
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRUNING CNNS WITH GRAPH RANDOM WALK & RAN-
DOM MATRIX THEORY

Anonymous authors
Paper under double-blind review

ABSTRACT

To facilitate the deployment of convolutional neural networks on resource-limited
devices, filter pruning has emerged as an effective strategy because of its enabled
practical acceleration. Evaluating the importance of filters is a crucial challenge
in this field. Most existing works on filter pruning assess the relationships of
filters using pairwise measures such as Euclidean distance and cosine correlation,
which may not capture the global information within the layer. In this paper, we
propose a novel filter pruning method, which leverages a graph-based approach
to model the relationships among filters in convolutional layers. Each filter is
represented as a node in a directed graph, and the edges between nodes capture
the linear dependencies between filters. This structure allows us to assess the
relative importance of each filter by conducting a random walk on the graph. Filters
that exhibit weaker connections to others are considered less important and are
pruned with minimal impact on model performance. Furthermore, we examine
the eigenvalue spectrum of the adjacency matrix and observe a distribution similar
to that of the spiked models in random matrix theory. This suggests that the
spiked eigenvalues could serve as a significant indicator of the importance of each
convolutional layer. We conduct image classification on CIFAR-10 and ImageNet
to demonstrate the superiority of our method over the state-of-the-arts.

1 INTRODUCTION

Deep Convolutional Neural Networks (DCNNs) have revolutionized the field of computer vision
by achieving state-of-the-art performance in various tasks (Simonyan & Zisserman, 2014; He et al.,
2015; Szegedy et al., 2014). However, deploying resource heavy CNNs on devices with limited
computational and storage capacities presents significant challenges. Consequently, numerous studies
have focused on model compression and CNN acceleration, mainly including network pruning (He
et al., 2018b; Lin et al., 2020; Sui et al., 2021), model quantization (Liu et al., 2018; Qin et al., 2020;
Liu et al., 2020), low-rank decomposition (Jaderberg et al., 2014; Lin et al., 2016) and knowledge
distillation (Shen et al., 2019; Hinton et al., 2015). Among them, network pruning has been widely
studied due to its easy implementation and effective results.

Recent developments on pruning can be divided into two categories, i.e., weight pruning and filter
pruning. Weight pruning removes individual filter weights, creating a sparse network that often
requires special hardware to achieve acceleration, as it cannot efficiently utilize standard BLAS
libraries. In contrast, filter pruning, which compresses the model by directly removing selected
filters, maintains regular structures and is widely used due to its ability to enhance acceleration on
general-purpose hardware.

Generally, there are two essential issues in the filter pruning, i.e., the layer importance measurement
and the filter importance measurement. For the first issue, layer importance measurement is related
to the per-layer pruning rate. Existing works such as (Chin et al., 2018; Lin et al., 2022) utilize
different weight-oriented strategies to evaluate the importance of each convolutional layer based
on pre-trained models. For the second issue, the filter importance measurement identifies which
filters in the pre-trained model should be preserved and inherited to initialize the pruned network
structure. Previous works (Ye et al., 2018; He et al., 2018a) performs filter pruning by following
the “smaller-norm-less-important” criterion, which believes that filters with smaller norms can be
pruned safely due to their less importance. However, this criterion appears overly simplistic and may
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not always hold true in all cases. Beyond this, He et al. (2018b) assumes the filters that are close
to the geometric median are redundant, which is implemented by calculating the distance between
filters pairs, Lin et al. (2022) introduces a recommendation-based filter selection scheme where each
filter recommends a group of its closest filters, these two methods both try to find the central filters in
certain measure spaces, which is proved to be effective by experiments. Joo et al. (2021) proposes
Linearly Replaceable Filter (LRF), which suggests that a filter that can be approximated by the linear
combination of other filters is replaceable, however they only focus on the approximated error and
haven’t dived into the relationships among filters.

