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ABSTRACT

Human object interactions, gaze patterns, and their anticipation are intricately
linked, providing valuable insights into cognitive processes, intentions, and be-
havior. However, most existing models handle gaze and actions separately, miss-
ing both their interdependence and the advantages of a unified solution. This
paper presents a novel unified framework, SAGE (Synchronized Action and Gaze
Estimation), which integrates simultaneous recognition and anticipation of both
human object interaction and human gaze into a single unified end-to-end trainable
model. Our approach leverages a transformer-based architecture and incorporates
gaze data into spatiotemporal attention mechanisms to simultaneously predict cur-
rent and future human actions and gaze behavior. We explore this bidirectional
relationship between gaze and actions under different scenarios, whether requir-
ing a close-up, detailed view (egocentric) or a wider, more contextual view (ex-
ocentric), making our framework versatile for various applications. Additionally,
due to lack of datasets for comprehensive analysis of both human object inter-
actions and gaze in exocentric videos, we establish a new benchmark Exo-Cook
to facilitate further research in this domain. Experiments on three benchmark
datasets—VidHOI, EGTEA Gaze+, and Exo-Cook—show that jointly modeling
gaze and actions across current and future frames achieves consistently strong
results, often surpassing specialized state-of-the-art models tailored to individual
tasks. By unifying actions and attention in a comprehensive way, our work lays the
groundwork for more intuitive human-machine interaction and future applications
in cognitive rehabilitation and behavior analysis.

1 INTRODUCTION

Imagine watching a person in a kitchen. They glance at a knife, reach for a cutting board, and then
shift their gaze toward a tomato. Even before they pick up the knife, you can reasonably antici-
pate what comes next: they’re about to start chopping. This ability to recognize current actions and
predict future ones based on where someone is looking and how they interact with objects is some-
thing humans do effortlessly—and crucially, through a single, unified cognitive model in the brain,
not through fragmented or disjointed processes. For intelligent systems to interact naturally with
people, they must unify perception and prediction—understanding both current and future behavior
without relying on separate task-specific pipelines. From assistive robots to driver monitoring and
AR assistants, many applications require not only understanding current actions but also anticipating
what comes next. Gaze offers cues of intention, while human–object interactions reflect engagement
with the environment. Crucially, the combination of these two modalities, and how they unfold over
time offers the richest behavioral insight.

Yet, most existing approaches treat these tasks separately: some recognize human-object interactions
and actions Ji et al. (2021); Cong et al. (2021); Tu et al. (2022); Chiou et al. (2021); Mascaro et al.
(2023); Ni et al. (2023); Hao et al. (2022); Wang et al. (2020) or anticipate them Roy et al. (2024);
Girdhar & Grauman (2021a); Zhong et al. (2023); Liu et al. (2020); Cong et al. (2021); Ni et al.
(2023), while others model gaze prediction Lai et al. (2024b); Li et al. (2021); Lai et al. (2024a);
Huang et al. (2018); Tafasca et al. (2024); Chong et al. (2020) or gaze anticipation Lai et al. (2024c);
Zhang et al. (2017). Few attempt to integrate both, and those that do either use disjointed pipelines
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or focus only on egocentric views Li et al. (2015); Ma et al. (2016); Singh et al. (2016); Ni et al.
(2023); Li et al. (2018a; 2021); Min & Corso (2021). Importantly, most do not model how gaze and
actions evolve together into the future—a key aspect of joint anticipation and intuitive, human-like
understanding.

We propose SAGE (Synchronized Action and Gaze Estimation), a unified end-to-end framework
that jointly recognizes and anticipates gaze and human actions. The “Estimation” for gaze and ac-
tion refers to both present and future. Built on a transformer backbone, SAGE integrates gaze into
spatiotemporal attention to learn shared representations that capture the coupling between where
people look and what they do. Central to our design are two modules: the Gaze-Conditioned Spatial
Attention (GCSA) module, which injects gaze into spatial attention to highlight human–object inter-
action cues, and the Gaze-Conditioned Temporal Prediction (GCTP) module, which models tempo-
ral correlations between future gaze and actions. Unlike prior methods limited to either egocentric or
exocentric data, our modular framework supports both through separate training, enabling consistent
reasoning and broader applicability—without relying on fragmented, task-specific pipelines.

However, training and evaluating such models demands appropriate datasets. Most existing datasets
focus exclusively on either actions Damen et al. (2018); Kuehne et al. (2014); Lea et al. (2016) or
gaze Chong et al. (2020); Tafasca et al. (2023), and the few that include both are primarily limited
to first-person perspectives Li et al. (2021); Grauman et al. (2022). While Ego-Exo4D Grauman
et al. (2024) provides third-person annotations for both gaze and actions, it lacks a benchmark for
joint modeling and evaluation. Moreover, Ego-Exo4D is not directly usable for this task—it requires
preprocessing of annotations, new label creation, modality alignment, and task-specific structuring
for joint gaze–action modeling. To address this, we introduce Exo-Cook, a third-person bench-
mark derived from Ego-Exo4D, specially curated for evaluating unified models of gaze and action
recognition and anticipation. Exo-Cook fills a critical gap and enables research on predictive human
behavior in third-person settings.

In summary, our contributions are four fold. First, we propose a unified end-to-end trainable ar-
chitecture that integrates recognition and anticipation of both human-object interaction (HOI) and
gaze, allowing for joint optimization of these tasks for comprehensive human behavior understand-
ing. Second, we introduce a Gaze Conditioned Spatial Attention (GCSA) module that provides
human-object interaction cues in the spatial domain and a Gaze Conditioned Temporal Prediction
(GCTP) module which simultaneously models temporal correlations between future gaze patterns
and future actions. Third, unlike prior works that focus on either egocentric or exocentric views, our
modular framework supports both through separate training, enabling broader applicability across
diverse scenarios. Fourth, we demonstrate the efficacy of our framework against state-of-the-art
methods and introduce Exo-Cook, a new benchmark for evaluating models that integrate human-
object interaction and gaze analysis in third-person videos—providing a comprehensive foundation
for future research in this area.

2 RELATED WORKS

2.1 GAZE DETECTION AND ANTICIPATION

Gaze detection focuses on estimating a person’s current visual attention point and has been stud-
ied in both egocentric and exocentric settings. The GazeFollow dataset Recasens et al. (2015) laid
the foundation for static gaze-following in images and was later extended to videos Recasens et al.
(2017); Chong et al. (2020); Tafasca et al. (2024). Early models typically used two-stream architec-
tures that fused head pose and saliency cues Chong et al. (2018); Horanyi et al. (2023), while recent
methods have enhanced gaze localization by incorporating depth information Tafasca et al. (2023);
Bao et al. (2022); Hu et al. (2023) and human pose Gupta et al. (2022). While the primary goal of
these models is accurate gaze localization, gaze is often used downstream to aid action recognition.
In contrast, leveraging action to inform gaze has been rarely explored and may even hurt the perfor-
mance Li et al. (2018b; 2021). In this work, we propose a joint estimation framework to demonstrate
that action understanding and gaze detection enhance each other in a complementary manner.

Gaze anticipation, in contrast, focuses on forecasting where gaze will shift in the future. This task
has been studied exclusively in egocentric settings, where gaze shifts often precede interactions with
objects. Existing approaches Lai et al. (2024c); Zhang et al. (2017) model gaze trajectories over
time by leveraging motion cues and temporal scene context. However, these methods treat gaze
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Label: “category 0”

Label: “category 6”

Figure 1: Left: Exo-Cook labels clustered and projected using t-SNE. Right: Visualization ex-
amples from two clusters (category 0 and 6) with atomic action descriptions and their verb–noun
annotations - (Top) C picks a strainer from the countertop with his right hand” [Verb: picks; Noun:
strainer]. (Bottom) “C cuts the green onion with a knife on the cutting board” [Verb: cuts; Nouns:
green onion, knife, cutting board].

anticipation as an isolated task and do not account for its interplay with actions—limiting their
understanding of intent. More importantly, to our knowledge, no existing work has explored gaze
anticipation in exocentric videos—leaving a critical gap in third-person behavior modeling.

