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Abstract

Two-step approaches combining pre-trained
large language model embeddings and anomaly
detectors show good performance in text
anomaly detection by leveraging rich semantic
representations. However, high-dimensional
dense embeddings extracted by large language
models create challenges in substantial mem-
ory requirements and high computation time.
To address this challenge, we introduce the
Simplified Isolation Kernel (SIK), which maps
high-dimensional dense embeddings to lower-
dimensional sparse representations while pre-
serving crucial anomaly characteristics. SIK
has linear-time complexity and significantly
reduces space complexity through its innova-
tive boundary-focused feature mapping. Ex-
periments across 7 datasets demonstrate that
SIK achieves better detection performance than
11 SOTA anomaly detection algorithms while
maintaining computational efficiency and low
memory cost. All code and demonstrations
are available at https://anonymous.4open.
science/r/SIK-6577/.

1 Introduction

Text anomaly detection (TAD) plays a crucial role
in many applications, including content modera-
tion, fraud detection, and cybersecurity threat anal-
ysis (Pang et al., 2021). TAD involves identify-
ing textual instances that significantly deviate from
the norm, which could indicate potential security
threats, novel information, or content requiring spe-
cial attention (Cao et al., 2025b). With the exponen-
tial growth of digital text data, developing effective
and efficient text anomaly detection methods has
become increasingly important.

Text anomaly detection methods generally fall
into two categories: end-to-end approaches and
two-step approaches (Li et al., 2024). End-to-end
approaches integrate representation learning and
anomaly detection into unified frameworks. How-
ever, they require substantial data for each spe-

cific domain, demand complete retraining when de-
ployed to new domains. Their poor generalization
across different text corpora makes them impracti-
cal for many real-world scenarios where anomalies
vary across contexts and domains (Malik et al.,
2024).

Recent advances in large language models have
created powerful embedding techniques that extract
meaningful feature representations from various
data types. These modular approaches to anomaly
detection follow a two-step process (Li et al., 2024):
1) extracting dense vector embeddings that capture
semantic relationships and contextual information
from the raw data; 2) applying traditional anomaly
detection algorithms on these embeddings. This
approach leverages pre-trained models to directly
extract features, eliminating the need for model re-
training and significantly improving computational
efficiency.

Isolation-based anomaly detection methods have
demonstrated exceptional performance in text
anomaly detection tasks (Cao et al., 2025b). The
latest method Isolation Kernel (IK) (Ting et al.,
2020) has also been widely applied to anomaly de-
tection in time series, streaming data, and graph
domains due to its data-dependent characteris-
tics (Cao et al., 2024). However, IK requires map-
ping data to a high-dimensional space before per-
forming anomaly detection, which significantly in-
creases computational time and memory cost. The
limitations become particularly problematic in the
context of modern large language models (LLMs),
where the embeddings extracted by LLMs already
possess inherently high dimensionality, often reach-
ing several hundred or thousand dimensions (De-
vlin et al., 2019).

To address these limitations, we propose the Sim-
plified Isolation Kernel (SIK). SIK effectively maps
high-dimensional dense embeddings to a lower-
dimensional sparse representation while preserving
crucial information for anomaly detection. The
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core intuition of SIK is that for text anomaly de-
tection tasks, we only need to focus on the dis-
similarity between normal and anomalous samples,
while the dissimilarity among normal samples can
be ignored. The key contributions of our work are:

* Proposed Simplified Isolation Kernel (SIK),
which has linear time complexity and is able
to handle a training set with anomalies.

* A novel boundary-focused feature mapping
that transforms high-dimensional dense text
embeddings to a sparse, low-dimensional rep-
resentation by capturing only essential bound-
ary relationships, reduce memory cost signifi-
cantly.

* Empirical evaluation demonstrates that SIK
has better detection performance than existing
methods across multiple domains and embed-
dings.

