
A Provably Efficient Sample Collection Strategy
for Reinforcement Learning

Jean Tarbouriech
Facebook AI Research Paris & Inria Lille

jean.tarbouriech@gmail.com

Matteo Pirotta
Facebook AI Research Paris

pirotta@fb.com

Michal Valko
DeepMind Paris

valkom@deepmind.com

Alessandro Lazaric
Facebook AI Research Paris

lazaric@fb.com

Abstract

One of the challenges in online reinforcement learning (RL) is that the agent
needs to trade off the exploration of the environment and the exploitation of
the samples to optimize its behavior. Whether we optimize for regret, sample
complexity, state-space coverage or model estimation, we need to strike a dif-
ferent exploration-exploitation trade-off. In this paper, we propose to tackle the
exploration-exploitation problem following a decoupled approach composed of:
1) An “objective-specific” algorithm that (adaptively) prescribes how many samples
to collect at which states, as if it has access to a generative model (i.e., a simulator
of the environment); 2) An “objective-agnostic” sample collection exploration strat-
egy responsible for generating the prescribed samples as fast as possible. Building
on recent methods for exploration in the stochastic shortest path problem, we first
provide an algorithm that, given as input the number of samples b(s, a) needed
in each state-action pair, requires Õ

(
BD +D3/2S2A

)
time steps to collect the

B =
∑
s,a b(s, a) desired samples, in any unknown communicating MDP with

S states, A actions and diameter D. Then we show how this general-purpose ex-
ploration algorithm can be paired with “objective-specific” strategies that prescribe
the sample requirements to tackle a variety of settings — e.g., model estimation,
sparse reward discovery, goal-free cost-free exploration in communicating MDPs
— for which we obtain improved or novel sample complexity guarantees.

1 Introduction

One of the challenges in online reinforcement learning (RL) is that the agent needs to trade off
the exploration of the environment and the exploitation of the samples to optimize its behavior.
Whenever the agent needs to gather information about a specific region of the Markov decision
process (MDP), it must plan for a policy to reach the desired states, despite not having exact
knowledge of the environment dynamics. This makes solving the exploration-exploitation problem
in RL highly non-trivial and it requires designing a specific strategy depending on the learning
objective, such as PAC-MDP learning [e.g., 13, 47, 59], regret minimization [e.g., 28, 6, 29, 66] or
pure exploration [e.g., 30, 31, 39, 63, 64].

A simpler scenario considered in the literature is to assume access to a generative model or sampling
oracle (SO) [33]. Given any state-action pair (s, a), the SO returns a next state s′ drawn from the
transition probability p(·|s, a) and a reward r(s, a). In this case, it is possible to focus exclusively on
where and how many samples to collect, while disregarding the problem of finding a suitable policy

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

to obtain them. For instance, an SO can be used to obtain samples from the environment, which
are combined with dynamic programming techniques to compute an ε-optimal policy. SO-based
algorithms can be as simple as prescribing the same amount of samples from each state-action pair
[e.g. 35, 33, 5, 16, 46, 1, 38] or they may adaptively change the sample requirements on different state-
action pairs [e.g. 15, 58, 62]. An SO is also used in Monte-Carlo planning [49, 25, 7] which focuses
on computing the optimal action at the current state by optimizing over rollout trajectories sampled
from the SO. Finally, in multi-armed bandit [37], there are cases where each arm corresponds to
a state (or state-action), and “pulling” an arm translates into a call to an SO (see e.g., the pure
exploration setting of [51]). Unfortunately, while an SO may be available in domains such as
simulated robotics and computer games, this is not the case in the more general online RL setting.

In this paper we tackle the exploration-exploitation problem in online RL by drawing inspiration
from the SO assumption. Specifically, we define an approach that is decoupled in two parts: 1) an
“objective-specific” algorithm that assumes access to an SO that (adaptively) prescribes the samples
needed to achieve the learning objective of interest, and 2) an “objective-agnostic” algorithm that
takes on the exploration challenge of collecting the samples requested by the SO-based algorithm as
quickly as possible.1 Our main contributions can be summarized as follows:
• We define the sample complexity of the objective-agnostic algorithm as the number of (online)

steps needed to satisfy the prescribed sampling requirements. Leveraging recent techniques on
exploration in the stochastic shortest path (SSP) problem [45, 50], we propose GOSPRL (Goal-
based Optimistic Sampling Procedure for RL), a conceptually simple and flexible exploration
algorithm that learns how to “generate” the samples requested by any SO-based algorithm and we
derive bounds on its sample complexity.

• Leveraging the generality of our approach, we combine GOSPRL with problem-specific SO-based
algorithms and readily obtain online RL algorithms in difficult exploration problems. While in
general our decoupled approach may be suboptimal compared to exploration strategies designed to
solve one specific problem, we obtain sample complexity guarantees that are on par or better than
state-of-the-art algorithms in a range of problems. 1) GOSPRL solves the problem of sparse reward
discovery in Õ

(
D3/2S2A

)
time steps, which improves the dependency on the diameter D w.r.t. a

reward-free variant of UCRL2B [28, 22], as well as on S and A w.r.t. a MAXENT-type approach
[26, 17]. 2) GOSPRL improves over the method of [54] for model estimation, by removing their
ergodicity assumption as well as achieving better sample complexity. 3) GOSPRL provably tackles
the problem of goal-free cost-free exploration, for which no specific strategy is available.

• We report numerical simulations supporting our theoretical findings and showing that pairing
GOSPRL with SO-based algorithms outperforms both heuristic and theoretically grounded base-
lines in various problems.

Related work. While to the best of our knowledge no other work directly addresses the problem
of simulating an SO, a number of approaches are related to it. The problem solved by GOSPRL
can be seen as a reward-free exploration problem, since it is not driven by any external reward but
by the objective of covering the state space to quickly meet the sampling requirements. Standard
exploration-exploitation algorithms, such as UCRL2 [28] in the undiscounted setting or RMAX [13] in
the discounted one, implicitly encourage exploration to specific areas of the state-action space that are
not estimated accurately enough. The objective of covering the state space is also studied in [26, 17]
with a Frank-Wolfe approach that optimizes a smooth aggregate function of the state visitations.

Recent works on reward-free exploration (RFE) in the finite-horizon setting [e.g., 30, 31, 39, 64]
provide sufficient exploration so that an ε-optimal policy for any reward function can be computed.
Our proposed solution shares high-level algorithmic principles with RFE approaches which incen-
tivize the agent to visit insufficiently visited states via intrinsic reward. Nonetheless, our contribution
significantly differs from existing RFE literature in two dimensions: 1) While we study the perfor-
mance of GOSPRL in one goal-conditioned RFE problem (Sect. 4.3), our framework is much broader
and it allows us to tackle a wider and diverse set of problems (Sect. 4 and App. I); 2) Our setting is
horizon-agnostic and reset-free, which prevents from directly using any method or technical analysis
in RFE designed for problems with an imposed planning horizon (e.g., finite-horizon or discounted).

