝ
∗
−pM

(xir)), yir)− ϵ · LY (f(ĝ(xir)), yir)

]
.

Deduce the minimized condition subsequently,

∇f

n∑
i=1

LY (f̂ir(ĝ(xi)), yi) + ϵ · ∇fLY (f̂ir(ĝ
∗
−pM

(xir)), yir)− ϵ · ∇fLY (f̂ir(ĝ(xir)), yir) = 0.

If we expand first term of f̂ , which f̂ir,ϵ → f̂(ϵ → 0), then

∇f

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

)
+ ϵ · ∇fLY (f̂(ĝ

∗
−pM

(xir)), yir)− ϵ · ∇fLY (f̂(ĝ(xir)), yir)

+

(
∇2

f

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

))
· (f̂ir,ϵ − f̂) = 0.

Note that ∇f

∑n
i=1 LY (f̂(ĝ(xi)), yi) = 0. Thus we have

f̂ir,ϵ − f̂ = H−1

f̂
· ϵ
(
∇fLY (f̂(ĝ

∗
−pM

(xir)), yir)−∇fLY (f̂(ĝ(xir)), yir)
)
.

We conclude that

df̂ϵ,ir
dϵ

∣∣∣∣∣
ϵ=0

= H−1

f̂
·
(
∇f̂LY (f̂(ĝ

∗
−pM

(xir)), yir)−∇f̂LY (f̂(ĝ(xir)), yir)
)
.

Perform a one-step Newtonian iteration at f̂ and we get the approximation of f̂ir .

f̂ir ≈ f̂ +H−1

f̂
·
(
∇f̂LY (f̂(ĝ(xir)), yir)−∇f̂LY (f̂(ĝ

∗
−pM

(xir)), yir)
)
.

Reconsider the definition of f̂ir , we use the updated concept predictor ĝ∗−pM
for one data

(xir , yir , cir ). Now we carry out this operation for all the other data and estimate f̂pM=0. Combining
the minimization condition from the definition of f̂ , we have

f̂pM=0 ≈f̂ +H−1

f̂
·

(
∇f̂

n∑
i=1

LY (f̂(ĝ(xi)), yi)−∇f̂

n∑
i=1

LY (f̂(ĝ
∗
−pM

(xi)), yi)

)

=f̂ +H−1

f̂
·

(
−∇f̂

n∑
i=1

LY (f̂(ĝ
∗
−pM

(xi)), yi)

)

=f̂ −H−1

f̂

n∑
l=1

∇f̂LY (f̂(ĝ
∗
−pM

(xl)), yl). (34)

Theorem E.3 gives us the edited version of ĝ∗−pM
. Substitute it into equation 34, and we get the final

closed-form edited label predictor under concept level:

f̂pM=0 ≈ f̄pM=0 ≜ f̂ −H−1

f̂
· ∇f̂

n∑
l=1

LYl

(
f̂ , ḡ∗−pM

)
,
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where Hf̂ = ∇2
f̂

∑n
i=1 LYi

(f̂ , ĝ) is the Hessian matrix of the loss function respect to is the Hessian

matrix of the loss function respect to f̂ . Recalling the definition of the gradient:

GY (xl; ḡ
∗
−pM

, f̂) = ∇f̂LY

(
f̂
(
ḡ∗−pM

(xl)
)
, yl

)
,

then the approximation becomes

f̂pM=0 ≈ f̄pM=0 ≜ f̂ −H−1

f̂
·

n∑
l=1

GY (xl; ḡ
∗
−pM

, f̂).

E.2 THEORETICAL BOUND FOR THE INFLUENCE FUNCTION

Consider the dataset D = {(xi, ci, yi}ni=1, the loss function of the concept predictor g is defined as:

LTotal(D; g) =

n∑
i=1

LC(g(xi), ci) +
δ

2
· ∥g∥2 =

n∑
i=1

k∑
j=1

Lj
C(g(xi), ci) +

δ

2
· ∥g∥2 =

n∑
i=1

k∑
j=1

gj(xi)
⊤ log(ci

j) +
δ

2
· ∥g∥2.

Mathematically, we have a set of erroneous concepts need to be removed, which are denoted as pr
for r ∈ M . Then the retrained concept predictor becomes

ĝ−pM
= argmin

g′

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci) +
δ

2
· ∥g∥2.

We map it to ĝ∗−pM
as ĝ−pM

to ĝ∗−pM
≜ P(ĝ−pM

), which has the same amount of parameters as ĝ
and has the same predicted concepts ĝ∗−pM

(j) as ĝ−pM
(j) for all j ∈ [di] − M . We achieve this

effect by inserting a zero row vector into the r-th row of the matrix in the final layer of ĝ−pM
for

r ∈ M . Thus, we can see that the mapping P is one-to-one. Moreover, assume the parameter space
of ĝ is T and that of ĝ∗−pM

, T0 is the subset of T . Noting that ĝ∗−pM
is the optimal model of the

following objective function:

ĝ∗−pM
= argmin

g′∈T0

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci) +
δ

2
· ∥g∥2.

Then the loss function with the influence of erroneous concepts removed becomes

L−(D; g) =
∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci) +
δ

2
· ∥g∥2 = LTotal(D; g)−

∑
j∈M

n∑
i=1

Lj
C (g(xi), ci) . (35)

Assume ĝ = argminLTotal(D; g) is the original model parameter. ĝ−pM
(D) and ĝ∗−pM

(D) is the
minimizer of L−(D; g), which is obtained from retraining in different parameter space. ĝ∗−pM

(D)
shares the same dimensionality as the original model. Because ĝ−pM

(D) and ĝ∗−pM
(D) produces

identical outputs given identical inputs, to simplify the proof, we use ĝ∗−pM
(D) as the retrained

model.

Denote ḡ−pM
as the updated model with the influence of erroneous concepts removed and is obtained

by the influence function method in theorem E.3, which is an estimation for ĝ∗−pM
(D).

ḡ−pM
(D) ≜ ĝ −H−1

ĝ ·
∑
j /∈M

n∑
i=1

Gj
C(xi, ci; ĝ),

In this part, we will study the error between the estimated influence given by the theorem E.3 method
and ĝ∗−pM

(D). We use the parameter changes as the evaluation metric:∣∣(ḡ−pM
− ĝ)−

(
ĝ∗−pM

− ĝ
)∣∣ = ∣∣ḡ−pM

− ĝ∗−pM

∣∣ (36)
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Assumption E.5. The loss LC(x, c; g; j)

LC(D; g; j) =

n∑
i=1

Lj
C(g(xi), ci).

is convex and twice-differentiable in g, with positive regularization δ > 0. There exists CH ∈ R such
that

∥∇2
gLC(D; g1; j)−∇2

gLC(D; g2; j)∥2 ≤ CH∥g1 − g2∥2
for all j ∈ [k] and g1, g2 ∈ Γ.