More recently, graph-driven methods have been developed to identify important filters and achieve
competitive performance. For example, Li et al. (2023) utilize a graphical model to represent the
similarity relationships between the output feature maps of filters, while Shi et al. (2023) introduce
Von Neumann graph entropy as a novel measure for filter importance. However, most of these
approaches predominantly rely on similarity metrics like Euclidean distance or cosine similarity to
measure the similarity between filters, which only considers the pairwise relationships between filters,
overlooking the interactions among them within the whole layer.

To address the aforementioned limitations, we proposed a novel method to evaluate the importance of
filters by focusing on the interactions between them. Previous works have shown that some filters
can have similar functionality, our approach assumes that each filter potentially shares parts of its
functionality with others. Similar to the approach in (Joo et al., 2021), we model these interactions by
linearly reconstructing each filter using its peers, as shown in Equation 1. From this reconstruction,
the coefficients indicate the strength of connection between a filter and its peers, while the residuals
represent the unique functionality of itself. Proceeding with this approach, we construct a graph
where each node represents a filter, and the edges between them are weighted by the coefficients from
the linear combinations. This graph representation allows us to apply network analysis techniques to
find the central nodes. Filters that act as central nodes in this graph will be considered as hubs of
functionality, playing pivotal roles in the layer. Figure 1 illustrates the pipeline of our pruning method.
Additionally, we analyze the eigenvalue spectrum of the adjacency matrix and observe a distribution
resembling that of spiked models in random matrix theory. This similarity suggests that the spiked
eigenvalues may serve as key indicators of the significance of each convolutional layer, as detailed in
the pipeline shown in Figure 2. Further elaboration on this method is provided in Section 4.

Contributions. The main contributions of this paper can be summarized as follows:

• Leveraging insights from Random Matrix theory, we present a novel approach for quantify-
ing the importance of different layers, thereby facilitating the determination of the optimal
pruning rate for each layer.

• By modeling filter relationships through a graph structure, our approach utilizes network
analysis techniques to reveal deeper insights into the network’s architecture. This enables the
identification of key filters that serve as central nodes, elucidating their roles in contributing
to the network’s effectiveness.

• Applying our proposed method to different model pruning tasks on CIFAR-10 and Ima-
geNet datasets, extensive experiments demonstrate the effectiveness of our pruning strategy,
which outperforms other similar algorithms by achieving higher compression rates while
maintaining high accuracy.

2 RELATED WORK

This section examines seminal works in the field of Convolutional Neural Network (CNN) pruning
methodologies, distinguishing between Filters-Importance-Supported (FIS) and Layer-Importance-
Supported (LIS) approaches. Subsequently, we will provide a concise overview of Random Matrix
Theory.

2.1 FILTERS-IMPORTANCE-SUPPORTED (FIS) PRUNING METHODS

Filters-Importance-Supported (FIS) pruning methods can be categorized into two primary streams:
Data-driven Pruning Methods and Data-Independent Pruning Methods.
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Data-driven pruning methods rely on training data to determine which filters to be pruned. ThiNet
Luo et al. (2017) adopts the statistics information from the next layer to guide the filter selections.
Liu et al. (2017) introduces sparsity in the scaling factors of batch normalization layers to identify
and prune minor significant channels during training. HRank Lin et al. (2020) states that weights
corresponding to feature maps with high rank contain more important information and therefore need
to be retained in the pruning process. Beyond this CHIP Sui et al. (2021) explores the importance
of filters using intra-channel information and FPEI Wang et al. (2021) defines filter importance
based on the entropy of the corresponding feature maps. By comparison, Data-Independent pruning
approaches often leverage structural characteristics of the network or predefined rules. Li et al. (2017)
utilizes l1-norm criterion to prune unimportant filters. He et al. (2018a) proposes to select filters with
a l2-norm criterion and prune those selected filters in a soft manner. He et al. (2018b) evaluates the
redundancy of filters by measuring their distance from the geometric median of the filter group within
each layer. Lin et al. (2022) proposes Cross-Layer Ranking and k-Reciprocal Nearest Filter Selection
to decide the pruning rate of each layer and the most important filters, resectively.

