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ABSTRACT

Adversarial attacks on image models threaten system robustness by introducing
imperceptible perturbations that cause incorrect predictions. We investigate human-
aligned learned lossy compression as a defense mechanism, comparing two learned
models (HiFiC and ELIC) against traditional JPEG across various quality levels.
Our experiments on ImageNet subsets demonstrate that learned compression meth-
ods outperform JPEG, particularly for Vision Transformer architectures, by pre-
serving semantically meaningful content while removing adversarial noise. Even in
white-box settings where attackers can access the defense, these methods maintain
substantial effectiveness. We also show that sequential compression—applying
rounds of compression/decompression—significantly enhances defense efficacy
while maintaining classification performance. Our findings reveal that human-
aligned compression provides an effective, computationally efficient defense that
protects the image features most relevant to human and machine understanding.

1 INTRODUCTION

Vision models have made significant improvements in recent years, achieving remarkable success
in tasks like image classification He et al. (2015), object detection Szegedy et al. (2013); Zou et al.
(2023) and medical imaging Shen et al. (2017). However, vision models remain highly vulnerable to
adversarial attacks despite these advancements. Adversarial attacks are carefully crafted perturbations
added to input images, which are often imperceptible to the human eye but can cause deep learning
models to make incorrect predictions Szegedy et al. (2014); Madry et al. (2019). These attacks pose a
serious threat to applications that rely on the reliability of vision models, such as autonomous driving,
healthcare diagnostics, and surveillance systems.

One potential approach to defending against these adversarial attacks is to remove the small perturba-
tions introduced by the attacker. Eliminating these imperceptible changes makes it possible to prevent
the model from being misled. Traditional methods, such as blurring or adding random noise, can be
effective at removing perturbations; however, they have significant drawbacks. While these methods
reduce the adversarial impact, they distort the image, changing its distribution in a way that may
cause the image to be “out of distribution” for the classifier. Moreover, they do not solely remove
adversarial perturbations but also information that could be important for the task. This results in a
loss of critical information, degrading model performance, and making the system less reliable.

Ilyas et al. (2019) showed in their seminal work that image classifiers learn to use non-robust features
for image classification that the adversarial examples exploit. In the area of image compression,
researchers showed that human-perception-aligned learned lossy compression models can yield high
compression ratios while producing images that humans prefer, for instance, over JPEG compressed
images. These techniques aim to preserve an image’s most important features according to human
perception while discarding less significant details. By doing so, they can remove adversarial
perturbations without altering the underlying image distribution and without losing task-relevant
information. Since the images remain in distribution for the classifier, the model can continue to
perform effectively while being protected from adversarial attacks. Dziugaite et al. (2016) has shown
that JPEG compression could be a viable defence, however, as later shown, only if the attacker does
not include the JPEG compression in the attack Shin & Song (2017).

This work explores the potential of learned image compression methods to defend against adversarial
attacks. We compare these methods to a traditional technique, JPEG, and evaluate their effectiveness
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in removing adversarial perturbations while preserving the integrity of the image distribution. Our
findings show that human-perception aligned compression offers a promising strategy for defending
vision models against adversarial attacks, without sacrificing classification accuracy. This approach
contributes to developing more efficient and robust defense mechanisms, fostering the creation of
more secure and reliable vision systems.

2 RELATED WORK

2.1 ADVERSARIAL ATTACKS

Adversarial examples have become a critical concern in machine learning, particularly regarding
the robustness and security of deep learning models. These inputs are intentionally crafted to
deceive models into making incorrect predictions. Szegedy et al. (2014) first demonstrated that small,
imperceptible perturbations could cause neural networks to misclassify images with high confidence.

Kurakin et al. (2017) extended the study of adversarial attacks to the physical world, showing that
printed images with adversarial perturbations could still deceive classifiers when captured through a
camera, underscoring the real-world implications of adversarial attacks beyond digital environments.

In response to these challenges, various defense mechanisms have been proposed. Madry et al. (2019)
introduced Projected Gradient Decent (PGD) attacks along with adversarial training, a technique
in which models are trained on adversarial examples to improve their robustness. Papernot et al.
(2016) proposed defensive distillation, leveraging knowledge distillation Hinton et al. (2015)—a
technique that compresses an ensemble of models into a smaller model—to enhance resistance
against adversarial attacks. Another approach involves preprocessing inputs to remove adversarial
perturbations before classification, which can be achieved using image compression techniques
Dziugaite et al. (2016). Despite these efforts, achieving a comprehensive defense against adversarial
attacks remains an open problem.

2.2 IMAGE COMPRESSION AS ADVERSARIAL DEFENSE

Dziugaite et al. (2016) demonstrated that JPEG compression can weaken adversarial attacks by
removing small perturbations. The perturbations often vanish by compressing and decompressing a
potentially manipulated image, reducing the attack’s effectiveness. Even with a high quality factor of
75, JPEG compression enhanced model robustness.

However, Shin & Song (2017) demonstrated that the defensive effectiveness of JPEG compression
can be significantly diminished by leveraging a differentiable approximation of the algorithm. By
propagating gradient information through the model and the JPEG compression process, adversarial
attacks can generate perturbations that persist even after the compression and decompression steps.

2.3 LEARNED LOSSY IMAGE COMPRESSION

Recent advancements in image compression have moved beyond traditional methods like JPEG,
which use linear transformations, to learned techniques that replace the Discrete Cosine Transform
(DCT) with nonlinear transformations Liu et al. (2023); He et al. (2021); Galteri et al. (2019);
Agustsson et al. (2019); Minnen et al. (2018). Variational Autoencoder (VAE)-based models and
Generative Adversarial Networks (GANs) Mentzer et al. (2020) help minimize compression artifacts,
producing realistic images even at ultra-low bitrates.