Definition E.6.
C ′

L = max
j

∥∇gLC(D; ĝ; j)∥2 ,

σ′
min = smallest singular value of ∇2

gL
−(D; ĝ),

σmin = smallest singular value of ∇2
gLTotal(D; ĝ),

L′(D,M ; g) =
∑
j∈M

LC(D; g; j) (37)

Corollary E.7.
L−(D; g) = LTotal(D; g)− L′(D,M ; g) (38)

∥∇2
gL

−(D; g1)−∇2
gL

−(D; g2)∥2 ≤ ((k + |M |) · CH) ∥g1 − g2∥

Define C−
H ≜ (k + |M |) · CH

Based on above corollaries and assumptions, we derive the following theorem.

Theorem E.8. We obtain the error between the actual influence and our predicted influence as
follows: ∥∥ĝ∗−pM

(D)− ḡ−pM
(D)
∥∥

≤
C−

HC ′
L|M |2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|M |.

Proof. We will use the one-step Newton approximation as an intermediate step. Define ∆gNt(D) as

∆gNt(D) ≜ H−1
δ · ∇gL

′(D,M ; ĝ),

where Hδ = δ · I + ∇2
gL

−(D; ĝ) is the regularized empirical Hessian at ĝ but reweighed after
removing the influence of wrong data. Then the one-step Newton approximation for ĝ∗−pM

(D) is
defined as gNt(D) ≜ ∆gNt(D) + ĝ.

In the following, we will separate the error between ḡ−pM
(D) and ĝ∗−pM

(D) into the following two
parts:

ĝ∗−pM
(D)− ḡ−pM

(D) = ĝ∗−pM
(D)− gNt(D)︸ ︷︷ ︸
ErrNt, act(D)

+(gNt(D)− ĝ)− (ḡ−pM
(D)− ĝ)︸ ︷︷ ︸

ErrNt, if(D)

Firstly, in Step 1, we will derive the bound for Newton-actual error ErrNt, act(D). Since L−(g) is
strongly convex with parameter σ′

min + δ and minimized by ĝ∗−pM
(D), we can bound the distance∥∥ĝ∗−pM

(D)− gNt(D)
∥∥
2

in terms of the norm of the gradient at gNt:∥∥ĝ∗−pM
(D)− gNt(D)

∥∥
2
≤ 2

σ′
min + δ

∥∥∇gL
− (gNt(D))

∥∥
2

(39)

Therefore, the problem reduces to bounding ∥∇gL
− (gNt(D))∥2. Noting that ∇gL

′(ĝ) = −∇gL
−.

This is because ĝ minimizes L− + L′, that is,

∇gL
−(ĝ) +∇gL

′(ĝ) = 0.
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Recall that ∆gNt = H−1
δ · ∇gL

′(D, Se; ĝ) = −H−1
δ · ∇gL

−(D; ĝ). Given the above conditions,
we can have this bound for ErrNt, act(−D).∥∥∇gL

− (gNt(D))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt(D))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt
(D))−∇gL

− (ĝ)−∇2
gL

− (ĝ) ·∆gNt
(D)
∥∥
2

=

∥∥∥∥∫ 1

0

(
∇2

gL
− (ĝ + t ·∆gNt(D))−∇2

gL
− (ĝ)

)
∆gNt(D) dt

∥∥∥∥
2

≤
C−

H

2
∥∆gNt(D∗)∥22 =

C−
H

2

∥∥∥[∇2
gL

−(ĝ)
]−1 ∇gL

−(ĝ)
∥∥∥2
2

≤
C−

H

2(σ′
min + δ)2

∥∥∇gL
−(ĝ)

∥∥2
2
=

C−
H

2(σ′
min + δ)2

∥∇gL
′(ĝ)∥22

≤
C−

HC ′
L|M |2

2(σ′
min + δ)2

.

(40)

Now we come to Step 2 to bound ErrNt, if(−D), and we will bound the difference in parameter change
between Newton and our ECBM method.

∥(gNt(D)− ĝ)− (ḡ−pM
(D)− ĝ)∥

=
∥∥∥[(δ · I +∇2

gL
− (ĝ)

)−1
+
(
δ · I +∇2

gLTotal (ĝ)
)−1
]
· ∇gL

′(D, Se; ĝ)
∥∥∥

For simplification, we use matrix A, B for the following substitutions:

A = δ · I +∇2
gL

− (ĝ)

B = δ · I +∇2
gLTotal (ĝ)

And A and B are positive definite matrices with the following properties

δ + σ′
min ≺ A ≺ δ + σ′

max

δ + σmin ≺ B ≺ δ + σmax

Therefore, we have

∥(gNt(D)− ĝ)− (ḡ−pM
(D)− ĝ)∥

=
∥∥(A−1 +B−1

)
· ∇gL

−(D; ĝ)
∥∥

≤
∥∥A−1 +B−1

∥∥ · ∥∥∇gL
−(D; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · ∥∥∇gL
−(D; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|M |

(41)

By combining the conclusions from Step I and Step II in Equations 61, 62 and 63, we obtain the error
between the actual influence and our predicted influence as follows:∥∥ĝ∗−pM

(D)− ḡ−pM
(D)
∥∥

≤
C−

HC ′
L|M |2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|M |.

Remark E.9. Theorem E.8 reveals one key finding about influence function estimation: The estima-
tion error scales inversely with the regularization parameter δ (O(1/δ)), indicating that increased
regularization improves approximation accuracy. Besides, the error bound is linearly increasing
with the number of removed concepts |M |. This implies that the estimation error increases with the
number of erroneous concepts removed.
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F PROOF OF DATA-LEVEL INFLUENCE

We address situations that for dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr),
r ∈ G to be removed. Our goal is to estimate ĝ−zG , f̂−zG , which is the concept and label predictor
trained on the zr for r ∈ G removed dataset.