2.2 RECOGNIZING AND ANTICIPATING ACTIONS

Gaze has proven valuable in enhancing action recognition by guiding attention to informative re-
gions. Early approaches Wang et al. (2016); Chen et al. (2014); Mathe & Sminchisescu (2012);
Shapovalova et al. (2013) used saliency or gaze cues alongside handcrafted features, while later
works employed learned attention without relying on real gaze data Sharma et al. (2016). More
recent models have integrated gaze more explicitly: Li et al.Li et al. (2021) jointly model gaze and
action, using predicted gaze to guide feature selection, and Ni et al.Ni et al. (2023) incorporate gaze
heatmaps into a multimodal Transformer for HOI detection. These approaches demonstrate that
gaze improves spatial localization and contextual precision in action recognition.

Meanwhile, action anticipation aims to forecast future behavior from partial observations. Exist-
ing methods often model HOIs using spatio-temporal graphs Jain et al. (2016); Materzynska et al.
(2020); Ou et al. (2022); Teng et al. (2021); Wang & Gupta (2018), supported by rich datasets Gird-
har & Grauman (2021c); Damen et al. (2022); Teed & Deng (2020) and architectural advances like
RU-LSTM Furnari et al. (2019), AVT Girdhar & Grauman (2021b), MemViT Fu et al. (2022),
RAFTformer Girase et al. (2023) and InAViT Roy et al. (2024). Recent trends explore goal-
conditioned reasoning Roy & Fernando (2022b;a), motion primitives Dessalene et al. (2023), and
multimodal cues such as audio Wu et al. (2021). Yet, despite its predictive power, gaze remains
underutilized in action anticipation. Very few approaches explicitly model the temporal link be-
tween future gaze and future actions, leaving a significant gap in understanding how attention and
interaction co-evolve over time.

Together, these observations point to the need for unified models that go beyond static perception,
capturing the bidirectional and predictive relationship between gaze and actions—both in the present
and the future.

3 EXOCOOK DATASET

The Ego-Exo4D dataset Grauman et al. (2024) is a large-scale human activity dataset captured from
both egocentric and exocentric views, spanning 8 domains, 740 participants, and 123 scenes. It
provides time-aligned descriptions and dense annotations such as 3D pose, gaze, and object masks,
though these are not directly usable for deep model training. For our study, we use the exocentric
videos from the “Cooking” domain, which naturally suits HOI–gaze analysis, and construct Exo-
Cook through extensive label generation and task-specific adaptation. Specifically, we extract 658
cooking videos and 189,225 textual descriptions from Ego-Exo4D and preprocess them as follows:
(a) Human bounding boxes: using the pipeline in Ni et al. (2023) with YOLOv5 Jocher et al.
(2022) to detect full-body and head boxes of the camera wearer in third-person views. (b) Object
bounding boxes: generating boxes for interactable objects from instance masks provided in the
Ego-Exo4D metadata. (c) Gaze heatmaps: We go through four steps to generating gaze heatmaps.

3
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Table 1: Exo-Cook data distribution: Row A shows sample counts per category after clustering;
Row B shows counts after removing invalid samples.

0 1 2 3 4 5 6 7 8 9 Total
A. Clustering 2562 2741 1210 688 2675 4319 4122 3530 5812 5662 33321
B. Valid Samples 2562 2741 1193 688 2675 4167 4000 3530 5500 4994 32050

First, we calculate 3D gaze intersection point Garia
3D from binocular gaze vectors. Second, transform

Garia
3D to the third-person camera space via the relative pose, yielding Gcamera

3D . Third, project
Gcamera

3D to 2D as Gcamera
2D . Fourth, generate a 2D Gaussian heatmap M pseudo, centered at Gcamera

2D ,
with standard deviation: σ = Whm+Hhm

2 · 3
64 where (Whm, Hhm) denotes the heatmap size. (d) Action

labels: We apply spaCy Explosion (2024) to extract all possible verbs and nouns from the textual
action descriptions and then apply BERT Devlin et al. (2019) to generate semantic embeddings of
the simplified annotations. We use K-means clustering (K = 10), chosen via the Elbow Method, to
group semantically similar actions into 10 categories indexed 0–9. We show the clusters in Figure 1.
(e) Label alignment: These labels are aligned with video timestamps, and we use DeepSORT Wojke
et al. (2017) to track human–object trajectories. Exo-Cook contains 33,321 video clips with atomic
action descriptions, from which we remove samples lacking gaze labels, valid head boxes, or proper
alignment. This yields 32,050 valid clips annotated with bounding box, gaze, and action labels. The
distribution is shown in Table 1. We split the data into 25,650 training, 3,200 validation, and 3,200
test samples. Further details are provided in the Appendix (Section B).

4 SAGE
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Figure 2: Overview of SAGE. The framework unifies gaze detection, human–object interaction
(HOI) detection, and anticipation tasks. The Feature encoder extracts appearance and object-location
features as human–object pairs. The Gaze Detection module predicts a probability map of the fix-
ation point, which is integrated into HOI detection via the proposed GCSA module. A Gaze An-
ticipation module predicts future gaze from observed images and gaze features, while the GCTP
module enables HOI Anticipation conditioned on action and future gaze features.

In this section, we present the SAGE framework and describe its training objective, as illustrated
in Figure 2. Let us consider the anticipation task of predicting activity labels y given a short
video clip Xt = I0:t. We want to predict future activity at t + M with M steps, i.e. yt:t+M =
[yt, yt+1, . . . , yt+M ], conditioned on future gaze, i.e. gt:t+M = [gt, gt+1, . . . , gt+M ]. Therefore, we
decompose the problem as: p(yt:t+M | I0:t) =

∫
G
p(yt:t+M , g0:t+M | I0:t) dG =

∫
G
p(yt:t+M |

g0:t+M , I0:t) p(g0:t+M | I0:t) dG =
∫
G
p(yt | g0:t, I0:t) p(yt+1:t+M | yt, gt+1:t+M , I0:t) · p(g0:t |

I0:t) p(gt+1:t+M | g0:t, I0:t) dG, where p(g0:t | I0:t) is the gaze detection module (Module 1) from
video appearance, p(yt | g0:t, I0:t) is the HOI detection module (Module 2) conditioned on gaze
and image appearance, p(gt+1:t+M | g0:t, I0:t) is the gaze anticipation module (Module 3) pre-
dicting future gaze for M steps, and p(yt+1:t+M | yt, gt+1:t+M , I0:t) (Module 4) performs HOI
anticipation conditioned on video features, predicted gaze, and current action.
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Note that our framework supports both HOI and standard action labels, and we use these terms
interchangeably throughout the paper as they both denote interactions. Egocentric datasets (e.g.,
EGTEA) use the term ”action” since the human is not visible, while exocentric datasets use ”HOI”
due to visible human presence—but both represent the same concept in our setting.

4.1 GAZE DETECTION

As illustrated in Figure 2, our gaze detection module consists of a visual encoder and a decoder
that outputs gaze fixation heatmaps. The input video is divided into non-overlapping patches, flat-
tened, and projected into a D-dimensional embedding space via linear mapping. These tokens are
processed by transformer layers with self-attention. To produce gaze heatmaps, a transformer de-
coder—built on multiscale self-attention from MViT Fan et al. (2021)—upsamples the encoded
features into maps of size T ′H ′W ′ × D′, followed by a softmax to yield the final heatmap g0:t.
For egocentric videos, we adopt GLC Lai et al. (2024a), while for exocentric videos we use the
architecture of Chong et al. (2020), initializing with their pretrained weights.