2 Related Work

2.1 Text Representations

The evolution of text representation techniques has
been pivotal in advancing natural language pro-
cessing. Early approaches such as TF-IDF (Salton
and Buckley, 1988) created sparse vector repre-
sentations that, while computationally efficient,
failed to capture semantic relationships between
words. This limitation was partially addressed by
Word2Vec (Mikolov, 2013) and GloVe (Penning-
ton et al., 2014), which generated dense contin-
uous vector spaces based on word co-occurrence
patterns, though they still assigned static represen-
tations regardless of contextual usage. The field
subsequently progressed toward contextualized em-
beddings with ELMo (Peters et al., 2018) and
transformer-based architectures like BERT (De-
vlin et al., 2019), which revolutionized NLP by
using bidirectional attention mechanisms to pro-
duce context-sensitive representations.

The landscape of text representation was fur-
ther transformed by the emergence of large lan-
guage models (LLMs) exemplified by GPT (Brown
et al., 2020). LLMs are trained on vast and diverse
corpora, generating remarkably expressive embed-
dings that capture deep semantic relationships and
generative text properties.

2.2 End-to-end TAD Approaches

End-to-end approaches integrate representation
learning and anomaly detection into unified frame-

works. Early neural methods primarily relied on
autoencoder architectures to model normal text pat-
terns, identifying anomalies through reconstruction
errors (Manevitz and Yousef, 2007).

More recent innovations have shifted toward
transformer-based architectures for text anomaly
detection. CVDD (Ruff et al., 2019) detects anoma-
lies by learning multiple context vectors through
self-attention mechanisms on word embeddings,
then identifying outliers based on the distance be-
tween text representations and these context vec-
tors. DATE (Manolache et al., 2021) identifies
replaced tokens and recognizes which masking
pattern was applied to normal text, then scoring
anomalies based on the model’s uncertainty when
processing unfamiliar patterns. FATE (Das et al.,
2023) leverages a small number of labeled anoma-
lous examples along with a deviation learning ap-
proach, where normal texts are pushed to match
reference scores from a prior distribution while
anomalous texts are forced to deviate significantly.

2.3 Two-step Approaches

Based on the text embeddings, traditional anomaly
detection methods can be applied and they are clas-
sified into several distinct approaches, each with
specific strengths for different data distributions
and anomaly types.

Density-based methods like LOF (Breunig et al.,
2000) identify outliers by measuring local density
deviations relative to neighboring points. Isola-
tion techniques, including iForest (Liu et al., 2008,
2012) and iNNE (Bandaragoda et al., 2018), op-
erate on the principle that anomalies are sparse
and distinctive, using space partitioning strategies
where anomalous points require fewer partitions or
are assigned to larger or out of hyperspheres.

Statistical approaches detect anomalies through
their deviation from established data distributions,
with ECOD (Li et al., 2022) utilizing cumulative
distribution functions for efficient scoring and CO-
POD (Li et al., 2020) employing copulas to ef-
fectively model dependencies in multivariate sce-
narios. Meanwhile, deep learning methods have
emerged as powerful tools for capturing complex,
nonlinear patterns in data. Models such as Deep
SVDD (Ruff et al., 2018) and LUNAR (Goodge
et al., 2022) learn representations from normal in-
stances and identify anomalies as significant devia-
tions from these learned patterns, though they typi-
cally demand substantial training data and compu-
tational resources to achieve optimal performance.



3 Preliminaries

Table 1 presents the key symbols and notations
used in this paper.

Table 1: Key symbols and notations

K1 Isolation Kernel

IE I Isolation Distributional Kernel

P Feature map of Isolation Kernel

d Kernel mean map of Isolation Distributional Kernel
Sri Anomaly scores of Isolation Kernel

KS Simplified Isolation Kernel

10) Feature map of Simplified Isolation Kernel

Ssrx Anomaly scores of Simplified Isolation Kernel

3.1 Problem Definition

Text anomalies are instances that significantly de-
viate from established patterns within a document
collection. These anomalies may manifest as un-
usual topics, atypical linguistic structures, domain-
specific terminology, or deliberately manipulated
content such as spam, misinformation, or hate
speech. Detecting such anomalies serves valuable
purposes in content moderation, deception detec-
tion, and security surveillance.