Proof Sketch. (i) First, we estimate the retrained concept predictor ĝ−zG . (ii) Then, we define
a new label predictor f̃−zG and estimate f̃−zG − f̂ . (iii) Next, in order to reduce computational
complexity, use the lemma method to obtain the approximation of the Hessian matrix of f̃−zG . (iv)
Next, we compute the difference f̂−zG − f̃−zG as

−H−1

f̃−zG

·
(
∇f̂LY

(
f̃−zG(ĝ−zG(xir )), yir

)
−∇f̂LY

(
f̃−zG(ĝ(xir )), yir

))
.

(v) Finally, we divide f̂−zG − f̂ , which we actually concerned with, into
(
f̂−zG − f̃−zG

)
+(

f̃−zG − f̂
)

.

Theorem F.1. For dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr), r ∈ G to be
removed. Suppose the updated concept predictor ĝ−zG is defined by

ĝ−zG = argmin
g

∑
j∈[k]

∑
i∈[n]−G

LCj
(ĝ(xi), ci)

where LC(ĝ(xi), ci) ≜
∑k

j=1 LCj
(ĝ(xi), ci). Then we have the following approximation for ĝ−zG

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

∇gLC(ĝ(xr), cr), (42)

where Hĝ = ∇2
ĝ

∑
i,j LC(ĝ

j(xi), c
j
i ) is the Hessian matrix of the loss function respect to ĝ.

Proof. Firstly, we rewrite ĝ−zG as

ĝ−zG = argmin
g

[
n∑

i=1

LC(ĝ(xi), ci)−
∑
r∈G

LC(g(xr), cr)

]
,

Then we up-weighted the r-th data by some ϵ and have a new predictor ĝ−zG,ϵ, which is abbreviated
as ĝϵ:

ĝϵ ≜ argmin
g

[
n∑

i=1

LC(g(xi), ci)− ϵ ·
∑
r∈G

LC(g(xr), cr)

]
. (43)

Because ĝϵ minimizes the right side of equation 43, we have

∇ĝϵ

n∑
i=1

LY (ĝϵ(xi), ci)− ϵ · ∇ĝϵ

∑
r∈G

LY (ĝϵ(xr), cr) = 0.

When ϵ → 0, ĝϵ → ĝ. So we can perform a first-order Taylor expansion with respect to ĝ, and we
have

∇g

n∑
i=1

LC(ĝ(xi), ci)− ϵ · ∇g

∑
r∈G

LC(ĝ(xr), cr) +∇2
g

n∑
i=1

LC(ĝ(xi), ci) · (ĝϵ − ĝ) ≈ 0. (44)

Recap the definition of ĝ:

ĝ = argmin
g

n∑
i=1

LY (g(xi), ci),
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Then, the first term of equation 44 equals 0. Let ϵ → 0, then we have

dĝϵ
dϵ

∣∣∣∣
ϵ=0

= H−1
ĝ ·

∑
r∈G

∇gLC(ĝ(xr), cr),

where H−1
ĝ = ∇2

g

∑n
i=1 ℓ(ĝ(xi), ci).

Remember when ϵ → 0, ĝϵ → ĝ−zG . Perform a Newton step at ĝ, then we obtain the method to edit
the original concept predictor under concept level:

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

∇gLC(ĝ(xr), cr).

Theorem F.2. For dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr), r ∈ G to be
removed. The label predictor f̂−zG trained on the revised dataset becomes

f̂−zG = argmin
f

∑
i∈[n]−G

LYi
(f, ĝ−zG). (45)

The intermediate label predictor f̃−zG is defined by

f̃−zG = argmin
∑

i∈[n]−G

LYi(f, ĝ),

Then f̃−zG − f̂ can be approximated by

f̃−zG − f̂ ≈ H−1

f̂
·
∑

i∈[n]−G

∇f̂LYi
(f̂ , ĝ) ≜ AG. (46)

We denote the edited version of f̃−zG as f̄∗
−zG ≜ f̂ +AG. And f̂−zG − f̃−zG can be approximated by

f̂−zG − f̃−zG ≈−H−1
f̄∗
−zG

·

∇f̂

∑
i∈[n]−G

LYi

(
f̄∗
−zG , ḡ−zG

)
−∇f̂

∑
i∈[n]−G

LYi

(
f̄∗
−zG , ĝ

) ≜ BG,

(47)

where Hf̄∗
−zG

= ∇f̄

∑
i∈[n]−G LYi

(
f̄∗
−zG , ĝ

)
is the Hessian matrix of the loss function on the

intermediate dataset concerning f̄∗
−zG . Then, the final edited label predictor f̄−zG can be obtained

by
f̄−zG = f̄∗

−zG +BG = f̂ +AG +BG. (48)

Proof. We can see that there is a huge gap between f̂−zG and f̂ . Thus, firstly, we define f̃−zG as

f̃−zG = argmin
f

n∑
i=1

LY (f(ĝ(xi)), yi)−
∑
r∈G

LY (f(ĝ(xr)), yr) .

Then, we define f̃ϵ,−zG as follows to estimate f̃−zG .

f̃ϵ,−zG = argmin
f

n∑
i=1

LY (f(ĝ(xi)), yi)− ϵ ·
∑
r∈G

LY (f(ĝ(xr)), yr) .

From the minimization condition, we have

∇f̃

n∑
i=1

LY

(
f̃ϵ,−zG(ĝ(xi)), yi

)
− ϵ ·

∑
r∈G

∇f̃LY

(
f̃ϵ,−zG(ĝ(xr)), yr

)
= 0.
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Perform a first-order Taylor expansion at f̂ ,

∇f̂

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

)
− ϵ · ∇f̂

∑
r∈G

LY

(
f̂(ĝ(xr)), yr

)
+∇2

f̂

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

)
·
(
f̃ϵ,−zG − f̂

)
= 0.

Then f̃−zG can be approximated by

f̃−zG ≈ f̂ +H−1

f̂
·
∑
r∈G

∇f̂LY

(
f̂(ĝ(xr)), yr

)
≜ AG. (49)

Then the edit version of f̃−zG is defined as

f̄∗
−zG = f̂ +AG (50)

Then we estimate the difference between f̂−zG and f̃−zG . Rewrite f̃−zG as

f̃−zG = argmin
f

n∑
i∈S

LY (f(ĝ(xi)), yi) , (51)

where S ≜ [n]−G.