Figure 1: Filter importance measurement pipeline

2.2 LAYER-IMPORTANCE-SUPPORTED (LIS) PRUNING METHODS

Layer Importance Supported (LIS) methods focus on evaluating the significance of individual layers
before proceeding to filter removal based on these assessments. For instance, studies such as (Li
et al., 2017; Mao et al., 2017), and (Suau et al., 2020) employ various weight-oriented strategies
to gauge the importance of convolutional layers in fully-trained models. The research by Li et al.
(2017) investigates the sensitivity of each convolutional layer through multiple layer-wise pruning
experiments utilizing the l1-norm, highlighting the critical role of sensitive layers while advocating
for the removal of filters from less sensitive ones. In a similar vein, Mao et al. (2017) introduces
a coarse-grained pruning methodology that facilitates iterative layer pruning based on sensitivity
analysis. Additionally, Suau et al. (2020) applies principal filter analysis to derive a more compact
model by leveraging the intrinsic correlations among filter responses within the layers.

2.3 RANDOM MATRIX THEORY

In the field of Random Matrix Theory (RMT), the spike model serves as a crucial framework for
analyzing the separation of signal and noise in high-dimensional datasets. The spike model introduces
a finite number of large eigenvalues, or "spikes," into the spectrum of a random matrix to represent
significant underlying signals amidst random noise. Key studies in this area have focused on the
distribution of these spike eigenvalues and their influence on the overall eigenvalue distribution of the
matrix.

Baik et al. (2005) examined the asymptotic distribution of the largest eigenvalues in non-null complex
sample covariance matrices, uncovering the phase transition phenomenon now known as the Baik–Ben
Arous–Péché (BBP) transition. This work illustrates how spikes can lead to distinct eigenvalue
behaviors compared to the bulk of the spectrum. Johnstone (2001) applied the spike model to
high-dimensional statistics, particularly in the context of Principal Component Analysis (PCA). His
analysis provided conditions under which spike eigenvalues can be reliably separated from noise
eigenvalues, enhancing the effectiveness of PCA in signal detection. More recently, Benaych-Georges

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Layer importance measurement pipeline

& Nadakuditi (2011) extended the spike model to accommodate multiple spikes, exploring their
interactions and the resulting modifications to the eigenvalue distribution. Their contributions have
deepened the understanding of how multiple significant signals can coexist and influence the spectral
properties of random matrices.

3 PRELIMINARY

This subsection introduces the symbols and notations used throughout our discussion. We consider
a pre-trained Convolutional Neural Network (CNN) with l convolutional layers, denoted as L =

{L1, L2, . . . , Ll}. Each layer Li contains ni filters: Li = {f1
i , f

2
i , . . . , f

ni
i }. Each filter f j

i is
represented as a 3D tensor f j

i ∈ Rci×h×w, where ci is the number of channels (filters) from the
previous layer, and h and w are the height and width of the filter respectively, which are constants.
Since our analysis is conducted on each convolutional layer independently, for simplicity, we will
omit the convolutional layer index i henceforth and refer to the j-th filter in the layer simply as fj
(j = 1...n). Finally, we flatten each filter to a vector : fj ∈ Rc·h·w.

3.1 MARCHENKO-PASTUR LAW AND SPIKED COVARIANCE MODEL

The Marchenko-Pastur law is a key result in random matrix theory, describing the limiting distribution
of eigenvalues for large sample covariance matrices. For a large random matrix X ∈ Rp×n, where
the entries are independent and identically distributed (i.i.d.) with zero mean and unit variance, the
eigenvalues of 1

nXX⊤ follow a limiting distribution as both n, p → ∞ with the ratio p/n → c ∈
(0,∞). This distribution, known as the Marchenko-Pastur distribution, has a density function:

ρc(λ) =

√
(λ− λ−)(λ+ − λ)

2πcλ
, λ ∈ [λ−, λ+],

where λ− = (1−
√
c)2 and λ+ = (1+

√
c)2. The eigenvalues are supported in [(1−

√
c)2, (1+

√
c)2].