Finally, GOSPRL draws inspiration from the SSP formalism and solutions of [50, 45], but our
approach critically differs from these works in three main ways: 1) we are interested in sample

1Alternatively, we can view it as a general approach to take any SO-based algorithm and convert it into an
online RL algorithm.

2

complexity guarantees rather than a regret analysis; 2) we consider requirements (i.e., goals to
sample) that vary throughout the learning process, instead of an SSP problem with fixed goal state
and cost function; 3) we show how GOSPRL can serve as a sample collection component to tackle
various learning problems other than regret minimization.

2 Problem Definition

We consider a finite and reset-free MDP [43] M := 〈S,A, p, r, s0〉, with S := |S| states, A := |A|
actions and an arbitrary starting state s0 ∈ S. Calling an SO in any state-action pair (s, a) leads
to two outcomes: a next state sampled from the transition probability distribution p(·|s, a) ∈ ∆(S),
and a reward r(s, a) ∈ R. A stationary deterministic policy is a mapping π : S → A from states to
actions and we denote by ΠSD the set of all such policies. For any policy π and pair of states (s, s′), let
τπ(s→ s′) be the (possibly infinite) hitting time from s to s′ when executing π, i.e., τπ(s→ s′) :=
inf{t ≥ 0 : st+1 = s′| s1 = s, π}, where st is the state visited at time step t. We introduce

Dss′ := min
π∈ΠSD

E[τπ(s→ s′)], Ds′ := max
s∈S\{s′}

Dss′ , D := max
s′∈S

Ds′ ,

where Dss′ is the shortest-path distance between s and s′, Ds′ is the SSP-diameter of s′ [50] and D
is the MDP diameter [28].

We now formalize the problem of simulating an SO (i.e., to generate the samples prescribed by an
SO-based algorithm). At each time step t ≥ 1 the agent receives a function bt : S ×A → N, where
bt(s, a) defines the total number of samples that need to be collected at (s, a) by time step t. We
consider that (bt)t≥1 is an arbitrary sequence with each bt measurable w.r.t. the filtration up to time t
(i.e., it may depend on the samples observed so far).2 We focus on the objective of designing an online
algorithm that minimizes the time required to collect the prescribed samples. Since the environment
is initially unknown, we need to trade off between exploring states and actions to improve estimates
of the dynamics and exploiting current estimates to collect the required samples as quickly as possible.
We formally define the performance metric as follows.

Definition 1. For any state-action pair, we denote by Nt(s, a) :=
∑t
i=1 1{(si,ai)=(s,a)} the number

of visits to state s and action a up to (and including) time step t. Given a sampling requirement
sequence b := (bt)t≥1 with bt : S ×A → N and a confidence level δ ∈ (0, 1), we define the sample
complexity of a learning algorithm A as

C
(
A, b, δ

)
:= min

{
t > 0 : P

(
∀(s, a) ∈ S ×A, Nt(s, a) ≥ bt(s, a)

)
≥ 1− δ

}
.

With no additional condition, it is trivial to define problems such that C(A, b, δ) = +∞ for any
algorithm. To avoid this case, we introduce the following assumptions.
Assumption 1. The MDP M is communicating with a finite and unknown diameter D < +∞.

Assumption 2. There exist an unknown and bounded function b : S × A → N such that the
sequence (bt)t≥1 verifies: ∀t ≥ 1, ∀(s, a) ∈ S ×A, bt(s, a) ≤ b(s, a).

Asm. 1 guarantees that whatever state needs to be sampled, there exists at least one policy that
can reach it in finite time almost-surely (notice that it is considerably weaker than the ergodicity
assumption (App. J) often used in online RL, see e.g., [60, 40, 24]). Asm. 2 ensures that the sequence
of sampling requirements does not diverge and can thus be fulfilled in finite time. These assumptions
guarantee that the problem in Def. 1 is well-posed and the sample complexity is bounded.

A variety of problems can be cast under our decoupled approach, in the sense that they can be tackled
by solving the problem of Def. 1 under a specific instantiation of the sampling requirement sequence
(bt)t≥1. For instance, consider the problem of covering the state-action space (e.g., to discover a
hidden sparse reward), then the requirement is immediately defined as bt(s, a) = 1. In Sect. 4 and
App. I, we review problems where defining bt can be as simple as computing the sufficient number of
samples needed to reach a certain level of accuracy in estimating a quantity of interest (e.g., model
estimation) or can be directly extracted from existing literature (e.g., ε-optimal policy learning).

We now provide a simple worst-case lower bound on the sample complexity (details in App. D).
2Allowing adaptive sampling requirements enables to pair GOSPRL with SO-based algorithms that adjust

their requirements online as samples are being generated (see e.g., Sect. 4.2).

3

Algorithm 1 GOSPRL Algorithm
Input: sampling requirement sequence (bt)t≥1 with bt : S ×A → N revealed at time t (or anytime before).
Initialize: Set G1 := {s ∈ S : ∃a ∈ A, b1(s, a) > 0}, time step t := 1, counters N1(s, a) := 0, attempt
index k := 1 and attempt counters U1(s, a) := 0, ν1(s, a) := 0.
while Gk is not empty do

Define the SSP problem Mk with goal states Gk, and compute its optimistic shortest-path policy π̃k.
Set flag = True and counter νk(s, a) := 0.
while flag do

Execute action at := π̃k(st) and observe next state st+1 ∼ p(·|st, at).
Increment counters νk(st, at) and Nt(st, at).
if st+1 ∈ Gk or νk(st, at) > {Uk(st, at) ∨ 1} then

Set flag = False.
end if
Set t += 1.

end while
if st ∈ Gk then

Execute an action a s.t.Nt(st, a) < bt(st, a), observe next state st+1 ∼ p(·|st, a) and set t += 1.
end if
Set Uk+1(s, a) := Uk(s, a) + νk(s, a), k += 1.
Update the set of goal states Gk :=

{
s ∈ S : ∃a ∈ A, Nt−1(s, a) < bt−1(s, a)

}
.

end while

Lemma 1. For any S ≥ 1, there exists an MDP with S states satisfying Asm. 1 such that for any
sampling requirement b : S → N satisfying Asm. 2,

min
A
C
(
A, b, 1

2

)
= Ω

(∑
s∈S

Dsb(s)
)
.

