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Abstract

Multi-person pose estimation in crowded scenes is challenging because overlapping
and occlusions make it difficult to detect person bounding boxes and infer pose
cues from individual keypoints. To address those issues, this paper proposes a
direct pose-level inference strategy that is free of bounding box detection and key-
point grouping. Instead of inferring individual keypoints, the Pose-level Inference
Network (PINet) directly infers the complete pose cues for a person from his/her
visible body parts. PINet first applies the Part-based Pose Generation (PPG) to
infer multiple coarse poses for each person from his/her body parts. Those coarse
poses are refined by the Pose Refinement module through incorporating pose priors,
and finally are fused in the Pose Fusion module. PINet relies on discriminative
body parts to differentiate overlapped persons, and applies visual body cues to
infer the global pose cues. Experiments on several crowded scenes pose estimation
benchmarks demonstrate the superiority of PINet. For instance, it achieves 59.8%
AP on the OCHuman dataset, outperforming the recent works by a large margin†.

1 Introduction

Multi-Person Pose Estimation (MPPE) performs both detection and pose keypoint localization for all
persons appearing in an image. Due to its importance in human activity understanding, human-object
interaction, human parsing, et al., MPPE has attracted increasing attention in recent years. Current
MPPE research can be summarized into two categories according to their pipelines, i.e. i) top-down
methods [5, 18, 29, 25], which detect person bounding boxes and perform pose estimation for each
bounding box, and ii) bottom-up methods [1, 20, 13, 17, 9, 7] that first detect body keypoints, then
assign them into corresponding persons. A more detailed review will be presented in Sec. 2.

The above two lines of research have significantly boosted the performance of MPPE. However,
performing MPPE is still challenging in crowded scenarios, where occlusions and person overlapping
commonly occur. It is difficult to detect accurate bounding boxes due to overlapped persons. The
commonly used Non-maximum Suppression (NMS) in detection frameworks also tends to suppress
dense bounding boxes, leading to many undetected persons. Those issues degrade the accuracy of
top-down methods. Person overlapping and occlusions lead to invisible keypoints, making it difficult
for bottom-up methods to infer accurate pose cues from individual keypoints. As shown in many
works, applying existing MPPE methods in crowded scenes gets inferior performance [10, 22].

As illustated in Fig. 1 (a) and (b), existing works generally suffer from difficulties of person detection
and keypoint grouping in crowded scenarios. This paper targets to perform MPPE with a new pipeline,
which is free of bounding box detection and keypoint grouping. We regard the human pose as an
inference objective, and directly infer the complete pose cues, i.e., locations of all body keypoints,
for a person from his/her visible body parts. In other words, we rely on discriminative visible body

†Code is available at: https://github.com/kennethwdk/PINet
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Figure 1: (a) Top-down methods suffer from the difficulty of detecting overlapped person in red
bounding box; (b) Bottom-up methods are sensitive to keypoint occlusions in red circles, thus can not
infer accurate pose cues; (c) The proposed DPLI infers initial pose cues from body parts, e.g., three
parts in the figure. Initial part cues are refined and fused to get the pose cues for the occluded person.

parts, e.g., heads, to differentiate overlapped persons. We apply visible part cues and contexts to
infer the global pose, including both visible and invisible keypoints. As this pipeline directly infers
complete pose cues, we name it as the Direct Pose-Level Inference (DPLI). This idea is also inspired
by works that infer invisible cues according to visible ones [24, 22, 30]. For instance, PRNet [24]
detects occluded persons according to visible body parts and person bounding box ratio prior.

We implement DPLI with the Pose-level Inference Network (PINet) that progressively infers the
occluded person pose from coarse to fine. Due to the lack of visible part annotations, we divide
each person into several parts according to settings in Fig. 3 to acquire and exploit visible parts. The
Part-based Pose Generation (PPG) generates initial pose cues from each part. The subsequent Pose
Refinement model employs a dynamic graph convolution to leverage contexts and pose structure
prior for the pose refinement. Finally, PINet uses Pose Fusion model to identify pose cues belonging
to the same person, and fuse them as the final pose estimation.

