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ABSTRACT

Adversarial attacks on image models threaten system robustness by introducing
imperceptible perturbations that cause incorrect predictions. We investigate human-
aligned learned lossy compression as a defense mechanism, comparing two learned
models (HiFiC and ELIC) against traditional JPEG across various quality levels.
Our experiments on ImageNet subsets demonstrate that learned compression meth-
ods outperform JPEG, particularly for Vision Transformer architectures, by pre-
serving semantically meaningful content while removing adversarial noise. Even in
white-box settings where attackers can access the defense, these methods maintain
substantial effectiveness. We also show that sequential compression—applying
rounds of compression/decompression—significantly enhances defense efficacy
while maintaining classification performance. Our findings reveal that human-
aligned compression provides an effective, computationally efficient defense that
protects the image features most relevant to human and machine understanding.

1 INTRODUCTION

Vision models have made significant improvements in recent years, achieving remarkable success
in tasks like image classification He et al.|(2015)), object detection |Szegedy et al.|(2013)); Zou et al.
(2023)) and medical imaging |Shen et al.[|(2017). However, vision models remain highly vulnerable to
adversarial attacks despite these advancements. Adversarial attacks are carefully crafted perturbations
added to input images, which are often imperceptible to the human eye but can cause deep learning
models to make incorrect predictions |Szegedy et al.| (2014); Madry et al.|(2019). These attacks pose a
serious threat to applications that rely on the reliability of vision models, such as autonomous driving,
healthcare diagnostics, and surveillance systems.

One potential approach to defending against these adversarial attacks is to remove the small perturba-
tions introduced by the attacker. Eliminating these imperceptible changes makes it possible to prevent
the model from being misled. Traditional methods, such as blurring or adding random noise, can be
effective at removing perturbations; however, they have significant drawbacks. While these methods
reduce the adversarial impact, they distort the image, changing its distribution in a way that may
cause the image to be “out of distribution” for the classifier. Moreover, they do not solely remove
adversarial perturbations but also information that could be important for the task. This results in a
loss of critical information, degrading model performance, and making the system less reliable.

Ilyas et al.|(2019) showed in their seminal work that image classifiers learn to use non-robust features
for image classification that the adversarial examples exploit. In the area of image compression,
researchers showed that human-perception-aligned learned lossy compression models can yield high
compression ratios while producing images that humans prefer, for instance, over JPEG compressed
images. These techniques aim to preserve an image’s most important features according to human
perception while discarding less significant details. By doing so, they can remove adversarial
perturbations without altering the underlying image distribution and without losing task-relevant
information. Since the images remain in distribution for the classifier, the model can continue to
perform effectively while being protected from adversarial attacks. [Dziugaite et al.[(2016) has shown
that JPEG compression could be a viable defence, however, as later shown, only if the attacker does
not include the JPEG compression in the attack [Shin & Song|(2017).

This work explores the potential of learned image compression methods to defend against adversarial
attacks. We compare these methods to a traditional technique, JPEG, and evaluate their effectiveness



in removing adversarial perturbations while preserving the integrity of the image distribution. Our
findings show that human-perception aligned compression offers a promising strategy for defending
vision models against adversarial attacks, without sacrificing classification accuracy. This approach
contributes to developing more efficient and robust defense mechanisms, fostering the creation of
more secure and reliable vision systems.

2 RELATED WORK

2.1 ADVERSARIAL ATTACKS

Adversarial examples have become a critical concern in machine learning, particularly regarding
the robustness and security of deep learning models. These inputs are intentionally crafted to
deceive models into making incorrect predictions. [Szegedy et al. (2014) first demonstrated that small,
imperceptible perturbations could cause neural networks to misclassify images with high confidence.

Kurakin et al.|(2017) extended the study of adversarial attacks to the physical world, showing that
printed images with adversarial perturbations could still deceive classifiers when captured through a
camera, underscoring the real-world implications of adversarial attacks beyond digital environments.

In response to these challenges, various defense mechanisms have been proposed. [Madry et al.|(2019)
introduced Projected Gradient Decent (PGD) attacks along with adversarial training, a technique
in which models are trained on adversarial examples to improve their robustness. |Papernot et al.
(2016) proposed defensive distillation, leveraging knowledge distillation |Hinton et al.| (2015)—a
technique that compresses an ensemble of models into a smaller model—to enhance resistance
against adversarial attacks. Another approach involves preprocessing inputs to remove adversarial
perturbations before classification, which can be achieved using image compression techniques
Dziugaite et al. (2016)). Despite these efforts, achieving a comprehensive defense against adversarial
attacks remains an open problem.

2.2 IMAGE COMPRESSION AS ADVERSARIAL DEFENSE

Dziugaite et al.| (2016) demonstrated that JPEG compression can weaken adversarial attacks by
removing small perturbations. The perturbations often vanish by compressing and decompressing a
potentially manipulated image, reducing the attack’s effectiveness. Even with a high quality factor of
75, JPEG compression enhanced model robustness.

However, |Shin & Song| (2017)) demonstrated that the defensive effectiveness of JPEG compression
can be significantly diminished by leveraging a differentiable approximation of the algorithm. By
propagating gradient information through the model and the JPEG compression process, adversarial
attacks can generate perturbations that persist even after the compression and decompression steps.