Lem. 1 shows that the (possibly non-stationary) policy minimizing the time to collect all samples
requires Ω

(∑
sDsb(s)

)
time steps in a worst-case MDP. We also notice that when the total sampling

requirement B is concentrated on the state s for which Ds = D (i.e., b(s′) = 0, ∀s′ 6= s), the
previous bound reduces to Ω(BD).

3 Online Learning for SO Simulation

We now introduce our algorithm for the problem in Def. 1, bound its sample complexity and discuss
several extensions.

3.1 The GOSPRL Algorithm

In Alg. 1 we outline GOSPRL (Goal-based Optimistic Sampling Procedure for Reinforcement Learn-
ing). At each time step t, GOSPRL receives a sampling requirement bt : S ×A → N. The algorithm
relies on the principle of optimism in the face of uncertainty and proceeds through attempts to collect
relevant samples. We index the attempts by k = 1, 2, . . . and denote by tk the time step at the start of
attempt k and by Uk := Ntk−1 the number of samples available at the start of attempt k. At each
attempt, GOSPRL goes through the following steps: 1) Cast the under-sampled states as goal states
and define an associated unit-cost multi-goal SSP instance (with unknown transitions); 2) Compute
an optimistic shortest-path policy; 3) Execute the policy until either a goal state is reached or a
stopping condition is satisfied; 4) If a sought-after goal state denoted by g has been reached, execute
an under-sampled action (i.e., an action a such that Nt(g, a) < bt(g, a)). The algorithm ends when
the sampling requirements are met, i.e., at the first time t ≥ 1 where Nt(s, a) ≥ bt(s, a) for all (s, a).

Step 1. At any attempt k we begin by defining the set of all under-sampled states

Gk :=
{
s ∈ S : ∃a ∈ A, Ntk−1(s, a) < btk−1(s, a)

}
.

We then cast the sample collection problem as a goal-reaching objective, by constructing a multi-goal
SSP problem [9] denoted by Mk := 〈Sk,A, pk, ck,Gk〉, with:3

3If the current state stk is under-sampled (i.e., stk ∈ Gk), we duplicate the state and consider it to be both
a goal state in Gk and a non-goal state from which the attempt k starts (and whose outgoing dynamics are the
same as those of stk), which ensures that the state at the start of each attempt cannot be a goal state.

4

• Gk denotes the set of goal states, Sk := S \ Gk the set of non-goal states and A the set of actions.
• The transition model pk is the same as the original p except for the transitions exiting the goal

states which are redirected as a self-loop, i.e., pk(s′|s, a) := p(s′|s, a) and pk(g|g, a) := 1 for any
(s, s′, a, g) ∈ Sk × S ×A× Gk.

• The cost function ck is defined as follows: for any a ∈ A, any goal state g ∈ Gk is zero-cost
(ck(g, a) := 0), while the non-goal costs are unitary (ck(s, a) := 1 for s ∈ Sk).

From [10], Asm. 1 and the positive non-goal costs ck entail that solving Mk is a well-posed SSP
problem and that there exists an optimal policy that is proper (i.e., that eventually reaches one of the
goal states with probability 1 when starting from any s ∈ Sk). Crucially, the objective of collecting
a sample from the under-sampled states Gk coincides with the SSP objective of minimizing the
expected cumulative cost to reach a goal state in Mk.

Step 2. Since pk is unknown, we cannot directly compute the shortest-path policy for Mk. Instead,
leveraging the samples collected so far, we apply an extended value iteration scheme for SSP which
implicitly skews the empirical transitions p̂k towards reaching the goal states. This procedure can be
done efficiently as shown in [50] (see App. A), and it outputs an optimistic shortest-path policy π̃k.

Step 3. π̃k is then executed with the aim of quickly reaching an under-sampled state. Along its
trajectory, the counter Nt is updated for each visited state-action. Because of the error in estimating
the model, π̃k may never reach one of the goal states (i.e., it may not be proper in pk). Thus π̃k
is executed until either one of the goals in Gk is reached, or the number of visits is doubled in a
state-action pair in Sk ×A, a standard termination condition first introduced in [28]. If a sought-after
goal state is reached, the agent executes an under-sampled action according to the current sampling
requirements at that state. At the end of each attempt, the statistics (e.g., model estimate) are updated.

The algorithmic design of GOSPRL is conceptually simple and can flexibly incorporate various modifi-
cations driven by slightly different objectives or prior knowledge, without altering Thm. 1 (cf. App. B).

3.2 Sample Complexity Guarantee of GOSPRL

Thm. 1 establishes the sample complexity guarantee of GOSPRL (Alg. 1).
Theorem 1. Under Asm. 1 and 2, for any sampling requirement sequence b = (bt)t≥1 and any
confidence level δ ∈ (0, 1), the sample complexity of GOSPRL is bounded as

C
(

GOSPRL, b, δ
)

= Õ
(
BD +D3/2S2A

)
, (1)

C
(

GOSPRL, b, δ
)

= Õ
(∑
s∈S

(
Dsb(s) +D3/2

s S2A
))
, (2)

where the Õ notation hides logarithmic dependencies on S, A, D, 1/δ and b(s) :=
∑
a∈A b(s, a)

and B :=
∑
s∈S b(s). Recall that Ds ≤ D is the SSP-diameter of state s and captures the difficulty

of collecting a sample at state s starting at any other state in the MDP.

We notice that in practice GOSPRL stops at the first random step τ at which the sampling requirement
bτ (s, a) is achieved for all (s, a). Thm. 1 provides a worst-case upper bound on the stopping time of
GOSPRL using the possibly loose bound bτ (s, a) ≤ b(s, a). On the other hand, in the special case
of b : S → N when the requirements are both time-independent (i.e., given as initial input to the
algorithm) and action-independent, the actual sampling requirement b(s) (resp.B :=

∑
s∈S b(s))

replaces b(s) (resp.B) in the bound. In the following, we consider this case for the ease of exposition.

Proof idea. The key step (see App. C for the full derivation) is to link the sample complexity of
GOSPRL to the regret accumulated over the sequence of multi-goal SSP problems Mk generated
across multiple attempts. Indeed we can define the regret at attempt k as the gap between the
performance of the SSP-optimal policy π?k solving Mk (i.e., the minimum expected number of steps
to reach any of the states in Gk starting from stk) and the actual number of steps executed by GOSPRL
before terminating the attempt. While the SSP regret minimization analysis of [45] assumes that the
goal is fixed, we show that it is possible to bound the regret accumulated across different attempts for
any arbitrary sequence of goals. The proof is concluded by bounding the cumulative performance of
the SSP-optimal policies and it leads to the bound Õ

(
BD+D3/2S2A

)
where B :=

∑
s∈S b(s). On

the other hand, the refined bound in Eq. 2 requires a more careful analysis, where we no longer directly

5

translate regret bounds into sample complexity and we rather focus on relating the performance to
state-dependent quantities Ds and b(s). Finally, we show that the extension to the general case of
time-dependent action-dependent sampling requirements is straightforward and obtain Thm. 1.