We test our method on crowded scenes pose estimation benckmarks including OCHuman and
CrowdPose. Experiments results show that, our PINet achieves superior performance compared
with recent works. For instance, we achieve 59.8% AP on OCHuman, outperforming the recent
OPEC-Net [22] and DEKR [4] by 30.7% and 7.8%. On CrowdPose, PINet achieves 62.2% AP on
the hard test set mostly composed of crowded scenes. On this challenging test set, PINet outperforms
the recent DEKR [4] by 4.7% in AP.

Some recent works also detect occluded keypoints from visible ones for pose estimation. OPEC-
Net [22] detects occluded keypoints by applying a Graph Convolution Network (GCN) [32] on visible
keypoints and contexts. However, OPEC-Net falls into the top-down category because it requires
bounding boxes to discriminate persons, thus suffers from the difficulty of person detection. To the
best of our knowledge, this is an original contribution on the Direct Pose-Level Inference (DPLI)
for pose estimation in crowded scenarios, which differs from the previous top-down and bottom-up
pipelines. The superior performance shown by extensive experiments validates the effectiveness of
our proposed PINet and illustrates potentials of the DPLI pipeline.

2 Related Work

This work is related with multi-person pose estimation and crowded scenes pose estimation. This
section briefly reviews related works in these categories respectively.

Multi-Person Pose Estimation aims to estimate the pose of every person in the image. Most
of related works can be summarized into two categories, i.e., top-down methods and bottom-up
methods, respectively. Top-down methods first detect person bounding box by an object detector like
YOLO [23], then perform single-person pose estimation in the cropped image or feature map. Mask
R-CNN [5] is a typical method that directly adds a keypoint detection branch on Faster R-CNN to use
the RoI pooling feature. G-RMI [18] and following methods break top-down methods into two steps
and use separate models for person detection and pose estimation, respectively. SimpleBaseline [29]
introduces a strong pose estimation baseline by adding deconvolution to ResNet [6]. Hourglass [14]
and HRNet [25] propose new convolution network architectures to generate high quality and high
resolution feature map for heatmap estimation, leading to superior performance.
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Bottom-up methods first detect identity-free body keypoints for all persons in an image, then group
those keypoints into individual persons. Heatmap is widely adopted for keypoint detection and
most existing bottom-up methods focus on identifying and grouping keypoints belonging to the
same person. DeepCut [20] is an early work that formulates grouping as an integer linear program.
OpenPose [1] proposes the part affinity field approach to learn a vector field linking two keypoints.
Grouping is conducted by calculating line integral between two keypoints and grouping the pair with
the largest integral. Associative Embedding [13] learns each keypoint with a tag embedding and
conducts the grouping by clustering the tag. PersonLab [17] groups keypoints by directly learning
a 2D offset field for each pair of keypoints. PifPaf [9] extends OpenPose and PersonLab by using
part intensity field to localize body parts, then applies part association field to associate body parts
to infer the human pose. HGG [7] introduces a differentiable graph clustering to replace traditional
grouping operation and obtains superior performance. Several recent works [16, 33, 15, 28] densely
regress person poses from the person center point. Those methods suffer from issues of center point
occlusion in crowded scenes, and difficulty of long distance and dense regression [16, 26].

Crowded Scenes Pose Estimation has not been fully exploited by the research community. There are
few works to solve multi-person pose estimation when persons are highly overlapped. CrowdPose [10]
constructs a large crowded pose estimation benchmark and proposes to apply global association to
deal with crowded scenes. OPEC-Net [22] refines initial estimated pose by introducing the Graph
Convolution Network. It requires bounding boxes to discriminate persons, thus suffers from the
difficulty of person detection. The proposed PINet follows a novel Direct Pose-Level Inference
pipeline, and is more robust to difficulties of person detection and keypoint grouping in crowded
scenes.