Let D = {z1,z2,...,2N} represent a col-
lection of NV text documents, where each docu-
ment x; is a sequence of lexical elements: x; =
{token,tokena, ..., tokenr,}, with L; denoting
the document’s length in tokens.

The core objective in text anomaly detection is
distinguishing D into two disjoint subsets: Dypormal
and Dnomalouss Where Danomalous contains docu-
ments that substantially differ from the dominant
patterns exhibited by Dyormal = D\ Danomalous-

3.2 Isolation Kernel (IK)

Isolation Kernel (IK) (Ting et al., 2018) is a data-
driven kernel that derives directly from the dataset
without a learning process. It has been used in
many different anomaly detection application sce-
narios, including time series (Ting et al., 2022,
2024), streaming data (Cao et al., 2025a) and
graphs (Zhuang et al., 2023), etc. The fundamental
principle behind IK involves estimating the proba-
bility that two points will be assigned to the same
partition through a data space partitioning strat-
egy. Previous implementations of IK have utilized
various partitioning mechanisms, including iFor-
est (Ting et al., 2018), hypersphere (Ting et al.,
2020), and Voronoi diagram (Qin et al., 2019)

approaches. In this paper, we specifically em-
ploy the hypersphere partitioning strategy, with
detailed methodological explanations provided in
Section 4.1.

Let D ¢ X C R? be a dataset sampled from
an unknown distribution Pp, and IH, (D) denote
the set of all partitionings H that are admissible
from D C D, where each sample point z € D has
an equal probability of being selected from D, and
D] = v.

The key idea of IK is to use 1) random sample
points 2 to partition the data space, and the detailed
partitioning strategy is provided in Section 4.1. The
similarity between two points x and y is the times
that both of them fall into the same partition 6z|
across t partitionings.

Definition 1 (Ting et al., 2018; Qin et al., 2019)
For any two points x,y € R% Isolation Kernel
of x and vy is defined to be the expectation taken
over the probability distribution on all partition-
ings H € Hy (D) that both x and y fall into the
same isolating partition 0|z] € H, z € D C D:

H](l’,y|D) =

= (@), 2()),

En,p)[L(z,y € 0[z] | 0]z] € H)]

where 1(-) be an indicator function.

Definition 2 (Feature Map of IK) (7Ting et al,
2020) IK maps each point x to a t x i dimensions
binary feature map ® : x — {0,1}*¥. Specifi-
cally, given t partitionings, for each partitioning
H;(i=1,...,t), IK creates a \-dimensional bi-
nary column vector ®;(x) where each dimension
corresponds to one of the v partitions in H;. The
J-th component of this vector is:

®;j(z) =1(z € 0;|0; € Hy), (2)

where j = 1, ... 1. This indicates whether point
x falls inside partition 0; in partitioning H;. The
final representation ®(x) is the concatenation of
all vectors: ®1(x), ..., P4 (x).

3.3 Isolation Distributioal Kernel (IDK)

Based on the same framework of Kernel Mean Em-
bedding (KME) (Muandet et al., 2017), IK has
been used as the foundation to develop a distribu-
tional kernel called Isolation Distributional Ker-
nel (IDK) (Ting et al., 2020). IDK specifically
measures the similarity between two distributions
rather than just between individual points. For text



anomaly detection, the anomaly score of each point
can be computed by measuring the similarity be-
tween each point and the whole data distribution.

Definition 3 Isolation Distributional Kernel of a
point distribution P, and a distribution Py is:

~

1 ~
Ki(Po, Py | D) = 7 (2(P:|D), 8(Py|D))
N (3)
where ®(Py|D) = ﬁ > yey ®y|D) is the ker-
nel mean map.

4 Methodology

For text anomaly detection, we follow a two-step
approach: text documents are first transformed into
dense vector embeddings that capture semantic
relationships. These embeddings can be gener-
ated using pre-trained language models, which en-
code contextual information and linguistic patterns.
The quality of embeddings significantly influences
downstream anomaly detection performance. Once
documents are embedded in a high-dimensional
space, traditional anomaly detection algorithms can
be applied to identify outliers. However, these em-
beddings typically exist in high-dimensional spaces
and applying anomaly detection algorithms to such
high-dimensional data creates substantial compu-
tational challenges. We introduce Simplified Isola-
tion Kernel (SIK) to address these challenges, the
key steps are shown in the following subsections.

