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Abstract001

Two-step approaches combining pre-trained002
large language model embeddings and anomaly003
detectors show good performance in text004
anomaly detection by leveraging rich semantic005
representations. However, high-dimensional006
dense embeddings extracted by large language007
models create challenges in substantial mem-008
ory requirements and high computation time.009
To address this challenge, we introduce the010
Simplified Isolation Kernel (SIK), which maps011
high-dimensional dense embeddings to lower-012
dimensional sparse representations while pre-013
serving crucial anomaly characteristics. SIK014
has linear-time complexity and significantly015
reduces space complexity through its innova-016
tive boundary-focused feature mapping. Ex-017
periments across 7 datasets demonstrate that018
SIK achieves better detection performance than019
11 SOTA anomaly detection algorithms while020
maintaining computational efficiency and low021
memory cost. All code and demonstrations022
are available at https://anonymous.4open.023
science/r/SIK-6577/.024

1 Introduction025

Text anomaly detection (TAD) plays a crucial role026

in many applications, including content modera-027

tion, fraud detection, and cybersecurity threat anal-028

ysis (Pang et al., 2021). TAD involves identify-029

ing textual instances that significantly deviate from030

the norm, which could indicate potential security031

threats, novel information, or content requiring spe-032

cial attention (Cao et al., 2025b). With the exponen-033

tial growth of digital text data, developing effective034

and efficient text anomaly detection methods has035

become increasingly important.036

Text anomaly detection methods generally fall037

into two categories: end-to-end approaches and038

two-step approaches (Li et al., 2024). End-to-end039

approaches integrate representation learning and040

anomaly detection into unified frameworks. How-041

ever, they require substantial data for each spe-042

cific domain, demand complete retraining when de- 043

ployed to new domains. Their poor generalization 044

across different text corpora makes them impracti- 045

cal for many real-world scenarios where anomalies 046

vary across contexts and domains (Malik et al., 047

2024). 048

Recent advances in large language models have 049

created powerful embedding techniques that extract 050

meaningful feature representations from various 051

data types. These modular approaches to anomaly 052

detection follow a two-step process (Li et al., 2024): 053

1) extracting dense vector embeddings that capture 054

semantic relationships and contextual information 055

from the raw data; 2) applying traditional anomaly 056

detection algorithms on these embeddings. This 057

approach leverages pre-trained models to directly 058

extract features, eliminating the need for model re- 059

training and significantly improving computational 060

efficiency. 061

Isolation-based anomaly detection methods have 062

demonstrated exceptional performance in text 063

anomaly detection tasks (Cao et al., 2025b). The 064

latest method Isolation Kernel (IK) (Ting et al., 065

2020) has also been widely applied to anomaly de- 066

tection in time series, streaming data, and graph 067

domains due to its data-dependent characteris- 068

tics (Cao et al., 2024). However, IK requires map- 069

ping data to a high-dimensional space before per- 070

forming anomaly detection, which significantly in- 071

creases computational time and memory cost. The 072

limitations become particularly problematic in the 073

context of modern large language models (LLMs), 074

where the embeddings extracted by LLMs already 075

possess inherently high dimensionality, often reach- 076

ing several hundred or thousand dimensions (De- 077

vlin et al., 2019). 078

To address these limitations, we propose the Sim- 079

plified Isolation Kernel (SIK). SIK effectively maps 080

high-dimensional dense embeddings to a lower- 081

dimensional sparse representation while preserving 082

crucial information for anomaly detection. The 083
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core intuition of SIK is that for text anomaly de-084