2.3 LEARNED LOSSY IMAGE COMPRESSION

Recent advancements in image compression have moved beyond traditional methods like JPEG,
which use linear transformations, to learned techniques that replace the Discrete Cosine Transform
(DCT) with nonlinear transformations [Liu et al.| (2023); He et al.| (2021); |Galteri et al.| (2019);
Agustsson et al.| (2019); Minnen et al.|(2018)). Variational Autoencoder (VAE)-based models and
Generative Adversarial Networks (GANs) Mentzer et al.|(2020) help minimize compression artifacts,
producing realistic images even at ultra-low bitrates.

HiFiC Mentzer et al.|(2020) leverages GANSs to achieve visually appealing reconstructions while
preserving perceptually significant information. A user study demonstrated HiFiC’s superiority in
reconstruction quality over other methods, even at half the bits per pixel.

ELIC|He et al.|(2022) optimizes image compression for both speed and efficiency. It outperforms
previous learned methods, such asMinnen et al.| (2018); Cheng et al.|(2020), especially at low bitrates.

At low bitrates, learned compression methods outperform JPEG by preserving perceptual quality and
reducing visual artifacts, all while maintaining the original image distribution. Thus, using learned
compression as preprocessing for neural network classifiers can enhance robustness by removing
small perturbations while preserving the image distribution.



3 METHODS

Our experiments’ objective was to evaluate the effectiveness of image compression as a defense
mechanism against adversarial attacks. We also investigated the impact of varying compression
quality levels and the effects of applying multiple compression steps sequentially.

We implemented our defenses as an additional preprocessing step applied to the (perturbed) image
before it was fed into the classifier. Since lossy image compression inherently removes specific details,
it is expected to eliminate some of the adversarial perturbations, thereby reducing the effectiveness of
the attack. We then generated adversarial perturbations for the dataset and assessed the classifier’s
accuracy on the perturbed images, comparing it to the baseline accuracy before the attack.

3.1 DEFENSES

The compression methods used as defenses were
JPEG, HiFiC, and ELIC. JPEG was selected be-
cause it is one of the most widely used compres-
sion algorithms and has been previously explored
as a defense mechanism against adversarial at-
tacks|Dziugaite et al.[(2016));|[Shin & Song| (2017)).

Table 1: Bits per pixel (BPP) measurements for
different compression methods and quality set-
tings, computed on 100 224x224 images from
ImageNet. This table enables direct comparison
of compression efficiency across JPEG, ELIC,
and HiFiC methods at various quality levels.

Thus, JPEG serves as a baseline for comparison
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For HiFiC and ELIC, we employed differentiable forward functions. The use of differentiable
defenses allowed gradient information to propagate through the entire pipeline (including both the
model and the defense mechanism). This is expected to reduce the effectiveness of the defense, as it
enables the adversarial attack to adapt its perturbations to persist through the compression process.
To account for this, we conducted an additional set of experiments using this stronger adaptive attack.
In tables throughout this paper, this is annotated with through being true.

3.2 ADVERSARIAL ATTACKS
We use these methods to compute adversarial examples:

* Fast gradient sign method (FGSM) |Goodfellow et al.| (2014)).

e Iterative FGSM (iIFGSM) Kurakin et al.|(2017).

* Projected gradient descent (PGD) Madry et al.|(2019).

* Carlini-Wagner attack (CW) |Carlini & Wagner| (2017).

* DeepFool attack (DeepFool) Moosavi-Dezfooli et al.[(2016).
For FGSM, iFGSM and PGD we use different /., norm values (epsilon) to modulate the attack
strength, for CW and DeepFool we computed the accuracy for perturbations below a specific l3 norm
value. For iFGSM and PGD we used 10 iterations. For all attacks, the torchattacks [Kim! (2020)
implementation was used. For a full list of hyperparameters see Table |3|in the Appendix. When

we pass the gradients through the compression model as in Shin & Song| (2017), we call it as a
“white-box” while if we do not, we call it a “black-box” attack.

'HiFiC: https://github.com/Justin-Tan/high-fidelity-generative-compression,
2ELIC: https://github.com/VincentChandelier/ELiC-ReImplemetationl


https://github.com/Justin-Tan/high-fidelity-generative-compression
https://github.com/VincentChandelier/ELiC-ReImplemetation
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Figure 1: Visual comparison of image degradation after three compression/decompression cycles
using different compression methods and quality settings. From left to right: (a) ELIC 0004, (b)
ELIC quality 0016, (c) HiFiC low, (d) HiFiC medium, (e) JPEG quality 25.0, and (f) the original
uncompressed image. Note how learned compression methods (ELIC, HiFiC) exhibit different artifact
patterns than traditional JPEG compression.

3.3 MODELS AND DATASETS

The experiments used two different base models: ResNet50He et al.| (2015)), and a Vision Transformer
(ViT), specifically ViT-B/16 [Dosovitskiy et al.| (2021)). Both models were sourced from PyTorch
Paszke et al.|(2019) and initialized with pretrained ImageNet weights.

For our experiments, we used the validation split of Imagenette, a subset of ImageNet
(2009) containing 10 easily classified classes. In later experiments, the full ImageNet test split was
utilized.

3.4 COMPRESSION STRENGTH

To determine the appropriate compression quality for our experiments, we conducted additional tests
for each compression method, comparing different levels to identify an optimal quality setting. Be-
yond defensive strength, our choice of compression was also influenced by several factors: the impact
of the defense on accuracy in the absence of an attack, comparability between different compression
methods and related work, and the availability of pretrained weights for learned compression models.
Training these models from scratch was beyond the scope of this study.