3 Methodology

3.1 Overview

Given an image I with multiple persons, the goal of crowded scenes pose estimation is to estimate
locations of pose keypoints for each person, including both visible and invisible keypoints,

({K(i)}, {K̄(i)})mi=1 = MPPE(I)

where {K(i)} and {K̄(i)} denote visible and invisible keypoints for i-th person, respectively. m
represents the number of persons in image I . We use n = |{K(i)}|+ |{K̄(i)}| to denote the number
of pose keypoints for each person, e.g., n = 17 for OCHuman [31] and n = 14 for CrowdPose [10].

Unlike previous works that infer individual keypoint K, PINet directly infers the complete pose cues
{{K(i)}, {K̄(i)}} for each person. To achieve this goal, we adopt the Structure Pose Representation
(SPR) [16] to represent the pose cue as a point p and a collection of offsets o, i.e.,

P = {p, o} = {(x, y), (δxk, δyk)nk=1)}, (1)
where (x, y) represents the coordinates of point p and (δxk, δyk) denotes the offset of k-th pose
keypoint to p. According to Eq. (1), pose estimation can be conducted by detecting p and estimating
offsets o.

p should be carefully selected during the training stage, e.g., locate on discriminate parts to infer
high quality pose cues and avoid occlusions. SPR [16] uses the center point as p, which could suffer
from occlusions. We divide each person into s parts and use each part center as p. More detailed
discussions on the body partition and the selection of p are presented in Sec. 3.2 and Fig. 3.

To locate {pj}sj=1 for each person and acquire corresponding {oj}sj=1, we propose the PPG to infer
a confidence map and an offset map for each part, i.e.,

{Pj ,Oj}sj=1 = PPG(F),F = Φ(I), (2)
where Pj represents the confidence map indicating the location of the j-th part, and Oj denotes the
offset map, respectively, Φ(·) is the backbone for feature extraction. Initial pose cues are acquired by
applying the NMS on Pj to get multiple local maximum points pj ∈ Pj and sampling corresponding
offsets oj ∈ Oj . Each pair of {pj , oj} composes an initial pose cue denoted by P ′j .

The coarse pose P ′j can be refined by another PR module according to pose structure prior G and
contextual information included in the feature map F, i.e.,

P̂j = PR(P ′j ,F, G), (3)
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Figure 2: Framework of the proposed Pose-level Inference Network (PINet). We use a CNN to extract
the feature map. Part-based Pose Generation (PPG) infers the whole person pose from different body
parts, as denoted by circles in different colors. Pose Refinement (PR) refines the coarse person pose
with dynamic pose keypoint graph. PF denotes the pose fusion operation that fuses the poses from
different parts and output the final pose. We only show the pose of occluded person.

where P̂j denotes the pose refined by PR.

Because each part predicts a pose cue, there exist duplicate poses for the same person. We hence use a
post-processing module PF to identify duplicate pose cues and fuse them as the final pose estimation,

{P(i)}mi=1 = PF({P̂j}tj=1), (4)

where P(i) denotes the final pose estimation for the i-th person, t is the number of poses generated
by PPG and PR. PF can be implemented by measuring similarities between pose cues and merging
similar poses.

We learn PINet by training the backbone Φ(·), PPG(·), and PR(·) modules in an end-to-end manner.
The overall training objective is denoted by

L = LPPG + λLPR, (5)

where LPPG and LPR denote the loss for two modules and λ is a weight to balance two losses. Fig. 2
illustrates the pipeline of proposed PINet. With the PPG, PR and PF, we can infer high quality person
pose even when they are highly overlapping, and are free of missed keypoint and person detection in
previous methods. In the following, we will present details of PPG, PR and PF.