tection tasks, we only need to focus on the dis-085

similarity between normal and anomalous samples,086

while the dissimilarity among normal samples can087

be ignored. The key contributions of our work are:088

• Proposed Simplified Isolation Kernel (SIK),089

which has linear time complexity and is able090

to handle a training set with anomalies.091

• A novel boundary-focused feature mapping092

that transforms high-dimensional dense text093

embeddings to a sparse, low-dimensional rep-094

resentation by capturing only essential bound-095

ary relationships, reduce memory cost signifi-096

cantly.097

• Empirical evaluation demonstrates that SIK098

has better detection performance than existing099

methods across multiple domains and embed-100

dings.101

2 Related Work102

2.1 Text Representations103

The evolution of text representation techniques has104

been pivotal in advancing natural language pro-105

cessing. Early approaches such as TF-IDF (Salton106

and Buckley, 1988) created sparse vector repre-107

sentations that, while computationally efficient,108

failed to capture semantic relationships between109

words. This limitation was partially addressed by110

Word2Vec (Mikolov, 2013) and GloVe (Penning-111

ton et al., 2014), which generated dense contin-112

uous vector spaces based on word co-occurrence113

patterns, though they still assigned static represen-114

tations regardless of contextual usage. The field115

subsequently progressed toward contextualized em-116

beddings with ELMo (Peters et al., 2018) and117

transformer-based architectures like BERT (De-118

vlin et al., 2019), which revolutionized NLP by119

using bidirectional attention mechanisms to pro-120

duce context-sensitive representations.121

The landscape of text representation was fur-122

ther transformed by the emergence of large lan-123

guage models (LLMs) exemplified by GPT (Brown124

et al., 2020). LLMs are trained on vast and diverse125

corpora, generating remarkably expressive embed-126

dings that capture deep semantic relationships and127

generative text properties.128

2.2 End-to-end TAD Approaches129

End-to-end approaches integrate representation130

learning and anomaly detection into unified frame-131

works. Early neural methods primarily relied on 132

autoencoder architectures to model normal text pat- 133

terns, identifying anomalies through reconstruction 134

errors (Manevitz and Yousef, 2007). 135

More recent innovations have shifted toward 136

transformer-based architectures for text anomaly 137

detection. CVDD (Ruff et al., 2019) detects anoma- 138

lies by learning multiple context vectors through 139

self-attention mechanisms on word embeddings, 140

then identifying outliers based on the distance be- 141

tween text representations and these context vec- 142

tors. DATE (Manolache et al., 2021) identifies 143

replaced tokens and recognizes which masking 144

pattern was applied to normal text, then scoring 145

anomalies based on the model’s uncertainty when 146

processing unfamiliar patterns. FATE (Das et al., 147

2023) leverages a small number of labeled anoma- 148

lous examples along with a deviation learning ap- 149

proach, where normal texts are pushed to match 150

reference scores from a prior distribution while 151

anomalous texts are forced to deviate significantly. 152

2.3 Two-step Approaches 153

Based on the text embeddings, traditional anomaly 154

detection methods can be applied and they are clas- 155

sified into several distinct approaches, each with 156

specific strengths for different data distributions 157

and anomaly types. 158

Density-based methods like LOF (Breunig et al., 159

2000) identify outliers by measuring local density 160

deviations relative to neighboring points. Isola- 161

tion techniques, including iForest (Liu et al., 2008, 162

2012) and iNNE (Bandaragoda et al., 2018), op- 163

erate on the principle that anomalies are sparse 164

and distinctive, using space partitioning strategies 165

where anomalous points require fewer partitions or 166

are assigned to larger or out of hyperspheres. 167

Statistical approaches detect anomalies through 168

their deviation from established data distributions, 169

with ECOD (Li et al., 2022) utilizing cumulative 170

distribution functions for efficient scoring and CO- 171

POD (Li et al., 2020) employing copulas to ef- 172

fectively model dependencies in multivariate sce- 173

narios. Meanwhile, deep learning methods have 174

emerged as powerful tools for capturing complex, 175

nonlinear patterns in data. Models such as Deep 176

SVDD (Ruff et al., 2018) and LUNAR (Goodge 177

et al., 2022) learn representations from normal in- 178

stances and identify anomalies as significant devia- 179

tions from these learned patterns, though they typi- 180

cally demand substantial training data and compu- 181

tational resources to achieve optimal performance. 182
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3 Preliminaries183

Table 1 presents the key symbols and notations184

used in this paper.185

Table 1: Key symbols and notations

κI Isolation Kernel
K̂I Isolation Distributional Kernel
Φ Feature map of Isolation Kernel
Φ̂ Kernel mean map of Isolation Distributional Kernel
SIK Anomaly scores of Isolation Kernel
κS Simplified Isolation Kernel
ϕ Feature map of Simplified Isolation Kernel
SSIK Anomaly scores of Simplified Isolation Kernel