HiFiC Mentzer et al. (2020) leverages GANs to achieve visually appealing reconstructions while
preserving perceptually significant information. A user study demonstrated HiFiC’s superiority in
reconstruction quality over other methods, even at half the bits per pixel.

ELIC He et al. (2022) optimizes image compression for both speed and efficiency. It outperforms
previous learned methods, such as Minnen et al. (2018); Cheng et al. (2020), especially at low bitrates.

At low bitrates, learned compression methods outperform JPEG by preserving perceptual quality and
reducing visual artifacts, all while maintaining the original image distribution. Thus, using learned
compression as preprocessing for neural network classifiers can enhance robustness by removing
small perturbations while preserving the image distribution.
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3 METHODS

Our experiments’ objective was to evaluate the effectiveness of image compression as a defense
mechanism against adversarial attacks. We also investigated the impact of varying compression
quality levels and the effects of applying multiple compression steps sequentially.

We implemented our defenses as an additional preprocessing step applied to the (perturbed) image
before it was fed into the classifier. Since lossy image compression inherently removes specific details,
it is expected to eliminate some of the adversarial perturbations, thereby reducing the effectiveness of
the attack. We then generated adversarial perturbations for the dataset and assessed the classifier’s
accuracy on the perturbed images, comparing it to the baseline accuracy before the attack.

3.1 DEFENSES

Table 1: Bits per pixel (BPP) measurements for
different compression methods and quality set-
tings, computed on 100 224×224 images from
ImageNet. This table enables direct comparison
of compression efficiency across JPEG, ELIC,
and HiFiC methods at various quality levels.

JPEG
Quality BPP
q = 5.0 0.35
q = 10.0 0.48
q = 15.0 0.59
q = 25.0 0.78
q = 35.0 0.94
q = 50.0 1.14
q = 75.0 1.65
q = 95.0 3.80

ELIC
Weights BPP
0004 0.06
0008 0.09
0016 0.14
0032 0.19
0150 0.42
0450 0.69

HiFiC
Weights BPP

low 0.15
med 0.43
high 0.46

The compression methods used as defenses were
JPEG, HiFiC, and ELIC. JPEG was selected be-
cause it is one of the most widely used compres-
sion algorithms and has been previously explored
as a defense mechanism against adversarial at-
tacks Dziugaite et al. (2016); Shin & Song (2017).
Thus, JPEG serves as a baseline for comparison
with the other compression techniques. To imple-
ment JPEG compression and decompression, we
used the differentiable approximation provided
by Kornia Riba et al. (2020).

HiFiC and ELIC are learned compression meth-
ods that utilize different architectures to achieve
high image quality at low bitrates (Table 1,
Mentzer et al. (2020); He et al. (2022)). PyTorch
implementations and weight checkpoints are publicly available for both methods. 1 2

For HiFiC and ELIC, we employed differentiable forward functions. The use of differentiable
defenses allowed gradient information to propagate through the entire pipeline (including both the
model and the defense mechanism). This is expected to reduce the effectiveness of the defense, as it
enables the adversarial attack to adapt its perturbations to persist through the compression process.
To account for this, we conducted an additional set of experiments using this stronger adaptive attack.
In tables throughout this paper, this is annotated with through being true.

3.2 ADVERSARIAL ATTACKS

We use these methods to compute adversarial examples:

• Fast gradient sign method (FGSM) Goodfellow et al. (2014).

• Iterative FGSM (iFGSM) Kurakin et al. (2017).

• Projected gradient descent (PGD) Madry et al. (2019).

• Carlini-Wagner attack (CW) Carlini & Wagner (2017).

• DeepFool attack (DeepFool) Moosavi-Dezfooli et al. (2016).

For FGSM, iFGSM and PGD we use different l∞ norm values (epsilon) to modulate the attack
strength, for CW and DeepFool we computed the accuracy for perturbations below a specific l2 norm
value. For iFGSM and PGD we used 10 iterations. For all attacks, the torchattacks Kim (2020)
implementation was used. For a full list of hyperparameters see Table 3 in the Appendix. When
we pass the gradients through the compression model as in Shin & Song (2017), we call it as a
“white-box” while if we do not, we call it a “black-box” attack.

1HiFiC: https://github.com/Justin-Tan/high-fidelity-generative-compression.
2ELIC: https://github.com/VincentChandelier/ELiC-ReImplemetation.

3

https://github.com/Justin-Tan/high-fidelity-generative-compression
https://github.com/VincentChandelier/ELiC-ReImplemetation


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

a ELIC low qual-
ity

b ELIC high qual-
ity

c HiFiC low qual-
ity

d HiFiC med.
quality

e JPEG quality
25.0

f Original image

Figure 1: Visual comparison of image degradation after three compression/decompression cycles
using different compression methods and quality settings. From left to right: (a) ELIC 0004, (b)
ELIC quality 0016, (c) HiFiC low, (d) HiFiC medium, (e) JPEG quality 25.0, and (f) the original
uncompressed image. Note how learned compression methods (ELIC, HiFiC) exhibit different artifact
patterns than traditional JPEG compression.

3.3 MODELS AND DATASETS

The experiments used two different base models: ResNet50 He et al. (2015), and a Vision Transformer
(ViT), specifically ViT-B/16 Dosovitskiy et al. (2021). Both models were sourced from PyTorch
Paszke et al. (2019) and initialized with pretrained ImageNet weights.

For our experiments, we used the validation split of Imagenette, a subset of ImageNet Deng et al.
(2009) containing 10 easily classified classes. In later experiments, the full ImageNet test split was
utilized.