Compare equation 45 with 51, we still need to define an intermediary predictor f̂−zG,ir as

f̂−zG,ir = argmin
f

∑
i∈S
i ̸=ir

LYi
(f, ĝ(xi)) + LYir

(f, ĝ−zG)


= argmin

f

[∑
i∈S

LYi
(f, ĝ) + LYir

(f, ĝ−zG)− LYir (f, ĝ)

]
.

Up-weight the ir data by some ϵ, we define f̂ϵ,−zG,ir as

f̂ϵ,−zG,ir = argmin
f

[∑
i∈S

LYi (f, ĝ) + ϵ · LYir (f, ĝ−zG)− ϵ · LYir (f, ĝ)

]
.

We denote f̂ϵ,−zG,ir as f̂∗
ϵ in the following proof. Then, from the minimization condition, we have

∇f̂

∑
i∈S

LYi

(
f̂∗
ϵ , ĝ
)
+ ϵ · ∇f̂LYir

(
f̂∗
ϵ , ĝ−zG

)
− ϵ · ∇f̂LYir

(
f̂∗
ϵ , ĝ(xir

)
. (52)

When ϵ → 0, f̂∗
ϵ → f̃−zG . Then we perform a Taylor expansion at f̃−zG of equation 52 and have

∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

)
+ ϵ · ∇f̂LYir

(
f̃−zG , ĝ−zG

)
− ϵ · ∇f̂LYir

(
f̃−zG , ĝ

)
+∇2

f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

)
· (f̂∗

ϵ − f̃−zG) ≈ 0.

Organizing the above equation gives

f̂∗
ϵ − f̃−zG ≈ −ϵ ·H−1

f̃−zG

·
(
∇f̂LYir

(
f̃−zG , ĝ−zG

)
−∇f̂LYir

(
f̃−zG , ĝ

))
,

where Hf̃−zG
= ∇2

f̂

∑
i∈S LYi

(
f̃−zG , ĝ

)
.
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When ϵ = 1, f̂∗
ϵ = f̂−zG,ir. Then we perform a Newton iteration with step size 1 at f̃−zG ,

f̂−zG,ir − f̃−zG ≈ −H−1

f̃−zG

·
(
∇f̂LYir

(
f̃−zG , ĝ−zG

)
−∇f̂LYir

(
f̃−zG , ĝ

))
Iterate ir through set S, and we have

f̂−zG − f̃−zG ≈ −H−1

f̃−zG

·

(
∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ−zG

)
−∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

))
(53)

The edited version of ĝ−zG has been deduced as ḡ−zG in theorem F.1, substituting this approximation
into equation 53, then we have

f̂−zG − f̃−zG ≈ −H−1

f̃−zG

·

(
∇f̂

∑
i∈S

LYi

(
f̃−zG , ḡ−zG

)
−∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

))
. (54)

Noting that we cannot obtain f̂−zG and Hf̃−zG
directly because we do not retrain the label predictor

but edit it to f̄∗
−zG as a substitute. Therefore, we approximate f̂−zG with f̄∗

−zG and Hf̃−zG
with

Hf̄∗
−zG

which is defined by:

Hf̄∗
−zG

= ∇2
f̂

∑
i∈S

LYi

(
f̄∗
−zG , ĝ

)
Then we define BG as

BG ≜ −H−1
f̄∗
−zG

·

(
∇f̂

∑
i∈S

LYi

(
f̄∗
−zG , ḡ−zG

)
−∇f̂

∑
i∈S

LYi

(
f̄∗
−zG , ĝ

))
(55)

Combining equation 50 and equation 55, then we deduce the final closed-form edited label predictor
as

f̄−zG = f̄∗
−zG +BG = f̂ +AG +BG.

F.1 THEORETICAL BOUND FOR THE INFLUENCE FUNCTION

Consider the dataset D = {(xi, ci, yi}ni=1, the loss function of the concept predictor g is defined as:

LTotal(D; g) =

n∑
i=1

LC(g(xi), ci) +
δ

2
· ∥g∥2 =

n∑
i=1

k∑
j=1

Lj
C(g(xi), ci) +

δ

2
· ∥g∥2 =

n∑
i=1

k∑
j=1

gj(xi)
⊤ log(ci

j) +
δ

2
· ∥g∥2.

Mathematically, we have a set of erroneous data zr = (xr, yr, cr), r ∈ G need to be removed. Then
the retrained concept predictor becomes

ĝ−zG = argmin
g

k∑
j=1

∑
i∈[n]−G

Lj
C(g(xi), ci) +

δ

2
· ∥g∥2.

Define the new dataset as D∗ = {(xi, ci, yi)}i∈[n]−G, then the loss function with the influence of
erroneous data removed becomes

L−(D∗; g) =

k∑
j=1

∑
i∈[n]−G

Lj
C(g(xi), ci) +

δ

2
· ∥g∥2 = LTotal(D; g)−

k∑
j=1

∑
i∈G

Lj
C (g(xi), ci) .

(56)

Assume ĝ = argminLTotal(D; g) is the original model parameter. ĝ−zG is the minimizer of
L−(D∗; g). Denote ḡ−zG as the updated model with the influence of erroneous data removed
and is obtained by the influence function method in theorem F.1, which is an estimation for ĝ−zG .

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

M∑
j=1

Gj
C(xr, cr; ĝ), (57)
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In this part, we will study the error between the estimated influence given by the theorem F.1 method
and ĝ−zG . We use the parameter changes as the evaluation metric:

|(ḡ−zG − ĝ)− (ĝ−zG − ĝ)| = |ḡ−zG − ĝ−zG | (58)

Assumption F.3. The loss LC(x, c; g; j)

LC(x, c; g) =

k∑
j=1

Lj
C(g(x), c).

is convex and twice-differentiable in g, with positive regularization δ > 0. There exists CH ∈ R such
that

∥∇2
gLC(x, c; g1)−∇2

gLC(x, c; g2)∥2 ≤ CH∥g1 − g2∥2
for all (x, c) ∈ D and g1, g2 ∈ Γ.
Definition F.4.

C ′
L = ∥∇gLC(D; ĝ)∥2 ,

σ′
min = smallest singular value of ∇2

gL
−(D; ĝ),

σmin = smallest singular value of ∇2
gLTotal(D; ĝ),

L′(D, G; g) =
∑
i∈G

LC(xi, ci; g) (59)

Corollary F.5.
L−(D; g) = LTotal(D; g)− L′(D, G; g) (60)

∥∇2
gL

−(D; g1)−∇2
gL

−(D; g2)∥2 ≤ ((n+ |G|) · CH) ∥g1 − g2∥
Define C−

H ≜ (n+ |G|) · CH

Based on above corollaries and assumptions, we derive the following theorem.
Theorem F.6. We obtain the error between the actual influence and our predicted influence as
follows:

∥ĝ−zG(D)− ḡ−zG(D)∥

≤
C−

HC ′
L|G|2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|G|.