4.1 Space Partitioning

The proposed SIK employs a hypersphere-based
space partitioning mechanism, following the same
approach as used in iNNE (Bandaragoda et al.,
2018) and IDK (Ting et al., 2020). The fundamen-
tal idea is to create a collection of hyperspheres
that adapt to the local density of the data, which
enables effective anomaly detection across regions
of various densities.

Definition 4 (Hypersphere Partionings) Each
point z € D is isolated from the rest of the points
in D by building hyperspheres 0[z] € H centered
at z. The radius of this hypersphere is determined
by the distance between z and its nearest neighbor
in D\ {z}. Each partitioning H consists of 1
hyperspheres and the region that is not covered
by these hyperspheres. For stability, t different
partitionings H;, 1 = 1...t are generated, each
based on a different random subset D; C D.

This partitioning mechanism naturally adapts
to the underlying data distribution. In dense re-
gions, the resulting hyperspheres have short radii,
since nearest neighbors are typically close. Con-
versely, in sparse regions, the hyperspheres have
long radii because nearest neighbors are farther
apart. This data-dependent property is crucial for
effective anomaly detection, as it creates adaptive
partitionings that can appropriately in both dense
and sparse regions.

Unlike fixed-radii approaches that may struggle
with varying data densities, this adaptive mecha-
nism provides appropriate coverage across the en-
tire feature space. It avoids overfitting in dense re-
gions (where a fixed small radius would create too
many partitions) and underfitting in sparse regions
(where a fixed large radius might miss important
structural details).

The first difference between IK and SIK lies in
their fundamental approaches, despite using the
same hypersphere partitioning mechanism. Both
methods agree that points falling outside hyper-
spheres are more likely to be abnormal. However,
IK focuses on pairwise similarity measurement,
calculating how many times two points fall into the
same specific hypersphere to determine their sim-
ilarity. In contrast, SIK adopts a boundary-based
perspective, constructing a decision boundary us-
ing multiple hyperspheres. In SIK, we assume that
the higher the frequency of a point falling outside
these boundaries, the more likely it is to be abnor-
mal. SIK deliberately ignores the specific position
of points within the boundaries, as this information
is less relevant for anomaly detection purposes.

4.2 Feature Map

The second key difference between IK and our
proposed SIK lies in their feature representation
approaches. Figure 1 illustrates how both meth-
ods map data points differently in the Reproducing
Kernel Hilbert Space (RKHS) 7.

While IK achieves linear time complexity, it
creates high-dimensional feature representations
by tracking exactly which hypersphere contains
each point. This approach becomes problematic
for large-scale text anomaly detection, where in-
put data (e.g., 768-dimensional BERT embeddings)
is already high-dimensional. IK feature mapping
further expands this dimensionality, creating pro-
hibitive memory requirements. Figure 1 left shows
that IK maps all points to 3-dimensions (¢ = 3)
space in one partitioning.
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Figure 1: An illustration of feature maps of IK and SIK with one partitioning (t = 1) of 3 hyperspheres. Each center
of a hypersphere is at a point z € D where 1) = 3 are randomly selected from the given dataset D. When a point =
falls into an overlapping region, z is regarded as being in the hypersphere whose center is closer to x. On the left IK
feature space, = has a 3-dimensional feature vector. On the right SIK feature space, x has only a 1-dimensional

feature vector.

SIK addresses this limitation through a more
compact feature representation, and the key insight
is that anomaly detection doesn’t require deter-
mining that a point falls into which specific hy-
persphere, but is sufficient to know whether a point
falls into the boundary. This simplification signifi-
cantly reduces the feature dimension while preserv-
ing the critical information needed for anomaly
detection. Figure 1 right shows that all points are
mapped to a 1-dimensional space, points in the
boundary are mapped to the original of RKHS, and
others are mapped to 1.