The parameters influencing compression strength for the different methods were as follows:

* JPEG: The quality parameter ¢ € [0,100] and controls the quantization strength of the
algorithm, with lower values corresponding to greater compression. We compared values
q €{5.0,10.0,15.0,25.0,35.0,50.0, 75.0,95.0}. Typically, values greater than 70 are con-
sidered high quality, while values below 30 result in low-quality images that may appear
pixelated and blurry.

» HiFiC: Three different sets of pretrained weights were available for HiFiC: HiFiC"",

HiFiC™ and HiFiC"", which were trained to achieve target bitrates per pixel (BPP) of
0.14, 0.3, and 0.45, respectively.

* ELIC: Six different checkpoints were available for ELIC: [0004, 0008, 0016, 0032, 0150,
0450]. These correspond to different values of A, the rate-controlling parameter, determining
the trade-off between estimated bitrate and image reconstruction distortion (see

(2022) for details).

Additionally, we computed BPP values for images from the ImageNet dataset resized to 224 x 224
pixels across different compression methods, cf. Table[I} This allowed a direct comparison of size
reduction between techniques.

3.5 SEQUENTIAL COMPRESSION

We also conducted experiments on the effectiveness of compressing and decompressing an image
multiple times in sequence as a defense. We always propagated the gradients through the defense for
these experiments to achieve a stronger attack. The experiments were conducted on Imagenette and
ImageNet. For ImageNet, we used 1000 randomly sampled images to reduce computation time.
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Figure 2: Model accuracy under adversarial attacks for ResNet50 (left) and ViT (right) architectures.
Solid lines represent “black-box” attacks (without gradient propagation through the compression),
while dashed lines show “white-box” attacks (with gradient propagation through the defense). Results
are shown for both Imagenette and ImageNet datasets.

4 RESULTS

The main results can be found in Figures [2a] and [2b] with Tables 4 and [5]in the Appendix giving the
exact value. We use quality levels 25.0, low, and 0016 for the compression defenses for JPEG, HiFiC,
and ELIC, respectively, unless otherwise stated.

4.1 BASELINE RESULTS

Both of the used models achieved a very high accuracy on Imagenette, ~ 0.998 for ResNet50 and
~ 0.999 for the ViT, as well as a strong resilience against the FGSM attack even without a defense,
with both models still achieving accuracies > 0.8 at an attack strength of epsilon %. For iFGSM (cf.
Table2) and PGD the accuracy dropped to < 0.05 for ResNet50 and < 0.01 for the ViT at this level of
attack strength. These baseline experiments also indicate a difference in robustness between the two

models used, as the accuracy of the ViT is lower for all baseline experiments.

4.2 DEFENSE RESULTS

All three defense methods showed promising results in Figure 22 showing almost no change in
accuracy after all “black-box” attacks when using the ResNet50 model (see Figures[2a)and 2b). For
“black-box” attacks against ViT, iIFGSM and PGD lead to a drop in accuracy at epsilon % for JPEG,
but still achieve a much higher accuracy than the baseline. The learned compression algorithms show
much better performance for ViT, with ELIC and HiFiC achieving an accuracy comparable to before

the attack even for high epsilon values.

Adversarial images crafted with the CW and DeepFool attacks were easier to defend against
as shown in Figure 2Bl This could be attributed to the fact that these attacks find min-



imal perturbations, compared to the other three attacks that find perturbations within the
given bounds, which are not necessarily minimal. @ There are also more hyperparame-
ters to tune for an optimal attack and a longer runtime. These factors lead us to fo-
cus less on these attacks and not conduct additional experiments with CW or DeepFool.
Attacking the entire pipeline drastically weak-

ens the effect of all three defenses. There is  Taple 2: Classification accuracy (%) for differ-
still improvement over no defense, but the ac-  ent defenses against iFGSM attacks on the Im-
curacy is not comparable to the experiments agenette dataset at varying epsilon values. Re-
where the gradient information was not propa-  gyts are shown for both ResNet50 and ViT models
gated through the defenses. under black-box (Through=False) and white-box
(Through=True) attack scenarios, demonstrating
the vulnerability of all defenses to white-box at-

« The ViT used is less robust against ad- tacks.
versarial attack.

These results indicate three major things:

. Defense | Through 0 1 P iz

e The tested learned compressions per- | | | | 25 | =55 | 255 |
form better for ViT. . . R N T
L g | JPEG Trie | 100 | 28 | 21 | 17

* Learned compression is a better de- b}

2 [ mc False 98 | 98 | 98 98
fence than JPEG. s True 98 | 54 | 28 18
. — False 98 | 97 | 9 96
* Even for learned compression, the ef- HiFiC True 98 | 38 | 20 12
fectlvel.less of corr.lprfas.swn-based de- None False | 100 | 4 . 0
fenses is greatly diminished by creat- PEG False | 100 | 90 | 36 26
ing adversarial images where gradient | . e [ 10 |11 & 2
. . S - False 99 | 98 | 97 95
information was propagated through True 29 | 50 20 9
the defense as seen in [Shin & Song HiFiC False | 100 | 99 | 98 97
(2017) True 100 26 8 4

4.2.1 IMAGENET RESULTS

After analyzing these results, we decided to repeat some experiments on 1000 random images taken
from the ImageNet dataset, to see how the defenses perform on this harder task, with 1000 possible
classes instead of 10 and a much lower baseline accuracy (both models achieve an accuracy of about
0.8 on ImageNet). The results of these experiments can be found in Figure [2c| In this experimental
setup, all defenses show a larger accuracy decrease without an attack (epsilon= 0). This decrease
is larger for ResNet50 than for the ViT. There is also a more noticeable decrease as the epsilon
constraint of the attack gets larger for all attacks. On Imagenette the accuracy was almost constant
for effective defenses. However, the results on ImageNet generally show the same trends as those
discussed before.

