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ABSTRACT

Generating human videos with realistic and controllable motions is a challeng-
ing task. While existing methods can generate visually compelling videos, they
lack separate control over four key video elements: foreground subject, back-
ground video, human trajectory, and action patterns. In this paper, we propose a
decomposed human motion control and video generation framework that explic-
itly decouples motion from appearance, subject from background, and action from
trajectory, enabling flexible mix-and-match composition of these elements. Con-
cretely, we first build a ground-aware 3D world coordinate system and perform
motion editing directly in the 3D space. Trajectory control is implemented by
unprojecting edited 2D trajectories into 3D with focal-length calibration and co-
ordinate transformation, followed by speed alignment and orientation adjustment;
actions are supplied by a motion bank or generated via text-to-motion methods.
Then, based on modern text-to-video diffusion transformer models, we inject the
subject as tokens for full attention, concatenate the background along the chan-
nel dimension, and add motion (trajectory and action) control signals by addition.
Such a design opens up the possibility for us to generate realistic videos of anyone
doing anything anywhere. Extensive experiments on benchmark datasets and real-
world cases demonstrate that our method achieves state-of-the-art performance on
both element-wise controllability and overall video quality. The source codes and
project page are in the supplementary and at https://anonymous.4open.
science/r/RealisMotion-anonymous-3870/.

1 INTRODUCTION

Imagine Mona Lisa participating in a stylish event at a luxurious hotel, gracefully approaching you
while holding a glass of red wine. Imagine the real cop Chan shooting the undercover police chief
Lau, on a rooftop framed by the Hong Kong skyline. (See Fig. 1 for our results.) While recent
advances in human video generation and editing have shown promising results Hu (2024); Zhu et al.
(2024); Zhou et al. (2024), existing methods still struggle to realize such creative transformations
due to their limited control over individual video elements, such as subject, background, trajectory
and action.

Currently, most of the existing human video generation methods are designed to transfer motions
between individuals. Given a guidance video and a reference image, these methods first extract
motion representations such as pose Yang et al. (2023); Hu (2024) and depth Hu et al. (2025) from
the video. Then, they animate the reference image according to the extracted motion. This pipeline,
whether operating in 2D image space Wang et al. (2023) or 3D camera space Zhu et al. (2024),
is limited in the following aspects. First, the foreground and background are jointly defined, which
prevents independent control of the subject and the environment. Second, the tight coupling between
action patterns and trajectory prevents independent manipulation of ’what’ actions to perform and
’where’ to perform them. Third, limited understanding of background geometry hampers editing
of the subject’s movement along the depth axis, making it hard to produce plausible animations
with correct perspective scaling. Fourth, when the camera view changes across frames, the scene
coordinate frame also shifts, complicating global trajectory control and consistent action editing.
Together, these constraints lead most methods to assume that the human in both guidance video
and reference image is centrally framed and near the camera, effectively reducing the task to simple
motion copying.

1

https://anonymous.4open.science/r/RealisMotion-anonymous-3870/
https://anonymous.4open.science/r/RealisMotion-anonymous-3870/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Foreground Subject Background Video Action

+ +
Trajectory

and Orientation

+ + ++
Foreground Subject Background Video ActionTrajectory

and Orientation

Figure 1: By decomposing the human motion into trajectory and action, and video appearance into foreground subject and background video,
the proposed RealisMotion generates natural human motion videos by placing the foreground subject in the background video and having it
perform the corresponding action along the specified trajectory. We provide more than 100 video examples in the project homepage.

In this paper, we introduce a decomposed human motion control and video generation framework
that overcomes the limitations described above. Our key idea is to treat subject, background,
trajectory, and action as independent, composable dimensions. This decomposition is realized
in two stages. In the first stage, we represent human motion with the 3D parametric SMPL-X
model Pavlakos et al. (2019) and build a 3D world coordinate system with physical ground aware-
ness. After freely editing the 2D image-space trajectory, we unproject it into the 3D world space
using depth estimation, focal-length calibration and coordinate transformation. The moving speed
and human orientation are also aligned with the real motions. Then, the corresponding action se-
quence is retrieved from a motion bank or synthesized with text-to-motion methods. Finally, we
render depth, normal, and color maps from the 3D scene to serve as conditioning guidance for sub-
sequent video synthesis. In the second stage, we fuse these elements into coherent videos with a
video generation model based on WAN-2.1 Wang et al. (2025). Starting from WAN-2.1-T2V, we
fine-tune the model end-to-end with three key extensions: (1) subject injection via token concate-
nation along the sequence dimension, (2) background incorporation by channel-wise concatenation,
and (3) motion (i.e., trajectory + action) conditioning implemented with an additional ControlNet-
style Zhang et al. (2023) module.

The contributions of this paper are summarized as follows.

1. We present a decomposed human motion-control and video-generation framework that
models subject, background, trajectory, and action as independent, composable elements,
enabling flexible mix-and-match editing. A detailed controllability comparison of related
works is provided in Table 1.

2. We combine 3D physical priors with a learned video diffusion prior. The physical priors
handle geometry-sensitive tasks (e.g., 3D trajectory and action control, occlusion, and fore-
shortening) in the 3D domain, while the video diffusion prior handles appearance and tem-
poral aspects (e.g., object/background control, frame consistency, and human–environment
interaction) in the video domain.