For c < 1, some eigenvalues are exactly zero, with a probability mass at 0.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In the spiked covariance model, certain population eigenvalues ℓi of the covariance matrix C deviate
from the bulk of the Marchenko-Pastur distribution. These "spikes" correspond to strong signals,
causing deviations in the sample eigenvalues. According to Theorem 2.13 in Couillet & Liao (2022),
if ℓi >

√
c, the sample eigenvalue λ̂i converges to:

λ̂i
a.s.−−→ 1 + ℓi + c

1 + ℓi
ℓi

.

If ℓi ≤
√
c, the sample eigenvalue stays within the Marchenko-Pastur bulk, behaving asymptotically

as (1+
√
c)2 which will be contained in the bulk. Figue 3 shows a example of eigenvalue distribution

of Spiked model.

From a noise-signal perspective, the Marchenko-Pastur law helps distinguish between noise (repre-
sented by the bulk of the distribution) and meaningful signals (represented by the spiked eigenvalues).
Eigenvalues within the bulk correspond to noise, while those exceeding

√
c indicate strong signals

separating from the noise.

Figure 3: eigenvalue distribution of Spiked model

4 METHOD

4.1 GRAPH CONSTRUCTION BASED ON LINEAR DEPENDENCIES AMONG FILTERS

To accurately model the relationships among filters within the CNN, we examine the linear relation-
ships between filters in each layer. Each filter fj can be approximated by a linear combination of
other filters in the same layer:

fj =
∑
l ̸=j

αj,lfl + εj , (1)

Based on linear combination, we establish a directed weighted graph denoted by G. In this graph,
each node represents a filter, and the directed edges between nodes are weighted according to the
absolute values of the coefficients αj,l, which indicate the strength of connection between the filters.
The weight Wj,l of a directed edge from filter j to filter l is defined as follows:

wj,l = |αj,l| (2)

This representation allows us to capture the mutual relationships among filters from a graph perspec-
tive.

4.2 EVALUATING LAYER IMPORTANCE VIA EIGENVALUE ANALYSIS (INSPIRED BY RMT)

To quantify the importance of each layer, we perform eigenvalue analysis on the weighted adjacency
matrix W associated with the connections between filters. The eigenvalues of this matrix provide
insights into the structure of the network. Formally, we compute the eigenvalues λ1, λ2, . . . , λn by
solving the following equation:

Wvi = λivi, (3)
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where λi represents the i-th eigenvalue and vi is its corresponding eigenvector. In particular, the
largest eigenvalue λmax plays a significant role in capturing the dominant structural properties of the
matrix.

During our experiments, we observed that the distribution of eigenvalues exhibits characteristics
similar to the spiked covariance model from Random Matrix Theory (RMT). This resemblance
suggests that we can draw a distinction between the signal-dominated components and the noise-
dominated components of the matrix. In the spiked model, the spiked eigenvalues correspond to
significant "signal" components, while the remaining eigenvalues, clustered around a bulk distribution,
represent "noise" fluctuations. Thus, the largest eigenvalue λmax offers a meaningful way to quantify
the importance of the layer by highlighting the amount of structured, non-random information retained
within the connections. We define Layer Importance Score(LIS) for each layer:

LIS = λmax (4)

Further more, we transform LIS into prunning rate for each layer

PRl = 1− (LISl/LIS1)/Nl ∗ γ (5)

PRl and Nl is the pruning rate and the filters number for l-th layer respectively, γ is a parameter to
control the pruning strength. We will present an example of the pruning rate for VGG-16 in table 1.

Algorithm 1 Layer importance measurement via eigenvalue analysis

1: Input: A pre-trained CNN with L layers.
2: Output: the pruning ratio of each layer PRl.
3: Initialize an empty list PR to keep track of pruning ratio of each layer.
4: for i = 1 to L do
5: Compute the weighted adjacency matrix Wi based on Equation 2.
6: Compute the eigenvalues and eigenvectors of Wi based on Equation 6.
7: Define the layer importance score as the biggest eigenvalue LIS = λmax.
8: end for
9: Compute the pruning ratio PR for each layer based on Equation 8.