4.3 COMPUTATIONAL OVERHEAD

We also computed the time it takes the model during inference to show that these defenses are feasible
in practice. For this test, we used an Nvidia RTX3090 and ResNet50. We did not include the time the
models need to initialize. Without a defense it took 20.8 seconds to classify the 3925 images in the
Imagenette dataset, or 5 ms per image. With JPEG as a defense, it took 8 ms per image. Using ELIC
and HiFiC it took 14 ms per image. Even when compressing and decompressing the images 5 times
in sequence, this only increased to 33 ms for HiFiC and 36 ms for ELIC. These timings show that
running these compression algorithms in an ML pipeline is feasible.

4.4 QUALITY ABLATION

This section compares different compression strengths for all the compressions used as defenses.
Complete tables can be found in the Appendix, see Tables[6]to[8]

4.4.1 JPEG

Figure [3a]shows the accuracy for different JPEG qualities when attacked with iFGSM. For ResNet50,
only the high quality levels (75.0,95.0) were vulnerable to a standard attack. When using the stronger
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Figure 3: Ablation studies comparing model accuracy for different compression quality settings
under iFGSM attacks for ResNet50 (top) and ViT (bottom). Dashed lines show results when gradient
information was available to the attack (“white-box” setting). All methods demonstrate trade-offs
between defense strength and clean accuracy.

attack, which propagates the gradients through the defense, no quality level achieved a high accuracy
and therefore a successful defense. For an attack of 8/255 the levels 15.0 and 25.0 achieved the
highest accuracy at ~ 0.2. In the ViT experiment, a larger spread of results can be observed for
“black-box™ attacks, with lower quality levels performing better at high epsilon values. JPEG with a
quality level 5.0 showed a large decrease in accuracy without any attack. For “white-box” attacks,
none of the levels provides much defence. Considering these observations, we decided to use a
quality level of 25.0, as this achieves a good performance, does not degrade the baseline accuracy
and has been used in previous work by [Shin & Song| (2017).

4.4.2 HIFIC

Figure [3b]shows that all the different compression strengths worked well as a defense for ResNet50,
but only HiFiC low achieved a high accuracy for the ViT, with the other two qualities showing a
decrease in accuracy for epsilon larger than %. All levels were very vulnerable when the gradient
was passed through the defense. Since the lowest quality only decreased baseline performance a little,

we used HiFiC low for the main experiments.

4.4.3 ELIC

Figure [3c| shows the results for ELIC. The higher quality levels show decreased performance for
high epsilon values. The lowest quality levels show a decreased accuracy without any attack. There
is a larger difference between quality levels when the gradient is propagated through the defense
compared to HiFiC. For the main experiment we decided to use ELIC 0016, as it achieved good
accuracies without visibly decreasing the baseline performance, and because it is similar in BPP to
HiFiC low.

4.5 SEQUENTIAL DEFENSE
4.5.1 IMAGENETTE

For JPEG, we used quality level 25.0 for the results shown in Figures fc|and[9] For HiFiC and ELIC,
there is a tradeoff between a decrease in accuracy without an attack on low qualities and a decrease in
effectiveness on high qualities. The baseline accuracy using HiFiC low deteriorates quickly, making it
unusable as a sequential defense, see Figure #a] ELIC 0016 also decreases the baseline accuracy, but
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Figure 4: Sequential defense performance analysis against iFGSM attacks on Imagenette using
ResNet50. Each point represents N consecutive compression/decompression cycles. JPEG demon-
strates superior sequential defense properties with faster convergence and better preservation of clean
accuracy compared to learned compression methods.

it was much slower than HiFiC low. This leads to a promising defense that reaches close to baseline
accuracy with seven sequential defense iterations, as seen in Figure 4]

The experiments indicate a clear trend, showing that running an image through a defense multiple
times increases its effectiveness for all defenses. JPEG showed the fastest increase, achieving an
accuracy of over 0.9 for epsilon % after 5 iterations and converging towards the baseline. The
decrease in baseline accuracy for JPEG is negligible even after 50 iterations. HiFiC and ELIC also
show an increased accuracy for each additional sequential iteration, achieving accuracies of about 0.4
with 7 iterations. Because of the large amount of gradient information, we were unable to compute

results for more than 7 iterations of ELIC or HiFiC.

FigureI]shows how the image quality deteriorates when compressing and decompressing multiple
times in sequence. Both of the learned compressions show a stark difference from the original image.
ELIC introduces black/red artifacts that take up parts of the image. The lowest quality of HiFiC leads
to a much brighter image, which loses most of the color information. JPEG performed best, while it
also introduces artifacts and blurs the image a lot, the image still looks similar after multiple passes
through the compression.