3.4 COMPRESSION STRENGTH

To determine the appropriate compression quality for our experiments, we conducted additional tests
for each compression method, comparing different levels to identify an optimal quality setting. Be-
yond defensive strength, our choice of compression was also influenced by several factors: the impact
of the defense on accuracy in the absence of an attack, comparability between different compression
methods and related work, and the availability of pretrained weights for learned compression models.
Training these models from scratch was beyond the scope of this study.

The parameters influencing compression strength for the different methods were as follows:

• JPEG: The quality parameter q ∈ [0,100] and controls the quantization strength of the
algorithm, with lower values corresponding to greater compression. We compared values
q ∈ {5.0,10.0,15.0,25.0,35.0,50.0,75.0,95.0}. Typically, values greater than 70 are con-
sidered high quality, while values below 30 result in low-quality images that may appear
pixelated and blurry.

• HiFiC: Three different sets of pretrained weights were available for HiFiC: HiFiClow,
HiFiCmed and HiFiChigh, which were trained to achieve target bitrates per pixel (BPP) of
0.14, 0.3, and 0.45, respectively.

• ELIC: Six different checkpoints were available for ELIC: [0004, 0008, 0016, 0032, 0150,
0450]. These correspond to different values of λ, the rate-controlling parameter, determining
the trade-off between estimated bitrate and image reconstruction distortion (see He et al.
(2022) for details).

Additionally, we computed BPP values for images from the ImageNet dataset resized to 224 × 224
pixels across different compression methods, cf. Table 1. This allowed a direct comparison of size
reduction between techniques.

3.5 SEQUENTIAL COMPRESSION

We also conducted experiments on the effectiveness of compressing and decompressing an image
multiple times in sequence as a defense. We always propagated the gradients through the defense for
these experiments to achieve a stronger attack. The experiments were conducted on Imagenette and
ImageNet. For ImageNet, we used 1000 randomly sampled images to reduce computation time.
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a L∞ attacks on Imagenette: FGSM
(top row), iFGSM (middle row), and
PGD (bottom row). Learned com-
pression methods (ELIC, HiFiC)
consistently outperform JPEG for
the ViT model, particularly under
stronger attacks. Epsilon values rep-
resent attack strength as x/255.
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c L∞ attacks on ImageNet: FGSM
(top row), iFGSM (middle row), and
PGD (bottom row) on 1000 samples.
Results demonstrate that the same
defense patterns observed on Ima-
genette generalize to the more com-
plex ImageNet data, though with
lower overall accuracy due to in-
creased task difficulty.

Figure 2: Model accuracy under adversarial attacks for ResNet50 (left) and ViT (right) architectures.
Solid lines represent “black-box” attacks (without gradient propagation through the compression),
while dashed lines show “white-box” attacks (with gradient propagation through the defense). Results
are shown for both Imagenette and ImageNet datasets.

4 RESULTS

The main results can be found in Figures 2a and 2b with Tables 4 and 5 in the Appendix giving the
exact value. We use quality levels 25.0, low, and 0016 for the compression defenses for JPEG, HiFiC,
and ELIC, respectively, unless otherwise stated.

4.1 BASELINE RESULTS

Both of the used models achieved a very high accuracy on Imagenette, ≈ 0.998 for ResNet50 and
≈ 0.999 for the ViT, as well as a strong resilience against the FGSM attack even without a defense,
with both models still achieving accuracies > 0.8 at an attack strength of epsilon 8

255
. For iFGSM (cf.

Table 2) and PGD the accuracy dropped to < 0.05 for ResNet50 and < 0.01 for the ViT at this level of
attack strength. These baseline experiments also indicate a difference in robustness between the two
models used, as the accuracy of the ViT is lower for all baseline experiments.

4.2 DEFENSE RESULTS

All three defense methods showed promising results in Figure 2a, showing almost no change in
accuracy after all “black-box” attacks when using the ResNet50 model (see Figures 2a and 2b). For
“black-box” attacks against ViT, iFGSM and PGD lead to a drop in accuracy at epsilon 4

255
for JPEG,

but still achieve a much higher accuracy than the baseline. The learned compression algorithms show
much better performance for ViT, with ELIC and HiFiC achieving an accuracy comparable to before
the attack even for high epsilon values.

Adversarial images crafted with the CW and DeepFool attacks were easier to defend against
as shown in Figure 2b. This could be attributed to the fact that these attacks find min-
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imal perturbations, compared to the other three attacks that find perturbations within the
given bounds, which are not necessarily minimal. There are also more hyperparame-
ters to tune for an optimal attack and a longer runtime. These factors lead us to fo-
cus less on these attacks and not conduct additional experiments with CW or DeepFool.

Table 2: Classification accuracy (%) for differ-
ent defenses against iFGSM attacks on the Im-
agenette dataset at varying epsilon values. Re-
sults are shown for both ResNet50 and ViT models
under black-box (Through=False) and white-box
(Through=True) attack scenarios, demonstrating
the vulnerability of all defenses to white-box at-
tacks.

Defense Through 0 4
255

8
255

12
255

R
es

N
et

50

None False 100 6 4 2

JPEG False 100 99 98 97
True 100 28 21 17

ELIC False 98 98 98 98
True 98 54 28 18

HiFiC False 98 97 96 96
True 98 38 20 12

V
iT

None False 100 4 1 0

JPEG False 100 90 56 26
True 100 11 4 2

ELIC False 99 98 97 95
True 99 50 20 9

HiFiC False 100 99 98 97
True 100 26 8 4

Attacking the entire pipeline drastically weak-
ens the effect of all three defenses. There is
still improvement over no defense, but the ac-
curacy is not comparable to the experiments
where the gradient information was not propa-
gated through the defenses.