3. We perform all trajectory and action edits in the 3D world space, preserving realistic speed,
orientation, motion style and perspective effects.

4. We introduce a motion-conditioned video generation model built on the latest diffusion-
transformer model Wan-2.1. Experiments on benchmark datasets and real-world cases
show improved fidelity and controllability compared to prior motion-transfer methods.

2 METHOD

2.1 OVERALL PIPELINE

Given a reference human subject image I , a reference background video V 1:N
bgd , a sequence of target

translation T 1:N (also known as global trajectory), a sequence of target orientation O1:N and a

2
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Table 1: Controllability comparison of related methods on four key video elements: trajectory (orientation reported separately for clarity),
action, subject and background. ✓ denotes standalone and accurate control, while ✗ indicates limited, inaccurate, or joint control.

Class Example Methods Trajectory Orientation Action Subject Background

T2V/I2V Base Models Wan-2.1 Wang et al. (2025), etc. ✗ ✗ ✗ ✗ (joint) ✗ (joint)
Image Animation Animate Anyone Hu (2024), etc. ✗ (2D) ✗ (2D) ✗ (2D) ✗ (joint) ✗ (joint)

Motion Control
Tora Zhang et al. (2024c) ✗ (2D) ✗ ✗ ✗ (joint) ✗ (joint)

MotionCtrl Wang et al. (2024d) ✗ (2D) ✗ ✗ ✗ (text) ✗ (text)
3DTrajMaster Fu et al. (2024) ✓ (3D) ✓ (3D) ✗ ✗ (text) ✗ (text)

RealisMotion (ours) ✓ (3D) ✓ (3D) ✓ (3D) ✓ (image) ✓ (image)

sequence of target body pose P 1:N (also referred to as human action), the goal in this paper is
to generate a new video of the reference human moving in the background, following the defined
motion (including T 1:N , O1:N and P 1:N ). N is the number of frames.

To achieve the goal, we first match the motion with the background in Sec. 2.2. Given the envi-
ronment defined by the background video, the motion should follow the physical laws to ensure it
appears reasonable and natural. Then, in Sec. 2.3, we propose a motion-guided video generation
model that supports separate subject, background and motion control. By this two-stage design, we
combine the 3D physical prior with the learned video diffusion prior for generating highly realistic
human motion videos. We solve the 3D-related problems, such as 3D trajectory control, 3D global
orientation control, 3D action control, occlusion and foreshortening, in the 3D domain; and we solve
the rest problems, such as object control, background control, detail authenticity, frame consistency,
human-environment interaction, motion error repairing, in the video domain.

2.2 DECOUPLED MOTION EDITING

2.2.1 MOTION REPRESENTATION

We use the SMPL-X Pavlakos et al. (2019) model for human body modelling in the low-level
parametric space. It represents the human body as a function M(γ, ϕ, θ, β, θh, ϕf ), which is
parametrized by the global translation γ ∈ R3, global orientation ϕ ∈ R3, body pose θ ∈ R21×3,
body shape β ∈ R10, hand pose θh ∈ R2×15×3 and facial expression ϕf . After standard linear
blend skinning and learned blend shape correction, the SMPL-X model outputs a 3D mesh repre-
sentation with 10, 475 vertices. Hence, human motion could be well presented by a sequence of
SMPL-X parameters.

To fit the motion into the background video, we need to make sure that both the motion and the envi-
ronment in the background share the same 3D coordinate system: same coordinate origin, same axis
direction and same coordinate scale. To avoid ambiguity, we build a world-grounded 3D coordinate
system (−→o ,−→x ,−→y ,−→z , s) in the physical world without the impact of camera views in videos. More
specifically, based on the human mesh recovery method GVHMR Shen et al. (2024), we define the
coordinate system as follows: (a) the coordinate origin −→o is defined as the point where the human
stands in the first frame of the video; (b) the y-axis −→y aligns with the gravity direction in the physi-
cal world; (c) we define the x-axis −→x and z-axis −→z as −→x = −→y ×−→c and −→z = −→x ×−→y , respectively,
where −→c is the camera view direction. In fact, it is difficult to align −→x and −→z for different −→c , but
we found that the x-z plane will always align with the ground plane given the definition of −→o and −→y .
Therefore, we can omit the mismatch of motion and environment in terms of −→x and −→z , and rotate
the 3D mesh with the rotation angle α between these two coordinate systems; (d) the coordinate
scale s is aligned with the physical distance, which means that a distance d = 1 in the coordinate
system means 1 meter in the physical world.

2.2.2 TRAJECTORY AND GLOBAL ORIENTATION EDITING

With the SMPL-X model, we can directly change its parameters γ and ϕ to control the trajectory
Γ1:N and global orientations Φ1:N , where N is the length of points in the given trajectory. Since
editing these 3D parameters manually frame-by-frame is labor-intensive, we propose to first obtain
the 2D trajectory, and then derive the 3D trajectory and the corresponding orientations based on two
reasonable assumptions: (a) the human moves on the ground; (b) the human faces the direction of
movement. The 2D points can be easily obtained by dragging the cursor or by selecting a few key
points and applying linear interpolation.
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Figure 2: The architecture of the proposed RealisMotion. It has two stages: 1) we first build a ground-aware 3D world coordinate system for
the human motion, and conduct trajectory and action editing separately within the 3D space. 2) we then generate human videos conditional on
the foreground subject image, background video and rendered motion guidance videos.

