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Abstract—In our prior work, we have introduced local graph
Fourier frames (LGFFs) as a flexible and powerful modeling and
analysis tool for graph signals. The most important practical ad-
vantage of LGFFs is their outstanding computational efficiency.
In this paper, we discuss the vertex-domain sampling and interpo-
lation (recovery) of graph signals that live in an LGFF subspace.
We formulate perfect reconstruction conditions and develop low-
complexity recovery algorithms that also work in the presence of
measurement noise. Furthermore, we discuss interesting special
cases and illustrate our framework by numerical experiments.

I. INTRODUCTION

Graph signal processing (GSP) by now has become a highly
active and practically relevant field in signal processing [1–3].
Its goal is to extend conventional signal processing concepts
to data on irregular domains characterized by combinatorial
graphs. While there has been huge progress with regard to the
theoretical understanding of GSP, the practical application of
many ideas to large real-world graphs is hampered by a huge
computational burden, most importantly due to the fact that
the graph Fourier transform (GFT) in general does not admit
an efficient implementation.

A topic that has received a lot of interest in the GSP
community is the sampling and reconstruction of graph sig-
nals (see [4] for a recent overview), where there have been
essentially two approaches. The first approach is model-based
and assumes that the graph signal has a sparse representation
in terms of the GFT or in terms of a graph filter [5–11];
this approach bears similarities to classical sampling theory
and enables the analysis and design of suitable sampling
sets but in general suffers from high complexity. The second
approach is model-free and attempts signal reconstruction by
enforcing smoothness constraints on the graph signal [12–
14]; this approach often results in computationally attractive
reconstruction algorithms but is not easily accessible to the-
oretical analysis. In this paper, we introduce a sampling and
interpolation framework that combines the advantages of these
two approaches by building on the notion of local graph
Fourier frames (LGFFs). We introduced LGFFs in our recent
work [15] as a computationally extremely attractive workhorse
for graph signal analysis and processing that builds on graph
partitions and is preferable to spectral graph wavelets [16] and
spectrally localized graph frames [17–20]. The GFT and the
methods in [21, 22] can be viewed as simple special cases of
our LGFF framework.

Here, we formulate an LGFF-based signal model that
amounts to a local bandlimitation and we discuss vertex-
domain sampling and interpolation of such signals. We study

conditions for perfect signal recovery, develop suitable signal
reconstruction algorithms, analyze special cases, and demon-
strate the performance of our method in terms of numerical
simulations. Our findings corroborate that our approach has
excellent performance despite very low computational com-
plexity. Furthermore, even if perfect reconstruction fails, the
interpolation errors typically remain localized to a small subset
of vertices, a property that is highly attractive from a practical
perspective.

Our paper is organized as follows. In Section II, we review
the definition and design of LGFFs and introduce our LGFF
subspace signal model. In Section III we formulate the sam-
pling and reconstruction problem, develop our reconstruction
method, and discuss computational aspects and special cases.
In Section IV we illustrate our findings with numerical simu-
lations. Conclusions are provided in Section V.

II. LOCAL GRAPH FOURIER FRAMES AND SUBSPACES

A. LGFF

Consider an undirected graph G with vertex set V =
{1, . . . , N} and weighted adjacency matrix W ∈ RN×N .
We denote by gk = (gk[1], . . . , gk[N ])T, k = 1, . . . ,K, a
collection of window functions on G. The vertex support of
gk is defined as

Sk ≜ {n : |gk[n]| > 0}.

The sets Sk and hence the window functions gk may overlap.
Denote by Gk the subgraph induced by Sk (assumed to be
connected) and let Wk ∈ RNk×Nk its weighted adjacency
matrix, with Nk ≜ |Sk| the number of nodes in Gk. The
(local) graph Fourier basis for Gk is given by the (orthonormal)
eigenvectors ukl, l = 1, . . . , Nk, of the Laplacian Lk =
Diag(Wk1)−Wk [1, 2]. (Here, Diag(d) denotes a diagonal
matrix whose main diagonal is given by d.) We assume that the
eigenvectors are sorted according to increasing eigenvalues;
the first eigenvector equals 0 and the associated eigenvector is
constant, uk1 = 1/

√
Nk. The windowed local graph Fourier

basis vectors are then defined by [15]

fkl ≜ gk ⊙ Skukl, k = 1, . . . ,K, l = 1, . . . , Nk,

where ⊙ denotes the element-wise vector product. Here, the
matrix Sk ∈ {0, 1}N×Nk zero-pads the length-Nk eigenvec-
tors ukl to length-N signals on the full graph G. Equivalently,
we can express the basis vectors in terms of their elements
as fkl[n] = gk[n]ukl[n], with ukl[n] being the zero-padded



versions of the eigenfunctions ukl. We arrange the vectors
fkl, k = 1, . . . ,K, l = 1, . . . , Nk, into the matrix

F = (f11, . . . , f1N1
, f21, . . . , f2N2

, . . . , fK1 . . . fKNK
) .