10: return Pruning ratio list PR.

4.3 EVALUATING FILTER IMPORTANCE VIA RANDOM WALKS (INSPIRED BY PAGERANK)

In graph theory, a node’s importance is often inferred from its connectivity. Drawing inspiration from
the PageRank algorithm, we propose a random walk framework to evaluate the significance of filters
(nodes) within the network. Random walk is a fundamental concept where a "walker" starts at a given
node and randomly transitions to adjacent nodes based on predefined probabilities. The frequency
with which the walker visits each node reflects its importance in the graph. In our framework, edge
weights are used to represent the strength of connections between filters, which in turn dictate the
transition probabilities.

More formally, in a random walk, the probability of transitioning from filter i to filter j is proportional
to the edge weight between them. The random walker thus traverses the network, spending more time
on filters that are better connected or more influential, thereby capturing their relative significance.
Over many iterations, the stationary distribution of the walker’s visits can be interpreted as a measure
of each filter’s importance, similar to how PageRank ranks webpages based on link structure. Based
on the previous discussion, we define a transition matrix P, where each element pij represents
the probability of moving from filter i to filter j. The self-transition probability pjj , based on the
L2-norm of the residual for filter j, captures the filter’s retention of its unique influence:

pjj = ∥ϵj∥2 (6)

For transitions between different filters j and l, the probability is proportional to the edge weight Wjl,
ensuring the total transition probabilities sum to one:

6
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pjl =
wjl∑

k ̸=j wjk
· (1− ∥ϵj∥2) (7)

We simulate the random walk by iteratively applying the matrix P to an initial probability distribution
v(t), where v(t+1) = Pv(t), until it converges to the stationary distribution v∗. The stationary
distribution reflects the long-term behavior of the walk, revealing the most visited (i.e., influential)
filters in the network:

v∗ = Pv∗ (8)

Filters with higher probabilities in v∗ act as key nodes or hubs, providing insights into which filters are
most crucial. These high-ranking filters can then be prioritized, while those with lower significance
will be pruned with minimal impact on network performance.

Algorithm 2 Graph-based filter pruning algorithm for CNN Compression

1: Input: A pre-trained CNN with L layers; the pruning rate for each layer PRl

2: Output: A pruned network with information-critical filters retained.
3: Initialize an empty list kept_filters to keep track of filters to retain in each layer.
4: for i = 1 to L do
5: for j = 1 to ni do
6: Compute the linear representation coefficients λj,l and residuals εj via Equation 2.
7: end for
8: Construct weighted graph based on Equation 1 and Equation 2.
9: Construct the Random Walk transition matrix P via Equation 3 and 4.

10: Compute the stable distribution v∗ via Equation 5.
11: Select the top ci filters based on v∗ and append to kept_filters.
12: end for
13: Prune the network by removing filters not in kept_filters.
14: Optionally fine-tune the network to recover performance.
15: return Pruned network

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Baselines Models and Datasets. To demonstrate the effectiveness and generality of our proposed
channel independence-based approach, we evaluate its pruning performance for various baseline
models on different image classification datasets. To be specific, we conduct experiments with three
CNN models (ResNet-56, ResNet-110 and VGG-16) on CIFAR-10 dataset. What’s more, we further
evaluate our approach and compare its performance with other state-of-the-art pruning methods with
ResNet-50 model on large-scale ImageNet dataset Deng et al. (2009).

Pruning and Fine-tuning Configurations. We conduct our empirical evaluations on Nvidia RTX
A6000 GPUs with PyTorch 1.13 framework. After performing the channel graph-based filter pruning,
we then perform fine-tuning on the pruned models with Stochastic Gradient Descent (SGD) as the
optimizer. To be specific, we perform the fine-tuning for 400 epochs on CIFAR-10 datasets with the
batch size, momentum, weight decay and initial learning rate as 128, 0.9, 0.05 and 0.01, respectively.
On the ImageNet dataset, fine-tuning is performed for 180 epochs with the batch size, momentum,
weight decay and initial learning rate as 256, 0.99, 0.0001 and 0.1, respectively.