3.1 Problem Definition186

Text anomalies are instances that significantly de-187

viate from established patterns within a document188

collection. These anomalies may manifest as un-189

usual topics, atypical linguistic structures, domain-190

specific terminology, or deliberately manipulated191

content such as spam, misinformation, or hate192

speech. Detecting such anomalies serves valuable193

purposes in content moderation, deception detec-194

tion, and security surveillance.195

Let D = {x1, x2, . . . , xN} represent a col-196

lection of N text documents, where each docu-197

ment xi is a sequence of lexical elements: xi =198

{token1, token2, . . . , tokenLi}, with Li denoting199

the document’s length in tokens.200

The core objective in text anomaly detection is201

distinguishing D into two disjoint subsets: Dnormal202

and Danomalous, where Danomalous contains docu-203

ments that substantially differ from the dominant204

patterns exhibited by Dnormal = D \Danomalous.205

3.2 Isolation Kernel (IK)206

Isolation Kernel (IK) (Ting et al., 2018) is a data-207

driven kernel that derives directly from the dataset208

without a learning process. It has been used in209

many different anomaly detection application sce-210

narios, including time series (Ting et al., 2022,211

2024), streaming data (Cao et al., 2025a) and212

graphs (Zhuang et al., 2023), etc. The fundamental213

principle behind IK involves estimating the proba-214

bility that two points will be assigned to the same215

partition through a data space partitioning strat-216

egy. Previous implementations of IK have utilized217

various partitioning mechanisms, including iFor-218

est (Ting et al., 2018), hypersphere (Ting et al.,219

2020), and Voronoi diagram (Qin et al., 2019)220

approaches. In this paper, we specifically em- 221

ploy the hypersphere partitioning strategy, with 222

detailed methodological explanations provided in 223

Section 4.1. 224

Let D ⊂ X ⊆ Rd be a dataset sampled from 225

an unknown distribution PD, and Hψ(D) denote 226

the set of all partitionings H that are admissible 227

from D ⊂ D, where each sample point z ∈ D has 228

an equal probability of being selected from D, and 229

|D| = ψ. 230

The key idea of IK is to use ψ random sample 231

points z to partition the data space, and the detailed 232

partitioning strategy is provided in Section 4.1. The 233

similarity between two points x and y is the times 234

that both of them fall into the same partition θ[z] 235

across t partitionings. 236

Definition 1 (Ting et al., 2018; Qin et al., 2019) 237

For any two points x, y ∈ Rd, Isolation Kernel 238

of x and y is defined to be the expectation taken 239

over the probability distribution on all partition- 240

ings H ∈ Hψ(D) that both x and y fall into the 241

same isolating partition θ[z] ∈ H , z ∈ D ⊂ D: 242

κI(x, y | D) = EHψ(D)[1(x, y ∈ θ[z] | θ[z] ∈ H)] 243

=
1

t
⟨Φ(x),Φ(y)⟩, (1) 244

where 1(·) be an indicator function. 245

Definition 2 (Feature Map of IK) (Ting et al., 246

2020) IK maps each point x to a t× ψ dimensions 247

binary feature map Φ : x 7→ {0, 1}t×ψ. Specifi- 248

cally, given t partitionings, for each partitioning 249

Hi (i = 1, . . . , t), IK creates a ψ-dimensional bi- 250

nary column vector Φi(x) where each dimension 251

corresponds to one of the ψ partitions in Hi. The 252

j-th component of this vector is: 253

Φi,j(x) = 1(x ∈ θj | θj ∈ Hi), (2) 254

where j = 1, . . . , ψ. This indicates whether point 255

x falls inside partition θj in partitioning Hi. The 256

final representation Φ(x) is the concatenation of 257

all vectors: Φ1(x), . . . ,Φt(x). 258

3.3 Isolation Distributioal Kernel (IDK) 259

Based on the same framework of Kernel Mean Em- 260

bedding (KME) (Muandet et al., 2017), IK has 261

been used as the foundation to develop a distribu- 262

tional kernel called Isolation Distributional Ker- 263

nel (IDK) (Ting et al., 2020). IDK specifically 264

measures the similarity between two distributions 265

rather than just between individual points. For text 266
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anomaly detection, the anomaly score of each point267

can be computed by measuring the similarity be-268

tween each point and the whole data distribution.269

Definition 3 Isolation Distributional Kernel of a270

point distribution Px and a distribution PY is:271

K̂I(Px,PY | D) =
1

t

〈
Φ(Px|D), Φ̂(PY |D)