This matrix has N rows and N ′ ≜
∑K

k=1 Nk columns.
In [15] we have shown that F is a Parseval frame [23] (i.e.,

FFT = I) if and only if the window functions gk satisfy
K∑

k=1

gk ⊙ gk = 1, (1)

equivalently,
∑K

k=1 g
2
k[n] = 1. This condition requires that

N ′ ≥ N . The case N ′ = N necessitates constant windows
with disjoint support and reobtains the bases from [21, 22]
as special cases. We refer to F as local graph Fourier frame
(LGFF) since its construction resembles local Fourier bases
[24] and lapped orthogonal transforms [25].

We next recall the window design from [15]. Let V1, . . . ,VK

denote a partition of the vertex set into disjoint subsets, i.e.,
V =

⋃K
k=1 Vk, Vk ∩ Vk′ = ∅ for k ̸= k′. The indicator

function of Vk is denoted by χk. By definition, we have∑K
k=1 χk = 1. Next, consider a graph filter G with nonnega-

tive filter coefficients that satisfies G1 = 1. Then, the windows
gk defined by gk ⊙ gk = Gχk satisfy (1) and therefore
induce a Parseval LGFF. An attractive choice for G amounts
to polynomials of the random walk weighted adjacency matrix
W̃ = Diag−1(W1)W,

G =

I∑
i=0

ηiW̃
i.

Here, the filter coefficients ηi ≥ 0 are normalized as∑I
i=0 ηi = 1. With this construction, the windows gk have

a smooth roll-off and a support Sk that equals the I-hop
neighborhood of Vk.

B. Signal Model

Our LGFF constitute an (over)complete basis in RN . For
sampling and interpolation we are interested in classes of
sufficiently smooth graph signals. Hence, we are imposing
a local lowpass constraint, i.e., we assume that within each
subgraph Gk only the first few LGFF vectors (with small l)
are relevant. More specifically, our signal model comprises
only LGFF vectors with l ≤ B0 ≪ Nk,

s =

K∑
k=1

B0∑
l=1

ξkl fkl = Fξ. (2)

Here, the basis matrix and coefficient vector are defined as

F = (f11, . . . , f1B0 , . . . , fK1 . . . fKB0) ∈ RN×B ,

ξ = (ξ11, . . . , ξ1B0
, . . . , ξK1, . . . , ξKB0

) ∈ RB ,

with B = KB0 denoting the total degrees of freedom. The
complexity of synthesizing s from the coefficients ξkl scales
as O(ηNB/K) and hence is essentially linear in the signal
length N . We refer to the set of signals consistent with (2)
as a local graph Fourier subspace (LGFS). The extension to

distinct “local bandwidths” within each subgraph is trivial;
nonetheless, for simplicity we here restrict ourselves to the
same local bandwidth B0 for all k.

For the special case B0 = 1, we have fk1 = 1√
Nk

gk since
uk1 = 1/

√
Nk, and hence we obtain an LGFS with B = K

dimensions that amounts to

s =

K∑
k=1

1√
Nk

ξk gk;

furthermore, F = (g1 . . . gK)Diag(
√
1/N1 . . .

√
1/NK). If

in addition the windows are non-overlapping (and hence
constant, gk = 1), the basis F becomes orthonormal and
models graph signals that are piecewise constant.

III. SAMPLING AND RECONSTRUCTION

A. Proposed Method

We consider simple vertex-domain sampling of a (possibly
noisy) LGFS signal s. Let M = {n1, . . . , nM} ⊆ V denote
the sampling set of cardinality M and define the associated
sampling matrix as M = (en1

. . . enM
)T ∈ {0, 1}M×N . The

sampled LGFS signal is then given by

x = Ms+ v,

where v denotes measurement noise. We define the oversam-
pling ratio as η = M/B. Our goal is to design a linear
reconstruction scheme for the signal s,

ŝ = Ax,

such that the reconstructed signal obeys the signal model (2),
i.e., ŝ ∈ span{F}, equivalently ŝ = Fξ̂. If there is no noise, we
can aim for perfect reconstruction, i.e., ŝ = s or equivalently
ŝ = Fξ̂ with ξ̂ = A′x = ξ. Since in the noise-free case
x = Ms = MFξ, we arrive at the condition

A′F̃ξ = ξ, (3)

where we defined the M ×B sampled basis matrix F̃ = MF,
whose columns are the sampled LGFF vectors. Condition (3)
says that A′ must be a left-inverse of F̃. This in turn requires
that the columns of F̃ are linearly independent, for which M ≥
B (i.e., η ≥ 1) is a necessary condition. A solution for A′ is
given by Moore-Penrose pseudo-inverse F̃# of F̃ and hence

ŝ = Fξ̂, ξ̂ = F̃#x. (4)

When F̃ has full rank, the Moore-Penrose pseudo-inverse can
be written as

F̃# =
(
F̃TF̃

)−1
F̃T

and we have perfect reconstruction in the noise-free case where
x = F̃ξ, i.e., ξ̂ = ξ and ŝ = s. If the samples are affected by
i.i.d. noise with variance σ2, the mean-square reconstruction
error achieved by (4) can be shown to equal

E{∥s− ŝ∥2} = σ2tr{F
(
F̃TF̃

)−1
FT}.