3.2 Part-based Pose Generation

As stated above, we divide each person into s body parts according to body skeleton to exploit the
visible information. Generally speaking, the finer the body partition, the more likely there exists
visible parts. However, small part is hard to regress full person pose offset due to the lack of global
contexts. Moreover, too large s also leads to the difficulty of dense regression optimization, which is
discussed in [26].

To investigate a prior body partition strategy, we refer to previous work [11, 21] on pose keypoint
and body parts and design several typical body partition strategies, as shown in Fig. 3. The partition
strategies are listed from coarse to fine. For instance, center denotes that we divide person into one
part, while keypoint indicates using 13 parts. To test the robustness of different partition strategies to
occlusions, we show the occlusion ratio on OCHuman in Fig. 3. Note that, a partition without any
visible parts is regard as an occlusion. As shown in the figure, finer body partition is more robust to
occlusion. However, using too many parts is also harder for model optimization, which is verified
in Sec. 4. We empirically find that part-large partition strategy achieves a good tradeoff. We hence
divide each person into s = 3 parts, i.e., upper, middle and bottom parts.

According to above analysis, PPG detects upper, middle and bottom parts for each person and
regresses corresponding offsets. Following keypoint-based detection work [33], we detect each part
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Figure 3: Illustration of different strategies of body partition in PPG: (a) Five different partition
strategies, rectangles denote the body parts and brown circles denote part centers, and (b) their
corresponding occlusion statistics from OCHuman dataset.

by estimating the part center with heatmap P. Specifically, given the feature map F = Φ(x) from
backbone, we pass it through the keypoint detection head and offset regression head,

Pj = Fj(F),Oj = Rj(F), j ∈ {u,m, b} (6)

where Pj ,Oj represent the confidence map of j-th part and corresponding offset map, respectively.
u,m, b denote three parts. We adopt the tradeoff l2 regression loss to learn Pj and use smooth l1 loss
to learn the offset map Oj ,

Lpoint = ||M� (P− P∗)||22, (7)

Loffset =
1

|Ω|
∑
i∈Ω

1

Si
smoothl1(oi − o∗i ), (8)

where superscript ∗ indicates the groundtruth label. P = [Pu; Pm; Pb] denotes the point maps, M is a
mask to down weight background region, the weight of positions not lying in part center region is 0.1,
and others are 1. Ω denotes the index set of part center and its neighbor points on feature map, Si is
the area of i-th person. We generate the ground truth following [16]. The loss of PPG is the weight
sum of above two losses, i.e., LPPG = Lpoint + λoLoffset. λo is a weight to balance to losses.

3.3 Pose Refinement

Although PPG can generate complete person pose, it still confronts several issues. Firstly, the
part-based generation strategy enhance the robustness of PINet to occlusion, but eliminate the person
global information for each part to infer the whole person pose. i.e., the upper body part feature is
hard to encode foot due to limited receptive field. Secondly, the occluded pose keypoint should be
inferred by considering keypoint connections, namely pose structure, not only visual information.

Thus we are motivated to propose a PR module to address above issues. For pose P ′j generated
by point feature fp in PPG, we supply it with keypoint features fk to encode the person global
information, which can be obtained by bilinear sampling on the feature map F with k-th keypoint
location of poseP ′j . To fully utilize pose structure pose prior, we propose a dynamic graph convolution
network (DGCN) that considers keypoint connection information to refine and aggregate these
keypoint features,

X l+1 = σ(GX lW ), (9)

where W is the parameters of DGCN, σ denotes ReLU, X l and X l+1 is the original and updated
features from l-th layer, and G is the dynamic graph, which is initialized according to the human
body skeleton and updated as the model parameters. We adopt 3 layers DGCN with residual
connection to refine these features. Each row of the initial feature matrix X0 represents one keypoint.
Following [27], we apply max pooling and average pooling to the refined keypoint features to obtain
the global features of the pose, which is concatenated with fp and passed to two fully connected
layers to predict the offset ∆P ′j of initial pose P ′j and the ground truth. Thus we can obtain the
refined pose by P̂j = P ′j + ∆P ′j . Similar to the offsetmap loss, we calculate the refinement loss by,

LPR =
1

|T |
∑
P′

j∈T

1

Si
smoothl1(P ′j + ∆P ′j ,P∗j ), (10)
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where T is the sampled pose set for PR refinement, Si is the area of i-th person.