〉
,

(3)272

where Φ̂(PY |D) = 1
|Y |

∑
y∈Y Φ(y|D) is the ker-273

nel mean map.274

4 Methodology275

For text anomaly detection, we follow a two-step276

approach: text documents are first transformed into277

dense vector embeddings that capture semantic278

relationships. These embeddings can be gener-279

ated using pre-trained language models, which en-280

code contextual information and linguistic patterns.281

The quality of embeddings significantly influences282

downstream anomaly detection performance. Once283

documents are embedded in a high-dimensional284

space, traditional anomaly detection algorithms can285

be applied to identify outliers. However, these em-286

beddings typically exist in high-dimensional spaces287

and applying anomaly detection algorithms to such288

high-dimensional data creates substantial compu-289

tational challenges. We introduce Simplified Isola-290

tion Kernel (SIK) to address these challenges, the291

key steps are shown in the following subsections.292

4.1 Space Partitioning293

The proposed SIK employs a hypersphere-based294

space partitioning mechanism, following the same295

approach as used in iNNE (Bandaragoda et al.,296

2018) and IDK (Ting et al., 2020). The fundamen-297

tal idea is to create a collection of hyperspheres298

that adapt to the local density of the data, which299

enables effective anomaly detection across regions300

of various densities.301

Definition 4 (Hypersphere Partionings) Each302

point z ∈ D is isolated from the rest of the points303

in D by building hyperspheres θ[z] ∈ H centered304

at z. The radius of this hypersphere is determined305

by the distance between z and its nearest neighbor306

in D \ {z}. Each partitioning H consists of ψ307

hyperspheres and the region that is not covered308

by these hyperspheres. For stability, t different309

partitionings Hi, i = 1 . . . t are generated, each310

based on a different random subset Di ⊂ D.311

This partitioning mechanism naturally adapts 312

to the underlying data distribution. In dense re- 313

gions, the resulting hyperspheres have short radii, 314

since nearest neighbors are typically close. Con- 315

versely, in sparse regions, the hyperspheres have 316

long radii because nearest neighbors are farther 317

apart. This data-dependent property is crucial for 318

effective anomaly detection, as it creates adaptive 319

partitionings that can appropriately in both dense 320

and sparse regions. 321

Unlike fixed-radii approaches that may struggle 322

with varying data densities, this adaptive mecha- 323

nism provides appropriate coverage across the en- 324

tire feature space. It avoids overfitting in dense re- 325

gions (where a fixed small radius would create too 326

many partitions) and underfitting in sparse regions 327

(where a fixed large radius might miss important 328

structural details). 329

The first difference between IK and SIK lies in 330

their fundamental approaches, despite using the 331

same hypersphere partitioning mechanism. Both 332

methods agree that points falling outside hyper- 333

spheres are more likely to be abnormal. However, 334

IK focuses on pairwise similarity measurement, 335

calculating how many times two points fall into the 336

same specific hypersphere to determine their sim- 337

ilarity. In contrast, SIK adopts a boundary-based 338

perspective, constructing a decision boundary us- 339

ing multiple hyperspheres. In SIK, we assume that 340

the higher the frequency of a point falling outside 341

these boundaries, the more likely it is to be abnor- 342

mal. SIK deliberately ignores the specific position 343

of points within the boundaries, as this information 344

is less relevant for anomaly detection purposes. 345

4.2 Feature Map 346

The second key difference between IK and our 347

proposed SIK lies in their feature representation 348

approaches. Figure 1 illustrates how both meth- 349

ods map data points differently in the Reproducing 350

Kernel Hilbert Space (RKHS) H . 351

While IK achieves linear time complexity, it 352

creates high-dimensional feature representations 353

by tracking exactly which hypersphere contains 354

each point. This approach becomes problematic 355

for large-scale text anomaly detection, where in- 356

put data (e.g., 768-dimensional BERT embeddings) 357

is already high-dimensional. IK feature mapping 358

further expands this dimensionality, creating pro- 359

hibitive memory requirements. Figure 1 left shows 360

that IK maps all points to 3-dimensions (ψ = 3) 361

space in one partitioning. 362
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Figure 1: An illustration of feature maps of IK and SIK with one partitioning (t = 1) of 3 hyperspheres. Each center
of a hypersphere is at a point z ∈ D where ψ = 3 are randomly selected from the given dataset D. When a point x
falls into an overlapping region, x is regarded as being in the hypersphere whose center is closer to x. On the left IK
feature space, x has a 3-dimensional feature vector. On the right SIK feature space, x has only a 1-dimensional
feature vector.