These results indicate three major things:

• The ViT used is less robust against ad-
versarial attack.

• The tested learned compressions per-
form better for ViT.

• Learned compression is a better de-
fence than JPEG.

• Even for learned compression, the ef-
fectiveness of compression-based de-
fenses is greatly diminished by creat-
ing adversarial images where gradient
information was propagated through
the defense as seen in Shin & Song
(2017).

4.2.1 IMAGENET RESULTS

After analyzing these results, we decided to repeat some experiments on 1000 random images taken
from the ImageNet dataset, to see how the defenses perform on this harder task, with 1000 possible
classes instead of 10 and a much lower baseline accuracy (both models achieve an accuracy of about
0.8 on ImageNet). The results of these experiments can be found in Figure 2c. In this experimental
setup, all defenses show a larger accuracy decrease without an attack (epsilon= 0). This decrease
is larger for ResNet50 than for the ViT. There is also a more noticeable decrease as the epsilon
constraint of the attack gets larger for all attacks. On Imagenette the accuracy was almost constant
for effective defenses. However, the results on ImageNet generally show the same trends as those
discussed before.

4.3 COMPUTATIONAL OVERHEAD

We also computed the time it takes the model during inference to show that these defenses are feasible
in practice. For this test, we used an Nvidia RTX3090 and ResNet50. We did not include the time the
models need to initialize. Without a defense it took 20.8 seconds to classify the 3925 images in the
Imagenette dataset, or 5 ms per image. With JPEG as a defense, it took 8 ms per image. Using ELIC
and HiFiC it took 14 ms per image. Even when compressing and decompressing the images 5 times
in sequence, this only increased to 33 ms for HiFiC and 36 ms for ELIC. These timings show that
running these compression algorithms in an ML pipeline is feasible.

4.4 QUALITY ABLATION

This section compares different compression strengths for all the compressions used as defenses.
Complete tables can be found in the Appendix, see Tables 6 to 8.

4.4.1 JPEG

Figure 3a shows the accuracy for different JPEG qualities when attacked with iFGSM. For ResNet50,
only the high quality levels (75.0,95.0) were vulnerable to a standard attack. When using the stronger
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Figure 3: Ablation studies comparing model accuracy for different compression quality settings
under iFGSM attacks for ResNet50 (top) and ViT (bottom). Dashed lines show results when gradient
information was available to the attack (“white-box” setting). All methods demonstrate trade-offs
between defense strength and clean accuracy.

attack, which propagates the gradients through the defense, no quality level achieved a high accuracy
and therefore a successful defense. For an attack of 8/255 the levels 15.0 and 25.0 achieved the
highest accuracy at ≈ 0.2. In the ViT experiment, a larger spread of results can be observed for
“black-box” attacks, with lower quality levels performing better at high epsilon values. JPEG with a
quality level 5.0 showed a large decrease in accuracy without any attack. For “white-box” attacks,
none of the levels provides much defence. Considering these observations, we decided to use a
quality level of 25.0, as this achieves a good performance, does not degrade the baseline accuracy
and has been used in previous work by Shin & Song (2017).

4.4.2 HIFIC

Figure 3b shows that all the different compression strengths worked well as a defense for ResNet50,
but only HiFiC low achieved a high accuracy for the ViT, with the other two qualities showing a
decrease in accuracy for epsilon larger than 4

255
. All levels were very vulnerable when the gradient

was passed through the defense. Since the lowest quality only decreased baseline performance a little,
we used HiFiC low for the main experiments.

4.4.3 ELIC

Figure 3c shows the results for ELIC. The higher quality levels show decreased performance for
high epsilon values. The lowest quality levels show a decreased accuracy without any attack. There
is a larger difference between quality levels when the gradient is propagated through the defense
compared to HiFiC. For the main experiment we decided to use ELIC 0016, as it achieved good
accuracies without visibly decreasing the baseline performance, and because it is similar in BPP to
HiFiC low.

4.5 SEQUENTIAL DEFENSE

4.5.1 IMAGENETTE

For JPEG, we used quality level 25.0 for the results shown in Figures 4c and 9. For HiFiC and ELIC,
there is a tradeoff between a decrease in accuracy without an attack on low qualities and a decrease in
effectiveness on high qualities. The baseline accuracy using HiFiC low deteriorates quickly, making it
unusable as a sequential defense, see Figure 4a. ELIC 0016 also decreases the baseline accuracy, but
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curacy with minimal clean accuracy degradation com-
pared to HiFiC and ELIC.

Figure 4: Sequential defense performance analysis against iFGSM attacks on Imagenette using
ResNet50. Each point represents N consecutive compression/decompression cycles. JPEG demon-
strates superior sequential defense properties with faster convergence and better preservation of clean
accuracy compared to learned compression methods.

it was much slower than HiFiC low. This leads to a promising defense that reaches close to baseline
accuracy with seven sequential defense iterations, as seen in Figure 4b.

The experiments indicate a clear trend, showing that running an image through a defense multiple
times increases its effectiveness for all defenses. JPEG showed the fastest increase, achieving an
accuracy of over 0.9 for epsilon 8

255
after 5 iterations and converging towards the baseline. The

decrease in baseline accuracy for JPEG is negligible even after 50 iterations. HiFiC and ELIC also
show an increased accuracy for each additional sequential iteration, achieving accuracies of about 0.4
with 7 iterations. Because of the large amount of gradient information, we were unable to compute
results for more than 7 iterations of ELIC or HiFiC.