Formally, given a 2D point γn
2d from the trajectory {Γ1

2d,Γ
2
2d, ...,Γ

N
2d} on the image, we represent it

as Γn
h in the homogeneous 2D image coordinates and unproject it to the 3D camera space as

Γn
c = K−1Γn

h · d ∗ f2/f1 (1)

where K and f1 are the camera intrinsic matrix and focal length predicted by GVHMR. d and f2 are
the depth and focal length estimated by Depth Pro Bochkovskii et al. (2024). Here, we use f2/f1 for
calibration as GVHMR only predicts a fake focal length according to the image size, which might
lead to inaccurate transformations during motion editing.

Then, we further transform the 3D point Γn
c from the camera space to the defined world space as

Γn
w = (Γn

c − Tw2c)R
−1
w2c (2)

where Rw2c and Tw2c are the rotation matrix and translation vector from the world space to the
camera space. Rw2c and Tw2c are calculated based on the rigid point registration Umeyama (1991)
of 3D human points between the world space and camera space in the background video.

Next, to make sure that the human moves with natural speed on the edited trajectory, we align the
speed of the edited trajectory with the original speed. Otherwise, motion flaws such as feet sliding
may occur when the feet move forward instead of maintaining static contact with the ground as
would be expected in natural human motion. In detail, the alignment process starts with accumulat-
ing the total moving distance ∆n from the first frame to the n-th frame as

∆n =

n∑
i=2

∥Γi
w − Γi−1

w ∥1 (3)

where ∥ · ∥1 means the L1 norm. When we fit ∆n and the edited translation Γn as a function
Γn = F(∆n) for n = 1, ..., N , we can obtain the aligned translation Γ̄n as Γ̄n = F(∆′n), where
the original total moving distance ∆′n is defined similarly to ∆n for the original trajectory.

After editing the trajectory, we edit the global orientation accordingly. For each frame n, we obtain
the rotation angle Ψn on the x-z plane and derive the rotation matrix Rn as

Ψn = atan(
zn − zn−1

xn − xn−1
), Rn =

[
cos(Ψn) 0 −sin(Ψn)

0 1 0
sin(Ψn) 0 cos(Ψn)

]
. (4)

To change the human orientation, we found that directly modifying Φn leads to unnatural swinging
movements. Therefore, we apply the trajectory and orientation transformations together on 3D
human vertices Vn as

V̄n = (Φn)−1(Vn − Γn)Rn + Γ̄n (5)
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Notably, due to the estimation errors, the edited human motion might suffer from feet floating or
penetration to the ground. We shift vertices along the y-axis by subtracting the minimum y value
over a local temporal window to optimize foot contact. Besides, to improve motion consistency
across frames, we also smooth the rotation angle in a sliding way during orientation editing.

2.2.3 BODY POSE AND HAND POSE EDITING

For body pose and hand pose, we can directly copy them from existing SMPL-X parameters. Con-
sequently, we can easily collect a motion bank from existing videos with extracted SMPL-X pa-
rameters. When we use the motion to generate new videos, we just need to edit the trajectory and
orientation according to the background, while the body pose and hand pose are kept unchanged.
This allows us to retrieve different actions, such as walking, running and swimming, with their orig-
inal action styles, from the motion bank. For repetitive motions, one can cut a clip of motion and
repeat it as needed. As for the editing of body pose and hand pose, it is out of the scope of this paper
and the readers can refer to related research such as Agrawal et al. (2023); Li et al. (2024).

In practice, the hand orientation Φn
h and hand pose Θn

h are estimated with an extra hand mesh recov-
ery method HaMeR Pavlakos et al. (2024). It uses the parametric hand model MANO Romero et al.
(2022) and estimates the hand parameters in the camera space. To match the hand with the human
body in the world space, a quick solution is to match the HaMeR hand vertices with the SMPL-X
hand vertices using rigid point registration, but it might result in incorrect waist rotations when the
hand pose is significantly different from the standard hand pose of SMPL-X. Hence, we match the
hand orientation parameters between MANO and SMPL-X by first reversing the original SMPL-X
hand orientation and then apply the MANO orientation after camera-world space transformation.
This is formulated as

Φ̄n
h = (Ωn)−1(Φn

hR
−1
w2c) (6)

where Ωn is the hand orientation derived from the SMPL-X model using forward kinematics.

2.2.4 2D GUIDANCE RENDERING

Given the 3D human mesh representation, we render 2D depth maps, normal maps, and color
maps to guide the video generation process. The same extrinsic and intrinsic camera parameters
as the background video are used to ensure that the guidance maps and the target video are spatially
aligned. In particular, the depth maps depict the distances from the camera to each pixel, while the
normal maps contain the surface orientations of the meshes. Both of them provide critical geometric
information for reconstructing the 3D structure of the human. Similar to RealisDance Zhou et al.
(2024), we generate color maps by assigning different colors to different vertices, which can provide
semantic information for different parts of the human, and improves human consistency across dif-
ferent frames. We also refer to RealisDance for rendering the hand maps. One thing to note is that
we need to mask the occluded hand by comparing the depths of human body and hand. In addition,
after we transferring motion from one human to the reference human subject, we use the body shape
parameters β of the reference subject, which allows us to keep the same body shape such as height
and figure. When transferring motion from adults to children, we add an extra shape parameter to
interpolate between SMPL-X and SMIL-X templates Patel et al. (2021); Hesse et al. (2018).