Interpretation of Thm. 1. We can decompose Eq. 1 as a linear term in B and a constant term. In the
regime of large sample requirements (i.e., large B), the sample complexity thus reduces to Õ(BD),
which adds at most an extra “cost” factor of D w.r.t. an SO. As this may be loose in many cases,
the more refined analysis of Eq. 2 stipulates a cost of Ds to collect a sample at state s, which better
captures the connectivity of the MDP. In fact the lower bound in Lem. 1 shows that this cost of
Ds is unavoidable in the worst case, and that GOSPRL is only constant and logarithmic terms off
w.r.t. to the best sample complexity that can be achieved in the worst case. While an extra attempt of
refinement would be to avoid being worst-case w.r.t. the starting state in the definition of Ds,4 this
seems particularly challenging as the randomness of the environment makes it hard to control and
analyze the sequence of states traversed by the agent. Also note that existing bounds in SSP [50, 45]
are only worst-case and it remains an open question to derive finer (e.g., problem-dependent) bounds
in SSP and how they could be leveraged in our case.

Optimal solution. GOSPRL targets a greedy-optimal strategy, which seeks to sequentially minimize
each time to reach an under-sampled state. Alternatively, one may wonder if it is possible to design
a learning algorithm that approaches the performance of the exact-optimal solution, i.e., a (non-
stationary) policy explicitly minimizing the number of steps required to fulfill the sampling require-
ments.5 Such strategy can be characterized as the optimal policy of an SSP problem for an MDP with
state space augmented by the current sampling requirements and goal state corresponding to the case
when all desired samples are collected. Even under known dynamics, the computational complexity
of computing the optimal policy in this MDP (e.g., via value iteration) is exponential (scaling in BS).
When the dynamics is unknown, it appears highly challenging to obtain any learning algorithm whose
performance is comparable to the exact-optimal strategy for any finite sample requirement B.

Beyond Communicating MDPs. In App. E we design an extension of GOSPRL to poorly or weakly
communicating environments. In this setting, it is expected to assess online the “feasibility” of certain
sampling requirements and discard them whenever associated to states that are too difficult to reach or
unreachable. Given as input a “reachability” threshold L, we derive sample complexity guarantees for
our variant of GOSPRL where the (possibly large or infinite) diameter D is fittingly replaced by L.

4 Applications of GOSPRL

An appealing feature of GOSPRL is that it can be integrated with techniques that compute the (fixed or
adaptive) sampling requirements to readily obtain an online RL algorithm with theoretical guarantees.
In this section we focus on three specific problems where in our decoupled approach the SO-based
algorithm is either trivial or can be directly extracted from existing literature, and its combination with
the sample collection strategy of GOSPRL yields improved or novel guarantees. Other applications
(e.g., PAC-policy learning, diameter estimation, bridging bandits and MDPs) are illustrated in App. I.

4.1 Sparse Reward Discovery (TREASURE)

A number of recent methods focus on the state-space coverage problem, where each state in the MDP
needs to be reached as quickly as possible. This problem is often motivated by environments where a
one-hot reward signal, called the treasure, is hidden and can only be discovered by reaching a specific
state and taking a specific action. Not only the environment but also the treasure state-action pair is
unknown, and the agent does not receive any side information to guide its search (e.g., a measure of
closeness to the treasure). Thus the agent must perform exhaustive exploration to find the treasure.

Definition 2. Given a confidence δ ∈ (0, 1), the TREASURE sample complexity of a learning algo-
rithm A is defined as CTREASURE(A, δ) := min

{
t > 0 : P

(
∀(s, a) ∈ S ×A, Nt(s, a) ≥ 1

)
≥ 1− δ

}
.

4For instance, consider a simple deterministic chain with a requirement of one sample per state. If the agent
starts on the leftmost state, then a policy that keeps moving right has sample complexity S without extra factorD.

5Notice that as illustrated in the lower bound of Lem. 1, the exact-optimal and greedy-optimal have the same
performance in the worst case.

6

In this case, a SO-based algorithm would immediately solve the problem by collecting one sample
from each state-action pair. As a result, we can directly apply GOSPRL for TREASURE by simply
setting b(s, a) = 1 for each (s, a) and from Thm. 1 with B = SA we obtain the following guarantee.

Lemma 2. GOSPRL with b(s, a) = 1 verifies CTREASURE(GOSPRL, δ) = Õ
(
D3/2S2A

)
.

We now compare this result to alternative approaches to the problem, showing that GOSPRL has
state-of-the-art guarantee for TREASURE (see App. G for details).
• First, reward-free methods such as [30, 64, 31, 39] are designed for finite-horizon problems so

their guarantees cannot be directly translated to sample complexity for the TREASURE problem.
Nonetheless, we draw inspiration from their algorithmic principles and analyze a reward-free
variant of UCRL2 [28, 22]. Specifically we consider 0/1-UCRL, which runs UCRL by setting a
reward of 1 to under-sampled states and 0 otherwise. However, we obtain a TREASURE sample
complexity for 0/1-UCRL of Õ

(∑
s∈S D

3
sS

2A
)
, which is always worse than the bound in Lem. 2.

• Second, we can adapt the MAXENT approach [26] to state-action coverage so that it targets a policy
whose stationary state-action distribution λ maximizes H(λ) := −∑s,a λ(s, a) log λ(s, a). While
optimizing this entropy does not provably solve TREASURE, it encourages us to take a “worst-case”
approach w.r.t. the state-action visitations, and rather maximize F (λ) := min(s,a)∈S×A λ(s, a).
We show that the learning algorithm of [17] instantiated to maximize F yields a TREASURE sample
complexity of at least Ω

(
min

{
D2S2A/(ω?)2, D3/(ω?)3

})
with ω? := minλ F (λ) ≤ (SA)−1,

which is significantly poorer than Lem. 2. In fact, in contrast to MAXENT-inspired methods that
optimize for a single stationary policy, GOSPRL realizes a non-stationary strategy that gradually
collects the required samples by tackling successive learning problems.

4.2 Model Estimation (MODEST)

We now study the problem of accurately estimating the unknown transition dynamics in a reward-free
communicating environment. The objective was recently introduced in [54] and we refer to it as the
model-estimation problem, or MODEST for short.