Figure 1 shows how the image quality deteriorates when compressing and decompressing multiple
times in sequence. Both of the learned compressions show a stark difference from the original image.
ELIC introduces black/red artifacts that take up parts of the image. The lowest quality of HiFiC leads
to a much brighter image, which loses most of the color information. JPEG performed best, while it
also introduces artifacts and blurs the image a lot, the image still looks similar after multiple passes
through the compression.

4.5.2 IMAGENET

Experiments in Figures 5a and 5b with sequential JPEG defense on ImageNet yielded similar patterns
but with lower overall accuracy, partly due to decreased baseline performance. Lower quality levels
reduced clean image accuracy, with this reduction primarily dependent on the quality parameter rather
than iteration count, as accuracy remained relatively stable across multiple compression cycles.
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a ResNet50 sequential JPEG defense: Lower quality
settings show decreased clean accuracy but provide
stronger defenses against adversarial examples.
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b ViT sequential JPEG defense: Similar trade-offs
between clean accuracy and adversarial defense effec-
tiveness at different quality levels.
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c Baseline accuracy (no attack): Demonstrates how
image quality degradation affects classification perfor-
mance even without adversarial perturbations using
ResNet50.
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d Extended sequential defense (up to 50 iterations):
Quality 10.0 converges faster but to a lower accuracy
ceiling, while quality 95.0 continues to improve even
after 50 iterations but at a slower rate.

Figure 5: Sequential JPEG defense analysis on ImageNet dataset against iFGSM attacks at various
quality levels. Results demonstrate consistent trade-offs between clean accuracy and adversarial
robustness across both ResNet50 and ViT architectures, with extended iterations revealing different
convergence patterns for different quality settings.

The lines’ jaggedness compared to earlier could come from the random sampling. However, even
considering the lower baselines, no quality seems to converge towards the baseline with 10 sequential
passes. This indicates a deeper sequential defense is needed for this more challenging task.

An experiment with a deeper sequential JPEG defense, see Figure 5d, shows this, as quality 10.0
seems to converge. For quality 95.0 the accuracy still improves even at 50 iterations. The jaggedness
of the baseline for low iterations is due to using different subsets of ImageNet. This was changed
later in the experiment for more consistent results.

5 CONCLUSION

This paper demonstrates that human-aligned learned compression can effectively defend against
adversarial attacks. We show that HiFiC and ELIC have advantages over JPEG, as they do not
significantly decrease the baseline accuracy of an image classification model even at low BPP.
However, we also show the weaknesses of such defenses in a white-box setting, as a gradient can
either be directly computed or approximated, decreasing the defense’s effectiveness. Sequential
compression significantly enhances defense effectiveness, with JPEG showing the most practical
balance between robustness and image quality over multiple iterations.

There are some limitations, as we only experiment with gradient-based attacks. In real-world settings,
there are more possible ways to attack a model, such as gradient-free attacks Uesato et al. (2018);
Engstrom et al. (2019); Gilmer et al. (2018). Further work could include results for these defenses in
settings that include these additional threats and combine image compression with other defensive
measures to create more robust deep learning models.

While these defenses are weakened in white-box settings, they offer meaningful protection. Future
work should explore combining compression-based defenses with other techniques and test against
other threats to develop more robust systems that align with human visual perception.
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REPRODUCIBILITY STATEMENT

All code used in our experiments is included in the supplementary material, together with a README
file that explains how to set up the environment, run the evaluation scripts, and reproduce the reported
results. The data are publicly available through PyTorch’s torchvision and Huggingface. For the
camera-ready version, we will make the code publicly available on GitHub.
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Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019. URL https://arxiv.org/abs/1912.01703.

Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and Gary Bradski. Kornia: an open
source differentiable computer vision library for pytorch. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 3674–3683, 2020.

Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical image analysis. Annual Re-
view of Biomedical Engineering, 19(Volume 19, 2017):221–248, 2017. ISSN 1545-4274. doi: https:
//doi.org/10.1146/annurev-bioeng-071516-044442. URL https://www.annualreviews.
org/content/journals/10.1146/annurev-bioeng-071516-044442.

Richard Shin and Dawn Song. Jpeg-resistant adversarial images. In NIPS 2017 workshop on machine
learning and computer security, volume 1, pp. 8, 2017.

Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neural networks for ob-
ject detection. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 26. Curran Asso-
ciates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/
2013/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks, 2014. URL https://arxiv.org/
abs/1312.6199.

Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet Kohli. Adversarial risk
and the dangers of evaluating against weak attacks, 2018. URL https://arxiv.org/abs/
1802.05666.

Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20 years:
A survey. Proceedings of the IEEE, 111(3):257–276, 2023. doi: 10.1109/JPROC.2023.3238524.

11

https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/2006.09965
https://proceedings.neurips.cc/paper_files/paper/2018/file/53edebc543333dfbf7c5933af792c9c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/53edebc543333dfbf7c5933af792c9c4-Paper.pdf
https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1511.04508
https://arxiv.org/abs/1511.04508
https://arxiv.org/abs/1912.01703
https://www.annualreviews.org/content/journals/10.1146/annurev-bioeng-071516-044442
https://www.annualreviews.org/content/journals/10.1146/annurev-bioeng-071516-044442
https://proceedings.neurips.cc/paper_files/paper/2013/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1802.05666
https://arxiv.org/abs/1802.05666


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

A USAGE OF LLMS

We have used LLMs to polish the writing of this paper and for code generation through chats, cursor,
and Claude code. ChatGPT, Claude, Gemini, and Grammarly were employed for spellchecking,
refining and condensing text, and reviewing the final draft to catch grammatical errors. Furthermore,
ChatGPT, Claude, and Cursor were used to assist with code completion and generate visualizations.