Proof. We will use the one-step Newton approximation as an intermediate step. Define ∆gNt(D) as

∆gNt(D) ≜ H−1
δ · ∇gL

′(D, G; ĝ),

where Hδ = δ · I + ∇2
gL

−(D; ĝ) is the regularized empirical Hessian at ĝ but reweighed after
removing the influence of wrong data. Then the one-step Newton approximation for ĝ−zG(D) is
defined as gNt(D) ≜ ∆gNt(D) + ĝ.

In the following, we will separate the error between ḡ−zG(D) and ĝ−zG(D) into the following two
parts:

ĝ−zG(D)− ḡ−zG(D) = ĝ−zG(D)− gNt(D)︸ ︷︷ ︸
ErrNt, act(D)

+(gNt(D)− ĝ)− (ḡ−zG(D)− ĝ)︸ ︷︷ ︸
ErrNt, if(D)

Firstly, in Step 1, we will derive the bound for Newton-actual error ErrNt, act(D). Since L−(g) is
strongly convex with parameter σ′

min + δ and minimized by ĝ−zG(D), we can bound the distance
∥ĝ−zG(D)− gNt(D)∥2 in terms of the norm of the gradient at gNt:

∥ĝ−zG(D)− gNt(D)∥2 ≤ 2

σ′
min + δ

∥∥∇gL
− (gNt(D))

∥∥
2

(61)

Therefore, the problem reduces to bounding ∥∇gL
− (gNt(D))∥2. Noting that ∇gL

′(D, G; ĝ) =
−∇gL

−. This is because ĝ minimizes L− + L′, that is,

∇gL
−(ĝ) +∇gL

′(D, G; ĝ) = 0.
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Recall that ∆gNt = H−1
δ · ∇gL

′(D, G; ĝ) = −H−1
δ · ∇gL

−(D; ĝ). Given the above conditions, we
can have this bound for ErrNt, act(−D).∥∥∇gL

− (gNt(D))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt(D))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt(D))−∇gL
− (ĝ)−∇2

gL
− (ĝ) ·∆gNt(D)

∥∥
2

=

∥∥∥∥∫ 1

0

(
∇2

gL
− (ĝ + t ·∆gNt(D))−∇2

gL
− (ĝ)

)
∆gNt(D) dt

∥∥∥∥
2

≤
C−

H

2
∥∆gNt(D∗)∥22 =

C−
H

2

∥∥∥[∇2
gL

−(ĝ)
]−1 ∇gL

−(ĝ)
∥∥∥2
2

≤
C−

H

2(σ′
min + δ)2

∥∥∇gL
−(ĝ)

∥∥2
2
=

C−
H

2(σ′
min + δ)2

∥∇gL
′(D, G; ĝ)∥22

≤
C−

HC ′
L|G|2

2(σ′
min + δ)2

.

(62)

Now we come to Step 2 to bound ErrNt, if(−D), and we will bound the difference in parameter change
between Newton and our ECBM method.

∥(gNt(D)− ĝ)− (ḡ−zG(D)− ĝ)∥

=
∥∥∥[(δ · I +∇2

gL
− (ĝ)

)−1
+
(
δ · I +∇2

gLTotal (ĝ)
)−1
]
· ∇gL

′(D, G; ĝ)
∥∥∥

For simplification, we use matrix A, B for the following substitutions:

A = δ · I +∇2
gL

− (ĝ)

B = δ · I +∇2
gLTotal (ĝ)

And A and B are positive definite matrices with the following properties

δ + σ′
min ≺ A ≺ δ + σ′

max

δ + σmin ≺ B ≺ δ + σmax

Therefore, we have

∥(gNt(D)− ĝ)− (ḡ−zG(D)− ĝ)∥
=
∥∥(A−1 +B−1

)
· ∇gL

−(D; ĝ)
∥∥

≤
∥∥A−1 +B−1

∥∥ · ∥∥∇gL
−(D; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · ∥∥∇gL
−(D; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|G|

(63)

By combining the conclusions from Step I and Step II in Equations 61, 62 and 63, we obtain the error
between the actual influence and our predicted influence as follows:

∥ĝ−zG(D)− ḡ−zG(D)∥

≤
C−

HC ′
L|G|2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|G|.

Remark F.7. The error bound is linearly increasing with the number of removed data |G|. This
implies that the estimation error increases with the number of erroneous data removed.
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G ALGORITHM

Algorithm 1 Concept-label-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , and label predictor ĝ, a set
of erroneous data De and its associated index set Se.

2: For the index (w, r) in Se, correct crw to the right label crw
′ for the w-th data (xw, yw, cw).

3: Compute the Hessian matrix of the loss function respect to ĝ:

Hĝ = ∇2
ĝ

∑
i,j

LCj
(ĝj(xi), c

j
i ).

4: Update concept predictor g̃:

g̃ = ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(
∇ĝLCr

(
ĝr(xw), c

r
w
′)−∇ĝLCr

(ĝr(xw), c
r
w)
)
.

5: Compute the Hessian matrix of the loss function respect to f̂ :

Hf̂ = ∇2
f̂

n∑
i=1

LYi
(f̂ , ĝ).

6: Update label predictor f̃ :

f̃ = f̂ +H−1

f̂
· ∇f

n∑
i=1

LY

(
f̂ (ĝ(xi)) , yi

)
−H−1

f̂
· ∇f

n∑
l=1

(
LY

(
f̂ (g̃(xl)) , yl

))
.

7: Return: f̃ , g̃.

Algorithm 2 Concept-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , label predictor ĝ and the to
be removed concept index set M .

2: For r ∈ M , set pr = 0 for all the data z ∈ D.
3: Compute the Hessian matrix of the loss function respect to ĝ:

Hĝ = ∇2
ĝ

∑
j /∈M

n∑
i=1

LCj (ĝ
j(xi), c

j
i ).

4: Update concept predictor g̃∗:

g̃∗ = ĝ −H−1
ĝ · ∇ĝ

∑
j /∈M

n∑
i=1

LCj
(ĝj(xi), c

j
i ).