Definition 3. Given an accuracy level η > 0 and a confidence level δ ∈ (0, 1), the MODEST sample
complexity of an online learning algorithm A is defined as

CMODEST(A, η, δ) := min
{
t > 0 : P

(
∀(s, a) ∈ S ×A, ‖p̂A,t(·|s, a)− p(·|s, a)‖1 ≤ η

)
≥ 1− δ

}
,

where p̂A,t is the estimate (i.e., empirical average) of the transition dynamics p after t time steps.

Unlike in TREASURE, here the sampling requirements are not immediately prescribed by the problem.
To define the SO-based algorithm we first upper-bound the estimation error using an empirical
Bernstein inequality and then invert it to derive the amount of samples bt(s, a) needed to achieve the
desired level of accuracy η (see App. F). Specifically, letting σ̂2

t (s′|s, a) := p̂t(s
′|s, a)(1− p̂t(s′|s, a))

be the estimated variance of the transition from (s, a) to s′ after t steps, we set

bt(s, a) :=
⌈57(∑s′ σ̂t(s

′|s, a))2
η2

log2

(
8e(
∑
s′ σ̂t(s

′|s, a))2
√
2SA√

δη

)
+

24S

η
log

(
24S2A

δη

)⌉
. (3)

Since the estimated variance changes depending on the samples observed so far, the sampling
requirements are adapted over time. Given that σ̂2

t (s′|s, a) ≤ 1/4, bt(s, a) is always bounded so
Thm. 1 provides the following guarantee.

Lemma 3. Let Γ := maxs,a‖p(·|s, a)‖0 ≤ S be the maximal support of p(·|s, a) over the state-
action pairs (s, a). Running GOSPRL with the sampling requirements in Eq. 3 yields

CMODEST(GOSPRL, η, δ) = Õ
(DΓSA

η2
+
DS2A

η
+D3/2S2A

)
.

Lem. 3 improves over the result of [54] in two important aspects. First, the latter suffers from an
inverse dependency on the stationary state-action distribution that optimizes a proxy objective function
used in the derivation of their algorithm. Second, while [54] requires an ergodicity assumption, Lem. 3
is the first sample complexity result for MODEST in the more general communicating setting.

7

4.3 Goal-Free & Cost-Free Exploration in Communicating MDPs

We finally delve into the paradigm of reward-free exploration introduced by [30]: the objective of the
agent is to collect enough information during the reward-free exploration phase, so that it can readily
compute a near-optimal policy once any reward function is provided. The problem has been analyzed
in the finite-horizon setting [e.g., 30, 39, 64]. Here we study the more general and challenging setting
of goal-conditioned RL.6 We define the goal-free cost-free objective as follows: after the exploration
phase, the agent is expected to compute a near-optimal goal-conditioned policy for any goal state and
any cost function (w.l.o.g. we consider a maximum possible cost cmax = 1). Recall that given a goal
state g and costs c, the (possibly unbounded) value function of a policy π is

V π(s→ g) := E
[τπ(s→g)∑

t=1

c(st, π(st))
∣∣ s1 = s

]
.

Given a slack parameter θ ∈ [1,+∞], we say that a policy π̂ is (ε, θ)-optimal if 7

V π̂(s→ g) ≤ min
π:E[τπ(s→g)]≤θDs,g

V π(s→ g) + ε.

In this setting, constructing an efficient SO-based algorithm is considerably more complex than
TREASURE and MODEST. Relying on a sample complexity analysis for the fixed-goal SSP problem
with a generative model [53], we define the (adaptive) number of samples needed in each state-action
pair for our online objective. Although the number depends on the unknown diameter, we estimate
D using GOSPRL. The resulting sequence of sampling requirements is then fed online to GOSPRL.
Combining the result of [53] and the properties of GOSPRL yields the following bound (see App. H).

Lemma 4. Consider any MDP satisfying Asm. 1 and the goal-free cost-free exploration problem with
accuracy level 0 < ε ≤ 1, confidence level δ ∈ (0, 1), minimum cost cmin ∈ [0, 1], slack parameter
θ ∈ [1,+∞]. We can instantiate GOSPRL so that its exploration phase (i.e., number of time steps) is
bounded with probability at least 1− δ by

Õ

(
D4ΓSA

ωε2
+
D3S2A

ωε
+
D3ΓSA

ω2

)
,

where ω := max
{
cmin, ε/(θD)

}
> 0 (thus, either cmin = 0 or θ = +∞, but not both simultane-

ously). Following the exploration phase, the algorithm can compute in the planning phase, for any
goal state g ∈ S and any cost function c in [cmin, 1], a policy π̂g,c that is (ε, θ)-optimal.

Lem. 4 establishes the first sample complexity guarantee for general goal-free, cost-free exploration.
While the objective is demanding and the upper bound on the length of the exploration phase can
be large, the main purpose of this result is to showcase how GOSPRL can be readily instantiated
to tackle a challenging exploration problem for which no existing solution can be easily leveraged.
Comparing our analysis to the finite-horizon objective of [30] reveals two interesting properties:
• The goal-free aspect: moving from finite-horizon to goal-conditioned renders unavoidable both

the communicating requirement (Asm. 1) and the bound’s dependency on the unknown diameter D
(which partly captures the role of the known horizon H in the bound of [30]).

• The cost-free aspect: in contrast to finite-horizon, the value of cmin has an important impact on
the type of performance guarantees we can obtain; in particular our analysis distinguishes between
positive and non-negative costs (as also done in existing SSP analysis [11, 50, 45]).

5 Experiments

In this section we report a preliminary numerical validation of our theoretical findings. While
GOSPRL can be integrated in many different contexts, here we focus on the problems where our
theory suggests that GOSPRL performs better than state-of-the-art online learning methods.

6While an approach was proposed in [52], it is restricted to considering only the incrementally attainable
goal states from a resettable reference state s0.

7This reduces to standard ε-optimality for θ = +∞. We only consider θ < +∞ in the case of minimum
possible cost cmin = 0 and it ensures that the algorithm targets proper policies (see App. H).

8

GOSPRL

0/1-UCRL

0-UCRL

MaxEnt

Uniform

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

time t
P
ro
p
o
rt
io
n
P t

0 2,000 4,000 6,000 8,000

0

0.2

0.4

0.6

0.8

1

time t

P
ro
p
o
rt
io
n
P t

0 1,000 2,000 3,000 4,000 5,000 6,000

0

0.2

0.4

0.6

0.8

1

time t

P
ro
p
o
rt
io
n
P t

Figure 1: TREASURE-10 problem (i.e., with b(s, a) = 10): Proportion Pt of states meeting the requirements at
time t, averaged over 30 runs. By definition of the sample complexity, the metric of interest is not the rate of
increase of Pt over time but only the time needed to reach the line of success Pt = 1. Left: 6-state RiverSwim,
Center: 24-state corridor gridworld, Right: 43-state 4-room gridworld (see App. K for details on the domains).