2.3 DECOMPOSED HUMAN VIDEO GENERATION

We build our human video generation model based on the text-to-video model Wan-2.1 Wang et al.
(2025), which achieves state-of-the-art performance on video generation. It compresses the video
into the latent space with a spatio-temporal causal variational autoencoder (VAE) Esser et al. (2021)
and employs full attention Vaswani et al. (2017); Peebles & Xie (2023) for spatio-temporal con-
textual modeling of video tokens. As shown in Fig. 2, we decompose the video into several key
elements for flexible and separate control, including foreground subject, background video, motion
guidance and text.
Subject Control To control the subject, we first compress the subject image as image tokens
using the Wan-2.1 VAE. Then, the image tokens are concatenated with the video tokens for full
attention. To discriminate between reference image and target video tokens, we treat the reference
image as a sufficiently distant video frame in the target video (for example, the 80-th frame) and
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apply the corresponding rotary position embeddings (RoPE) Su et al. (2024) on it. This leads to
a sufficiently large distance between image and video tokens during attention, while keeping the
spatial composition of the reference image. In addition, we found the generated human face might
be blurry possibly due to the fact that the face often occupies a relatively small area of the whole
image. To improve the face performance, we detect the face in the reference image and upscale it as
an extra reference image input. An ID embedding module similar to the time embedding module in
Wan-2.1 is proposed for distinguishing the reference subject image and face image.
Background Control To control the background of video, it is straightforward to compress the
reference background as video tokens and then concatenate it with the target video tokens along the
channel dimension, as the background video and the target video are supposed to be fully aligned.
Typically, we obtain the background video with a human in it, especially in training. To avoid
information leaking, we mask the foreground human in the background video with a mask. We
also concatenate the mask with the video tokens along the channel dimension for helping the model
identify the foreground area. In training, we additionally add random masks to background video to
tackle with possible discrepancy between the target human area and masked foreground area during
inference.
Motion Control Given the rendered motion guidance videos, we encode them as visual tokens by
VAE. Then, inspired by ControlNet Zhang et al. (2023), we copy the transformer blocks T of Wan-
2.1 as T ′ and extract motion features c from different blocks. Next, we add the motion features to
the video features x at corresponding positions for controlling the video motion. This is formulated
as

cb+1 = T ′n(cb), for b = 1, ..., B (7)

xb+1 = T n(xb) + S(cb+1), for b = 1, ..., B (8)

where b is the block index in B blocks and S is a linear layer with zero initialization. To reduce
model size and computation burden, we only use B′ blocks for motion feature extraction and add
them to their neighboring blocks within a window size of B/B′. In other words, every B/B′ blocks
share the same motion feature.
Text Control It seems that a combination of the subject image, background video and driving
motion can define a video well. However, we found that providing the text is still important for im-
proving the model performance, possibly due to two reasons. First, the Wan-2.1 model was trained
for the text-to-video task. Removing the text-related modules or providing empty text might lead to
significant domain gaps. Second, there are still some undefined elements in the video, such as the
other side of the reference human subject, or the interaction of human and environment. Therefore,
we keep the text modules and annotate the video with corresponding text prompts. Particularly, we
avoid the cross attention between the reference image tokens and text tokens in text modules, as we
observe a performance drop of reference ID preservation ability.
The Image-to-Video Variant We can seamlessly extend our model to the Wan-2.1 I2V (image-
to-video) model, which additionally inputs the first frame of the video as a guidance. In this case,
our model degenerates to be an image animation model when the reference subject and background
are merged into a single image. It no longer supports separate subject-background customization,
nor does it offer dynamic background control ability. We notice that there is a concurrent image
animation work RealisDance-DiT Zhou et al. (2025), which could be adopted as our I2V variant to
prevent duplicate efforts.

3 RELATED WORK

3.1 MOTION ACQUISITION

To generate human motion, one can directly estimate human motion by motion capture systems,
which are often prohibitively expensive. With advancements in human motion recovery techniques,
extracting human motion from images or videos has become significantly simpler and more acces-
sible Kanazawa et al. (2018); Goel et al. (2023); Shin et al. (2024); Wang et al. (2024b); Shen et al.
(2024); Zhang et al. (2024a); Yin et al. (2024). These methods predominantly use learnable neural
networks to directly predict the parametric human model parameters in SMPL Bogo et al. (2016);
Loper et al. (2023) or SMPL-X Pavlakos et al. (2019). Most of them follow a multi-stage pipeline
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that consists of human bounding box tracking, 2D human keypoint detection, image feature extrac-
tion, camera relative rotation estimation and SMPL parameter regression. According to the differ-
ence of used coordinate systems, above methods can be roughly divided as camera-space Kanazawa
et al. (2018); Goel et al. (2023); Zhang et al. (2024a) and world-space Shin et al. (2024); Shen et al.
(2024); Wang et al. (2024b); Yin et al. (2024) methods. The former kind of method treats the cam-
era as the origin and often fails to recover global motion due to accumulated translation and pose
errors. In contrast, the latter kind of method defines a unified coordinate system without the impact
of changing camera views, making it more suitable for subsequent motion editing.