If F̃ does not have full rank, perfect signal recovery cannot
be guaranteed. Nonetheless, we can still use its pseudo-inverse



(computed via an SVD) to compute the signal and coefficient
estimates in (4); alternatively, we can use a Tikhonov regular-
ization (ℓ2 penalty on the norm of ξ) to obtain the regularized
coefficient estimate

ξ̂ =
(
F̃TF̃+ λI

)−1
F̃Tx.

The same estimator can be used in the case of noisy mea-
surements. More specifically, assuming that the noise samples
v[n], n ∈ M, are uncorrelated with known average power σ2,
and the coefficients ξkl are uncorrelated with average power
P 2, we choose λ = σ2/P 2.

Since our signal model uses sparse basis vectors (i.e., with
small support), even if F̃ doesn’t have full rank (typically
because the sampling density is too low in certain parts of
the graph), the reconstruction errors will remain localized
within that region, i.e., the reconstruction in the remainder
of the graph will still be accurate (see Section IV). This is an
important advantage of our LGFF model.

B. Computational Aspects

In practice, rather than inverting the Gramian of F̃, it is
preferable to compute the coefficients ξ̂ by solving the normal
equations

F̃TF̃ξ̂ = F̃Tx (5)

(or their regularized version) and exploit the fact that F̃ is
usually sparse. With Mk = Sk∩M denoting the sampled ver-
tices within Sk, the number of nonzero elements of a column
f̃kl = Mfkl of F̃ equals at most Mk = |Mk|. Hence, the total
number of nonzero elements in F̃ is B0

∑K
k=1 Mk ≥ MB/K,

typically entailing a sparsity level of O(1/K).
The gradient descent iterations for (5) with step size α read

ξ̂i+1 = ξ̂i − αF̃Tri with ri = F̃ξ̂i − x,

and hence consist of simple and cheap alternating multiplica-
tions with F̃ and F̃T. For the regularized problem, the previous
estimate ξ̂i in the update is dampened by a factor of (1−αλ).

Multiplication with F̃T basically amounts to aggregating the
values within Sk, ∑

n∈Mk

fkl[n]ri[n].

Multiplication with F̃ by contrast results in signal synthesis on
the sampling locations. Since the basis functions have limited
overlap, we only need to super-impose the ones with non-zero
support at any given location, i.e., with K(n) = {k : n ∈ Sk}∑

k∈K(n)

B0∑
l=1

fkl[n] ξ̂
(i)
kl , n ∈ M,

Similar remarks apply when more advanced solvers (e.g.,
LSQR [26]) are used to solve the normal equations. We finally
note that once the coefficient estimates are obtained, the graph
signal reconstruction according to (2) can be done similarly
efficiently with complexity O(ηNB/K). Hence, our methods
are typically K times faster than for non-sparse signal models.

C. Special Cases

We discuss a few special cases to highlight some advantages
of our model and methods.

Non-overlapping windows. First consider the orthogonal
LGFF with windows that equal the indicator functions of Sk =
Vk, gk = χk, and hence are non-overlapping, gk ⊙ gk′ = 0
for k′ ̸= k. This entails that the frame vectors belonging
to different subgraphs have disjoint support and hence F
and F̃ (with appropriate vertex permutations) feature a block
structure, with the blocks having dimension Mk × B0. As
a result, the normal equations (5) decouple into K separate
equations (with Mk observations and B0 unknowns each)
and can be solved for each subgraph independently. Since
gk[n] = 1 for n ∈ Sk, the Mk × B0 sampled basis matrix
within Sk reads F̃k = MSk

(
uk1 . . . ukB0

)
. In order for F̃k

to have full rank (necessary for perfect reconstruction), we
need Mk ≥ B0 and sampling locations Mk that preserve the
linear independence of the (orthonormal) local Fourier basis
vectors ukl, l = 1, . . . , B0. This is usually easier to achieve
for local Fourier bases with small coherence (cf. [10]).