4.5.2 IMAGENET

Experiments in Figures[5a)and [5b| with sequential JPEG defense on ImageNet yielded similar patterns
but with lower overall accuracy, partly due to decreased baseline performance. Lower quality levels
reduced clean image accuracy, with this reduction primarily dependent on the quality parameter rather
than iteration count, as accuracy remained relatively stable across multiple compression cycles.
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Figure 5: Sequential JPEG defense analysis on ImageNet dataset against iFGSM attacks at various
quality levels. Results demonstrate consistent trade-offs between clean accuracy and adversarial
robustness across both ResNet50 and ViT architectures, with extended iterations revealing different
convergence patterns for different quality settings.

The lines’ jaggedness compared to earlier could come from the random sampling. However, even
considering the lower baselines, no quality seems to converge towards the baseline with 10 sequential
passes. This indicates a deeper sequential defense is needed for this more challenging task.

An experiment with a deeper sequential JPEG defense, see Figure [5d] shows this, as quality 10.0
seems to converge. For quality 95.0 the accuracy still improves even at 50 iterations. The jaggedness
of the baseline for low iterations is due to using different subsets of ImageNet. This was changed
later in the experiment for more consistent results.

5 CONCLUSION

This paper demonstrates that human-aligned learned compression can effectively defend against
adversarial attacks. We show that HiFiC and ELIC have advantages over JPEG, as they do not
significantly decrease the baseline accuracy of an image classification model even at low BPP.
However, we also show the weaknesses of such defenses in a white-box setting, as a gradient can
either be directly computed or approximated, decreasing the defense’s effectiveness. Sequential
compression significantly enhances defense effectiveness, with JPEG showing the most practical
balance between robustness and image quality over multiple iterations.

There are some limitations, as we only experiment with gradient-based attacks. In real-world settings,
there are more possible ways to attack a model, such as gradient-free attacks [Uesato et al.| (2018);
Engstrom et al.|(2019); |Gilmer et al.| (2018)). Further work could include results for these defenses in
settings that include these additional threats and combine image compression with other defensive
measures to create more robust deep learning models.

While these defenses are weakened in white-box settings, they offer meaningful protection. Future
work should explore combining compression-based defenses with other techniques and test against
other threats to develop more robust systems that align with human visual perception.



REPRODUCIBILITY STATEMENT

All code used in our experiments is included in the supplementary material, together with a README
file that explains how to set up the environment, run the evaluation scripts, and reproduce the reported
results. The data are publicly available through PyTorch’s torchvision and Huggingface. For the
camera-ready version, we will make the code publicly available on GitHub.
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A USAGE OF LLMs

We have used LLMs to polish the writing of this paper and for code generation through chats, cursor,
and Claude code. ChatGPT, Claude, Gemini, and Grammarly were employed for spellchecking,
refining and condensing text, and reviewing the final draft to catch grammatical errors. Furthermore,
ChatGPT, Claude, and Cursor were used to assist with code completion and generate visualizations.

B TABLES
Attack Hyperparameters
FGSM eps=epsilon
iFGSM eps=epsilon,alpha=epsilon/4, steps = 10
PGD eps=epsilon, alpha=epsilon/4,steps=10,randomstart=True
Cw c=1, kappa=0, steps=50, 1r=0.01
DeepFool steps=50, overshoot=0.02

Table 3: Hyperparameters used for each adversarial attack method. This table details the specific
configuration for the experiments’ FGSM, iFGSM, PGD, CW, and DeepFool attacks.
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Attack parameters l2 norm value

Attack Model Defense Through Baseline 4 5 6 7 8 16 32
None False 0.998 0.944 | 0.787 | 0.529 | 0.304 | 0.193 0.054 0.051
ipes False 0.996 0.996 | 0.996 | 0.995 0.996 | 0.996 | 0.996 0.996
True 0.996 0.518 | 0.338 | 0.285 0.281 0.281 0.281 0.281
ResNet50 ELIC False 0.998 0.998 | 0.998 | 0.998 0.997 0.997 0.997 0.997
True 0.998 0.958 | 0.869 | 0.724 | 0.554 | 0.429 | 0.225 0.225
HiFiC False 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975
cw True 0.975 0.972 | 0.961 0.932 0.9 0.868 0.596 0.596
None False 0.999 0.803 0.494 | 0.231 0.097 0.045 0.005 0.005
ipeg False 0.998 0.997 | 0.995 0.995 0.995 0.995 0.995 0.995
True 0.998 0.409 | 0.287 | 0.267 | 0.264 | 0.264 | 0.264 0.264
ViT ELIC False 0.999 0.999 [ 0.999 | 0.999 | 0.999 | 0.999 | 0.999 0.999
True 0.999 0.934 | 0.796 | 0.555 0.346 | 0.228 0.137 0.137
HiFiC False 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995
True 0.995 0.984 | 0.964 | 0.934 | 0.888 0.832 | 0.547 0.547
None False 0.998 0.541 0.493 0464 | 0452 | 0.447 0.443 0.443
ipeg False 0.996 0.995 0.995 0.995 0.995 0.995 0.995 0.995
True 0.996 0.892 | 0.849 0.8 0.753 0.708 0.406 0.155
ResNet50 ELIC False 0.998 0.998 | 0.998 | 0.998 0.998 0.998 0.998 0.998
True 0.998 0917 | 0.876 0.83 0.78 0.738 0.559 0.541
HiFiC False 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975
DeepFool True 0.975 0.797 | 0.743 0.69 0.638 0.59 0.356 0.281
None False 0.999 0.752 | 0.641 0.539 | 0.448 0.376 | 0.194 0.171
ipeg False 0.998 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 0.996
True 0.998 0.969 0.95 0.931 0912 | 0.885 0.684 0.381
ViT ELIC False 0.999 0.999 | 0.998 | 0.998 0.998 0.998 0.998 0.998
True 0.999 0.955 0.926 | 0.891 0.854 0.81 0.559 0.417
HiFiC False 0.995 0.995 0.994 | 0.994 | 0.994 | 0.994 | 0.994 0.994
True 0.995 0.89 0.838 | 0.789 | 0.732 | 0.678 0.332 0.237