SIK addresses this limitation through a more363

compact feature representation, and the key insight364

is that anomaly detection doesn’t require deter-365

mining that a point falls into which specific hy-366

persphere, but is sufficient to know whether a point367

falls into the boundary. This simplification signifi-368

cantly reduces the feature dimension while preserv-369

ing the critical information needed for anomaly370

detection. Figure 1 right shows that all points are371

mapped to a 1-dimensional space, points in the372

boundary are mapped to the original of RKHS, and373

others are mapped to 1.374

Definition 5 (Feature Map of SIK) Given a375

point x ∈ Rd, the feature map ϕ : x 7→ {0, 1}t376

of SIK is a t-dimensional binary column vector,377

where each Hi (i = 1, . . . , t) indicates whether x378

falls outside all hyperspheres θ ∈ Hi:379

ϕi(x) = 1(x /∈ θ|θ ∈ Hi). (4)380

The SIK kernel function between two points x381

and y can be formally defined as:382

κS(x, y) = EHψ(D)[1(x, y /∈ θ | θ ∈ Hi)]383

=
1

t

t∑
i=1

[1(x, y /∈ θ | θ ∈ Hi)]384

=
1

t
⟨ϕ(x), ϕ(y)⟩. (5)385

Unlike traditional kernel functions that typically386

measure similarity between points, SIK quantifies387

how many times two points simultaneously fall388

outside all hyperspheres across multiple partition-389

ings. When both points consistently fall outside390

all hyperspheres, they have a high SIK value. This 391

characteristic allows us to compute anomaly scores 392

by measuring the similarity between each point’s 393

feature vector and a reference anomaly vector (con- 394

sisting of all ones), which forms the basis of our 395

scoring method described in the next subsection. 396

4.3 Anomaly Scores Calculation 397

Based on the feature map of SIK, an ideal anomaly 398

point A should fall outside all hyperspheres in all 399

partitionings, where its vector will be [1, . . . , 1]. 400

Thus, the anomaly score of each point x can be 401

defined as the similarity between the point x and 402

the ideal reference anomaly point A. 403

Definition 6 (Anomaly Score) Given the binary 404

feature representation ϕ(x) ∈ {0, 1}t for a point 405

x ∈ Rd, and let A be an reference anomaly point 406

with ϕ(A) = [1, . . . , 1], the anomaly score is de- 407

fined as: 408

SSIK(x) =
1

t
⟨ϕ(x), ϕ(A)⟩, (6) 409

the range of SSIK is [0, 1] since 0 ≤ SSIK(x) ≤ t. 410

Under this formulation, points with scores ap- 411

proaching 1 after normalization) are more likely to 412

be anomalies as they have higher similarity to the 413

ideal anomaly, while normal points typically have 414

scores closer to 0. 415

Since SIK feature map consists of 0 and 1, the 416

anomaly score of point x are equivalent to the 417

Hamming distance between ϕ(x) and the origin 418

[0, . . . , 0], which quantifies the degree that a point 419

is isolated from regions of normal data. In addition, 420
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the anomaly scores can be equivalently expressed421

in terms of L0 and L1 norm as well.422

The score calculation method can also be applied423

to the IK feature map:424

SIK(x) = 1− 1

t
∥ Φ(x) ∥, (7)425

where ∥ · ∥ can be either L0 or L1 norm.426

It is worth noting that SIK(x) is equal to427

SSIK(x) since both methods essentially count how428

many times a point falls outside all hyperspheres429

across the t partitionings, directly measuring its430

degree of isolation from normal data regions.431

4.4 Is SIK a Valid Kernel?432

According to Mercer’s theorem, a symmetric func-433

tion κ : X × X → R is a valid kernel only if it is434

positive semi-definite and symmetric (Christmann435

and Steinwart, 2008). We demonstrate that SIK436

satisfies both requirements.437

Based on Equation 5, for symmetry, we observe438

that:439

κS(x, y) =
1

t
⟨ϕ(x), ϕ(y)⟩440

=
1

t
⟨ϕ(y), ϕ(x)⟩441

= κS(y, x) (8)442

This confirms SIK satisfies symmetry.443

For positive semi-definiteness, Mercer’s theorem444

requires that for any data points x1, ..., xn ∈ Rd445

and any real coefficients α1, ..., αn ∈ R:446

n∑
i=1

n∑
j=1

αiαjκS(xi, xj) ≥ 0 (9)447

By the properties of inner products and the fact448

that κS(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩, rewritten Equa-449

tion 9 as:450 〈
n∑
i=1

αiϕS(xi),

n∑
j=1

αjϕ(xj)