Gaze-conditioned Spatial Attention (GCSA). Our HOI recognition model predicts p(yt |
g0:t, I0:t), current action yt is predicted conditioned the gaze g0:t and video feature I0:t. Given
the object bounding box for object j in the image, we compute a gaze-conditioned score st,j . De-
noting the predicted gaze heatmap from module 1 as gaze distribution p(gt) ∼ N ([µt,Σt]), st,j is
calculated as

st,j = Normalize(
∑
(h,w)

N ([h,w] | µt,Σt)) (1)

where [h,w] is sampled within the bboxj . We compute sj for each human-object pair and generate
the Gaze-conditioned score matrix St for every frame, i.e., St = [st,j=1, ..., st,j=N ]. We apply S
as an attention bias in the Multi-Head Self-Attention layer of transformer and we name it as Gaze-
conditioned Spatial Attention (GCSA).

GCSA(Q,K, V, S) = softmax
(
QKT + S√

dk

)
V (2)

where S ∈ NB×N×N , B is batch size, N is the largest number of pairs in each sequence.

4.2 HOI DETECTION

Inspired by Ni et al. (2023), we adopt a spatio-temporal transformer architecture for HOI detection,
consisting of a spatial encoder and a temporal encoder. The spatial encoder exploits human-object
appearance representations from each frame to understand spatial relations between human and all
the possible objects in the scene. The spatial encoder receives the human-object representations
Xt = [xt,⟨1,1⟩, . . . ,xt,⟨i,j⟩, . . . ,xt,⟨ns

t ,n
o
t ⟩] within one frame as the input. For egocentric videos,

ns
t = 1 and n0

t o is the number of detected objects in frame t. One major difference with Ni et al.
(2023) is that we attach one learnable global token Xp

t , representing the global representation of
frame t. We exploit stacked Xp

t with Xt as input to the HOI detection model. After Nd stacked
Transformer self-attention layers (MHSA), the global token summarizes the dependencies between
human-object pairs to the global appearance feature vector, while the pair relation representations
are refined to Xsp

t .

The GCSA module introduced in last section is integrated into the MHSA layer. The GCSA-
enhanced self-attention is defined as: ql

t = LN(GCSA(Q(l−1)
t ,K

(l−1)
t , V

(l−1)
t , St) + q

(l−1)
t ), l =

1, . . . , Nd, Nd is the layer number. Then we apply FFN (feed forward network) to ql
t: ct =

FFN(qNd
t ) The token ct encodes various spatial feature, including gaze-to-object correlation and

human-object spatial relations. To model temporal relation through the input sequence, we use cross-
attention over frame-level global features. We first add a Periodic Positional Encoding (PPE) as pro-
posed by FaceFormer Fan et al. (2022) to the token c0:t, denoted as ĉk = ck+PPE(k), k = 0, · · · , t.
Then we apply MHSA layers to implicitly encode the temporal correlation of actions, denoted as:

ĉlt = LN(MHSA(Q(l−1),K(l−1), V (l−1)) + ĉ
(l−1)
t ), l = 1, · · · , Nd (3)

Then our model predicts the action for the last frame in the input sequence through a FFN layer and
a MLP layer, denoted as ŷt = MLP(FFN({ĉ(Nd)

t })).

5
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4.3 GAZE ANTICIPATION

The goal of the gaze anticipation model is to predict the future gaze gt+1:t+M based on current
gaze G0:t, input video I0:t, and the previous gaze encoder output. We design a Transformer-
based model to anticipate future gaze. With the predicted gaze heatmap sequence g0:t from the
gaze detection model, we apply convolution layers to generate gaze feature vector. The gaze
feature vectors are added to PPE and then feed to temporal layer as ĝ0:t. The input to the
gaze anticipation module is gk = Conv(gk) + PPE(k), k = 0, . . . , t. The gaze anticipation
model is described as ĝt+1:t+M = Decoder(MHCA(ĉ0:t),MHSA(g0:t)). The MHSA(·) repre-
sents self-attention layers (similar to Eq. 3) to encode gaze temporal correlations among {gk}tk=0.
The MHCA(Multi-Head Cross Attention) layer applies cross-attention among the past gaze fea-
ture and the video feature for anticipating future gaze. In layer l, the MHCA is formulated as
ĝl
k = LN(MHCA(Qĉ

(l−1)
t ,K ĝ

(l−1)
k , V ĝ

(l−1)
k ) + ĝ

(l−1)
k ).

4.4 HOI ANTICIPATION

We propose the Gaze Conditioned Temporal Prediction (GCTP) module that models joint tem-
poral dependencies among action ŷt and gaze features {ĝk}t+M

k=t+1. The model is formulated as
ŷt+M = GCTP(ĝt+1:t+M , ĉNd

t ). The GCTP module takes M future gaze encodings ĝt+1:t+M

and the refined representation ĉNd
t in Eq. 3 as input. This module first apply self-attention

layer that encode temporal correlation among the future gaze encoding ĝt+1:t+M . Then cross-
attention is applied among the gaze feature and action feature. The temporal relations among
future actions and future gaze is implicitly learned. The tokens are initialized with gaze tokens:
a(1) = ĝt+1:t+M . Then the MHSA and MSCA layer are applied sequentially, formulated as: âl

1 =

LN(MHSA(Qâl−1

,Kâl−1

, V âl−1

) + âl−1), âl
2 = LN(MHCA(QĉNd ,Kâl−1

, V
â

l−1
(1) ) + âl−1

1 ).
The future HOI anticipation is produced with a MLP layer: ŷt+1:t+M = MLP(FFN(âNd

(2))).

4.5 ADAPTABILITY ACROSS VIEWPOINTS

Egocentric (FPV) and exocentric (TPV) scenarios have typically been studied separately within gaze
and action understanding literature, as their feature characteristics differ substantially and are rarely
addressed in a single model. To the best of our knowledge, SAGE is the first framework to generalize
across FPV and TPV for four tasks, leveraging viewpoint-specific modalities in feature encoding
and gaze detection while maintaining a consistent network flow and output format, as a unified
framework. During the feature encoding phase, the primary distinctions manifest in the generation
of human-object pairs Xt = [xt,⟨1,1⟩, . . . ,xt,⟨i,j⟩, . . . ,xt,⟨ns

t ,n
o
t ⟩] . For TPV videos, xt,⟨i,j⟩ encodes

the scene features, human body appearance, body location, and the spatial relationships between
humans and objects, with the latter being especially important for recognizing human actions. The
human index i ≥ 1, since multiple active subjects may appear in a third-person scene. In contrast, for
FPV videos, xt,⟨i,j⟩ focuses on the spatial relationships between the hands and objects, as the global
human location is not accessible from the egocentric viewpoint. In this case, the human index is
fixed to i ≡ 1. Another revision between FPV and TPV arises in the gaze detection module. In TPV
videos, SAGE estimate human gaze g using head appearance and orientation features, following
approaches such as Chong et al. (2020). In FPV videos, however, gaze is interpreted more as an
attention region within the egocentric scene, and the gaze model relies on scene features to predict
the gaze distribution.