Table 4: Comprehensive evaluation of CW and DeepFool attack effectiveness against different
defenses, showing accuracy at various L2 norm constraint values. Results demonstrate that these
attacks, which find minimal perturbations, are generally less effective than bounded attacks like
iFGSM and PGD.
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Attack parameters ls norm value
Attack | Model | Defense [ Through | Baseline | === | === | &= | £ [ % =
None | False | 0.998 |0.923 | 0.922 | 0.926 | 0.929 | 0.935 | 0.937
) False | 0.996 | 0.994 | 0.99 | 0.984 | 0.979 | 0.974 | 0.971
Jpeg True 0.996 | 0.908 | 0.898 | 0.893 | 0.895 | 0.893 | 0.894
ResNetS0 [ o~ | False | 0983 |0.983 0979 | 0.981 [ 0.98 |0.979 | 0.98
True 0.983 | 0.921 | 0.868 | 0.837 | 0.821 | 0.809 | 0.798
e | False | 0975 10973 0.968 | 0.963 | 0.958 | 0.953 | 0.949
FGSM True 0.975 | 0.856 | 0.805 | 0.786 | 0.775 | 0.764 | 0.759
None | False | 0.999 | 0911 | 0.865 | 0.843 | 0.831 | 0.828 | 0.823
: False | 0998 | 0.978 | 0.943 | 0.909 | 0.885 | 0.872 | 0.869
Jpeg True 0.998 | 0.872 | 0.836 | 0.815| 0.8 [0.791 | 0.786
ViT ELjc | False | 0992 |0.989 | 0985 | 0.975 | 0.965 | 0952 | 0935
True 0.992 | 0.915 | 0.821 | 0.773 | 0.738 | 0.723 | 0.714
HiFC | False | 0995 10.993| 0991 | 0.984 | 0.974 | 0.964 | 0956
True 0.995 | 0.879 | 0.824 | 0.792 | 0.783 | 0.774 | 0.769
None | False | 00998 |O0.111 | 0.065 | 0.052 | 0.04 | 0.031 | 0.024
: False | 0996 |0.994 |0.992 | 0.989 | 0.985 | 0.979 | 0.971
Jpeg True 0.996 |0.423 | 029 | 0.237 | 0.21 | 0.185 | 0.168
ResNetS0 [ 1o | False | 0983 0982 0.98 | 098 | 0.981 | 0979 | 0977
True 0.983 |0.785 | 0.538 | 0.385 | 0.293 | 0.221 | 0.178
iEc | False | 0975 0974|0971 | 0966 | 0.962 | 0.958 | 0.958
FGSM True 0.975 | 0.613 | 0.379 | 0.259 | 0.201 | 0.159 | 0.125
None | False | 0.999 |0.158 | 0.035 | 0.013 | 0.006 | 0.004 | 0.002
. False | 0998 |0.975|0.895 | 0.746 | 0.565 | 0.395 | 0.263
Jpeg True 0.998 | 0278 | 0.114 | 0.058 | 0.041 | 0.024 | 0.018
ViT ELjc | False | 0992 | 0.986 | 0.981 | 0.975 | 0.968 | 0.959 | 0.947
True 0992 | 079 | 0.5 | 0311]0.196 | 0.127 | 0.086
HiFC | False | 0995 0993|0991 | 0986 | 0.984 | 0.974 | 0.967
True 0.995 |0.567 | 0.262 | 0.13 | 0.08 | 0.051 | 0.036
None | False | 0998 | 0.13 | 0.073 | 0.051 | 0.037 | 0.033 | 0.026
ince False | 0996 |0.994 | 0993 | 0.99 | 0.986 | 0.981 | 0.975
True 0.996 | 0.445 | 0.307 | 0.253 | 0.218 | 0.189 | 0.169
ResNetS0 | o | False | 0983 | 09820983 | 0.979 | 0.98 | 0979 | 0977
True 0.983 | 0.804 | 0.58 | 0.425 | 0.321 | 0.262 | 0.215
mEC | False | 0975 10974 0.969 | 0965 | 0.963 | 0.961 | 0.955
PGD True 0.975 |0.635 | 0.41 | 0.281 | 0.216 | 0.171 | 0.133
None | False | 0.999 |0.176 | 0.042 | 0.016 | 0.008 | 0.003 | 0.003
: False | 0998 | 0.98 [0.916|0.801 | 0.646 | 0.498 | 0.352
Jpeg True 0.998 |0.304 | 0.121 | 0.068 | 0.037 | 0.026 | 0.017
ViT ELic | False | 0992 0986 |0.981 | 09770971 | 0.964 | 0958
True 0.992 |0.801 | 0.523 | 0.348 | 0.23 | 0.16 | 0.11
e | False | 0995 0993109920988 | 0.984 | 0.978 | 0.974
True 0.995 | 0.604 | 0.297 | 0.164 | 0.1 | 0.066 | 0.046