Definition 5 (Feature Map of SIK) Given a
point x € R?, the feature map ¢ : = — {0,1}!
of SIK is a t-dimensional binary column vector,

where each H; (1 = 1, ...,1) indicates whether x
falls outside all hyperspheres 0 € H;:
qﬁ,(az) = ]l(a? ¢ 9‘9 S Hz) @

The SIK kernel function between two points z
and y can be formally defined as:

rs(@,y) = Eu, ) [L(z,y ¢ 0] 6 € Hy)]

= >y g 616 € )
i=1

1

= $(6(a), 6(0)). )

Unlike traditional kernel functions that typically
measure similarity between points, SIK quantifies
how many times two points simultaneously fall
outside all hyperspheres across multiple partition-
ings. When both points consistently fall outside

all hyperspheres, they have a high SIK value. This
characteristic allows us to compute anomaly scores
by measuring the similarity between each point’s
feature vector and a reference anomaly vector (con-
sisting of all ones), which forms the basis of our
scoring method described in the next subsection.

4.3 Anomaly Scores Calculation

Based on the feature map of SIK, an ideal anomaly
point A should fall outside all hyperspheres in all
partitionings, where its vector will be [1,...,1].
Thus, the anomaly score of each point x can be
defined as the similarity between the point x and
the ideal reference anomaly point 4.

Definition 6 (Anomaly Score) Given the binary
feature representation ¢(x) € {0,1}* for a point
x € RY and let A be an reference anomaly point
with $(A) = [1,..., 1], the anomaly score is de-
fined as:

1

Ssik(x) = ;(QS(x)v ?(A)), (6)

the range of Ssrk is [0, 1] since 0 < Sgrx(z) < t.

Under this formulation, points with scores ap-
proaching 1 after normalization) are more likely to
be anomalies as they have higher similarity to the
ideal anomaly, while normal points typically have
scores closer to 0.

Since SIK feature map consists of 0 and 1, the
anomaly score of point x are equivalent to the
Hamming distance between ¢(x) and the origin
[0, ...,0], which quantifies the degree that a point
is isolated from regions of normal data. In addition,



the anomaly scores can be equivalently expressed
in terms of L and L1 norm as well.

The score calculation method can also be applied
to the IK feature map:

1
Sik(@) =1-1 2@, @

where || - || can be either LO or L1 norm.

It is worth noting that S;x(x) is equal to
Ssrx (x) since both methods essentially count how
many times a point falls outside all hyperspheres
across the t partitionings, directly measuring its
degree of isolation from normal data regions.

4.4 1Is SIK a Valid Kernel?

According to Mercer’s theorem, a symmetric func-
tion k : X X X = R is a valid kernel only if it is
positive semi-definite and symmetric (Christmann
and Steinwart, 2008). We demonstrate that SIK
satisfies both requirements.

Based on Equation 5, for symmetry, we observe
that:

1

HS(wv y) = Z<¢(x)a ¢(y)>

= 2(60), 6(a)

= rs(y,x) ®)

This confirms SIK satisfies symmetry.

For positive semi-definiteness, Mercer’s theorem
requires that for any data points 1, ...,z, € R?
and any real coefficients oy, ..., o, € R:

n n
ZZaiajfis(xi,xj) >0 9
i=1 j=1
By the properties of inner products and the fact
that kg(x;, x5) = (¢(z4), ¢(x;)), rewritten Equa-
tion 9 as:

<Zai¢5(xi)a2@j¢($j)> >0 (10)
i=1 j=1

Since both summations represent the same vec-
tor in feature space, this simplifies to:

n 2
> aig(xi)
=1

>0
This inequality always holds since a squared
norm is non negative. It is important to note that
the feature map ¢ maps input points to binary
vectors, which further supports the positive semi-
definiteness property. Therefore, by Mercer’s theo-
rem, SIK is a valid kernel function.