5: Compute the Hessian matrix of the loss function respect to f̂ :

Hf̂ = ∇2
f̂

n∑
i=1

LY (f̂(ĝ(xi), yi).

6: Update label predictor f̃ :

f̃ = f̂ −H−1

f̂
· ∇f̂

n∑
l=1

LY

(
f̂ (g̃∗(xl)) , yl

)
.

7: Map g̃∗ to g̃ by removing the r-th row of the matrix in the final layer of g̃∗ for r ∈ M .
8: Return:f̃ , g̃.

Algorithm 3 Data-level ECBM
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1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original concept predictor f̂ , label predictor ĝ, and the to
be removed data index set G.

2: For r ∈ G, remove the r-th data (xr, yr, cr) from D and define the new dataset as S.
3: Compute the Hessian matrix of the loss function with respect to ĝ:

Hĝ = ∇2
ĝ

∑
i,j

LCj
(ĝj(xi), c

j
i ).

4: Update concept predictor g̃:

g̃ = ĝ +H−1
ĝ ·

∑
r∈G

∇gLC(ĝ(xr), cr)

5: Update label predictor f̃ . Compute the Hessian matrix of the loss function with respect to f̂ :

Hf̂ = ∇2
f̂

n∑
i=1

LY (f̂(ĝ(xi), yi).

6: Compute A as:
A = H−1

f̂
·
∑

i∈[n]−G

∇f̂LY

(
f̂(ĝ(xi)), yi

)
7: Obtain f̄ as

f̄ = f̂ +A

8: Compute the Hessian matrix of the loss function concerning f̄ :

Hf̄ = ∇2
f̄

∑
i∈[n]−G

LY (f̄(ĝ(xi)), yi).

9: Compute B as

B = −H−1
f̄

·
∑

i∈[n]−G

∇f̂

(
LY (f̄(g̃(xi)), yi)− LY (f̄(ĝ(xi)), yi)

)
10: Update the label predictor f̃ as: f̃ = f̂ +A+B.
11: Return: f̃ , g̃.

Algorithm 4 EK-FAC for Concept Predictor g

1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original concept predictor ĝ.
2: for the l-th convolution layer of ĝ: do
3: Define the input activations {aj,t}, weights W = (wi,j,δ), and biases b = (bi) of this layer;
4: Obtain the expanded activations JAl−1K as:

JAl−1Kt,j|∆|+δ = [Al−1](t+δ),j = aj,t+δ,

5: Compute the pre-activations:

[Sl]i,t = si,t =
∑
δ∈∆

wi,j,δaj,t+δ + bi.

6: During the backpropagation process, obtain the Dsi,t as:

Dsi,t =
∂
∑k

j=1

∑n
i=1 LCj

∂si,t

7: Compute Ω̂l−1 and Γ̂l:

Ω̂l−1 =
1

n

n∑
i=1

(
JAi

l−1K
⊤
HJAi

l−1KH
)

Γ̂l =
1

n

n∑
i=1

(
1

|T |
DSi

l

⊤DSi
l

)

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a paper at DATA-FM workshop @ ICLR 2025

8: Perform eigenvalue decomposition of Ω̂l−1 and Γ̂l, obtain QΩ,ΛΩ, QΓ,ΛΓ, which satisfies

Ω̂l−1 = QΩΛΩQ
⊤
Ω

Γ̂l = QΓΛΓQ
⊤
Γ

9: Define a diagonal matrix Λ and compute the diagonal element as

Λ∗
ii = n−1

n∑
j=1

((
QΩl−1

⊗QΓl

)
∇θlLCj

)2
i
.

10: Compute Ĥ−1
l as

Ĥ−1
l =

(
QΩl−1

⊗QΓl

)
(Λ + λlIdl

)
−1 (

QΩl−1
⊗QΓl

)T
11: end for
12: Splice Hl sequentially into large diagonal matrices

Ĥ−1
ĝ =

 Ĥ−1
1 0

. . .
0 Ĥ−1

d


where d is the number of the convolution layer of the concept predictor.

13: Return: the inverse Hessian matrix Ĥ−1
ĝ .

Algorithm 5 EK-FAC for Label Predictor f

1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original label predictor f̂ .
2: Denote the pre-activated output of f̂ as f ′, Compute A as

A =
1

n
·

n∑
i=1

ĝ(xi) · ĝ(xi)
T

3: Comput B as:

B =
1

n
·

n∑
i=1

∇f ′LY (f̂ (ĝ(xi)) , yi) · ∇f ′LY (f̂ (ĝ(xi)) , yi)
T

4: Perform eigenvalue decomposition of AA and BB, obtain QA,ΛA, QB ,ΛB , which satisfies

A = QAΛAQ
⊤
A

B = QBΛBQ
⊤
B

5: Define a diagonal matrix Λ and compute the diagonal element as

Λ∗
ii = n−1

n∑
j=1

(
(QA ⊗QB)∇f̂LYj

)2
i
.

6: Compute Ĥ−1

f̂
as

Ĥ−1

f̂
= (QA ⊗QB) (Λ + λId)

−1
(QA ⊗QB)

T

7: Return: the inverse Hessian matrix Ĥ−1

f̂
.

Algorithm 6 EK-FAC Concept-label-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original concept predictor f̂ , label predictor ĝ, and the to
be removed data index set G, and damping parameter λ.

2: For r ∈ G, remove the r-th data (xr, yr, cr) from D and define the new dataset as S.
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3: Use EK-FAC method in algorithm 4 to accelerate iHVP problem for ĝ and obtain the inverse
Hessian matrix Ĥ−1

ĝ

4: Update concept predictor g̃:

g̃ = ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(
∇ĝLCr

(
ĝr(xw), c

r
w
′)−∇ĝLCr

(ĝr(xw), c
r
w)
)
.

5: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̂ and obtain Ĥ−1

f̂

6: Update label predictor f̃ :

f̃ = f̂ +H−1

f̂
· ∇f

n∑
i=1

LY

(
f̂ (ĝ(xi)) , yi

)
−H−1

f̂
· ∇f

n∑
l=1

(
LY

(
f̂ (g̃(xl)) , yl

))
.

7: Return: f̃ , g̃.

Algorithm 7 EK-FAC Concept-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , label predictor ĝ and the to
be removed concept index set M , and damping parameter λ.