Separating sampling sets. Even if the windows gk feature a
roll-off and overlap, the overlap doesn’t necessarily affect all
vertices. The set of nodes S ′

k ⊆ Sk within subgraph Gk that
are unaffected by the overlap are given by

S ′
k =

⋃
i̸=k

Si,

where S = V\S denotes the vertex complement. If Mk ⊆ S ′
k,

k = 1, . . . ,K, i.e., all sample locations lie within the non-
overlap regions, we call M a separating sampling set and
conclude that the reconstruction can again be computed locally
by solving K smaller problems within each subgraph. Since
gk[n] = 1 for n ∈ S ′

k, the discussion regarding the sampled
basis matrix for non-overlapping windows here applies as well.

Case B0 = 1. Here, we have B = K unknown LGFF
coefficients. Since uk1 = 1/

√
Nk, the sampled LGFS basis is

given by F̃ =
(
g̃1 . . . g̃K

)
, with g̃k = Mgk/

√
Nk, i.e., the

elements of the sampled basis are (F̃)mk = gk[nm]/
√
Nk.

With constant windows or separating sample sets, we further
have gk[nm] = 1 for nm ∈ Mk and gk[nm] = 0 else. It
follows that F̃TF̃ = Diag(M1/N1, . . . ,MK/NK) and hence
ξ̂k =

√
Nk

Mk

∑
n∈Mk

x[n] and ŝ[n] = gk[n]ξ̂k/
√
Nk for n ∈ Sk.

Regular graphs. Consider a connected 2-regular graph
(cycle) or the 4-regular grid graph obtained as Cartesian
product of two cycle graphs. When these graphs are partitioned
into contiguous subgraphs of equal size, our LGFS model
becomes a discrete equivalent of shift-invariant spaces, for
which sampling has been extensively studied [27].

IV. EXPERIMENTS

We next illustrate the performance of our method via numer-
ical simulations. We first show an exemplary reconstruction on
a random geometric graph with N = 2048 nodes. The graph
signal (shown in Fig. 1(a)) lies in an LGFS with K = 128
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Fig. 1. Illustrative reconstruction example: (a) an LGFS signal (color indicates signal value) with K = 128, B0 = 1, and I = 3 on a random geometric graph
with N = 2048 nodes; (b) red vertices indicate M = 160 sampling locations (rank of F̃ is 125); (c) reconstructed graph signal (normalized reconstruction
error −43.5 dB); (d) reconstruction error (in percent of average signal strength). (e) The average reconstruction error achieved with separating sampling sets
( ◦ ), random sampling sets ( □ ), and random sampling sets with regularized interpolation ( ⋄ ) at noise levels of 10 and 20dB versus oversampling
ratio (signals from an LGFS with K = 8, B0 = 1, and I = 1 on a random geometric graph with N = 1024 nodes).

subgraphs, local bandwidth B0 = 1, and roll-off I = 3. We
use a randomly drawn sampling set consisting of M = 160
vertices (oversampling ratio η = 1.25, see Fig. 1(b)), which led
to a 160×128 sampled basis matrix F̃ of rank 125. Due to the
rank-deficiency, perfect recovery is not possible. Surprisingly,
least-squares reconstruction yields an LGFS signal (Fig. 1(c))
with a normalized reconstruction error of −43.5dB. Even
more astonishing is the fact that the reconstruction error is
highly localized in the region of the graph where there are
insufficient sampling locations (cf. the lower left corner of
Fig. 1(d)) , thus only affecting no more than 2% of the nodes.

For a more systematic performance investigation, we next
consider random geometric graphs with N = 1024 nodes and
LGFS with K = 8 subgraphs, local bandwidth B0 = 1, and
roll-off I = 1. We performed signal reconstruction at signal-
to-noise ratios of 10dB and 20dB and oversampling ratios
η ∈ [1, 6] based on random sampling sets (with and without
regularization) and on separating sampling sets. The normal-
ized reconstruction error, averaged over 300 graph realizations
and 1000 signal realizations, is shown in Fig. 1(e). It is seen
that reconstruction performance improves with increasing sam-

pling rate. Separating sampling sets systematically outperform
random sampling sets by a substantial margin and essentially
work even for critical sampling. By contrast, random sampling
tends to require larger sampling rates to achieve comparable
performance, specifically without regularization. We note that
bandlimited GFT-based reconstruction typically performed 10-
20dB worse despite substantially higher computational com-
plexity (results not depicted).

V. CONCLUSION

We have discussed simple vertex-domain sampling and
reconstruction methods for a sparse signal model that is based
on local graph Fourier frames (LGFFs). We have found that
separating sampling sets facilitate perfect reconstruction but
even randomly chosen sampling sets result in accurate signal
recovery. The two main advantages of our approach are its
computational efficiency and the containment of reconstruction
errors to regions of the graph where the sampling density is too
small. In our future work we plan to analyze the probability
for successful recovery with random sampling sets using tools
from compressive sensing in the style of [10].
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