Another way for motion generation is training generative models based on captured human motion
datasets Punnakkal et al. (2021); Guo et al. (2022). Given different guidance, such as action la-
bel Cervantes et al. (2022), audio Aristidou et al. (2022) and natural language Ahuja & Morency
(2019); Tevet et al. (2022a;b); Barquero et al. (2024), most methods choose conditional generative
models to map from the conditioning domain to the motion domain. With significant advancements
in diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020), many methods start to train dif-
fusion models for human motions conditioning on texts Tevet et al. (2022b); Kim et al. (2023);
Shafir et al. (2023); Barquero et al. (2024); Zou et al. (2024). For example, as one of the pioneering
text-to-motion method, MDM Tevet et al. (2022b) adopts a transformer diffusion model for motion
generation based on the CLIP text embedding.

3.2 MOTION-GUIDED VIDEO GENERATION

Similar to text-to-motion generation, diffusion-based models Blattmann et al. (2023); Zhu et al.
(2023); Yang et al. (2024); Liang et al. (2024); Kong et al. (2024); Wang et al. (2025); Chen et al.
(2025) have emerged as the current research mainstream for motion-guided video generation. As one
of the pioneering methods, DisCo Wang et al. (2023) segments the foreground and background of the
reference image, and then injects their VAE embeddings Esser et al. (2021) to the 2D UNet of Stable
Diffusion Blattmann et al. (2023) by cross attention and ControlNet Zhang et al. (2023), respectively.
The 2D pose sequence is encoded and injected into the UNet by ControlNet as well. As another
representative method, Animate Anyone Hu (2024) upgrades the 2D UNet to a 3D UNet for better
video quality. It also proposes a symmetric ReferenceNet to extract reference features, which are
merged into the main network via spatial attention. The feature of 2D pose sequence is concatenated
with the noise input for motion guidance. Subsequent methods basically follow the designs of DisCo
and Animate Anyone, with improvements on base models Zhang et al. (2024b); Lin et al. (2025),
reference injection Xu et al. (2024); Wang et al. (2024a); Zhou et al. (2025); Jiang et al. (2025),
motion guidance Zhu et al. (2024); Tan et al. (2024); Men et al. (2024), hand fidelity Zhou et al.
(2024), camera control Wang et al. (2024c); Shao et al. (2024), object interaction Hu et al. (2025),
etc.. Some of them Zhu et al. (2024); Zhou et al. (2025) have used the SMPL models, but their
exploration is limited to the camera space. It is worth pointing out that most above methods are
essentially image animation methods, without any modification on extracted motions from existing
videos. Artifacts might arise when the motion (generally represented in rendered 2D image space)
mismatches with the reference image.

In particular, 3DTrajMaster Fu et al. (2024) attempts to control the object orientation and trajectory
by representing them as the rotation-translation matrix, which is added with text embeddings to con-
trol video contents after cross attention. Since the non-rigid object motion is in fact defined by text
prompts, it does not support complex and accurate motion control. Additionally, other techniques
for modifying trajectories exist Yin et al. (2023); Wang et al. (2024d); Wu et al. (2024); however,
the majority are limited to handling 2D rigid object movement and are not effective for intricate
non-rigid human motion.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Based on the Wan-2.1 14B model, we finetune our model on an internal dataset that comprises
approximately 3,300 hours of multi-resolution human video content. The details are provided in the
supplementary due to page limit. For evaluation, we compare our methods in several aspects. For
trajectory and global orientation control, we compare the translation error and rotation error defined
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Table 2: Comparison of trajectory and global orientation control with existing methods on the proposed Trajectory100 dataset.

Method Translation Error (m)↓ Rotation Error (deg) ↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓

Wan-2.1-I2V Wang et al. (2025) 10.349 0.418 14.96 0.4763 0.3260 33.06 1421.87
Tora Zhang et al. (2024c) 5.667 0.355 16.56 0.5195 0.2501 21.51 957.81
RealisDance-DiT Zhou et al. (2025) 1.706 0.167 16.17 0.4892 0.2481 23.02 758.08

RealisMotion (ours) 1.198 0.101 22.57 0.7664 0.0686 12.00 314.59

RealisMotion
(ours)

Tora

Ground-Truth

Frame10 Frame30 Frame90

RealisDance-DiT
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aj
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Figure 3: Visual comparison on trajectory and orientation control.

RealisDance-DiT
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MooreAA
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RealisMotion
(ours)

AnimateX

A
ct
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Figure 4: Visual comparison on action control.

by MotionCtrl Wang et al. (2024d), and also report video quality metrics including PSNR, SSIM,
LPIPS Zhang et al. (2018), FID Heusel et al. (2017) and FVD Unterthiner et al. (2019). For action
control, we mainly compare the video metrics with existing image animation methods.