Garnet 1 Garnet 2 Garnet 3 Garnet 4 Garnet 5

4

6

8

·103

S
a
m
p
le

co
m
p
le
x
it
y

5 random instances of G(10, 5, 5)

Garnet 1 Garnet 2 Garnet 3 Garnet 4 Garnet 5

2

2.2

2.4

·104
S
a
m
p
le

co
m
p
le
x
it
y

5 random instances of G(50, 5, 5)

Figure 2: Sample complexity boxplots of GOSPRL (in red) and 0/1-UCRL
(in blue). Each column represents 30 runs on a randomly generated Garnet
G(S,A = 5, β = 5) with randomly generated state-action sampling require-
ments b : S ×A → U(0, 100). Left: S = 10, Right: S = 50.

0 1 2 3 4 5

·104

0

1

2

3
·10−1

time t

` 1
-e
rr
o
r
E t

NoisyRiverSwim(36)

Uniform
Weighted MaxEnt
GOSPRL

0 1 2 3 4 5

·104

0

2

4

6

8

·10−2

time t

` 1
-e
rr
o
r
E t

Wheel(30)

Uniform
Weighted MaxEnt
GOSPRL

0 1 2 3 4 5

·104

0

0.5

1

1.5
·10−1

time t

` 1
-e
rr
o
r
E t

Garnet(50,5,25)

Uniform
Weighted MaxEnt
GOSPRL

Figure 3: MODEST problem: `1-error Et := (SA)−1 ·∑s,a‖p̂t(·|s, a) −
p(·|s, a)‖1, averaged over 30 runs. Left: NoisyRiverSwim(36), Center:
Wheel(30), Right: Randomly generated Garnet G(50, 5, 25).

s0 s1 s2

a0
ν

1− ν

a0

a0ν1− ν

a1

101 102 103
102

103

104

Diameter D (≈ 1/ν)

S
am

p
le

co
m
p
.(
G
O
S
P
R
L
)

Figure 4: Simple three-state
reward-free domain [23]
and TREASURE-10 sample
complexity of GOSPRL
(averaged over 30 runs) as
a function of the diameter
D ≈ 1/ν.

TREASURE-type problem. We consider a TREASURE-type problem (Sect. 4.1), where for all (s, a)
we set b(s, a) = 10 instead of 1 (we call it the TREASURE-10 problem).8 We begin by showing in
Fig. 4 that it is easy to construct a worst-case problem where the sample complexity scales linearly
with the diameter, which is consistent with the theoretical discussion in Sect. 2 and 3.

We compare to two heuristics based on UCRL2B [28, 22]: 0-UCRL, where the reward used in
computing the optimistic policy is set proportional to ([N(s, a) − b(s, a)]+)−1/2, and 0/1-UCRL
with reward 1 for undersampled state-action pairs and 0 otherwise. We also compare with the
MAXENT algorithm [17] that maximizes entropy over the state-action space, and with a uniformly
random baseline policy. We test on the RiverSwim domain [48] and various gridworlds (see App. K
for details and more results). Fig. 1 reports the proportion Pt of states that satisfy the sampling
requirements at time t. Our metric of interest is the time needed to collect all required samples, and
we see that GOSPRL reaches the Pt = 1 line of success consistently, and faster than 0/1-UCRL, while
the other heuristics struggle. The steady increase of Pt illustrates GOSPRL’s design to progressively
meet the sampling requirements, and not exhaust them state after state.

8Since GOSPRL and our baselines are all based on upper confidence bounds, they tend to display similar
behaviors in the initial phases of learning, since the estimates when N(s, a) = 0 are similar. As the number of
samples required in each state-action increases, the difference between the algorithms’ design starts making a real
difference in the behavior and eventually their performance. This is why we study here TREASURE-10 instead
of the TREASURE-1 problem for which empirical performance is comparable between learning algorithms.

9

Random MDPs and sampling requirements. To study the generality of GOSPRL to collect
arbitrary sought-after samples, we further compare GOSPRL with 0/1-UCRL which is the best
heuristic from the previous experiment. We test on a variety of randomly generated configurations, that
we define as follows: each configuration corresponds to i) a randomly generated Garnet environment
G(S,A, β) (with S states, A actions and branching factor β, see [12]), and ii) randomly generated
requirements b(s, a) ∈ U(0, U), where the maximum budget is set to U = 100 to have a wide range
of possible requirements across each environment. The boxplots in Fig. 2 provide aggregated statistics
on the sample complexity for different configurations. We observe that GOSPRL consistently meets
the sampling requirements faster than 0/1-UCRL, as well as suffers from lower variance across runs.

MODEST problem. Finally, we empirically evaluate GOSPRL for the MODEST problem (Sect. 4.2).
We compare to the fully online WEIGHTEDMAXENT heuristic, which weighs the state-action entropy
components with an optimistic estimate of the next-state transition variance and was shown in [54]
to perform empirically better than algorithms with theoretical guarantees. We test on the two
environments (NoisyRiverSwim and Wheel) proposed in [54] for their high level of stochasticity, as
well as on a randomly generated Garnet. To facilitate the comparison, we consider a GOSPRL-for-
MODEST algorithm where the sampling requirements are computed using a decreasing error η (see
App. K for details). We observe in Fig. 3 that GOSPRL outperforms the WEIGHTEDMAXENT heuristic.

6 Conclusion

In this paper, we introduced the online learning problem of simulating a sampling oracle (Sect. 2) and
derived the algorithm GOSPRL with its sample complexity guarantee (Sect. 3). We then illustrated
how it can be used to tackle in a unifying fashion a variety of applications without having to design
a specific online algorithm for each, while at the same time obtaining improved or novel sample
complexity guarantees (Sect. 4). Going forward, we believe that GOSPRL can be used as a competitive
off-the-shelf baseline when a new application is introduced.

An exciting direction of future investigation is to extend the general sample collection problem and its
various applications beyond the tabular setting. Handling a continuous state space or linear function
approximation requires redefining the notion of reaching a specific state (e.g., via adequate discretiza-
tion or by considering requirements based on the covariance matrix). Studying the SSP problem
beyond tabular may provide insights, as recently initiated in [56] in linear function approximation
under the assumption that all policies are proper. On the more algorithmic side, GOSPRL hinges on
knowing the sampling requirement function bt and deriving a shortest-path policy π̃. Interestingly,
we can identify algorithmic counterparts to both modules in deep RL. The computation of π̃ can be
entrusted to a goal-conditioned network (using e.g., [2]), while the specification of bt can be related
to goal-sampling selection mechanisms that elect hard-to-reach [21] or rare [42] states as goals.