Discussions. Previous OPEC-Net [22] also utilize GCN. However, PR is different from it in several
aspects. Firstly, OPEC-Net focuses on inferring occluded keypoints and takes keypoint coordinates
as input, thus require extra feature adaptation module to extract context information. Our PR focuses
on extracting better person global information with pose structure prior and does not require extra
module. Secondly, PR adopts a dynamic graph to refine keypoint features and can capture more
keypoint relationship. For example, the skeleton contains no connections between left and right body.
However, when the right ankle is occluded, we could refer to left ankle and knee for inference. The
dynamic graph is more flexible and can capture these properties with model learning. Fig. 2 illustrates
an example of the dynamic graph during training.

3.4 Pose Fusion

PPG generates duplicate poses and low-quality poses from invisible body parts, thus a pose-processing
operation is required to eliminate them. However, duplicate poses from different body parts perform
well on different keypoints due to long distance regression [16, 33], thus we can fuse them to get
better results. A pose regressed from upper body parts performs well on locating keypoints on nose,
while the pose inferred from the bottom body part gets poor performance on locating those keypoints.

According to above analysis, we propose a PF operation to fuse duplicate poses and remove low-
quality poses. Given the poses inferred by PPG and PR, i.e., {P̂j}tj=1, PF firsts find the pose set that
belong to the same person. Inspired by OKS-NMS [18], we adopt a OKS based matching strategy to
identify the poses belonging to the same person. For two poses P̂1 and P̂2, we calculate their object
keypoint similarity by,

OKS(P̂1, P̂2) =
1

n

n∑
k=1

exp(−||P̂1[k]− P̂2[k]||22
(S1 + S2)α2

k

) (11)

where P̂[k] denotes the k-th keypoint, S1 and S2 represent the area of two poses, αk is a per-keypoint
constant that controls falloff. If the OKS of two poses is larger than γ, they are regraded as duplicate
poses. According to above matching strategy and NMS procedure, we can divide {P̂j}tj=1 into m
groups, where each group {P̂j}tij=1 represent i-th person pose set. Then PF traverse each pose set
{P̂j}tij=1 and select n keypoints with maximum score to construct the final person pose P(i). The
detailed process can be seen in the supplementary material.

The k-th keypoint score is formed by r = rp · rk, where rp is the confidence score of point from P,
rk is the keypoint confidence score which can be obtained by learning an extra score map H for each
pose keypoints, i.e., the heatmap in most MPPE methods. A low-quality pose generated by PPG has
small rp, thus will not appear in the final results. Moreover, rk is helpful in selecting well estimated
keypoints and reliefing the long regression problem. During implementation, we learn the score map
with the point map P and change Eq. 6 to,

Lpoint = ||M� ([P; H]− [P∗; H∗])||22, (12)
where [·; ·] denotes concatenation operation.

Discussions. PF is a model-agnostic operation and can also be applied to other regression methods,
i.e., [16]. However, it is more effective in our method when duplicate predictions are from different
parts, not merely center points. We also validate the effectiveness of PF on other methods in Sec.4.

4 Experiments

4.1 Datasets and Evaluation Protocol

OCHuman [31] is a recently proposed benchmark to examine the limitations of MPPE in highly
challenging scenarios. It consists of 4731 images in total, including 2500 images for validation and
2231 images for testing. The average IoU of the bounding boxes is 67%. Following [22], we train
models on val set and report the performance on test set.

CrowdPose [10] is another dataset that includes many crowded scenes. It contains 10K, 2K and 8K
images for train, val and test set. Following [2, 4], we train our models on the train and val
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Table 1: Ablation studies of our proposed PINet on individual components.