4.2 COMPARISON WITH EXISTING METHODS

4.2.1 TRAJECTORY AND GLOBAL ORIENTATION CONTROL

To assess trajectory and global orientation control capabilities, we created a 100-video evaluation
dataset with distinct movement paths, named Trajectory100. We compare our approach against the
Wan-2.1 base model Wang et al. (2025), the trajectory-focused method Tora Zhang et al. (2024c),
and the image animation method RealisDance-DiT Zhou et al. (2025). As illustrated in Table 2, our
proposed RealisMotion outperforms all models in each metric. The lowest translation and rotation
errors demonstrate superior trajectory and global orientation control, while additional metrics con-
firm that our generated videos also offer the highest visual quality. Fig. 3 shows that although Tora
and RealisDance-DiT can control human trajectories in the 2D camera space to some extent, their
outputs do not accurately represent physical positions within the environment. Furthermore, related
methods like MotionCtrl Wang et al. (2024d) and 3DTrajMaster Fu et al. (2024) are excluded since
their video backgrounds and objects are specified by text prompts, making quantitative evaluation
on Trajectory100 difficult. A detailed comparison of controllability is available in Table 1.

4.2.2 ACTION CONTROL

We evaluate the action control performance of various methods using the image animation bench-
mark dataset RealisDance-Val Zhou et al. (2025). As presented in Table 3, RealisMotion signif-
icantly surpasses existing methods across all five metrics, demonstrating its robust action control
capabilities. The qualitative results, depicted in Fig. 4, reveal that our approach produces clear,
visually appealing videos with accurate actions, whereas the comparative methods often result in
unnatural, distorted human figures.

4.2.3 SUBJECT AND BACKGROUND CONTROL

As depicted in Fig. 1 and Fig. 5, our approach allows for arbitrary subject customization and move-
ment within existing background videos by referring to a reference image. Although our model
has been mainly trained on adult human videos, it demonstrates strong generalization capabilities to
previously unseen animation characters and children. In terms of background control, the effective-
ness of our approach is illustrated in the last two rows of Fig. 3 and Fig. 4, wherein it consistently
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Method PSNR↑ SSIM↑ LPIPS↓ FID↓ FVD↓

Animate-X Tan et al. (2024) 16.29 0.5893 0.2664 36.50 2376.66
ControlNeXt Peng et al. (2024) 15.66 0.5762 0.2776 40.38 2412.52
MimicMotion Zhang et al. (2024b) 17.20 0.6029 0.2457 43.51 2283.93
MooreAA Hu (2024) 16.08 0.5546 0.2488 37.92 2446.50
MusePose Tong et al. (2024) 17.29 0.6080 0.2276 44.66 2809.02
RealisDance-DiT Zhou et al. (2025) 17.22 0.5919 0.2050 26.18 1576.66

RealisMotion (ours) 20.34 0.7224 0.0998 20.67 1000.98

Table 3: Comparison of action control on RealisDance-Val Zhou et al. (2025).

Frame20 Frame40 Frame80Subject Frame60

Figure 5: Visual results of subject control.

preserves background continuity, a feature not observed in the comparative methods. Note that the
recent Animate Anyone 2 Hu et al. (2025) is not compared here as it is not open-sourced.

4.3 ABLATION STUDY

Table 4: Ablation Study on different designs.
The accompanying visual results are provided
in the supplementary.

Ablation Study (w/o) PSNR↑LPIPS↓

Focal Length Calibration 21.52 0.1043
Body Hand Matching 22.34 0.0694
Text Prompt 22.12 0.0793
Extra Face Input 22.36 0.0701
Shifted RoPE 22.13 0.0752
Random Masking 21.88 0.0951

RealisMotion (ours) 22.57 0.0686

We conduct ablation study on Trajectory100. The accompanying
visual comparison and additional ablation studies are provided in
the supplementary.
Focal Length Calibration To mitigate the adverse effects of
inaccurate focal length, we calibrate the focal length. As demon-
strated in Table 4, the PSNR decreases from 22.57dB to 21.52dB
when calibration is absent. Visual examples in the supplemen-
tary material reveal that, without calibration, the human size may
appear inconsistent with the surrounding environment, thereby
contravening physical commonsense.
Body-Hand Matching Given that the human body and hands
are predicted using different methods and within different spaces,
we align the hands with the body to achieve more precise hand pose control. In the absence of this
alignment, the default hand pose is used, resulting in a decrease in PSNR to 22.34dB.
Text Prompt Since the foreground, background, and motion effectively define a video, we attempt
to remove the text module to reduce computational demands and simplify the inference process.
However, as indicated in Table 4, this leads to a performance drop in video quality. The visual
results provided in the supplementary reveal that the resulting videos tend to generate incorrect
details.
Shifted RoPE for Reference Subject Image We propose to shift the RoPE to differentiate be-
tween the reference image and the target video. Without this design, the PSNR decreases to 22.13dB.
The visual results in the supplementary material show that the first frame deteriorates significantly,
likely because the absence of RoPE on the reference frames actually causes the reference frame to
be treated as the first frame.
Extra Face Image for Reference With an additional face image input, the PSNR improves from
22.36dB to 22.57dB. This enhancement is further corroborated by the visual comparisons provided
in the supplementary.
Random Masking On Background We randomly apply masking to the background to address
the mismatch between background and motion during inference. As illustrated in the supplementary,
the absence of random masking can lead to the generation of two human figures: one in the original
human region and another in the new motion region, resulting in significant performance drops, as
indicated in Table 4.