B TABLES

Attack Hyperparameters
FGSM eps=epsilon
iFGSM eps=epsilon,alpha=epsilon/4, steps = 10

PGD eps=epsilon, alpha=epsilon/4,steps=10,randomstart=True
CW c=1, kappa=0, steps=50, lr=0.01

DeepFool steps=50, overshoot=0.02

Table 3: Hyperparameters used for each adversarial attack method. This table details the specific
configuration for the experiments’ FGSM, iFGSM, PGD, CW, and DeepFool attacks.
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Attack parameters l2 norm value
Attack Model Defense Through Baseline 4 5 6 7 8 16 32

CW

ResNet50

None False 0.998 0.944 0.787 0.529 0.304 0.193 0.054 0.051

jpeg False 0.996 0.996 0.996 0.995 0.996 0.996 0.996 0.996
True 0.996 0.518 0.338 0.285 0.281 0.281 0.281 0.281

ELIC False 0.998 0.998 0.998 0.998 0.997 0.997 0.997 0.997
True 0.998 0.958 0.869 0.724 0.554 0.429 0.225 0.225

HiFiC False 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975
True 0.975 0.972 0.961 0.932 0.9 0.868 0.596 0.596

ViT

None False 0.999 0.803 0.494 0.231 0.097 0.045 0.005 0.005

jpeg False 0.998 0.997 0.995 0.995 0.995 0.995 0.995 0.995
True 0.998 0.409 0.287 0.267 0.264 0.264 0.264 0.264

ELIC False 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
True 0.999 0.934 0.796 0.555 0.346 0.228 0.137 0.137

HiFiC False 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995
True 0.995 0.984 0.964 0.934 0.888 0.832 0.547 0.547

DeepFool

ResNet50

None False 0.998 0.541 0.493 0.464 0.452 0.447 0.443 0.443

jpeg False 0.996 0.995 0.995 0.995 0.995 0.995 0.995 0.995
True 0.996 0.892 0.849 0.8 0.753 0.708 0.406 0.155

ELIC False 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
True 0.998 0.917 0.876 0.83 0.78 0.738 0.559 0.541

HiFiC False 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975
True 0.975 0.797 0.743 0.69 0.638 0.59 0.356 0.281

ViT

None False 0.999 0.752 0.641 0.539 0.448 0.376 0.194 0.171

jpeg False 0.998 0.996 0.996 0.996 0.996 0.996 0.996 0.996
True 0.998 0.969 0.95 0.931 0.912 0.885 0.684 0.381

ELIC False 0.999 0.999 0.998 0.998 0.998 0.998 0.998 0.998
True 0.999 0.955 0.926 0.891 0.854 0.81 0.559 0.417

HiFiC False 0.995 0.995 0.994 0.994 0.994 0.994 0.994 0.994
True 0.995 0.89 0.838 0.789 0.732 0.678 0.332 0.237

Table 4: Comprehensive evaluation of CW and DeepFool attack effectiveness against different
defenses, showing accuracy at various L2 norm constraint values. Results demonstrate that these
attacks, which find minimal perturbations, are generally less effective than bounded attacks like
iFGSM and PGD.
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Attack parameters l∞ norm value
Attack Model Defense Through Baseline 2

255
4

255
6

255
8

255
10
255

12
255

FGSM

ResNet50

None False 0.998 0.923 0.922 0.926 0.929 0.935 0.937

jpeg False 0.996 0.994 0.99 0.984 0.979 0.974 0.971
True 0.996 0.908 0.898 0.893 0.895 0.893 0.894

ELIC False 0.983 0.983 0.979 0.981 0.98 0.979 0.98
True 0.983 0.921 0.868 0.837 0.821 0.809 0.798

HiFiC False 0.975 0.973 0.968 0.963 0.958 0.953 0.949
True 0.975 0.856 0.805 0.786 0.775 0.764 0.759

ViT

None False 0.999 0.911 0.865 0.843 0.831 0.828 0.823

jpeg False 0.998 0.978 0.943 0.909 0.885 0.872 0.869
True 0.998 0.872 0.836 0.815 0.8 0.791 0.786

ELIC False 0.992 0.989 0.985 0.975 0.965 0.952 0.935
True 0.992 0.915 0.821 0.773 0.738 0.723 0.714

HiFiC False 0.995 0.993 0.991 0.984 0.974 0.964 0.956
True 0.995 0.879 0.824 0.792 0.783 0.774 0.769

iFGSM

ResNet50

None False 0.998 0.111 0.065 0.052 0.04 0.031 0.024

jpeg False 0.996 0.994 0.992 0.989 0.985 0.979 0.971
True 0.996 0.423 0.29 0.237 0.21 0.185 0.168

ELIC False 0.983 0.982 0.98 0.98 0.981 0.979 0.977
True 0.983 0.785 0.538 0.385 0.293 0.221 0.178

HiFiC False 0.975 0.974 0.971 0.966 0.962 0.958 0.958
True 0.975 0.613 0.379 0.259 0.201 0.159 0.125

ViT

None False 0.999 0.158 0.035 0.013 0.006 0.004 0.002

jpeg False 0.998 0.975 0.895 0.746 0.565 0.395 0.263
True 0.998 0.278 0.114 0.058 0.041 0.024 0.018

ELIC False 0.992 0.986 0.981 0.975 0.968 0.959 0.947
True 0.992 0.79 0.5 0.311 0.196 0.127 0.086

HiFiC False 0.995 0.993 0.991 0.986 0.984 0.974 0.967
True 0.995 0.567 0.262 0.13 0.08 0.051 0.036