5.2 EIGENVALUE DISTRIBUTION FOR LAYERS OF VGG-16

Figure 4 illustrates the eigenvalue distribution across each convolutional layer of VGG-16, which
closely parallels the distribution observed in the spiked model depicted in Figure 3. Notably, each
layer exhibits a pronounced spiked eigenvalue, indicative of the underlying signal’s strength. Figure
5 presents the largest eigenvalue alongside the number of filters for each layer of VGG-16.
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By varying the pruning strength parameter γ in equation 5, we can achieve distinct pruning rates for
each layer. Below are several illustrative examples:

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13
γ = 64 0.0 0.0 0.36 0.55 0.62 0.71 0.73 0.75 0.78 0.76 0.74 0.71 0.73
γ = 60 0.06 0.05 0.4 0.58 0.65 0.73 0.75 0.77 0.79 0.77 0.76 0.73 0.75
γ = 50 0.22 0.21 0.5 0.65 0.71 0.77 0.79 0.81 0.82 0.81 0.8 0.77 0.79

Table 1: Comparison of γ for different pruning rates in VGG-16

(a) Layer 2 (b) Layer 3 (c) Layer 4 (d) Layer 5

(e) Layer 6 (f) Layer 7 (g) Layer 8 (h) Layer 9

(i) Layer 10 (j) Layer 11 (k) Layer 12 (l) Layer 13

Figure 4: Eigenvalue distribution across different layers in VGG-16.

(a) LIS for each layer in VGG-16 (b) Filters number for each layer in VGG-16

Figure 5: LIS and filters number across different layers in VGG-16.

5.3 EVALUATION ON CIFAR-10 DATASET

Table 2 presents the experimental results on the CIFAR-10 dataset. The values in parentheses represent
the reduction ratios. For some experiments, we adopted the same pruning rate as in previous works.
The experiments marked with γ indicate that the pruning rate was set based on our layer-importance
quantification method.

For VGG-16 model, our method achieves 0.19% increase in accuracy over the baseline model with
81.6% and 58.1% model parameters and FLOPs reductions, respectively. With the same reduction

8
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Table 2: Experimental results on CIFAR-10 dataset.

Method Top-1 Accuracy (%) Params (↓%) FLOPs (↓%)

Baseline Pruned ∆

VGG-16
HRank Lin et al. (2020) 93.96 93.43 -0.53 2.51M (82.9) 145.61M (53.5)
CHIP Sui et al. (2021) 93.96 93.86 -0.10 2.76M (81.6) 131.17M (58.1)
(Ours) 93.96 94.15 +0.19 2.76M (81.6) 131.17M (58.1)
HRank Lin et al. (2020) 93.96 91.23 -2.73 1.78M (92.0) 73.70M (76.5)
CHIP Sui et al. (2021) 93.96 93.18 -0.78 1.90M (87.3) 66.95M (78.6)
(Ours) 93.96 93.73 -0.23 1.90M (87.3) 66.95M (78.6)
(Ours γ = 50) 93.96 92.79 -1.17 0.75M (95.0) 49.38M (84.3)

ResNet-56
HRank Lin et al. (2020) 93.26 93.17 -0.11 0.49M (42.4) 62.72M (50.0)
CLR-RNF Lin et al. (2022) 93.26 93.27 +0.01 0.38M (55.5) 54.00M (57.3)
(Ours) 93.26 93.78 +0.52 0.38M (55.5) 54.00M (57.3)
HRank Lin et al. (2020) 93.26 90.72 -2.54 0.27M (68.1) 32.52M (74.1)
CHIP Sui et al. (2021) 93.26 92.05 -1.21 0.24M (71.8) 34.79M (72.3)
(Ours) 93.26 92.62 -0.64 0.24M (71.8) 34.79M (72.3)
(Ours γ = 13) 93.26 92.32 -0.94 0.21M(75.5) 29.51M (76.5)

ResNet-110
GAL (2019) 93.50 92.74 -0.76 0.95M (44.8) 130.20M (48.5)
HRank Lin et al. (2020) 93.50 92.65 -0.85 0.53M (68.7) 79.30M (68.6)
CLR-RNF Lin et al. (2022) 93.50 93.71 +0.21 0.53M (69.1) 86.80M (66.0)
(Ours) 93.50 94.39 +0.83 0.53M (69.1) 86.80M (66.0)
(Ours γ = 12) 93.50 92.89 -0.61 0.35M (80.0) 46.07M (81.78)

Table 3: Experimental results on ImageNet dataset.