5 CONCLUSIONS

In this paper, we present RealisMotion, a decomposed human motion control and video generation
framework. It constructs a ground-aware 3D world coordinate system that enables straightforward,
realistic trajectory and action editing in the 3D space. Using the rendered motion guidance, Re-
alisMotion synthesizes videos with independent control over foreground subject, background, tra-
jectory, and action. Extensive experiments demonstrate state-of-the-art video quality and superior
controllability across these elements.
Limitation and Future Work Currently, our method has limited sensitivity to the environment’s
3D structure and can sometimes produce foreground–background lighting inconsistencies. We leave
these challenges for our future work.
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6 ETHICS STATEMENT

This work focuses on generating human videos with realistic and controllable motions, enabling
flexible composition of subjects, actions, trajectories, and backgrounds. While our method opens up
promising applications in virtual content creation, animation, and interactive systems, we recognize
that video generation technologies can also pose ethical risks if misused. In particular, highly realis-
tic synthetic videos may be used to create misleading or harmful content, such as deepfakes, without
consent. To mitigate such risks, we emphasize that our framework is designed for controllable and
transparent synthesis, where each component is explicitly specified by the user. We do not support
or encourage the generation of content involving real individuals without their permission, nor do
we intend for our method to be used in deceptive, discriminatory, or privacy-violating ways.

We also acknowledge concerns regarding bias and fairness in training data: motion patterns and
appearances may reflect societal biases present in datasets. We encourage future work to incorpo-
rate fairness-aware data curation and evaluation practices. Finally, we affirm that this research was
conducted in accordance with principles of research integrity, and no human subjects were involved
without appropriate oversight or informed consent.

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we provide com-
prehensive details of our method in the main paper and appendix, including model architecture,
training procedures, hyper-parameters, and evaluation protocols. For full transparency, we include
an anonymized version of our source code as supplementary materials.

8 DISCLOSURE OF LARGE LANGUAGE MODELS USAGE

We used GPT-4o to assist with language editing and proofreading, including improving the clarity,
grammar, and style of the manuscript. The model was not involved in generating technical con-
tent, designing experiments, or producing results. All ideas, analyses, and conclusions are the sole
responsibility of the authors.
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A APPENDIX

In this supplementary material, we begin by detailing the data processing and training procedures
in Sec. B. We then present additional visual results in Sec. C, along with visual comparisons from
the ablation studies in Sec. D. Subsequently, we include further ablation studies concerning the
proposed model in Sec. E. Finally, we integrate our method with text-to-motion techniques and the
I2V variant Realisdance-DiT, as discussed in Sec. F and Sec. G. We highly recommend readers visit
our project homepage to view the video results.

B EXPERIMENTAL SETUP

In data preprocessing, we first estimate the human motion with hand pose by GVHMR Shen et al.
(2024) and HaMeR Pavlakos et al. (2024), and generate captions for videos by LLaVA Liu et al.
(2024). Then, based on the rendered video depths, we derive the human mask and use image erosion
for expanding the mask region, due to that fact that the rendered depth region is often smaller than
the real human region. The obtained mask is used for segmenting the reference human subject and
background. During training, we randomly sample video clips and randomly select one frame as
the reference human subject image. The driving motion videos are randomly masked to improve
its robustness to unnatural motion. During inference, we generate the corresponding caption by
requesting GPT-4o Hurst et al. (2024) to describe the human subject image and the first frame of
the background video. Besides, MatAnyone Yang et al. (2025) is employed for better foreground
background segmentation during inference.

During training, we use the AdamW optimizer Loshchilov & Hutter (2017) to train the model with
the flow matching loss Lipman et al. (2022). Initially, we train the model for 20,000 iterations using
49-frame video clips at 8fps and 480p resolution, with a batch size set to 128. Then, we finetune it
using 97-frame video clips at 16fps and 720p resolution, for another 20,000 iterations. The learning
rate and weight decay are set as 1e-5 and 1e-4, respectively. Other noise scheduler settings are kept
the same as Wan-2.1. In particular, we randomly set the text and foreground subject to null or zeros
for the purpose of classifier-free guidance (CFG) in inference. On a server with 8 H20 GPUs, it
takes about 20 minutes to generate a 97× 1280× 720 video (about 6 seconds).

C MORE VISUAL COMPARISON

We offer additional visual comparisons of human video generation with existing methods in Fig. 6,
Fig. 7, and Fig. 9. These figures clearly demonstrate that our method outperforms all competing ap-
proaches. We also show more multi-resolution examples on trajectory, action, subject or background
editing of our method in Fig. 8.

D VISUAL COMPARISON FOR ABLATION STUDY IN THE MAIN PAPER

D.1 FOCAL LENGTH CALIBRATION

As illustrated in Fig. 10, the human size may not align correctly with the surrounding environment,
appearing too large when perceived as too close or too small when viewed as distant. This discrep-
ancy contravenes the principles of physical commonsense.