〉
≥ 0 (10)451

Since both summations represent the same vec-452

tor in feature space, this simplifies to:453 ∥∥∥∥∥
n∑
i=1

αiϕ(xi)

∥∥∥∥∥
2

≥ 0 (11)454

This inequality always holds since a squared455

norm is non negative. It is important to note that456

the feature map ϕ maps input points to binary457

vectors, which further supports the positive semi-458

definiteness property. Therefore, by Mercer’s theo-459

rem, SIK is a valid kernel function.460

5 Experiments 461

5.1 Experimental Setups 462

The experiments are conducted using the same 463

benchmark datasets and embeddings from the 464

benchmark NLP-ADBench (Li et al., 2024). The 465

embeddings are extracted via BERT (Devlin et al., 466

2019) and OpenAI (text-embedding-3-large) (Ope- 467

nAI, 2024) models as specified in NLP-ADBench. 468

Statistical information of the experiment datasets 469

is summarized in Table 2. AUROC (Area Under 470

the Receiver Operating Characteristic Curve) is 471

adopted as the evaluation metric. Each experiment 472

is repeated 5 times with average results reported to 473

mitigate randomness. 474

We utilized 8 traditional methods (LOF, iFor- 475

est, ECOD, DeepSVDD, Autoencoder, LUNAR, 476

INNE and IDK) sourced from the PyOD library 477

(Zhao et al., 2019) on the extracted embeddings. 478

The hyperparameter of nearest neighbors for LOF 479

and LUNAR is searched in {5, 10, 20, 40}. For 480

iForest, iNNE, IDK and SIK, ψ is searched 481

in {32, 64, 128, 256, 512} and with defalt t = 482

200. For Autoencoder and DeepSVDD, the hy- 483

perparameter of hidden neuron is searched in 484

{[128, 64], [64, 32], [32, 16]}]. 485

For comparative analysis, 3 end-to-end methods 486

(CVDD, DATE and FATE) are included in this 487

paper, and their performance is directly referenced 488

from the NLP-ADBench (Li et al., 2024) due to the 489

same datasets. 490

Table 2: Statistical information of datasets

Dataset # Samples # Ano. % Ano. Train Test
EmailSpam 3578 146 4.08 2402 1176
SMSSpam 4969 144 2.89 3162 1510
BBCNews 1785 62 3.47 1206 579
AGNews 98207 3780 3.85 66098 32109
N24News 59822 1828 3.06 40595 19227
MovieReview 26369 1487 5.64 17417 8952
YelpReview 316924 17938 5.66 209290 107634

5.2 Empirical Evaluation 491

Table 3 presents the AUROC scores of all baseline 492

methods across the 7 datasets. 493

With BERT embeddings, SIK performs best 494

on Email_Spam, SMS_Spam, BBC_News and 495

Movie_Review datasets. A Friedman-Nemenyi 496

test (Demšar, 2006) in Figure 2a shows that SIK 497

is top-ranked, only SIK and IDK are significantly 498

better than DeepSVDD, ECOD and Forest, but SIK 499

is much faster than IDK. 500
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Table 3: Evaluation results across 7 datasets in terms of AUROC. SIK results are shown with a shadow background,
and the best result on each dataset is in bold.

Algorithms Email_Spam SMS_Spam BBC_News AG_News N24News Movie Yelp
CVDD 0.9340 0.4782 0.7221 0.6046 0.7507 0.4895 0.5345
DATE 0.9697 0.9398 0.9030 0.8120 0.7493 0.5185 0.6092
FATE 0.9061 0.6262 0.9310 0.7756 0.8073 0.5289 0.5945
BERT+LOF 0.7793 0.7642 0.9412 0.7643 0.6991 0.5253 0.6842
BERT+iForest 0.7599 0.6544 0.7394 0.6760 0.5804 0.4624 0.6222
BERT+ECOD 0.7427 0.6164 0.7302 0.6578 0.5363 0.4434 0.6204
BERT+DeepSVDD 0.6200 0.5765 0.6841 0.6290 0.5373 0.4732 0.6066
BERT+AE 0.8067 0.7526 0.9117 0.7491 0.6465 0.4975 0.6728
BERT+LUNAR 0.8340 0.7474 0.9404 0.7832 0.6589 0.4806 0.6721
BERT+INNE 0.8531 0.7528 0.9235 0.7761 0.6360 0.5125 0.6861
BERT+IDK 0.8649 0.7703 0.9473 0.7805 0.6625 0.5131 0.6829
BERT+SIK 0.8705 0.7719 0.9414 0.7755 0.6689 0.5264 0.6840
OpenAI+LOF 0.9726 0.9032 0.9671 0.9013 0.8160 0.6731 0.7694
OpenAI+iForest 0.5425 0.6131 0.6468 0.5364 0.5289 0.5886 0.5401
OpenAI+ECOD 0.8926 0.6155 0.7780 0.7260 0.6179 0.6933 0.7706
OpenAI+DeepSVDD 0.5291 0.5238 0.6010 0.5272 0.5885 0.5318 0.4808
OpenAI+AE 0.6826 0.7933 0.9645 0.8684 0.7504 0.6597 0.7568
OpenAI+LUNAR 0.9590 0.7855 0.9773 0.9309 0.8324 0.6781 0.7984
OpenAI+INNE 0.9727 0.8688 0.9833 0.8701 0.8067 0.6668 0.7367
OpenAI+IDK 0.9531 0.8615 0.9797 0.8855 0.8290 0.6290 0.6688
OpenAI+SIK 0.9729 0.8967 0.9844 0.8904 0.8343 0.6634 0.7345