2: For r ∈ M , set pr = 0 for all the data z ∈ D.
3: Use EK-FAC method in algorithm 4 to accelerate iHVP problem for ĝ and obtain the inverse

Hessian matrix Ĥ−1
ĝ

4: Update concept predictor g̃:

g̃∗ = ĝ −H−1
ĝ · ∇ĝ

∑
j /∈M

n∑
i=1

LCj (ĝ
j(xi), c

j
i ).

5: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̂ and obtain Ĥ−1

f̂

6: Update label predictor f̃ :

f̃ = f̂ −H−1

f̂
· ∇f̂

n∑
l=1

LY

(
f̂ (g̃∗(xl)) , yl

)
.

7: Map g̃∗ to g̃ by removing the r-th row of the matrix in the final layer of g̃∗ for r ∈ M .
8: Return: f̃ , g̃.

Algorithm 8 EK-FAC Data-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , and label predictor ĝ, a set
of erroneous data De and its associated index set Se, and damping parameter λ.

2: For the index (w, r) in Se, correct crw to the right label crw
′ for the w-th data (xw, yw, cw).

3: Use EK-FAC method in algorithm 4 to accelerate iHVP problem for ĝ and obtain the inverse
Hessian matrix Ĥ−1

ĝ

4: Update concept predictor g̃:

g̃ = ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(
∇ĝLCr

(
ĝr(xw), c

r
w
′)−∇ĝLCr

(ĝr(xw), c
r
w)
)
.

5: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̂ and obtain H−1

f̂

Compute A as:

A = H−1

f̂
·
∑

i∈[n]−G

∇f̂LY

(
f̂(ĝ(xi)), yi

)
Obtain f̄ as

f̄ = f̂ +A
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6: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̄ and obtain H−1
f̄

Compute B′ as

B′ = −H−1
f̄

·
∑

i∈[n]−G

∇f̂

(
LY (f̄(g̃(xi)), yi)− LY (f̄(ĝ(xi)), yi)

)
Update the label predictor f̃ as: f̃ = f̂ +A+B′.

7: Return: f̃ , g̃.

H ADDITIONAL EXPERIMENTS

H.1 EXPERIMENTAL SETTING

Methodology for Processing CUB Dataset For CUB dataset, we follow the setting in Koh et al.
(2020). We aggregate instance-level concept annotations into class-level concepts via majority voting:
e.g., if more than 50% of crows have black wings in the data, then we set all crows to have black
wings.

RMIA score. The RMIA score is computed as:

LRθ(x, z) ≈
Pr(fθ(x)|N (µx,z̄(x), σ

2
x,z̄(x)))

Pr(fθ(x)|N (µx̄,z(x), σ2
x̄,z(x)))

×
Pr(fθ(z)|N (µx,z̄(z), σ

2
x,z̄(z)))

Pr(fθ(z)|N (µx̄,z(z), σ2
x̄,z(z)))

where fθ(x) represents the model’s output (logits) for the data point x, N (µ, σ2) denotes a Gaussian
distribution with mean µ and variance σ2, µx,z̄(x) is the mean of the model’s outputs for x under
the assumption that x belongs to the training set, and σ2

x,z̄(x) is the variance of the model’s outputs
for x. The likelihoods Pr(fθ(x)|N ) represent the probability that the model’s output fθ(x) follows
the Gaussian distribution parameterized by µ and σ2, under the two different hypotheses: x being a
member of the training set versus not being a member.

H.2 IMPROVEMENT VIA HARMFUL DATA REMOVAL

We conducted additional experiments on CUB datasets with synthetically introduced noisy concepts
or labels. Firstly, we introduce noises under three levels. At the concept level, we choose 10% of the
concepts and flip these concept labels for a portion of the data. At the data level, we choose 10% of
the data and flip their labels. At the concept-label level, we choose 10% of the total concepts and flip
them. Then, we conduct the following experiments.

We introduce noises into the three levels and train the model. After that, we remove the noise and
obtain the retrained model, which is the ground truth(gt) of this harmful data removal task. In contrast,
we use ECBM to remove the harmful data.

Figure 5: Model performance after the removal of harmful data.

From Figure 5, it can be observed that the model performance improves across all three settings after
noise removal and subsequent retraining or ECBM editing. This confirms that the performance of
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ECBM is nearly equivalent to retraining in various experimental scenarios, further providing evidence
of the robustness of our method.

H.3 PERIODIC EDITING PERFORMANCE

ECBM can perform periodic editing. To evaluate the multiple editing performance of ECBM, we
conduct the following experiments. Firstly, we introduce noises under three levels. At the concept
level, we choose 10% of the concepts and flip these concept labels for a portion of the data. At the
data level, we choose 10% of the data and flip their labels. At the concept-label level, we choose 10%
of the total concepts and flip them. Then, we conduct the following experiments.

At the concept level, we first remove 1% of the concepts, then retrain or use ECBM to edit and repeat.
In the data level, we first remove 1% of the data, then retrain or use ECBM to edit. At the concept
label level, we first remove one concept label from 1% of the data, then retrain or use ECBM to
edit. Note that when removing the next 1% of the concepts, ECBM edits the model based on the last
editing result. The results at each level are shown in Figure 6, 7 and 8.

From the above three levels, we can find that with the mislabeled information removed, the retrained
model achieves better performance in both accuracy and F1 score than the initial model. Furthermore,
the performance of the ECBM-edited model is similar to that of the retrained model, even after 10
rounds of editing, which demonstrates the ability of our ECBM method to handle multiple edits.
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(a) The accuracy of the edited model compared with
retrained.
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Figure 6: Accuracy and F1 score difference of the edited model compared with retrained at concept
level.
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(a) The accuracy of the edited model compared with
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Figure 7: Accuracy and F1 score difference of the edited model compared with retrained at data level.
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Figure 8: Accuracy and F1 score difference of the edited model compared with retrained at concept-
label level.

H.4 MORE VISUALIZATION RESULTS AND EXPLANATION

Visualization. Since CBM is an explainable model, we aim to evaluate the interpretability of our
ECBM (compared to the retraining). We will present some visualization results for the concept-level
edit. Figure 9 presents the top 10 most influential concepts and their corresponding predicted concept
labels obtained by our ECBM and the retrain method after randomly deleting concepts for the CUB
dataset. (Detailed explanation can be found in Appendix H.4.1.) Our ECBM can provide explanations
for which concepts are crucial and how they assist the prediction. Specifically, among the top 10 most
important concepts in the ground truth (retraining), ECBM can accurately recognize 9 within them.
For instance, we correctly identify "has_upperparts_color::orange", "has_upper_tail_color::red",
and "has_breast_color::black" as some of the most important concepts when predicting categories.
Additional visualization results under data level and concept-label level on OAI and CUB datasets
are included in Appendix H.4.2.