4.6 LOSS FUNCTION

Heatmap Loss Lhm is the visual attention heatmap loss, defined as the L2 loss between the predicted
heatmap g and the ground truth heatmap ggt: Lhm,1 =

∑k=t
k=0 ∥ĝk − ggt

k ∥22. We adopt similar loss for
gaze anticipation model: Lhm,2 =

∑k=t+M
k=t+1 ∥ĝk − ggt

k ∥22. In-Out Loss Lio is defined as the binary
cross-entropy between the predicted in-out label op and the ground truth label ogt, indicating whether
the gaze target is within the frame. This loss if only applied when the in-out label is available:
Lio =

∑
t −ogtt log(ôt)−(1−ogtt ) log(1−ôt). Action Loss Lact is used for action models. We apply

Cross-Entropy loss for HOI detection, defined as Lact,1 = −ygtt log ŷt. For HOI anticipation model,
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Figure 3: SAGE results on Exo-Cook, including
action and gaze predictions for current and future
frames.
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Figure 4: SAGE results on EGTEA Gaze+, in-
cluding action and gaze predictions for current
and future frames.

Table 2: SAGE results on Exo-Cook dataset. †adapted for gaze anticipation

Method τa

Gaze
Detection HOI Detection Gaze

Anticipation HOI Anticipation

F1 Rec Prec mAP Rec Prec Acc F1 F1 Rec Prec mAP Rec Prec Acc F1
VideoAttn Chong et al. (2020) - 55.6 72.8 54.8 - - - - - - - - - - - - -
Sharingan Tafasca et al. (2024) - 56.6 72.8 55.3 - - - - - - - - - - - - -

ST-Gaze Ni et al. (2023) - - - - 42.5 77.0 61.9 59.0 66.9 - - - - - - - -
VideoAttn Chong et al. (2020)† - - - - - - - - - 42.2 54.6 42.5 - - - - -
Sharingan Tafasca et al. (2024)† - - - - - - - - - 40.1 52.7 40.4 - - - - -

ST-Gaze Ni et al. (2023) 1 - - - - - - - - - - - 41.1 76.2 58.2 53.7 66.1
SAGE (VideoAttn) 1 55.8 73.2 55.7 44.2 79.0 62.6 58.5 68.9 48.5 62.1 49.6 42.4 76.6 59.0 54.6 66.9
SAGE (Sharingan) 1 57.7 73.4 55.5 44.6 79.4 63.1 60.2 69.4 49.2 62.8 50.0 42.5 76.8 59.2 54.8 67.2

the loss is similarly defined and summed over intermediate frames, Lact,2 = −
∑t+M

k=t+1 y
gt
k log ŷk.

The Total Loss function for training SAGE model formulates as L = λ1Lhm,1+λ2Lhm,2+λ3Lio+
λ4Lact,1 + λ5Lact,2.

5 EXPERIMENTS

Datasets & Metrics. To evaluate our framework, we use three datasets. Vid-HOI Chiou et al.
(2021), an exocentric dataset for video-based HOI detection and anticipation, provides annotated
sequences of human–object interactions. EGTEA Gaze+ Li et al. (2018a), widely used for egocen-
tric gaze and action tasks, contains over 28 hours of video across 86 action classes from 32 partic-
ipants. Exo-Cook, introduced in this work, is the first exocentric dataset curated for joint HOI and
gaze analysis. Following Ni et al. (2023), we evaluate HOI detection and anticipation on Vid-HOI
and Exo-Cook using mean average precision (mAP), top-5 recall, precision, accuracy, and F1-score.
For egocentric action recognition and anticipation, we report mean class accuracy Roy et al. (2024),
while gaze detection and anticipation are evaluated with F1-score, recall, and precision.

Table 3: SAGE results on Vid-HOI dataset for HOI Detection and Anticipation in Oracle mode. *
includes word embedding module.

Method HOI Detection HOI Anticipation
τa mAP Rec Prec Acc F1 τa mAP Rec Prec Acc F1

STTran Cong et al. (2021) - 28.32 - - - -
1 29.09 74.76 41.36 36.61 50.48
3 27.59 74.79 40.86 36.42 50.16
5 27.32 75.65 41.18 36.92 50.66

ST-Gaze* Ni et al. (2023) - 38.46 73.62 59.16 53.76 60.57
1 35.71 71.28 59.38 51.06 62.06
3 32.19 71.09 60.17 51.63 62.39
5 32.30 70.67 58.99 50.79 61.59

SAGE (Ours)
1 38.65 72.44 59.22 52.22 61.96 1 37.71 72.88 60.24 51.86 62.72
3 38.18 72.21 59.95 52.18 62.02 3 34.22 72.36 60.98 52.88 63.05
5 38.13 72.01 59.92 52.18 61.88 5 32.64 71.96 59.88 51.46 62.14
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Table 4: SAGE results on EGTEA Gaze+ dataset. †adapted for gaze anticipation

Method
Gaze

Detection
Action

Recognition
Gaze

Anticipation
Action

Anticipation
F1 Rec Prec S1 S2 S3 Avg F1 Rec Prec Mean-Cls Acc

Gaze MLE Li et al. (2021) 26.6 35.7 21.3 - - - - - - - -
Joint Learning Li et al. (2018b) 34.0 42.7 28.3 - - - - - - - -

Attention Transition Huang et al. (2018) 37.2 51.9 29.0 - - - - - - - -
I3D-R50 Feichtenhofer et al. (2019) 40.9 57.2 31.8 - - - - - - - -

MViT Fan et al. (2021) 43.0 57.8 35.4 - - - - - - - -
GLC Lai et al. (2024a) 44.8 61.2 35.3 - - - - - - - -

I3D-2Stream Li et al. (2021) - - - 55.8 53.1 53.6 54.2 - - - -
R34-2Stream Sudhakaran & Lanz (2018) - - - 62.2 61.5 58.6 60.8 - - - -

SAP Wang et al. (2020) - - - 64.1 62.1 62.0 62.7 - - - -
GC-TSM Hao et al. (2022) - - - 66.5 66.1 62.6 65.1 - - - -

I3D-R50 Feichtenhofer et al. (2019)† - - - - - - - 34.3 46.5 29.6 -
MViT Fan et al. (2021)† - - - - - - - 31.5 44.8 28.5 -

CSTS-Visual Lai et al. (2024c) - - - - - - - 31.3 46.2 28.1 -
GLC Lai et al. (2024a)† - - - - - - - 32.8 48.5 28.7 -

AFFT Zhong et al. (2023) - - - - - - - - - - 35.2
AVT Girdhar & Grauman (2021a) - - - - - - - - - - 35.2

MF Patrick et al. (2021) - - - - - - - - - - 56.9
ORVIT-MF Herzig et al. (2022) - - - - - - - - - - 57.2

InAViT Roy et al. (2024) - - - - - - - - - - 58.2
LAVILA Zhao et al. (2023) - - - - - - 81.8 - - - -

SAGE (Ours) 46.8 62.1 36.8 66.4 65.4 63.1 65.0 37.0 54.9 32.7 58.4

Table 5: SAGE Ablations of GCSA and GCTP on EGTEA Gaze+ Dataset

Models
Gaze

Detection
Action

Recogn.
Gaze

Anticipation
Action

Anticipation
F1 Rec Prec Acc F1 Rec Prec Acc

SAGE-1 44.8 61.2 35.3 - - - - -
SAGE-2 - - - 63.1 - - - -

SAGE-12 46.3 61.9 36.4 63.9
SAGE 46.8 62.1 36.8 65.0 37.0 54.9 32.7 58.4

In the below experiments, SAGE denotes the full model with GCSA and GCTP; SAGE-1 the gaze
detection module; SAGE-2 the action recognition module; and SAGE-12 their combination with
GCSA.