D.2 BODY-HAND MATCHING

As depicted in Fig. 11, we compare the results of no matching, rigid registration-based matching,
and our proposed method. The rendered hand guidances are presented in the top section, while the
resulting video is displayed in the bottom section. It is clear that our approach effectively aligns
the body and hand with precision, whereas the compared methods either revert to a default hand
pose or encounter inaccurate wrist angles. These issues result in incorrect hand poses and flawed
hand-object interactions in the videos.
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Figure 6: More visual comparison of different methods on trajectory and global orientation control. The video
results are provided in the project homepage.

D.3 TEXT PROMPT

As illustrated in Fig. 10, removing text-related modules results in diminished video quality and
inaccuracies in details described by the text. For example, in the sample video, the woman in the
ground-truth is wearing a jumpsuit, whereas the generated video incorrectly depicts her wearing
long socks.

D.4 SHIFTED ROPE FOR REFERENCE SUBJECT IMAGE

From Fig. 10, it is evident that without shifted RoPE, the video suffers from severe artifacts, partic-
ularly in the first and last frames. The first frames exhibit strips around the human regions, while the
last frames show frog-like artifacts surrounding the human areas in the generated video.
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Figure 7: More visual comparison of different methods on action control. The video results are provided in the
project homepage.

D.5 EXTRA FACE IMAGE FOR REFERENCE

Incorporating an additional face image as model input enhances the face quality in the generated
video, as demonstrated by the comparisons in Fig. 10. The faces generated by competing methods
without extra face guidance tend to be more blurry.

D.6 RANDOM MASKING ON BACKGROUND

As depicted in Fig. 12, no random masking during training leads to difficulties for the proposed
method in accurately identifying the correct human position, resulting in the presence of two fig-
ures in the produced video (one at the original human region). This issue likely arises because the
background and motion are consistently aligned during training, a condition that frequently does not
hold during inference.

E MORE ABLATION STUDY

E.0.1 TRANSFORMATION ON 3D HUMAN VERTICES

When altering the trajectory or global orientation, transformations can be directly applied to the
SMPL-X parameters or alternatively to the rendered human vertices. As demonstrated in Fig. 13,
from the hand and shoulder positions, we can conclude that applying transformations to the vertices
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Figure 8: More visual results on trajectory, action, subject or background editing. The video results are provided
in the project homepage.

results in more stable human motion and reduces shaking than on SMPL-X parameters. The shaking
becomes more apparent when the sequence is viewed as a video.
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Figure 9: More visual comparison of different methods on action control. The video results are provided in the
project homepage.

E.0.2 THE IMPACT OF CAMERA-SUBJECT DISTANCE

As illustrated in Fig. 14, increased distances result in poorer visual details of the human subject. This
is a common challenge for trajectory editing. This is because that the foreground human occupies a
smaller area (only a few tokens) in the video, when it is positioned far from the camera.

E.0.3 CLASSIFIER-FREE GUIDANCE

We utilize classifier-free guidance (CFG) for model inputs such as text and the foreground subject.
As illustrated in Fig. 15, CFG applied to text enhances video details and reduces artifacts, while
CFG on the foreground subject improves the ability to preserve human identity (such as face details
and dresses). Furthermore, we observe that even without a foreground subject, the proposed method
can still generate a coherent video from the text prompt. Essentially, our approach functions as a
specialized video inpainting model guided by both the foreground subject and text. In scenarios
where the background is absent, it becomes a specialized video outpainting model. When neither
foreground subject nor background is provided, our method degrades to a human video generation
model driven by text input and motion guidance.
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Figure 10: Visual results of several ablation studies. Please zoom in for better comparison.

F COMBINATION WITH TEXT-TO-MOTION METHOD FLOWMDM

Our proposed method could be seamlessly integrated with text-to-motion techniques. For instance,
using the motion generated by FlowMDM Barquero et al. (2024), we can render the 2D guidance
and produce the corresponding video, as illustrated in Fig. 16. This integration enables our method
to leverage the motion editing capabilities of existing text-to-motion approaches as well.

G COMBINATION WITH THE I2V VARIANT REALISDANCE-DIT

RealisDance-DiT Zhou et al. (2025) can be considered an image-to-video variant of our method,
defining the subject and background within a single image that serves as the first frame of the video.
With edited motion, RealisDance-DiT can also be employed to generate the corresponding video.
Some example results are presented in Fig. 17.
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Figure 11: Visual results of ablation study on body-hand matching. Please zoom in for better comparison. The
readers are suggested to focus on the human hands in this example.
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Figure 12: Visual results of ablation study on random masking. The artifacts appear to the left of the human
figures in this case. Please zoom in for better comparison.
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Figure 13: Visual results of ablation study on vertice transformation. The shaking of human motion is more
visible when the sequence is viewed as a video. Please zoom in for better comparison.
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Figure 14: Visual results of ablation study on the vertice transformation. Please zoom in for better comparison.
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Figure 15: Visual results of ablation study on classifier-free guidance (CFG) for different inputs. Please zoom
in for better comparison.
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Figure 16: Visual results of combination with the text-to-motion method FlowMDM. Please zoom in for better
comparison.
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Figure 17: Visual results of combination with the I2V variant RealisDance-DiT. Please zoom in for better
comparison.
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