PGD

ResNet50

None False 0.998 0.13 0.073 0.051 0.037 0.033 0.026

jpeg False 0.996 0.994 0.993 0.99 0.986 0.981 0.975
True 0.996 0.445 0.307 0.253 0.218 0.189 0.169

ELIC False 0.983 0.982 0.983 0.979 0.98 0.979 0.977
True 0.983 0.804 0.58 0.425 0.321 0.262 0.215

HiFiC False 0.975 0.974 0.969 0.965 0.963 0.961 0.955
True 0.975 0.635 0.41 0.281 0.216 0.171 0.133

ViT

None False 0.999 0.176 0.042 0.016 0.008 0.003 0.003

jpeg False 0.998 0.98 0.916 0.801 0.646 0.498 0.352
True 0.998 0.304 0.121 0.068 0.037 0.026 0.017

ELIC False 0.992 0.986 0.981 0.977 0.971 0.964 0.958
True 0.992 0.801 0.523 0.348 0.23 0.16 0.11

HiFiC False 0.995 0.993 0.992 0.988 0.984 0.978 0.974
True 0.995 0.604 0.297 0.164 0.1 0.066 0.046

Table 5: Comprehensive evaluation of FGSM, iFGSM, and PGD attack effectiveness against different
defenses, showing accuracy at various L∞ norm constraint values. The table highlights the superior
performance of learned compression methods, particularly for the ViT architecture.
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C SUPPLEMENTING TABLES ON QUALITY ABLATION

Attack parameters l2 norm value
Model Quality Through Baseline 2 4 8 12

ResNet50

5.0 False 0.931 0.933 0.932 0.927 0.929
True 0.931 0.384 0.224 0.145 0.114

10.0 False 0.985 0.983 0.982 0.979 0.977
True 0.985 0.451 0.292 0.205 0.165

15.0 False 0.991 0.99 0.988 0.984 0.979
True 0.991 0.444 0.303 0.218 0.18

25.0 False 0.996 0.994 0.991 0.985 0.972
True 0.996 0.421 0.289 0.205 0.169

35.0 False 0.997 0.995 0.993 0.979 0.955
True 0.997 0.398 0.281 0.195 0.146

50.0 False 0.997 0.995 0.988 0.963 0.911
True 0.997 0.384 0.258 0.182 0.137

75.0 False 0.997 0.991 0.961 0.824 0.622
True 0.997 0.34 0.235 0.137 0.1

95.0 False 0.998 0.718 0.343 0.153 0.085
True 0.998 0.267 0.152 0.094 0.067

ViT

5.0 False 0.94 0.932 0.925 0.911 0.896
True 0.94 0.337 0.135 0.042 0.016

10.0 False 0.992 0.983 0.968 0.925 0.854
True 0.992 0.358 0.145 0.048 0.021

15.0 False 0.996 0.985 0.958 0.845 0.636
True 0.996 0.324 0.116 0.039 0.02

25.0 False 0.998 0.974 0.898 0.561 0.264
True 0.998 0.272 0.111 0.037 0.018

35.0 False 0.999 0.955 0.786 0.329 0.11
True 0.999 0.256 0.1 0.039 0.02

50.0 False 0.999 0.914 0.613 0.159 0.033
True 0.999 0.247 0.091 0.031 0.016

75.0 False 0.999 0.735 0.253 0.03 0.006
True 0.999 0.237 0.087 0.028 0.012

95.0 False 0.999 0.333 0.079 0.012 0.004
True 0.999 0.256 0.075 0.018 0.006

Table 6: Ablation studies comparing model accuracy for different quality levels of JPEG compression
defense against iFGSM attacks with varying L2 norm constraints. These results informed the selection
of optimal quality settings for the main experiments.

Attack parameters l2 norm value
Model Quality Through Baseline 2 4 8 12

ResNet50

low False 0.976 0.973 0.967 0.965 0.956
True 0.976 0.61 0.376 0.201 0.126

med False 0.995 0.993 0.991 0.983 0.978
True 0.995 0.539 0.31 0.158 0.106

hi False 0.992 0.991 0.986 0.978 0.968
True 0.992 0.531 0.302 0.148 0.085

ViT

low False 0.995 0.991 0.99 0.983 0.967
True 0.995 0.575 0.255 0.083 0.038

med False 0.999 0.995 0.984 0.921 0.822
True 0.999 0.509 0.212 0.058 0.024

hi False 0.998 0.992 0.971 0.868 0.699
True 0.998 0.362 0.1 0.019 0.006

Table 7: Ablation studies comparing model accuracy for different quality levels of HiFiC compression
defense against iFGSM attacks with varying L2 norm constraints. These results informed the selection
of optimal quality settings for the main experiments.
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849
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851
852
853
854
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856
857
858
859
860
861
862
863