5.1 SAGE ON EXOCENTRIC VIDEOS

We evaluate SAGE on two exocentric datasets—Vid-HOI and Exo-Cook—and construct multiple
adapted baselines from existing methods to enable a comprehensive comparison across all four tasks.
Exo-Cook Dataset. We evaluate SAGE on four tasks, as summarized in Table 2. Since no existing
methods directly benchmark on this dataset, we create multiple baseline models by adapting existing
models on Exo-Cook. We incorporate two gaze detection model VideoAttn Chong et al. (2020) and
Sharingan Tafasca et al. (2024) into SAGE architecture, noted as SAGE (VideoAttn) and SAGE
(Sharingan). Correspondingly, VideoAttn and Sharingan are trained & evaluated on Exo-Cook as
baselines for gaze detection and anticipation. We run ST-Gaze model Ni et al. (2023) on Exo-Cook
to establish the first baseline for HOI detection and anticipation. SAGE (Sharingan) outperforms
ST-Gaze on HOI detection by +2.1 mAP and +1.0 accuracy and achieves highest F1 score (69.4%).
Similarly, on HOI anticipation, SAGE (Sharingan) has the best overall performance, with an F1 score
of 67.2% and mAP of 42.5—surpassing the ST-Gaze baseline (F1: 66.1%, mAP: 41.1). In the gaze
detection task, SAGE (Sharingan) achieves the highest F1 score (57.7%), slightly outperforming the
best baseline Sharingan (56.6%) by +1.1 points. While Precision is similar (55.5 vs. 55.3), SAGE
shows a modest gain in Recall (+0.6). For gaze anticipation, SAGE (Sharingan) achieves highest F1
score of 49.2%, Recall of 62.8, and Precision of 50.0, outperforming the closest baseline (ST-Gaze).
By comparing SAGE (VideoAttn) and SAGE (Sharingan), we show that integrating more advanced
gaze model architecture helps improve the joint model performances. We show some qualitative
results in Figure 3, and provide more detailed qualitative results in the Appendix (Section E).
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Vid-HOI Dataset. We take ST-Gaze Ni et al. (2023) and STTran Cong et al. (2021) as baseline
models for HOI detection and anticipation in Table 3. Gaze is not evaluated on Vid-HOI as no gaze
labels are provided. For HOI detection, our full model (SAGE) achieves the best mAP, Precision
and F1 values. The improved performance of ST-Gaze∗ Ni et al. (2023) in Recall and Accuracy
is attributed to the use of word embeddings as an additional input modality. We futher analyze
the impact of Gaze-Conditioned-Attention in the spatial domain in the Appendix (Section D.2). For
HOI anticipation, SAGE outperforms STTran Cong et al. (2021) and ST-Gaze Ni et al. (2023) across
all anticipation horizons (1s, 3s, 5s) for mAP, Precision, Accuracy and F1.

5.2 SAGE ON EGOCENTRIC VIDEOS

We conduct a comprehensive evaluation on the EGTEA Gaze+ dataset Li et al. (2018a) in Table. 4,
covering four tasks as described below.
Gaze Detection & Anticipation. We compare our gaze estimation performance against existing
egocentric gaze estimation models, including GLC Lai et al. (2024a), MViT Fan et al. (2021), and
I3D-R50 Feichtenhofer et al. (2019). As shown in Table 4, SAGE achieves the best F1 score of 46.8,
significantly surpassing GLC (44.8), MViT (43.0), and I3D-R50 (40.9). It also achieves the highest
Recall at 62.1 and the top Precision at 36.8. We improve GLC with 0.9% and 1.5% gain in Recall and
Precision, respectively. For gaze anticipation task, as no existing baseline exists on EGTEA Gaze+,
we established four baseline models by re-training GLC, MViT, I3D-R50 and CSTS-Visual Lai et al.
(2024c)) with ground-truth future gaze heatmaps. In the sixth row of Table. 4, our method achieves
the higher F1 score (37.0), Recall (54.9), and Precision (32.7) than four of the baseline models.
These results highlight the advantage of integrating gaze modeling with action understanding un-
der joint training framework. SAGE can serve as a strong baseline model for gaze anticipation on
EGTEA Gaze+. We also study the sensitivity of SAGE to gaze modules in Appendix (Section D.1).
Action Recognition. In Table 4, we compare SAGE performances with other state-of-the-art meth-
ods on the EGTEA Gaze+ dataset in terms of average accuracy across three test splits. On the
third test set (S3), SAGE achieves an accuracy of 63.1%, surpassing the performance of the GC-
TSM model Hao et al. (2022), which reports 62.6%. Overall, SAGE obtains an average accuracy
of 65.0%, which is comparable to GC-TSM’s top score of 65.1%, while outperforming other recent
baselines such as SAP(62.7%) and R34-2Stream (60.8%). Since SAGE does not leverage LLMs or
large-scale external pretraining, we exclude LAVILA Zhao et al. (2023)—which uses LLMs and is
pretrained on Ego4D+WIT—from direct comparison, but still report it in Table 4 for completeness.
Action Anticipation. We perform action anticipation with the full SAGE model for a future time
gap of 0.5 seconds. SAGE outperforms prior models including AVT Girdhar & Grauman (2021a),
and InAViT Roy et al. (2024), achieving the highest mean-class accuracy of 58.4%, surpassing the
latest work InAViT (58.2%). Compared to transformer-based methods such as MF (56.9%) and AVT
(35.2%), SAGE demonstrates a clear advantage in capturing gaze-conditioned temporal dependen-
cies for anticipation. We show some qualitative results on EGTEA Gaze+ in Figure. 4.
Ablation Study. Table 5 presents the ablation study of the GCSA and GCTP modules on the EGTEA
Gaze+ dataset. GCSA combines two independent models, SAGE-1 and SAGE-2, into a joint model
SAGE-12, yielding improvements in both gaze detection and action recognition. This confirms that
jointly learning gaze and action features with spatial attention enhances representations for both
tasks. Further adding the GCTP module introduces temporal modeling for anticipation, resulting in
further gains across all tasks and demonstrating GCTP’s effectiveness in capturing predictive tempo-
ral dynamics. SAGE not only delivers strong accuracy but also remarkable efficiency, processing a
20-frame input sequence in just 0.63s on an NVIDIA RTX A6000, simultaneously performing gaze
detection, action recognition, gaze anticipation (+0.5s), and action anticipation (+0.5s).

6 CONCLUSION

SAGE integrates simultaneous recognition and anticipation of human actions and gaze within a
unified end-to-end trainable model, using our GCSA and GCTP modules. Its modular design enables
viewpoint-specific training across egocentric and exocentric datasets, which is validated through
extensive evaluation on three benchmark datasets: VidHOI, EGTEA Gaze+ and our newly proposed
Exo-Cook dataset. Our results demonstrate that synergy between gaze and actions in the current
and future frames in SAGE compares favorably and even outperforms individual task specialized
state-of-the-art models.
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Nora Horanyi, Linfang Zheng, Eunji Chong, Aleš Leonardis, and Hyung Jin Chang. Where are they
looking in the 3d space? In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2677–2686, 2023.

Zhengxi Hu, Yuxue Yang, Xiaolin Zhai, Dingye Yang, Bohan Zhou, and Jingtai Liu. Gfie: A dataset
and baseline for gaze-following from 2d to 3d in indoor environments. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8907–8916,
June 2023.

Yifei Huang, Minjie Cai, Zhenqiang Li, and Yoichi Sato. Predicting gaze in egocentric video by
learning task-dependent attention transition. In Proceedings of the European conference on com-
puter vision (ECCV), pp. 754–769, 2018.

Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-rnn: Deep learning
on spatio-temporal graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5308–5317, 2016.

Jingwei Ji, Rishi Desai, and Juan Carlos Niebles. Detecting human-object relationships in videos.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 8106–8116,
2021.

G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon, TaoXie, J. Fang, imyhxy,
K. Michael, V. Lorna, D. Montes, J. Nadar, Laughing, tkianai, yxNONG, P. Skalski, Z. Wang,
A. Hogan, C. Fati, L. Mammana, AlexWang1900, D. Patel, D. Yiwei, F. You, J. Hajek, L. Dia-
conu, and M.T. Minh. Yolov5. https://github.com/ultralytics/yolov5/, 2022.

Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering the syntax and
semantics of goal-directed human activities. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 780–787, 2014.

11

https://github.com/ultralytics/yolov5/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bolin Lai, Miao Liu, Fiona Ryan, and James M Rehg. In the eye of transformer: Global–local
correlation for egocentric gaze estimation and beyond. International Journal of Computer Vision,
132(3):854–871, 2024a.

Bolin Lai, Miao Liu, Fiona Ryan, and James M Rehg. In the eye of transformer: Global–local
correlation for egocentric gaze estimation and beyond. International Journal of Computer Vision,
132(3):854–871, 2024b.

Bolin Lai, Fiona Ryan, Wenqi Jia, Miao Liu, and James M Rehg. Listen to look into the future:
Audio-visual egocentric gaze anticipation. In European Conference on Computer Vision, pp.
192–210. Springer, 2024c.
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A IMPLEMENTATION DETAILS

A.1 HUMAN-OBJECT-PAIR FEATURE EXTRACTION

We refer to ST-Gaze Ni et al. (2023) to pre-process Vid-HOI and Exo-Cooking datasets. An ob-
ject module is applied to process the video sequence and detects N bounding boxes {bt,j} along
with their corresponding classes. Human bounding boxes are also detected. In addition, human
head are detected by YOLO-v5 model Jocher et al. (2022) and paired with their body bounding
boxes. DeeoSort model is applied to associate these detections with previous detections to establish
trajectories for each detected human {Hi} and object {Oj}. Video feature are extracted by ResNet.

A.2 MODEL ARCHITECTURE

The spatial encoder in HOI recognition model consists of 3 Transformer encoder layers. The gaze
anticipation model consists of 3 temporal Transformer layers, each layer contains one Multi-head
self-attention block and one cross-attention block. We apply the Transformer decoder from GLC
Lai et al. (2024a) for producing gaze heatmaps. The HOI anticipation module (GCTP) consists of 3
temporal layers

A.3 TRAINING SETTINGS

Based on the complexity of the full SAGE model and the difficulty in training for all the tasks. We
initialize some models with pre-trained model and multi-stage training process.

• The Gaze detection module is initialized with the pre-trained model from VideoAttn Chong
et al. (2020) (on Vid-HOI dataset) or GLC Lai et al. (2024a).

• We first train joint model SAGE-12 for 5 epochs with gaze labels and action labels for the
current sequence.

• Then we load the weights from SAGE-12 and train the full model SAGE with future gaze
and action annotations. We train 25 epochs in total.

• In the loss function L = λ1Lhm,0:t+λ2Lhm,t+1:t+M+λ3Lio+λ4Lact,t+λ5Lact,t+1:t+M ,
we set λ1 = 1.0, λ2 = 1.0, λ3 = 0.5, λ4 = 1.5, λ5 = 1.5.

B EXO-COOK BENCHMARK CREATION

We construct a small benchmark based on a subset from Ego-Exo 4D. We describe more details for
pre-processing and generating the labels in this section. On cooking videos, we try BERT model
Devlin et al. (2019) to generate sentence embedding and cluster text into action categories. We
extract the text descriptions from Ego-Exo 4D cooking videos and generate 30250 video clips and
the corresponding action descriptions. We generate text embeddings for each video clip and apply
K-means algorithm to perform action clustering based on the semantic meaning of the text.

B.1 A. GAZE LABEL CREATION

Ego-Exo 4D provide raw gaze annotations from the eye-tracking device (Project Aria). To gener-
ate 2D gaze labels for third-person views in Exo-Cook, we follow a calibrated projection pipeline
that transforms the 3D gaze direction from the eye-tracking device (Project Aria) into 2D image
coordinates of external cameras.

A.1 Gaze Ray Extraction. For each frame, we extract the 3D gaze origin and direction vectors
from the left and right eyes using Aria’s ‘scene gaze‘ and ‘eye gaze‘ streams. These are defined in
the Aria scene camera coordinate system and describe binocular gaze rays:

RayL = (oL,dL), RayR = (oR,dR)

A.2 3D Gaze Estimation in Aria Frame. Each frame of Project Aria includes left and right eye
gaze vectors with respect to the device’s coordinate frame. We estimate the 3D point of gaze Garia

3D
by computing the 3D intersection (or midpoint approximation) of the two gaze rays RayL and RayR.
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Figure 5: Individual examples (six) of created ground-truth gaze heatmap from Exo-Cook.

A.3 Coordinate Transformation. To localize the gaze in the third-person camera frame, we use
the known extrinsic calibration between the Aria device and each external camera. Let Taria→cam
denote the 6DoF pose of the Aria glasses with respect to a third-person camera. We transform the
3D gaze point into the third-person coordinate system via:

Gcam
3D = Taria→cam ·Garia

3D

A.4 3D-to-2D Projection. Given the intrinsic camera matrix K of the third-person camera and
the transformed gaze point Gcam

3D , we project the gaze to the image plane:

Gcam
2D = Π(K,Gcam

3D )

where Π denotes the standard perspective projection. This gives us the 2D gaze fixation point in
pixel coordinates.

A.5 Heatmap Generation. Following prior work Chong et al. (2020), we convert each gaze fixa-
tion point into a 2D Gaussian heatmap M pseudo ∈ RH×W . The heatmap is centered at Gcam

2D with an
isotropic Gaussian kernel:

σ =
Whm +Hhm

2
· 3

64
where Whm and Hhm are the dimensions of the heatmap. For a 64 × 64 heatmap, this yields σ = 3
pixels. We show examples of generated gaze heatmaps in Figure. 5.

To handle occlusions or failed triangulation cases, we discard gaze points where the intersection
error between eye rays exceeds a threshold. Additionally, all transformations and projections are
timestamp-aligned to ensure synchronization between Aria and third-person views.

B.2 B. ACTION LABEL CREATION

B.1 Action Description Alignment Each atomic description is associated with the following key
metadata:

• start frame and end frame: specifying the frame-level temporal boundaries of the
described action.

• source view: indicating which third-person or egocentric camera the annotation corre-
sponds to.

• text: raw textual description of the action.

To align each action with global time stamp, we use the provided frame indices and convert them to
time given the video frame rate. We first sample the video frames near the start frame for action
recognition. Then we define a time offset τa = 1s beyond the end frame to define the target for
action anticipation.
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Table 6: Verb-object extraction and semantic object selection using spaCy and BERT. In the third
column, we show the cosine similarity between the spaCy object and the object name mentioned in
Exo-Cook raw annotation.

Sentence Verb, Object spaCy Object List Object Name
C places the spoon in the bowl in
his right hand.

places, spoon spoon (0.652), bowl (1.000), hand (0.437) Bowl

C slices the garlic on the chopping
board with his right hand.

slices, garlic garlic (0.424), board (0.869), hand (0.341) Chopping board

C adds the sliced garlic into the fry-
ing pan with his right hand.

adds, garlic garlic (0.461), pan (1.000), hand (0.378) Pan

C adds oil into the frying pan with
the oil bottle in his left hand.

adds, oil oil (0.552), pan (0.449), bottle (1.000), hand (0.437) Bottle

Figure 6: The inertia plot of the clustering for all the text embeddings from cooking video clips. We
set K = 10 to generate 10 categories for the actions.