SIK shows further performance improvements501

when applied to OpenAI embeddings, achieving502

the highest AUROC scores on several datasets, in-503

cluding Email_Spam, BBC_News, and N24News.504

The high-dimensional OpenAI embeddings contain505

more nuanced semantic information, which SIK506

successfully leverages for more accurate anomaly507

detection. Figure 2b shows that SIK is top-ranked508

and the performance of SIK has a critical differ-509

ence from DeepSVDD and iForest, but IDK doesn’t510

have.511

Compared with end-to-end approaches (CVDD,512

DATE, and FATE), the two-step approach with SIK513

usually demonstrates superior performance. For514

instance, on the BBC_News dataset, OpenAI+SIK515

significantly outperforms all 3 end-to-end methods.516

Figure 2c shows that SIK is the only detector that517

significantly better than CVDD.518

Compared with other isolation-based approaches519

(iForest, iNNE and IDK), SIK maintains compa-520

rable or superior performance despite its reduced521

feature dimensionality. With OpenAI embeddings522

on the SMS_Spam dataset, SIK achieves higher523

AUROC than both iForest and IDK, indicating that524

the SIK preserves the essential discrimination in-525

formation in the low-dimensional sparse map.526

Since OpenAI-based methods perform better527

than end-to-end and BERT-based methods, we will528

focus on OpenAI-based methods in the following 529

subsections. 530

(a) BERT-based

(b) OpenAI-based

(c) End-to-End

Figure 2: Friedman-Nemenyi test for the anomaly de-
tection methods based on BERT, OpenAI embeddings
and end-to-end at significance level 0.1 (the lower the
better).
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5.3 Scalability Analysis531

Memory complexity: SIK achieves space effi-532

ciency improvements by focusing solely on bound-533

ary information. During training, SIK only needs534

to store hypersphere information rather than map-535

ping the entire training dataset to feature spaces as536

required by IK. During testing, SIK reduces the fea-537

ture representation dimensionality from ψt to just538

t, representing a significant reduction in space com-539

plexity from O(ntψ) to O(nt), where the training540

set has n points.541

Time complexity: The fundamental difference542

between SIK and IK emerges in how they process543

data during both the training and testing phases.544

During training, SIK directly calculates anomaly545

scores via norm computations, whereas IK requires546

mapping the entire dataset to compute KME, mak-547

ing SIK substantially faster.548

During testing, while both SIK and IK have the549

same mapping complexity of O(ntψ), SIK’s fea-550

ture map dimensionality is only t compared to IK’s551

ψt dimensions. This dimensional reduction trans-552

lates to a testing complexity of only O(nt) for SIK553

versus O(ntψ) for IK when computing similarities,554

resulting in computational savings, particularly for555

larger values of ψ. The overall time complexity is556

linear because tψ are hyperparameters and tψ ≪ n557

for large datasets.558

Table 4 presents the runtime and memory costs559

of both IK and SIK on the SMS_Spam dataset with560

the same hyperparameters ψ = 256, t = 200. SIK561

completes training approximately 14 times faster562

than IK while requiring dramatically less memory.563

During testing, memory savings remain substantial564

while time differences are less pronounced.565

Although LOF and LUNAR demonstrate good566

performance on OpenAI embeddings, LOF’s567

quadratic time complexity and LUNAR’s computa-568

tionally intensive deep learning approach result in569

significantly slower runtime compared to SIK.570

Table 4: Time and memory comparison on SMS_Spam
where ψ = 256, t = 200.