1D

S Experiments

5.1 Experimental Setups

The experiments are conducted using the same
benchmark datasets and embeddings from the
benchmark NLP-ADBench (Li et al., 2024). The
embeddings are extracted via BERT (Devlin et al.,
2019) and OpenAl (text-embedding-3-large) (Ope-
nAl, 2024) models as specified in NLP-ADBench.
Statistical information of the experiment datasets
is summarized in Table 2. AUROC (Area Under
the Receiver Operating Characteristic Curve) is
adopted as the evaluation metric. Each experiment
is repeated 5 times with average results reported to
mitigate randomness.

We utilized 8 traditional methods (LOF, iFor-
est, ECOD, DeepSVDD, Autoencoder, LUNAR,
INNE and IDK) sourced from the PyOD library
(Zhao et al., 2019) on the extracted embeddings.
The hyperparameter of nearest neighbors for LOF
and LUNAR is searched in {5, 10,20,40}. For
iForest, iNNE, IDK and SIK, ) is searched
in {32,64,128,256,512} and with defalt ¢ =
200. For Autoencoder and DeepSVDD, the hy-
perparameter of hidden neuron is searched in
{[128, 64], [64, 32], [32, 16] }].

For comparative analysis, 3 end-to-end methods
(CVDD, DATE and FATE) are included in this
paper, and their performance is directly referenced
from the NLP-ADBench (Li et al., 2024) due to the
same datasets.

Table 2: Statistical information of datasets

Dataset # Samples # Ano. % Ano. Train Test
EmailSpam 3578 146 4.08 2402 1176
SMSSpam 4969 144 2.89 3162 1510
BBCNews 1785 62 3.47 1206 579
AGNews 98207 3780 385 66098 32109
N24News 59822 1828 3.06 40595 19227
MovieReview 26369 1487 5.64 17417 8952
YelpReview 316924 17938 5.66 209290 107634

5.2 Empirical Evaluation

Table 3 presents the AUROC scores of all baseline
methods across the 7 datasets.

With BERT embeddings, SIK performs best
on Email_Spam, SMS_Spam, BBC_News and
Movie_Review datasets. A Friedman-Nemenyi
test (DemsSar, 2006) in Figure 2a shows that SIK
is top-ranked, only SIK and IDK are significantly
better than DeepSVDD, ECOD and Forest, but SIK
is much faster than IDK.



Table 3: Evaluation results across 7 datasets in terms of AUROC. SIK results are shown with a shadow background,
and the best result on each dataset is in bold.

Algorithms Email_Spam SMS_Spam BBC_News AG_News N24News Movie Yelp

CVDD 0.9340 0.4782 0.7221 0.6046 0.7507 0.4895 0.5345
DATE 0.9697 0.9398 0.9030 0.8120 0.7493 0.5185 0.6092
FATE 0.9061 0.6262 0.9310 0.7756 0.8073 0.5289 0.5945
BERT+LOF 0.7793 0.7642 0.9412 0.7643 0.6991 0.5253  0.6842
BERT+iForest 0.7599 0.6544 0.7394 0.6760 0.5804 0.4624 0.6222
BERT+ECOD 0.7427 0.6164 0.7302 0.6578 0.5363 0.4434  0.6204
BERT+DeepSVDD  0.6200 0.5765 0.6841 0.6290 0.5373 0.4732  0.6066
BERT+AE 0.8067 0.7526 09117 0.7491 0.6465 0.4975 0.6728
BERT+LUNAR 0.8340 0.7474 0.9404 0.7832 0.6589 0.4806 0.6721
BERT+INNE 0.8531 0.7528 0.9235 0.7761 0.6360 0.5125 0.6861
BERT+IDK 0.8649 0.7703 0.9473 0.7805 0.6625 0.5131 0.6829
BERT+SIK 0.8705 0.7719 0.9414 0.7755 0.6689 0.5264 0.6840
OpenAI+LOF 0.9726 0.9032 0.9671 0.9013 0.8160 0.6731 0.7694
OpenAl+iForest 0.5425 0.6131 0.6468 0.5364 0.5289 0.5886 0.5401
OpenAI+ECOD 0.8926 0.6155 0.7780 0.7260 0.6179 0.6933 0.7706
OpenAl+DeepSVDD  0.5291 0.5238 0.6010 0.5272 0.5885 0.5318 0.4808
OpenAI+AE 0.6826 0.7933 0.9645 0.8684 0.7504 0.6597 0.7568
OpenAI+LUNAR 0.9590 0.7855 0.9773 0.9309 0.8324 0.6781 0.7984
OpenAI+INNE 0.9727 0.8688 0.9833 0.8701 0.8067 0.6668 0.7367
OpenAI+IDK 0.9531 0.8615 0.9797 0.8855 0.8290 0.6290 0.6688
OpenAI+SIK 0.9729 0.8967 0.9844 0.8904 0.8343 0.6634 0.7345