References

[1] A. Agarwal, S. Kakade, and L. F. Yang. Model-based reinforcement learning with a generative
model is minimax optimal. In Proceedings of Thirty Third Conference on Learning Theory,
volume 125 of Proceedings of Machine Learning Research. PMLR, 2020.

[2] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. To-
bin, P. Abbeel, and W. Zaremba. Hindsight experience replay. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, pages 5055–5065, 2017.

[3] J.-Y. Audibert and S. Bubeck. Best arm identification in multi-armed bandits. In COLT - 23th
Conference on Learning Theory, 2010.

[4] J.-Y. Audibert, R. Munos, and C. Szepesvári. Exploration–exploitation tradeoff using variance
estimates in multi-armed bandits. Theoretical Computer Science, 410(19):1876–1902, 2009.

[5] M. G. Azar, R. Munos, and H. J. Kappen. Minimax pac bounds on the sample complexity of
reinforcement learning with a generative model. Machine learning, 91(3):325–349, 2013.

10

[6] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
263–272. JMLR, 2017.

[7] P. Bartlett, V. Gabillon, J. Healey, and M. Valko. Scale-free adaptive planning for deterministic
dynamics & discounted rewards. In International Conference on Machine Learning, pages
495–504. PMLR, 2019.

[8] P. L. Bartlett and A. Tewari. Regal: a regularization based algorithm for reinforcement learning
in weakly communicating mdps. In Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence, 2009.

[9] D. P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena scientific
Belmont, MA, 1995.

[10] D. P. Bertsekas and J. N. Tsitsiklis. An analysis of stochastic shortest path problems. Mathe-
matics of Operations Research, 16(3):580–595, 1991.

[11] D. P. Bertsekas and H. Yu. Stochastic shortest path problems under weak conditions. Lab. for
Information and Decision Systems Report LIDS-P-2909, MIT, 2013.

[12] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor–critic algorithms.
Automatica, 45(11):2471–2482, 2009.

[13] R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

[14] A. Carpentier, A. Lazaric, M. Ghavamzadeh, R. Munos, and P. Auer. Upper-confidence-
bound algorithms for active learning in multi-armed bandits. In International Conference on
Algorithmic Learning Theory, 2011.

[15] Y. Chen, L. Li, and M. Wang. Scalable bilinear π learning using state and action features. arXiv
preprint arXiv:1804.10328, 2018.

[16] Y. Chen and M. Wang. Stochastic primal-dual methods and sample complexity of reinforcement
learning. arXiv preprint arXiv:1612.02516, 2016.

[17] W. C. Cheung. Exploration-exploitation trade-off in reinforcement learning on online markov
decision processes with global concave rewards. arXiv preprint arXiv:1905.06466, 2019.

[18] W. C. Cheung. Regret minimization for reinforcement learning with vectorial feedback and
complex objectives. In Advances in Neural Information Processing Systems, pages 724–734,
2019.

[19] O. Dekel, J. Ding, T. Koren, and Y. Peres. Bandits with switching costs: T 2/3 regret. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 459–467,
2014.

[20] F. d’Epenoux. A probabilistic production and inventory problem. Management Science,
10(1):98–108, 1963.

[21] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement
learning agents. In International conference on machine learning, pages 1515–1528. PMLR,
2018.

[22] R. Fruit, M. Pirotta, and A. Lazaric. Improved analysis of ucrl2 with empirical bernstein
inequality. arXiv preprint arXiv:2007.05456, 2020.

[23] R. Fruit, M. Pirotta, A. Lazaric, and R. Ortner. Efficient bias-span-constrained exploration-
exploitation in reinforcement learning. In ICML 2018-The 35th International Conference on
Machine Learning, volume 80, pages 1578–1586, 2018.

[24] E. Garcelon, M. Ghavamzadeh, A. Lazaric, and M. Pirotta. Conservative exploration in
reinforcement learning. In International Conference on Artificial Intelligence and Statistics,
pages 1431–1441. PMLR, 2020.

11

[25] J.-B. Grill, M. Valko, and R. Munos. Blazing the trails before beating the path: Sample-
efficient monte-carlo planning. In Advances in Neural Information Processing Systems, pages
4680–4688, 2016.

[26] E. Hazan, S. Kakade, K. Singh, and A. Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pages 2681–2691, 2019.

[27] D. J. Hsu, A. Kontorovich, and C. Szepesvári. Mixing time estimation in reversible markov
chains from a single sample path. In Advances in neural information processing systems, pages
1459–1467, 2015.

[28] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

[29] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is q-learning provably efficient? In Advances
in Neural Information Processing Systems, pages 4863–4873, 2018.

[30] C. Jin, A. Krishnamurthy, M. Simchowitz, and T. Yu. Reward-free exploration for reinforcement
learning. In International Conference on Machine Learning, pages 4870–4879. PMLR, 2020.

[31] E. Kaufmann, P. Ménard, O. D. Domingues, A. Jonsson, E. Leurent, and M. Valko. Adaptive
reward-free exploration. In Algorithmic Learning Theory, pages 865–891. PMLR, 2021.

[32] A. Kazerouni, M. Ghavamzadeh, Y. Abbasi, and B. Van Roy. Conservative contextual linear
bandits. In Advances in Neural Information Processing Systems, pages 3910–3919, 2017.

[33] M. Kearns, Y. Mansour, and A. Y. Ng. A sparse sampling algorithm for near-optimal planning
in large markov decision processes. Machine learning, 49(2-3):193–208, 2002.

[34] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine
learning, 49(2-3):209–232, 2002.

[35] M. J. Kearns, Y. Mansour, and A. Y. Ng. Approximate planning in large pomdps via reusable
trajectories. In Advances in Neural Information Processing Systems, pages 1001–1007, 2000.

[36] T. Koren, R. Livni, and Y. Mansour. Bandits with movement costs and adaptive pricing. In
Conference on Learning Theory, pages 1242–1268. PMLR, 2017.

[37] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[38] G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen. Breaking the sample size barrier in model-based
reinforcement learning with a generative model. Advances in Neural Information Processing
Systems, 2020.

[39] P. Ménard, O. D. Domingues, A. Jonsson, E. Kaufmann, E. Leurent, and M. Valko. Fast active
learning for pure exploration in reinforcement learning. In International Conference on Machine
Learning, pages 7599–7608. PMLR, 2021.