(a) Effectiveness of each component in PINet.

PPG PR PF AP AP50 AP75

47.6 67.5 53.2
X 53.1 70.5 60.4
X X 58.8 74.3 65.5
X X 55.8 72.7 62.3
X X X 59.8 74.9 65.9

(b) Test different body partition strategies in PPG.

Part partition AP AP50 AP75

Center 47.6 67.5 53.2
Head 49.8 70.9 55.6
Part-large 53.1 70.5 60.4
Part-small 50.3 69.4 57.2
Keypoint 40.8 59.0 45.7

(c) Test different refine strategies in PR.

Method AP AP50 AP75

No GCN 56.8 74.1 63.0
Static graph 57.7 74.7 64.3
Dynamic graph 59.8 74.9 65.9

(d) Test PF in different methods.

Method w/o PF w/ PF
SPM [16] 47.6 48.1
DEKR [4] 52.2 53.0

PINet(w/o PR) 53.1 55.8

sets and report the results on the test set. Since CrowdPose contains both crowded and non-crowded
scenes, we also report the performance on crowded test set, namely metric APH .

COCO [12] is the popular MPPE benchmark that contains over 200,000 images. COCO keypoint
benchmakr contains train, val and test-dev set. The train set includes 57K images and 150K
person instances annotated with 17 keypoints, the val set contains 5K images, and the test-dev
set consists of 20K images. However, it includes few crowded scenes, and we use it to valid the
generation ability of our method to non-occluded scenes. We train the models on the train set and
report the results on the val and test-dev sets. Moreover, following [7], We also directly test the
model trained on COCO in OCHuman val and test set.

Evaluation Metrics. We follow the standard evaluation metric and use OKS-based metrics for pose
estimation. We report average precision scores with different thresholds: AP, AP50, and AP75. On
CrowdPose, we also report APE , APM and APH , which refers to the performance under different
crowd index.

4.2 Implementation Details

All experiments are implemented on PyTorch [19]. We adopt ImageNet [3] pre-trained HRNet-
W32 [25] as backbone for all experiments and follow the most configuration of [2, 4]. We set λ and
λo to 0.03 and γ to 0.7 for all experiments. For PR, we sample 40 poses from PPG for each part.

Training. The input image is resized to 512*512. We use Adam [8] to optimize the model, the
learning rate is set to 0.001 for all layers. We train the model for 140 epochs on OCHuman and
COCO, with learning rate dividing by 10 at 90th, 120th epoch. For CrowdPose, we train model
with 300 epochs and divide learning rate by 10 at 200th, 260th epoch. The batch size is set to 20
OCHuman and 40 for CrowdPose and COCO. We adopt data augmentation strategies including
random rotation (-30,30), scale ([0.75,1.5]), translation ([-40,40]) and flipping (0.5).

Testing. We resize the short side of the images to 512 and keep the aspect ratio between height and
width. We adopt single and multi-scale ([0.5,1.0,2.0]) test with flipping following [2, 4].

Comparison methods. To make fair comparison, we report the performance of SPM [33](with SPR),
HigherHRNet [2] and DEKR [4] in the same setting, i.e., backbone, training schedule and test setting.

4.3 Ablation Study

Components analysis. We analyze the effectiveness of each proposed components on OCHuman.
The results are shown in Table 1 (a). PINet with only PPG achieves 53.1% AP, which is already higher
than previous center-based regression work. This indicates that inferring complete pose from visible
part is important for occluded pose estimation. PR incorporate pose structure prior to refine the coarse,
it remarkably enhances the AP by 5.7%. We also evaluate the propose pose fusion operation, and it
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Figure 4: Qualitative results on OCHuman test set. Each image shows the prediction results of
PPG, PPG+PR and PPG+PR+PF. It can be observed that both PR and PF can improve the accuracy
of keypoint localization.

Table 2: Comparison with state-of-the-art methods on OCHuman test set. ∗ denotes our implemen-
tation based on the author’s public code.