B.2 Action Simplification with spaCy We use spaCy Explosion (2024) to perform syntactic pars-
ing and extract verb-object pairs from each sentence. For example, given the description “C slices
the garlic on the chopping board with his right hand”, spaCy identifies slices as the verb and
garlic as the primary object. In more complex sentences containing multiple noun phrases (e.g.,
“C adds the sliced garlic into the frying pan with his right hand”), spaCy is used to list all candidate
objects (e.g., garlic, pan, hand). To identify the most semantically relevant object, we com-
pute the cosine similarity between the BERT Devlin et al. (2019) embedding of each noun and the
embedding of the full sentence. The object with the highest similarity is selected as the primary
target. For instance, in the garlic example, pan receives the highest score, thus being identified as
the object most aligned with the described action context. In Table. 6, we show the Cosine Similarity
between different sentences extracted from the annotation file of Ego-Exo 4D.

B3 Action Clustering As described in Section B.1 and B.2, we repeat the action description
alignment and simplification process for all the samples we cropped from Exo-Cook. After ap-
plying spaCy for extracting essential semantic components for each clip, we employ the pre-trained
BERT Devlin et al. (2019) model to transform these extracted components into high-dimensional
text embeddings. Once text embeddings for all sequences are obtained, we apply K-means cluster-
ing to group similar embeddings. To determine the optimal number of clusters, we use the Elbow
Method by analyzing the inertia, defined as the sum of squared distances between each data point
and the centroid of its assigned cluster. The inertia values across different choices of K are illus-
trated in Figure 6. Based on this analysis, we set the number of clusters to K = 10 and therefore,
we have 10 categories of actions in Exo-Cook.
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Figure 7: Examples (three) of bounding box detection for human head and object in Exo-Cook
images. The first row represents head bounding box (green color) detection for all subjects in the
scene. The second row shows the head bounding box for the key participant and the objct bounding
boxes (yellow color).

B.3 C. BOUNDING BOX FOR HUMAN AND OBJECT

We follow the pipeline in Ni et al. (2023) and use YOLOv5 Jocher et al. (2022) to detect full-body
and head bounding boxes of the camera wearer in third-person views.

C.1 Bounding Box Detection The first row of Figure 7 illustrates examples of head bounding
box detections (highlighted in green) within Exo-Cook images, capturing every person appeared in
the scene. Similarly, the second row presents object bounding box detections, marked in yellow,
covering all relevant objects within the scene.

C.2 Bounding Box Matching As our primary interest is the activity of the ”major participant”
equipped with the Project Aria device, we implement bounding box matching based on the projected
location of the device. Specifically, the head bounding box containing the 2D projection of the
Project Aria’s center is designated as the major participant. Consequently, as depicted in the second
row of Figure 7, any unrelated head bounding boxes will be removed.

C BASELINE MODEL FOR GAZE ANTICIPATION

C.1 EXOCENTRIC VIEW

Due to lack of baseline methods on Gaze Anticipation task, we propose to adapt existing models as
baseline. In Table 1 of the main paper, we evaluate gaze anticipation performance on the Exo-Cook
dataset by adapting two baseline models: VideoAttn Chong et al. (2020) and Sharingan Tafasca
et al. (2024). These baseline models, initially designed for gaze detection tasks, were modified and
retrained to predict gaze heatmaps at a future timestamp (1 second ahead) based solely on the last
frame of a given sequence. The results show the advantage of employing the temporal modeling
in our SAGE model. Specifically, our temporal-aware SAGE significantly outperforms the adapted
baseline models across all gaze anticipation metrics. For instance, the SAGE model (with Sharingan
as its gaze detection backbone) achieves an F1 score of 49.2, notably higher than adapted VideoAttn
(42.2) and adapted Sharingan (40.1). Similarly, recall (62.8 vs. 54.6 and 52.7) and precision (50.0
vs. 42.5 and 40.4) metrics also show substantial improvements.

C.2 EGOCENTRIC VIEW

Similarly, we show comparison results in Table 4 of the main paper. CSTS Lai et al. (2024c) is
the state-of-the art model for egocentric gaze anticipation. However, CSTS Lai et al. (2024c) is not
trained/evaluated on EGTEA Gaze+ as they require audio data. We adapt their backbone model,
denoted as “CSTS-Visual Lai et al. (2024c)” in Table. 4 to gaze anticipation task on EGTEA Gaze+.
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Table 7: Sensitivity of SAGE to gaze modules on the EGTEA Gaze+ dataset

Model Gaze Model
Gaze

Detection
Action

Recogn.
Gaze

Anticipation
Action

Anticipation
F1 Rec Prec Top-1 Acc F1 Rec Prec Mean-cls Acc

SAGE
I3D-R50 Feichtenhofer et al. (2019) 42.2 58.5 33.2 64.6 34.7 47.4 30.2 57.8

MViT Fan et al. (2021) 44.5 58.8 35.5 64.6 38.8 54.2 32.5 58.0
GLC Lai et al. (2024a) 46.8 62.1 36.8 65.0 37.0 54.9 32.7 58.4

Table 8: Top-1 accuracy for SAGE at longer anticipation horizon on the EGTEA Gaze+ dataset

Method τa
0.5 1.0 1.5 2.0

InAViT Roy et al. (2024) 67.8 66.9 65.8 64.1
SAGE (Ours) 68.0 67.3 66.2 64.5

In addition to CSTS-Visual, we adapt another three existing models for gaze anticipation, denoted as
GLC† Lai et al. (2024a), MViT† Fan et al. (2021) and I3D-R50† Feichtenhofer et al. (2019). These
models were retrained to predict gaze heatmaps at 0.5 seconds into the future. We re-train the four
models by using the grounf-truth heatmaps at the 0.5 seconds later. However, their performance was
substantially lower compared to SAGE.

D EXTENSIVE EXPERIMENTAL ANALYSIS

D.1 RESULTS ON EGTEA GAZE+

In the main paper, we compare the performance of SAGE with state-of-the-art models across dif-
ferent task domains. In the exocentric view, the effectiveness of gaze is more apparent, as the gaze
model can explicitly identify the visual target of the person within the scene. Intuitively, the gaze-
based attention closely aligns with the object being interacted with, making it a strong prior for
modeling human-object interactions. In Table 1 of the main paper, we show the sensitivity of SAGE
performance to the accuracy of gaze model. We incorporate two different gaze backbone model, de-
noted as SAGE (Gaze Detection Model: VideoAttn) and SAGE (Gaze Detection Model: Sharingan)
in Table 1, into SAGE architecture. The results show that better gaze detection model in SAGE
enhances performances for other three tasks.
Similarly, to explore the sensitivity of SAGE to the quality of gaze estimation in egocentric videos,
we compare three different gaze backbones in Table 7: I3D-R50 Feichtenhofer et al. (2019),
MViT Fan et al. (2021), and GLC Lai et al. (2024a). We observe that improvements in gaze detec-
tion performance consistently lead to better action recognition and anticipation results. For instance,
GLC achieves the best gaze detection F1 score (46.8), which corresponds to the highest top-1 accu-
racy in action recognition (65.0) and action anticipation (58.4). In contrast, models with weaker gaze
detection performance, such as I3D-R50 (F1 = 42.2), yield the lowest accuracy in both action recog-
nition and anticipation. These results suggest that precise gaze localization is crucial for enhancing
action detection and anticipation in egocentric settings. Intuitively, gaze reflects the subject’s focus
of interest and serves as an informative prior for modeling human-object interactions. The results
in Table 7 prove that better gaze attention enhances the performance for each task. It validates the
effectiveness of our GCSA module.

Following InAViT Roy et al. (2024), we explore SAGE performance on longer time horizons. In
Table 8, we train SAGE on different time horizons {0.5s, 1s, 1.5s, 2s}. Notably, SAGE consistently
outperforms InAViT on all time horizons. As the anticipation horizon increases, there are greater un-
certainty for future action prediction. The Top-1 accuracy of action anticipation in InAViT decreases
from 67.8 to 64.1 when the anticipation time increases to 2.0s. As SAGE is anticipating future ac-
tions with multiple intermediate time stamps (i.e., [yt+1, · · · , yt+M ]), SAGE maintains more stable
performance over longer time spans.
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Table 9: HOI detection in Oracle mode on Vid-HOI dataset Chiou et al. (2021). * includes word
embedding module.