[40] R. Ortner. Regret bounds for reinforcement learning via markov chain concentration. Journal
of Artificial Intelligence Research, 67:115–128, 2020.

[41] D. Paulin. Concentration inequalities for markov chains by marton couplings and spectral
methods. Electronic Journal of Probability, 20, 2015.

[42] V. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: State-covering self-
supervised reinforcement learning. In International Conference on Machine Learning, pages
7783–7792. PMLR, 2020.

[43] M. L. Puterman. Markov Decision Processes.: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, 2014.

[44] J. Qian, R. Fruit, M. Pirotta, and A. Lazaric. Exploration bonus for regret minimization in
discrete and continuous average reward mdps. In Advances in Neural Information Processing
Systems, pages 4891–4900, 2019.

12

[45] A. Rosenberg, A. Cohen, Y. Mansour, and H. Kaplan. Near-optimal regret bounds for stochastic
shortest path. In International Conference on Machine Learning, pages 8210–8219. PMLR,
2020.

[46] A. Sidford, M. Wang, X. Wu, L. Yang, and Y. Ye. Near-optimal time and sample complexities for
solving markov decision processes with a generative model. In Advances in Neural Information
Processing Systems, pages 5186–5196, 2018.

[47] A. L. Strehl, L. Li, and M. L. Littman. Reinforcement learning in finite mdps: Pac analysis.
Journal of Machine Learning Research, 10(Nov):2413–2444, 2009.

[48] A. L. Strehl and M. L. Littman. An analysis of model-based interval estimation for markov
decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

[49] B. Szörényi, G. Kedenburg, and R. Munos. Optimistic planning in markov decision processes
using a generative model. Advances in Neural Information Processing Systems, 27:1035–1043,
2014.

[50] J. Tarbouriech, E. Garcelon, M. Valko, M. Pirotta, and A. Lazaric. No-regret exploration in
goal-oriented reinforcement learning. In International Conference on Machine Learning, pages
9428–9437. PMLR, 2020.

[51] J. Tarbouriech and A. Lazaric. Active exploration in markov decision processes. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 974–982, 2019.

[52] J. Tarbouriech, M. Pirotta, M. Valko, and A. Lazaric. Improved sample complexity for in-
cremental autonomous exploration in mdps. In Advances in Neural Information Processing
Systems, volume 33, pages 11273–11284, 2020.

[53] J. Tarbouriech, M. Pirotta, M. Valko, and A. Lazaric. Sample complexity bounds for stochastic
shortest path with a generative model. In Algorithmic Learning Theory, pages 1157–1178.
PMLR, 2021.

[54] J. Tarbouriech, S. Shekhar, M. Pirotta, M. Ghavamzadeh, and A. Lazaric. Active model
estimation in markov decision processes. In Conference on Uncertainty in Artificial Intelligence,
pages 1019–1028. PMLR, 2020.

[55] F. Trevizan, S. Thiébaux, P. Santana, and B. Williams. Heuristic search in dual space for
constrained stochastic shortest path problems. In Twenty-Sixth International Conference on
Automated Planning and Scheduling, 2016.

[56] D. Vial, A. Parulekar, S. Shakkottai, and R. Srikant. Regret bounds for stochastic shortest path
problems with linear function approximation. arXiv preprint arXiv:2105.01593, 2021.

[57] M. Wainwright. Course on mathematical statistics, chapter 2: Basic tail and concentration
bounds. University of California at Berkeley, Department of Statistics, 2015.

[58] M. Wang. Primal-dual π learning: Sample complexity and sublinear run time for ergodic
markov decision problems. arXiv preprint arXiv:1710.06100, 2017.

[59] Y. Wang, K. Dong, X. Chen, and L. Wang. Q-learning with ucb exploration is sample efficient
for infinite-horizon mdp. In International Conference on Learning Representations, 2019.

[60] C.-Y. Wei, M. J. Jahromi, H. Luo, H. Sharma, and R. Jain. Model-free reinforcement learning
in infinite-horizon average-reward markov decision processes. In International Conference on
Machine Learning, pages 10170–10180. PMLR, 2020.

[61] A. Zanette and E. Brunskill. Tighter problem-dependent regret bounds in reinforcement learning
without domain knowledge using value function bounds. In International Conference on
Machine Learning, pages 7304–7312, 2019.

[62] A. Zanette, M. J. Kochenderfer, and E. Brunskill. Almost horizon-free structure-aware best
policy identification with a generative model. In Advances in Neural Information Processing
Systems, pages 5626–5635, 2019.

13

[63] X. Zhang, Y. Ma, and A. Singla. Task-agnostic exploration in reinforcement learning. In 34th
Conference on Neural Information Processing Systems, pages 11734–11743, 2020.

[64] Z. Zhang, S. S. Du, and X. Ji. Nearly minimax optimal reward-free reinforcement learning.
arXiv preprint arXiv:2010.05901, 2020.

[65] Z. Zhang and X. Ji. Regret minimization for reinforcement learning by evaluating the optimal
bias function. In Advances in Neural Information Processing Systems, pages 2823–2832, 2019.

[66] Z. Zhang, Y. Zhou, and X. Ji. Almost optimal model-free reinforcement learning via reference-
advantage decomposition. Advances in Neural Information Processing Systems, 33, 2020.

14

	Introduction
	Problem Definition
	Online Learning for SO Simulation
	The OSP Algorithm
	Sample Complexity Guarantee of OSP

	Applications of GOSPRL
	Sparse Reward Discovery (Treasure)
	Model Estimation (ModEst)
	Goal-Free & Cost-Free Exploration in Communicating MDPs

	Experiments
	Conclusion
	 Appendix
	Efficient Computation of Optimistic SSP Policy
	Algorithmic Variants of GOSPRL
	Selecting the goal state
	Cost-shaping the trajectories

	Proof of Theorem 1
	Proof of Corollary 1
	From Corollary 1 to Theorem 1
	Remark

	Lower Bound
	Proof of Lemma 8

	GOSPRL Beyond the Communicating Setting
	Application: Model Estimation (ModEst)
	Application: Sparse Reward Discovery (Treasure Problem)
	Application: Goal-Free Cost-Free Exploration in Communicating MDPs
	Reward-Free Exploration in Finite-Horizon MDPs vs.Cost-Free Exploration in Goal-Conditioned RL
	Proof of Lem.4

	Other Applications
	Application: Diameter Estimation
	Application: PAC-Policy Learning
	Application: Bandit Problems with MDP Dynamics
	Algorithmic protocol
	Best-state identification
	Reward estimation (a.k.a.active exploration)
	Comments

	On Ergodicity
	Experiments