Method Reference AP AP50 AP75

Mask RCNN [5] ICCV2017 20.2 33.2 24.5
SimpleBaseline [29] ECCV2018 24.1 37.4 26.8
SPPE+ [10] CVPR2019 27.6 40.8 29.9
OPEC-Net [22] ECCV2020 29.1 41.3 31.4
SPM∗ [16] ICCV2019 47.6 67.5 53.2
HigherHRNet∗ [2] CVPR2020 27.7 66.9 15.9
DEKR∗ [4] CVPR2021 52.2 69.9 56.6
Ours this paper 59.8 74.9 65.9

boosts the performance by 1.0%, which validates the effectiveness of fusing duplicate predictions.
As shown in Fig. 4, both PR and PF can improve the accuracy of keypoint localization.

Analysis on PPG. An important factor of PPG is the choice of body partition strategy. We compare
different partition strategies in Fig. 3. Table 1 (b) summarizes the results. We can observe that center
part achieves 47.6% AP, while head part obtains 49.8% AP. This is because that center part is usually
occluded by other person, thus PPG cannot generate high quality pose. While head and face are
discriminative regions, thus is more likely to be visible. The proposed part-large partition achieves
the best performance, obtaining 53.1% AP, outperforming center and head points by 5.5% and 3.3%
AP, respectively. We also investigate finer point selection, i.e., part-small and keypoint.However, they
work badly due to the hard optimization with dense regression.

Analysis on PR. We also analyze the component of PR. As shown in Table 1 (c). We first test to
directly refine estimated pose by PPG without incorporating pose structure prior, and it obtains 56.8%
AP. Incorporating pose keypoint graph to refine feature achieves 57.7% AP. It indicates that pose
structure prior is useful for occluded pose inference. Moreover, when adding dynamic graph into PR,
we can further boost AP to 59.8% AP, which verify the effectiveness of proposed methods.

Analysis on PF. To verify that PF is a model-agnostic operation, we apply it to other regression-based
methods, i.e., SPM and DEKR. As shown in Table 1 (d), PF can constantly boost these methods about
0.6-0.8 AP, which demonstrates the effectiveness of PF on regression methods. Moreover, PF is more
useful when we regress pose from different parts, and it boost the performance of PINet from 53.1 to
55.8. Note that PR can also relieve the regression problem, thus we omit it here to verify PF.
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Table 3: GFLOPs and #parameters of the representative top competitors and our approaches. ∗
denotes our implementation.

SPM∗ [16] HigherHRNet [2] DEKR [4] PINet
Input size 512 512 512 512
#param.(M) 29.3 28.6 29.6 29.4
GFLOPs 41.8 47.7 45.4 42.4

Table 4: Comparison with state-of-the-art methods on CrowdPose test set. ∗ denotes our implemen-
tation. † denotes multi-scale test.

Method Reference AP AP50 AP75 APE APM APH

Mask RCNN [5] ICCV2017 57.2 83.5 60.3 69.4 57.9 45.8
SimpleBaseline [29] ECCV2018 60.8 81.4 65.7 71.4 61.2 51.2
SPPE+ [10] CVPR2019 66.0 84.2 71.5 75.5 66.3 57.4
OpenPose [1] CVPR2017 - - - 62.7 48.7 32.3
SPM∗ [16] ICCV2019 63.7 85.9 68.7 70.3 64.5 55.7
HigherHRNet [2] CVPR2020 65.9 86.4 70.6 73.3 66.5 57.9
HigherHRNet† [2] CVPR2020 67.6 87.4 72.6 75.8 68.1 58.9
DEKR [4] CVPR2021 65.7 85.7 70.4 73.0 66.4 57.5
DEKR† [4] CVPR2021 67.0 85.4 72.4 75.5 68.0 56.9
Ours this paper 68.9 88.7 74.7 75.4 69.6 61.5
Ours† this paper 69.8 89.1 75.6 76.4 70.5 62.2

Figure 5: Comparison with DEKR, SPM and our proposed PINet under different IoU threshold. Our
method constantly outperforms other methods, especially at highly crowded scenes (high IoU).