Method Top-1 Accuracy (%) Top-5 Accuracy (%) Params (↓%) FLOPs (↓%)

Baseline Pruned ∆ Baseline Pruned ∆

ThiNet 72.88 72.04 -0.84 91.14 90.67 -0.47 33.7 36.8
SFP 76.15 74.61 -1.54 92.87 92.06 -0.81 N/A 41.8
FPGM 76.15 75.59 -0.56 92.87 92.63 -0.24 37.5 42.2
C-SGD 75.33 74.93 -0.40 92.56 92.27 -0.29 N/A 46.2
GAL 76.15 71.95 -4.20 92.87 90.94 -1.93 16.9 43
RRBP 76.10 73.00 -3.10 92.90 91.00 -1.90 N/A 54.5
PFP 76.13 75.91 -0.22 92.87 92.81 -0.06 18.1 10.8
HRank 76.15 74.98 -1.17 92.87 92.33 -0.54 36.6 43.7
SCOP 76.15 75.95 -0.20 92.87 92.79 -0.08 42.8 45.3
CHIP 76.15 76.30 +0.15 92.87 93.02 +0.15 40.8 44.8
(Ours) 76.15 76.38 +0.23 92.87 93.22 +0.35 40.8 44.8
(Ours) 76.15 75.43 -0.72 92.87 92.93 +0.06 56.7 62.8
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rate, our method demonstrates superior performance compared to CHIP. Additionally, we explore
more extreme pruning strengths by setting the parameter γ, which result in only a slight drop in
accuracy.

For ResNet-56 model, our method obtains an increase of 0.52% accuracy over the baseline with 55.5%
and 57/3% model parameters and FLOPs reductions. This is higher than in the increase of accuracy
of CLR-RNF of 0.01%. Moreover, even with higher model parameters and FLOPs reductions of
71.8% and 72.3%, it achieves 0.57% higher accuracy than CHIP with the same reduction rate.

For ResNet-110, our achieves an increase of 0.83% accuracy over the baseline with 69.1% and 66%
model parameters and FLOPs reductions. With higher model parameters and FLOPs reductions of
80.0% and 81.78%, our model still achieves a minor decrease in accuracy of only 0.61%.

5.4 EVALUATION AND COMPARISON ON IMAGENET DATASET

Table 3 summarizes the pruning performance of our approach for ResNet-50 on the ImageNet dataset.
Our method, targeting a moderate compression ratio, achieves a reduction of 40.8% in storage and
44.8% in computation, while simultaneously increasing the accuracy by 0.23% compared to the
baseline model. Moreover, as we increase the compression ratio further, our approach continues to
outperform state-of-the-art methods. For instance, compared to CHIP, our method achieves a higher
accuracy increment of 0.08% in the moderate compression range and maintains the same level of
accuracy in the high compression range, all while necessitating a significantly smaller model size and
fewer FLOPs.

6 CONCLUSION

In this study, we introduce an innovative filter pruning method by integrating a graph-based method
with insights from Random Matrix Theory (RMT). By modeling the relationships among filters as a
graph and assessing filter importance through random walks, alongside evaluating layer significance
via eigenvalue analysis of the adjacency matrix, our method offers a nuanced understanding of
structural redundancies in CNNs. Extensive evaluations across various datasets demonstrate that
our proposed approach not only quantifies filter and layer importance effectively but also brings
significant reductions in storage and computational costs, all while preserving high model accuracy..
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