Table 5: Comprehensive evaluation of FGSM, iFGSM, and PGD attack effectiveness against different
defenses, showing accuracy at various Loo norm constraint values. The table highlights the superior
performance of learned compression methods, particularly for the ViT architecture.
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C SUPPLEMENTING TABLES ON QUALITY ABLATION

Attack parameters l> norm value
Model Quality | Through | Baseline 2 4 8 12

50 False 0.931 0.933 | 0.932 | 0.927 | 0.929
’ True 0.931 0.384 | 0.224 | 0.145 | 0.114
10.0 False 0.985 0.983 | 0982 | 0.979 | 0.977
’ True 0.985 0.451 | 0.292 | 0.205 | 0.165
15.0 False 0.991 0.99 | 0.988 | 0984 | 0.979

’ True 0.991 0.444 | 0.303 | 0.218 0.18
250 False 0.996 0.994 | 0.991 | 0985 | 0.972
ResNetS0 True 0.996 0.421 | 0.289 | 0.205 | 0.169
350 False 0.997 0.995 | 0.993 | 0.979 | 0.955
True 0.997 0.398 | 0.281 | 0.195 | 0.146
500 False 0.997 0.995 | 0.988 | 0.963 | 0.911
True 0.997 0.384 | 0.258 | 0.182 | 0.137
750 False 0.997 0.991 | 0.961 | 0.824 | 0.622

’ True 0.997 034 | 0.235 | 0.137 0.1
950 False 0.998 0.718 | 0.343 | 0.153 | 0.085
’ True 0.998 0.267 | 0.152 | 0.094 | 0.067
50 False 0.94 0.932 | 0.925 | 0911 0.896
) True 0.94 0.337 | 0.135 | 0.042 | 0.016
100 False 0.992 0.983 | 0.968 | 0.925 | 0.854
’ True 0.992 0.358 | 0.145 | 0.048 | 0.021
15.0 False 0.996 0.985 | 0.958 | 0.845 | 0.636

’ True 0.996 0.324 | 0.116 | 0.039 0.02
250 False 0.998 0.974 | 0.898 | 0.561 0.264
ViT True 0.998 0.272 | 0.111 | 0.037 | 0.018
350 False 0.999 0.955 | 0.786 | 0.329 0.11

’ True 0.999 0.256 0.1 0.039 0.02
500 False 0.999 0914 | 0.613 | 0.159 | 0.033
True 0.999 0.247 | 0.091 | 0.031 0.016
750 False 0.999 0.735 | 0.253 | 0.03 0.006
’ True 0.999 0.237 | 0.087 | 0.028 | 0.012
95.0 False 0.999 0.333 | 0.079 | 0.012 | 0.004
’ True 0.999 0.256 | 0.075 | 0.018 | 0.006

Table 6: Ablation studies comparing model accuracy for different quality levels of JPEG compression
defense against iFGSM attacks with varying L2 norm constraints. These results informed the selection
of optimal quality settings for the main experiments.

Attack parameters l> norm value

Model Quality | Through | Baseline 2 4 8 12
low False 0.976 0.973 | 0.967 | 0965 | 0.956
True 0.976 0.61 0.376 | 0.201 0.126
ResNet50 med False 0.995 0.993 | 0.991 | 0.983 | 0.978
True 0.995 0.539 | 0.31 | 0.158 | 0.106
hi False 0.992 0.991 | 0.986 | 0.978 | 0.968
True 0.992 0.531 | 0.302 | 0.148 | 0.085
low False 0.995 0.991 0.99 | 0.983 | 0.967
True 0.995 0.575 | 0.255 | 0.083 | 0.038
ViT med False 0.999 0.995 | 0.984 | 0.921 0.822
True 0.999 0.509 | 0.212 | 0.058 | 0.024
hi False 0.998 0.992 | 0971 | 0.868 | 0.699
True 0.998 0.362 0.1 0.019 | 0.006

Table 7: Ablation studies comparing model accuracy for different quality levels of HiFiC compression
defense against iFGSM attacks with varying L2 norm constraints. These results informed the selection
of optimal quality settings for the main experiments.
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Attack parameters l> norm value
Model Quality | Through | Baseline 2 4 8 12

0004 False 0.901 0.902 | 0.899 | 0.897 | 0.901
True 0.901 0.714 | 0.513 | 0.261 0.154
0008 False 0.957 0.959 | 0.956 | 0.953 | 0.955

ResNet50 True 0.956 0.761 | 0.534 | 0.275 0.17
0016 False 0.983 0.982 | 0.981 | 0979 | 0.979

True 0.984 0.785 | 0.542 | 0.289 0.18
0032 False 0.992 0.99 0.99 | 0.989 | 0.984
True 0.992 0.783 | 0.512 | 0.243 | 0.142

0150 False 0.998 0.997 | 0.994 | 0984 | 0.951
True 0.998 0.696 | 0.371 | 0.154 | 0.092
0450 False 0.998 0.996 | 0.989 | 0.928 | 0.775

True 0.998 0.57 | 0.255 | 0.111 0.073
0004 False 0.944 0.933 | 0931 | 0924 | 0914
True 0.944 0.724 | 0478 | 0.243 | 0.139