4.4 Comparison with Recent Works

We compare PINet with recent works on OCHuman [31], CrowdPose [10] and COCO [12]. The
results are shown in Table 2, 4 and 5. Table 2 reports comparisons on OCHuman. We compare
top-down methods: Mask RCNN [5], SimpleBaseline [29], SPPE+ [10] and OPEC-Net [22], and
bottom-up methods SPM [16], HigherHRNet [2] and recent DEKR [4]. On OCHuman, top-down
methods achieve relatively low AP. This is due to the issues mentioned in Sec 1. Our PINet adopts a
pose-level inference, thus achieves the best 59.8% AP on OCHuman in single-scale test, which is
higher than all bottom-up methods under the same setting. For instance, DEKR obtains 52.2% AP,
which is lower than PINet by 7.6%.

On CrowdPose dataset, our method also obtains superior performance. As shown in Table 4, PINet
achieves 68.9% and 69.8% AP in single-scale and multi-scale test, which is higher than HigherHRNet
and DEKR. Moreover, on crowded scenes, PINet achieves 61.5% and 62.2% APH , which is higher
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Table 5: Comparison with state-of-the-art methods on COCO and OCHuman. Models are trained on
COCO train set.

Method Reference COCO OCHuman
val test-dev val test

OpenPose [1] CVPR2017 - 61.8 - -
AE [13] NeurIPS2017 - 56.6 32.1 29.5
PersonLab [17] ECCV2018 66.5 66.5 - -
HGG [7] ECCV2020 60.4 - 35.6 34.8
HigherHRNet [2] CVPR2020 67.1 66.4 - -
DEKR [4] CVPR2021 68.0 67.3 37.8 36.4
ours this paper 67.4 66.7 38.3 37.2

than DEKR by 4.0% and 5.3%, respectively. Results on two occluded datasets demonstrate that PINet
is effective to deal with crowded scenes pose estimation.

To further investigate the robustness of our method to crowded scenes, we follow previous work [22]
to split datasets according to the average IoU of bounding box. Since there are few or no images
with IoU smaller than 0.5 on OCHuman, we start from 0.5 and divide the test set of OCHuman and
CrowdPose into 5 parts and report the performance at each IoU. As shown in Fig. 5, our method
constantly outperforms DEKR and SPM, especially at high IoU. We also report the parameters and
GFLOPs of existing bottom-up methods, as shown in Table 3. Our method requires less or similar
parameters than other methods but shows better performance.

We also report the performance on COCO dataset, the results are shown in Table 5. We train PINet
on COCO train set, and directly test it on COCO and OCHuman. PINet achieves 67.4% AP on
COCO val set, which is comparable to recent methods, i.e., HigherHRNet [2] with 67.1%AP and
PersonLab [17] with 66.5% AP, which indicates that PINet also works well on non-occluded scenes.
Moreover, following [7], We also directly test the model trained on COCO in OCHuman val set and
test set, and obtained 38.3% AP, which is higher than HGG by 2.7% and DEKR by 0.5%. This
result demonstrates the generalization ability of proposed methods and its effectiveness to handle
crowded scenes.

5 Discussion and Conclusion

In this paper we address the multi-person pose estimation in crowded scenes. Our proposed PINet
has shown considerable improvements in crowded scenes pose estimation. This is achieved by the
direct pose-level inference pipeline that infers pose by leveraging both body part cues and pose
structure prior. Experiments on several crowded scenes pose estimation benchmarks demonstrate the
effectiveness of proposed methods to handle occlusion. However, the performance of crowded scenes
is still lower than non-crowded scenes, and PINet directly regresses the pose, which is not as accurate
as the heatmap-based methods. Further studies are required to address these problems.
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