SIK shows further performance improvements
when applied to OpenAl embeddings, achieving
the highest AUROC scores on several datasets, in-
cluding Email_Spam, BBC_News, and N24News.
The high-dimensional OpenAl embeddings contain
more nuanced semantic information, which SIK
successfully leverages for more accurate anomaly
detection. Figure 2b shows that SIK is top-ranked
and the performance of SIK has a critical differ-
ence from DeepSVDD and iForest, but IDK doesn’t
have.

Compared with end-to-end approaches (CVDD,
DATE, and FATE), the two-step approach with SIK
usually demonstrates superior performance. For
instance, on the BBC_News dataset, OpenAI+SIK
significantly outperforms all 3 end-to-end methods.
Figure 2c shows that SIK is the only detector that
significantly better than CVDD.

Compared with other isolation-based approaches
(iForest, iNNE and IDK), SIK maintains compa-
rable or superior performance despite its reduced
feature dimensionality. With OpenAl embeddings
on the SMS_Spam dataset, SIK achieves higher
AUROC than both iForest and IDK, indicating that
the SIK preserves the essential discrimination in-
formation in the low-dimensional sparse map.

Since OpenAl-based methods perform better
than end-to-end and BERT-based methods, we will

focus on OpenAl-based methods in the following
subsections.
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Figure 2: Friedman-Nemenyi test for the anomaly de-
tection methods based on BERT, OpenAl embeddings
and end-to-end at significance level 0.1 (the lower the
better).



5.3 Scalability Analysis

Memory complexity: SIK achieves space effi-
ciency improvements by focusing solely on bound-
ary information. During training, SIK only needs
to store hypersphere information rather than map-
ping the entire training dataset to feature spaces as
required by IK. During testing, SIK reduces the fea-
ture representation dimensionality from ¢ to just
t, representing a significant reduction in space com-
plexity from O(nt1)) to O(nt), where the training
set has n points.

Time complexity: The fundamental difference
between SIK and IK emerges in how they process
data during both the training and testing phases.
During training, SIK directly calculates anomaly
scores via norm computations, whereas IK requires
mapping the entire dataset to compute KME, mak-
ing SIK substantially faster.

During testing, while both SIK and IK have the
same mapping complexity of O(nti)), SIK’s fea-
ture map dimensionality is only ¢ compared to IK’s
1t dimensions. This dimensional reduction trans-
lates to a testing complexity of only O(nt) for SIK
versus O(nt1) for IK when computing similarities,
resulting in computational savings, particularly for
larger values of v. The overall time complexity is
linear because t1) are hyperparameters and ¢ty < n
for large datasets.

Table 4 presents the runtime and memory costs
of both IK and SIK on the SMS_Spam dataset with
the same hyperparameters ¢ = 256,¢ = 200. SIK
completes training approximately 14 times faster
than IK while requiring dramatically less memory.
During testing, memory savings remain substantial
while time differences are less pronounced.

Although LOF and LUNAR demonstrate good
performance on OpenAl embeddings, LOF’s
quadratic time complexity and LUNAR’s computa-
tionally intensive deep learning approach result in
significantly slower runtime compared to SIK.

Table 4: Time and memory comparison on SMS_Spam
where ¢ = 256,t = 200.