Figure 9: Visualization of the Top 10 Most Influential Concepts for CBM(Identified by ECBM or
Retrain) Highlighted on an Extracted Image.

H.4.1 EXPLANATION FOR VISUALIZATION RESULTS

At the concept level, we remove each concept one at a time, retrain the CBM, and subsequently
evaluate the model performance. We rank the concepts in descending order based on the model
performance loss. Concepts that, when removed, cause significant changes in model performance are
considered influential concepts. The top 10 concepts are shown in the retrain column as illustrated
in Figure 9. In contrast, we use our ECBM method instead of the retrain method, as outlined in
Algorithm 7, and the top 10 concepts are shown in the ECBM column of Figure 9.

To help readers connect the top 10 influential concepts with the input image, we provide visualizations
of the data and list the concept labels corresponding to the top 10 influential concepts, which are
shown in Figure 9,10, 11.

For the other two levels and for additional datasets, we also conduct a similar procedure, and the
corresponding visualization results are presented in Figure 12, 13, 14, 15, and 16.
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H.4.2 VISUALIZATION RESULTS

We provide our additional visualization results in Figure 10, 11, 12, 13, 14, 15, and 16.

Figure 10: Visualization of the top-10 most influential concepts for different classes in CUB.

I MORE RELATED WORK

Influence Function. The influence function, initially a staple in robust statistics Cook (2000); Cook
& Weisberg (1980), has seen extensive adoption within machine learning since Koh & Liang (2017)
introduced it to the field. Its versatility spans various applications, including detecting mislabeled
data, interpreting models, addressing model bias, and facilitating machine unlearning tasks. Notable
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Figure 11: Visualization of the top-10 most influential concepts for different classes in CUB.

works in machine unlearning encompass unlearning features and labels Warnecke et al. (2023),
minimax unlearning Liu et al. (2024), forgetting a subset of image data for training deep neural
networks Golatkar et al. (2020a; 2021), graph unlearning involving nodes, edges, and features.
Recent advancements, such as the LiSSA method Agarwal et al. (2017); Kwon et al. (2023) and
kNN-based techniques Guo et al. (2021), have been proposed to enhance computational efficiency.
Besides, various studies have applied influence functions to interpret models across different domains,
including natural language processing Han et al. (2020) and image classification Basu et al. (2021),
while also addressing biases in classification models Wang et al. (2019), word embeddings Brunet
et al. (2019), and finetuned models Chen et al. (2020). Despite numerous studies on influence
functions, we are the first to utilize them to construct the editable CBM. Moreover, compared to
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Figure 12: Visualization of the most influential concept label related to different data in CUB.

traditional neural networks, CBMs are more complicated in their influence function. Because we
only need to change the predicted output in the traditional influence function. While in CBMs, we
should first remove the true concept, then we need to approximate the predicted concept in order to
approximate the output. Bridging the gap between the true and predicted concepts poses a significant
theoretical challenge in our proof.

Model Unlearning. Model unlearning has gained significant attention in recent years, with various
methods (Bourtoule et al., 2021; Brophy & Lowd, 2021; Cao & Yang, 2015; Chen et al., 2022a;b)
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Figure 13: Visualization of the most influential concept label related to different data in CUB.

proposed to efficiently remove the influence of certain data from trained machine learning models.
Existing approaches can be broadly categorized into exact and approximate unlearning methods.
Exact unlearning methods aim to replicate the results of retraining by selectively updating only
a portion of the dataset, thereby avoiding the computational expense of retraining on the entire
dataset (Sekhari et al., 2021; Chowdhury et al., 2024). Approximate unlearning methods, on the
other hand, seek to adjust model parameters to approximately satisfy the optimality condition of
the objective function on the remaining data (Golatkar et al., 2020a; Guo et al., 2019; Izzo et al.,
2021). These methods are further divided into three subcategories: (1) Newton step-based updates
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Figure 14: Visualization of the most influential concept label related to different data in CUB.

that leverage Hessian-related terms [22, 26, 31, 34, 40, 43, 49], often incorporating Gaussian noise to
mitigate residual data influence. To reduce computational costs, some works approximate the Hessian
using the Fisher information matrix (Golatkar et al., 2020a) or small Hessian blocks (Mehta et al.,
2022). (2) Neural tangent kernel (NTK)-based unlearning approximates training as a linear process,
either by treating it as a single linear change (Golatkar et al., 2020b). (3) SGD path tracking methods,
such as DeltaGrad (Wu et al., 2020) and unrollSGD (Thudi et al., 2022), reverse the optimization
trajectory of stochastic gradient descent during training. Despite their advancements, these methods
fail to handle the special architecture of CBMs. Moreover, given the high cost of obtaining data,
we sometimes prefer to correct the data rather than remove it, which model unlearning is unable to
achieve.

J LIMITATIONS AND BROADER IMPACTS

It is important to acknowledge that the ECBM approach is essentially an approximation of the
model that would be obtained by retraining with the edited data. However, results indicate that this
approximation is effective in real-world applications.

Concept Bottleneck Models (CBMs) have garnered much attention for their ability to elucidate the
prediction process through a human-understandable concept layer. However, most previous studies
focused on cases where the data, including concepts, are clean. In many scenarios, we always need
to remove/insert some training data or new concepts from trained CBMs due to different reasons,
such as data mislabeling, spurious concepts, and concept annotation errors. Thus, the challenge of
deriving efficient editable CBMs without retraining from scratch persists, particularly in large-scale
applications. To address these challenges, we propose Editable Concept Bottleneck Models (ECBMs).
Specifically, ECBMs support three different levels of data removal: concept-label-level, concept-
level, and data-level. ECBMs enjoy mathematically rigorous closed-form approximations derived
from influence functions that obviate the need for re-training. Experimental results demonstrate
the efficiency and effectiveness of our ECBMs, affirming their adaptability within the realm of
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Figure 15: Visualization of the most influential concept label related to different data in CUB.

CBMs. Our ECBM can be an interactive model with doctors in the real world, which is an editable
explanation tool.
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Figure 16: Visualization of the most influential concept label related to different data in OAI.
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