. 0008 False 0.977 0.972 | 0.965 | 0.955 | 0.947
ViT True 0.977 0.765 | 0.514 | 0.236 | 0.116
0016 False 0.993 0.989 | 0.982 | 0.968 | 0.948

True 0.993 0.79 | 0.494 0.2 0.083

0032 False 0.997 0.991 | 0.985 | 0.955 | 0.893

True 0.997 0.781 | 0.432 | 0.132 | 0.055

0150 False 0.999 0.989 | 0935 | 0.675 | 0.313

True 0.999 0.653 | 0.231 | 0.054 0.02

0450 False 0.999 0.951 | 0.731 | 0.212 | 0.038

True 0.999 0.495 | 0.139 | 0.032 0.01

Table 8: Ablation studies comparing model accuracy for different quality levels of HiFiC compression
defense against iFGSM attacks with varying L2 norm constraints. These results informed the selection
of optimal quality settings for the main experiments.
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: Z 8 16
N Baseline 255 255 255

1.0 0.998 0.255 | 0.11 | 0.068
2.0 0.998 0.32 | 0.134 | 0.086
3.0 0.997 0.375 | 0.155 | 0.094
4.0 0.997 0.433 | 0.189 | 0.115
5.0 0.998 0.501 | 0.231 | 0.145
6.0 0.997 0.595 | 0.301 | 0.19
7.0 0.998 0.707 | 0.41 | 0.271

Table 9: Detailed results for sequential defense using ELIC, showing accuracy after N compres-
sion/decompression cycles at different attack strengths.

. S 8 16
N Baseline 255 255 255

1.0 0.995 0.312 | 0.162 | 0.101
2.0 0.993 0.359 | 0.182 | 0.116
3.0 0.99 0.399 | 0.211 | 0.135
4.0 0.989 0.444 | 0.245 | 0.153
5.0 0.989 0.498 | 0.284 | 0.177
6.0 0.989 0.549 | 0.329 | 0.213
7.0 0.987 0.602 | 0.385 | 0.253

Table 10: Detailed results for sequential defense using HiFiC, showing accuracy after N compres-
sion/decompression cycles at different attack strengths.
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N Baseline 2?5 225 21565
1.0 0.996 0.29 0.211 | 0.169
2.0 0.994 0.439 | 0.368 | 0.303
3.0 0.994 0.826 | 0.754 | 0.684
4.0 0.994 0.929 0.88 0.833
5.0 0.994 0.953 | 0.927 | 0.894
6.0 0.994 0.968 | 0.949 | 0.928
7.0 0.994 0.976 | 0.961 | 0.946
8.0 0.994 0.979 | 0.969 | 0.956
9.0 0.994 0.982 | 0.973 | 0.963
10.0 0.994 0.984 | 0.978 | 0.968

11.0 0.994 0.989 | 0.981 | 0.972
12.0 0.994 0.989 | 0.984 | 0.974
13.0 0.994 0.991 | 0.984 | 0.978
14.0 0.994 0.988 | 0.986 0.98

15.0 0.994 0.992 | 0.987 0.98

16.0 0.994 0.991 | 0.988 | 0.983
17.0 0.994 0.99 0.99 0.984
18.0 0.994 0.99 0.988 | 0.984
19.0 0.994 0.993 | 0.988 | 0.985
20.0 0.994 0.991 | 0.989 | 0.985
21.0 0.994 0.992 0.99 0.987
22.0 0.994 0.991 | 0.989 | 0.987
23.0 0.994 0.992 | 0.989 | 0.986
24.0 0.994 0.993 | 0.989 | 0.988
25.0 0.994 0.992 0.99 0.988
26.0 0.994 0.993 0.99 0.987
27.0 0.994 0.994 | 0.991 | 0.988
28.0 0.994 0.992 0.99 0.988
29.0 0.994 0.993 0.99 0.985
30.0 0.994 0.994 0.99 0.987
31.0 0.994 0.992 0.99 0.987
32.0 0.994 0.993 | 0.992 | 0.989
33.0 0.994 0.994 | 0.991 | 0.988
34.0 0.994 0.993 | 0.991 | 0.989
35.0 0.994 0.994 | 0.993 | 0.989
36.0 0.994 0.994 | 0.992 0.99

37.0 0.994 0.994 0.99 0.986
38.0 0.994 0.993 | 0.992 | 0.987
39.0 0.994 0.994 | 0.992 | 0.988
40.0 0.994 0.993 | 0.992 | 0.989
41.0 0.994 0.993 | 0.993 0.99

42.0 0.994 0.993 | 0.993 | 0.988
43.0 0.994 0.993 | 0.991 | 0.991
44.0 0.994 0.994 | 0.993 0.99

45.0 0.994 0.993 | 0.991 0.99

46.0 0.994 0.994 | 0.993 | 0.991
47.0 0.994 0.994 | 0.992 0.99

48.0 0.994 0.994 | 0.993 0.99

49.0 0.994 0.994 | 0.992 | 0.989
50.0 0.994 0.994 0.99 0.99

Table 11: Detailed results for sequential defense using JPEG show accuracy after N compres-
sion/decompression cycles at different attack strengths. JPEG demonstrates superior scaling with
iteration count, maintaining high (> 99%) accuracy even after 50 cycles.
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