Time (CPU seconds) Memory (MB)
IDK SIK IDK SIK

Train 115.4 8.2 1235.2 0.5
Test 46.3 45.6 589.8 2.3

5.4 Training with impure data571

This section examines how robust anomaly detec-572

tors are against contamination in training data. Fig-573

ure 3 illustrates the performance of both SIK and 574

IDK on the Email_Spam dataset with increasing 575

anomaly ratios from 1% to 5%. SIK exhibits a grad- 576

ual decline in AUROC performance, while IDK 577

maintains more stable performance. Despite this 578

slight downward trend, SIK consistently maintains 579

excellent detection capabilities with all values re- 580

maining above 0.95 AUROC. 581

The performance difference occurs despite both 582

methods using identical hypersphere construction. 583

SIK’s decline stems from its reliance on binary in- 584

side/outside boundary decisions; when anomalies 585

become hypersphere centers, they create spheres 586

that erroneously encompass other anomalies, mis- 587

classifying them as normal. In contrast, IDK 588

demonstrates greater robustness because it goes be- 589

yond simple boundary decisions by utilizing kernel 590

mean embedding (KME), which averages feature 591

representations across all training samples. This 592

ensemble effect mitigates the negative impact of in- 593

dividual anomalous sphere centers, allowing IDK’s 594

similarity measurement to remain highly effective 595

even when hyperspheres are distorted by contami- 596

nation. 597

Figure 3: The performance of 5 runs of SIK on
Email_Spam OpenAI embedding. The anomaly ratio is
the ratio of the number of normal points and anomalies
in the given dataset.

6 Conclusion 598

In this paper, we introduced the Simplified Isolation 599

Kernel (SIK) for text anomaly detection. SIK effec- 600

tively overcomes the computational and memory 601

challenges posed by dense text embeddings from 602

pre-trained LLMs by mapping high-dimensional 603

dense embeddings to a low-dimensional sparse 604

space that preserves boundary information. The 605

key innovation of SIK lies in its boundary-focused 606

feature mapping, which maintains a linear time 607

complexity and significantly reduces the dimen- 608

sionality of the feature representation. 609
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Limitations610

Although the proposed SIK has shown encourag-611

ing results in text anomaly detection, some issues612

remain for future consideration. While SIK was613

thoroughly compared with both end-to-end and614

two-step methods, we did not compare it with di-615

rect LLM reasoning approaches due to their signif-616

icantly slower processing speed and output incon-617

sistencies. Our attempts to use LLMs directly for618

anomaly detection produced results where the num-619

ber of output labels frequently mismatched the test620

data quantity and could not be properly mapped to621

original text indices, preventing meaningful com-622

parison.623

Additionally, SIK demonstrates effective integra-624

tion with LLM-generated embeddings, but its ap-625

plicability to more nuanced domains such as legal,626

medical, or technical texts requires further inves-627

tigation. Future work should also explore SIK’s628

capability in detecting subtle anomalies that main-629

tain similar semantic structures to normal text but630

contain misleading information or factual errors.631

Ethic Statement632

Data Sources and Usage: This study utilizes pub-633

licly available research datasets commonly refer-634

enced in NLP and anomaly detection literature. All635

datasets are properly cited throughout the paper.636

No private, proprietary, or personally identifiable637

information was included in our research.638

Risks and Responsible Use: While anomaly de-639

tection technologies offer valuable capabilities for640

content moderation and security applications, we641

recognize they could potentially be misused for642

surveillance, censorship, or discriminatory filter-643

ing. We emphasize that SIK should be deployed644

responsibly with clear guidelines that respect pri-645

vacy rights and freedom of expression. The technol-646

ogy presented in this paper is intended for research647

purposes and legitimate applications such as spam648

detection, fraud prevention, and identification of649

harmful content, not for arbitrary surveillance or650

censorship activities.651

Use of AI Assistance: We acknowledge the use652

of AI-based writing assistants for grammatical re-653

finement, spelling correction, and improving the654

clarity of our manuscript. However, all intellectual655

contributions, experimental designs, analyses, and656

conclusions in this paper are solely the work of657

the authors. The development of SIK, its imple-658

mentation, experimentation, and evaluation were659

conducted exclusively by the authors without auto- 660

mated generation of scientific content. 661
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