Attack parameters l2 norm value
Model Quality Through Baseline 2 4 8 12

ResNet50

0004 False 0.901 0.902 0.899 0.897 0.901
True 0.901 0.714 0.513 0.261 0.154

0008 False 0.957 0.959 0.956 0.953 0.955
True 0.956 0.761 0.534 0.275 0.17

0016 False 0.983 0.982 0.981 0.979 0.979
True 0.984 0.785 0.542 0.289 0.18

0032 False 0.992 0.99 0.99 0.989 0.984
True 0.992 0.783 0.512 0.243 0.142

0150 False 0.998 0.997 0.994 0.984 0.951
True 0.998 0.696 0.371 0.154 0.092

0450 False 0.998 0.996 0.989 0.928 0.775
True 0.998 0.57 0.255 0.111 0.073

ViT

0004 False 0.944 0.933 0.931 0.924 0.914
True 0.944 0.724 0.478 0.243 0.139

0008 False 0.977 0.972 0.965 0.955 0.947
True 0.977 0.765 0.514 0.236 0.116

0016 False 0.993 0.989 0.982 0.968 0.948
True 0.993 0.79 0.494 0.2 0.083

0032 False 0.997 0.991 0.985 0.955 0.893
True 0.997 0.781 0.432 0.132 0.055

0150 False 0.999 0.989 0.935 0.675 0.313
True 0.999 0.653 0.231 0.054 0.02

0450 False 0.999 0.951 0.731 0.212 0.038
True 0.999 0.495 0.139 0.032 0.01

Table 8: Ablation studies comparing model accuracy for different quality levels of HiFiC compression
defense against iFGSM attacks with varying L2 norm constraints. These results informed the selection
of optimal quality settings for the main experiments.
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907
908
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912
913
914
915
916
917

N Baseline 4
255

8
255

16
255

1.0 0.998 0.255 0.11 0.068
2.0 0.998 0.32 0.134 0.086
3.0 0.997 0.375 0.155 0.094
4.0 0.997 0.433 0.189 0.115
5.0 0.998 0.501 0.231 0.145
6.0 0.997 0.595 0.301 0.19
7.0 0.998 0.707 0.41 0.271

Table 9: Detailed results for sequential defense using ELIC, showing accuracy after N compres-
sion/decompression cycles at different attack strengths.

N Baseline 4
255

8
255

16
255

1.0 0.995 0.312 0.162 0.101
2.0 0.993 0.359 0.182 0.116
3.0 0.99 0.399 0.211 0.135
4.0 0.989 0.444 0.245 0.153
5.0 0.989 0.498 0.284 0.177
6.0 0.989 0.549 0.329 0.213
7.0 0.987 0.602 0.385 0.253

Table 10: Detailed results for sequential defense using HiFiC, showing accuracy after N compres-
sion/decompression cycles at different attack strengths.
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951
952
953
954
955
956
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960
961
962
963
964
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966
967
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969
970
971

N Baseline 4
255

8
255

16
255

1.0 0.996 0.29 0.211 0.169
2.0 0.994 0.439 0.368 0.303
3.0 0.994 0.826 0.754 0.684
4.0 0.994 0.929 0.88 0.833
5.0 0.994 0.953 0.927 0.894
6.0 0.994 0.968 0.949 0.928
7.0 0.994 0.976 0.961 0.946
8.0 0.994 0.979 0.969 0.956
9.0 0.994 0.982 0.973 0.963
10.0 0.994 0.984 0.978 0.968
11.0 0.994 0.989 0.981 0.972
12.0 0.994 0.989 0.984 0.974
13.0 0.994 0.991 0.984 0.978
14.0 0.994 0.988 0.986 0.98
15.0 0.994 0.992 0.987 0.98
16.0 0.994 0.991 0.988 0.983
17.0 0.994 0.99 0.99 0.984
18.0 0.994 0.99 0.988 0.984
19.0 0.994 0.993 0.988 0.985
20.0 0.994 0.991 0.989 0.985
21.0 0.994 0.992 0.99 0.987
22.0 0.994 0.991 0.989 0.987
23.0 0.994 0.992 0.989 0.986
24.0 0.994 0.993 0.989 0.988
25.0 0.994 0.992 0.99 0.988
26.0 0.994 0.993 0.99 0.987
27.0 0.994 0.994 0.991 0.988
28.0 0.994 0.992 0.99 0.988
29.0 0.994 0.993 0.99 0.985
30.0 0.994 0.994 0.99 0.987
31.0 0.994 0.992 0.99 0.987
32.0 0.994 0.993 0.992 0.989
33.0 0.994 0.994 0.991 0.988
34.0 0.994 0.993 0.991 0.989
35.0 0.994 0.994 0.993 0.989
36.0 0.994 0.994 0.992 0.99
37.0 0.994 0.994 0.99 0.986
38.0 0.994 0.993 0.992 0.987
39.0 0.994 0.994 0.992 0.988
40.0 0.994 0.993 0.992 0.989
41.0 0.994 0.993 0.993 0.99
42.0 0.994 0.993 0.993 0.988
43.0 0.994 0.993 0.991 0.991
44.0 0.994 0.994 0.993 0.99
45.0 0.994 0.993 0.991 0.99
46.0 0.994 0.994 0.993 0.991
47.0 0.994 0.994 0.992 0.99
48.0 0.994 0.994 0.993 0.99
49.0 0.994 0.994 0.992 0.989
50.0 0.994 0.994 0.99 0.99

Table 11: Detailed results for sequential defense using JPEG show accuracy after N compres-
sion/decompression cycles at different attack strengths. JPEG demonstrates superior scaling with
iteration count, maintaining high (> 99%) accuracy even after 50 cycles.
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Figure 6: Figure 2b in a larger format
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Figure 7: All attacks

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 F
GS

M

ResNet50

None
jpeg
ELIC
HiFiC

ViT

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 iF
GS

M

0 2 4 6 8 10 12
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 P
GD

0 2 4 6 8 10 12
Epsilon

Figure 8: Figure 2a in a larger format
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Figure 9: Accuracy of the sequential defense using multiple iterations of JPEG compression and
decompression. iFGSM, ResNet50
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Figure 10: Accuracy of the sequential defense using multiple iterations of ELIC compression and
decompression. iFGSM, ResNet50
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Figure 11: Accuracy of the sequential defense using multiple iterations of HiFiC compression and
decompression. iFGSM, ResNet50
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