Time (CPU seconds) | Memory (MB)

IDK SIK IDK SIK
Train | 115.4 8.2 12352 0.5
Test | 46.3 45.6 589.8 2.3

5.4 Training with impure data

This section examines how robust anomaly detec-
tors are against contamination in training data. Fig-

ure 3 illustrates the performance of both SIK and
IDK on the Email_Spam dataset with increasing
anomaly ratios from 1% to 5%. SIK exhibits a grad-
ual decline in AUROC performance, while IDK
maintains more stable performance. Despite this
slight downward trend, SIK consistently maintains
excellent detection capabilities with all values re-
maining above 0.95 AUROC.

The performance difference occurs despite both
methods using identical hypersphere construction.
SIK’s decline stems from its reliance on binary in-
side/outside boundary decisions; when anomalies
become hypersphere centers, they create spheres
that erroneously encompass other anomalies, mis-
classifying them as normal. In contrast, IDK
demonstrates greater robustness because it goes be-
yond simple boundary decisions by utilizing kernel
mean embedding (KME), which averages feature
representations across all training samples. This
ensemble effect mitigates the negative impact of in-
dividual anomalous sphere centers, allowing IDK’s
similarity measurement to remain highly effective
even when hyperspheres are distorted by contami-
nation.

1.00
—k— SIK

IDK
.9726 0.9721

.9652 06
0.96 66 52

0.9700 0.9731 0.973%

0.90 1 2 3 4 5

Ratio (%)

Figure 3: The performance of 5 runs of SIK on
Email_Spam OpenAl embedding. The anomaly ratio is
the ratio of the number of normal points and anomalies
in the given dataset.

6 Conclusion

In this paper, we introduced the Simplified Isolation
Kernel (SIK) for text anomaly detection. SIK effec-
tively overcomes the computational and memory
challenges posed by dense text embeddings from
pre-trained LLMs by mapping high-dimensional
dense embeddings to a low-dimensional sparse
space that preserves boundary information. The
key innovation of SIK lies in its boundary-focused
feature mapping, which maintains a linear time
complexity and significantly reduces the dimen-
sionality of the feature representation.



Limitations

Although the proposed SIK has shown encourag-
ing results in text anomaly detection, some issues
remain for future consideration. While SIK was
thoroughly compared with both end-to-end and
two-step methods, we did not compare it with di-
rect LLM reasoning approaches due to their signif-
icantly slower processing speed and output incon-
sistencies. Our attempts to use LLMs directly for
anomaly detection produced results where the num-
ber of output labels frequently mismatched the test
data quantity and could not be properly mapped to
original text indices, preventing meaningful com-
parison.

Additionally, SIK demonstrates effective integra-
tion with LLM-generated embeddings, but its ap-
plicability to more nuanced domains such as legal,
medical, or technical texts requires further inves-
tigation. Future work should also explore SIK’s
capability in detecting subtle anomalies that main-
tain similar semantic structures to normal text but
contain misleading information or factual errors.

Ethic Statement

Data Sources and Usage: This study utilizes pub-
licly available research datasets commonly refer-
enced in NLP and anomaly detection literature. All
datasets are properly cited throughout the paper.
No private, proprietary, or personally identifiable
information was included in our research.

Risks and Responsible Use: While anomaly de-
tection technologies offer valuable capabilities for
content moderation and security applications, we
recognize they could potentially be misused for
surveillance, censorship, or discriminatory filter-
ing. We emphasize that SIK should be deployed
responsibly with clear guidelines that respect pri-
vacy rights and freedom of expression. The technol-
ogy presented in this paper is intended for research
purposes and legitimate applications such as spam
detection, fraud prevention, and identification of
harmful content, not for arbitrary surveillance or
censorship activities.

Use of AI Assistance: We acknowledge the use
of Al-based writing assistants for grammatical re-
finement, spelling correction, and improving the
clarity of our manuscript. However, all intellectual
contributions, experimental designs, analyses, and
conclusions in this paper are solely the work of
the authors. The development of SIK, its imple-
mentation, experimentation, and evaluation were

conducted exclusively by the authors without auto-
mated generation of scientific content.
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