Method τa mAP Rec Prec Acc F1

STTran Cong et al. (2021) - 28.32 - - - -
ST-Gaze* Ni et al. (2023) - 38.46 73.62 59.16 53.76 60.57

ST-Gaze Spatial* Ni et al. (2023) - 36.29 71.03 59.38 51.72 61.24
SAGE-12 (Ours) - 38.08 72.11 59.90 52.12 62.03

SAGE (Ours)

1 38.65 72.44 59.22 52.22 61.96
3 38.18 72.21 59.95 52.18 62.02
5 38.13 72.01 59.92 52.18 61.88

Table 10: SAGE Ablations of GCSA (SAGE-12) and GCTP (SAGE) on Exo-Cook Dataset

Models
Gaze

Detection
HOI

Detection
Gaze

Anticipation
HOI

Anticipation
F1 Rec Prec Acc F1 Rec Prec Acc

SAGE-1 56.6 72.8 55.3 - - - - -
SAGE-2 - - - 58.9 - - - -

SAGE-12 57.5 73.6 56.0 59.9
SAGE 57.7 73.4 55.5 60.2 49.2 62.8 50.0 54.8

D.2 RESULTS ON VID-HOI

In Table 9, we benchmark HOI detection performance on the Vid-HOI dataset using ST-Gaze Ni
et al. (2023) and STTran Cong et al. (2021) as baselines. Since Vid-HOI does not provide gaze
labels, gaze evaluation is omitted. To specifically evaluate the impact of Gaze-Conditioned Atten-
tion in the spatial domain, we introduce a spatial-only variant of ST-Gaze by removing its temporal
layer (referred to as ST-Gaze Spatial). Additionally, we include SAGE-12 in the comparison. No-
tably, SAGE-12 achieves the highest F1 score (62.03), underscoring the importance of integrating
gaze-based attention mechanisms into HOI recognition tasks. Furthermore, our full SAGE model
attains the best mAP (38.65) and Recall (72.44) scores at the 1-second anticipation setting, and the
highest Precision (59.95) at the 3-second setting. It should be noted that due to space constraints,
the performances of ST-Gaze Spatial and SAGE-12 were inadvertently omitted from the main paper
(Table 2); we present their comprehensive results here for clarity. We also corrected the boldface
labeling in the ”Rec” and ”Acc” column. In the main paper (Table 2), the value 72.44 and 52.22
was incorrectly highlighted in bold. This has been corrected by appropriately emphasizing 73.62
as the Recall value and 53.76 as the Accuracy value for ST-Gaze∗, which outperforms SAGE. This
improved performance is attributed to ST-Gaze∗ use of word embeddings as an additional input
modality,

D.3 SAGE ABLATION STUDY ON EXO-COOK

In the main paper, we show ablation study of model combination on an egocentric dataset, i.e.
EGTEA Gaze+ dataset. We conduct similar experiments on an exocentric dataset, i.e. Exo-Cook
dataset. In Table 10, we show how each component in our model contribute to the final performances
through ablation study. We study the performance of different combinations of the four modules and
how they affect the performance of each other. We use Sharingan Tafasca et al. (2024) as the gaze
model.

• SAGE-1: the model for gaze heatmap prediction (Sharingan Tafasca et al. (2024) as back-
bone.

• SAGE-2: single model for action detection

• SAGE-12: joint model for gaze and HOI detection, we integrate GCSA between SAGE-1
and SAGE-2.
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• SAGE: final joint model that integrate all the components. GCSA and GCTP modules are
integrated.

SAGE-1 and SAGE-2 perform gaze detection and HOI detection (oracle mode) independently and
we observe that combining them into the joint model SAGE-12 leads to consistent improvements in
both tasks. The performance improvements highlight the contribution of the GCSA module, which
effectively integrates gaze into spatial attention, allowing the model to better capture human-object
interactions. Furthermore, when incorporating the GCTP module into the full SAGE model, which
explicitly models gaze-conditioned temporal relationships, we observe additional improvements for
gaze detection and HOI detection . The results shows that incorporation via GCTP enhances the
model’s ability to learn temporal correlations and reason about gaze and human actions. The full
SAGE model can predict future gaze and HOI based on the encoded temporal cues. It should be
noted that as we select the optimal SAGE based on HOI detection result, the Gaze Detection perfor-
mance might fluctuate around the optimal. In Table 5, the F1 and Rec of SAGE slightly go down
compared to SAGE-12. This also indicates that gaze can be less reliable in exocentric videos than
egocentric videos, which is understandable. Overall, the progressive improvements from SAGE-1/2
to SAGE-12 and finally to the full SAGE model demonstrate that both GCSA and GCTP are essen-
tial for fully leveraging the bidirectional relationship between gaze and HOIs in both current and
future frames.
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Figure 8: Visualization of SAGE results on the EGTEA Gaze+ dataset, illustrating action and gaze
estimation for both current and future frames. The leftmost column displays checkbox represen-
tation corresponding to each method, indicating the output settings available. Our method (SAGE)
supports all four prediction settings: gaze detection, action recognition, gaze anticipation, and action
anticipation.

E QUALITATIVE RESULTS OF SAGE

Figure 8 provides qualitative comparisons of our proposed model SAGE with four competitive
baselines—GC-TSM Hao et al. (2022), GLC Lai et al. (2024a), GLC (anticipation), and InAViT Roy
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Figure 9: Visualization of SAGE results on Exo-Cook, including action and gaze results for current
and future frames. The leftmost column displays checkbox representation corresponding to each
method, indicating the output settings available. Our method (SAGE) supports all four prediction
settings: gaze detection, action recognition, gaze anticipation, and action anticipation.

et al. (2024)—on the EGTEA Gaze+ dataset. The evaluation covers four tasks: gaze detection, gaze
anticipation, action recognition, and action anticipation, with an anticipation horizon of τa = 0.5
seconds. Each column shows the last frame (at 0s) in the input sequence and its corresponding
ground-truth future frame at +0.5s. The left example illustrates a two-step activity transition from
taking a cucumber to cutting the cucumber. The middle example captures the action progression
from taking a cooking utensil to putting it down, while the right example depicts a temporally stable
action—taking bread. SAGE can performs all four tasks. The gaze heatmap predicted from SAGE
for current and future frame is well-aligned with the interaction object in the scene. In the mean-
time, SAGE can predict current and future actions. GC-TSM does not model gaze and only predicts
the current action, failing to anticipate future actions. GLC produces accurate gaze detection at 0s,
while GLC (anticipation) provides plausible future gaze at +0.5s; however, neither model completes
all four tasks jointly. Notably, both variants fail in action anticipation. InAViT does not model gaze
and can predict future actions.

In Figure 9, we compare SAGE with four state-of-the-art models in different task do-
main—VideoAttn Chong et al. (2020), ST-Gaze Ni et al. (2023), and Sharingan Tafasca et al.
(2024)—using identical input video sequences. Notably, ST-Gaze provides two separate pipelines
for HOI detection and HOI anticipation. While these baseline models are typically designed for
individual tasks such as gaze detection or HOI classification, SAGE is the only model can jointly
performing all four tasks. The figure showcases three representative examples from the Exo-Cook
dataset, displaying the last frame at the current time (0s) and a future frame at the anticipation hori-
zon τa = 1s. The leftmost example illustrates a stable action sequence, while the middle and right

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

examples involve action transitions. Since actions are labeled with categorical indices, we compare
category predictions across models. As discussed in the main paper, no existing model is specifi-
cally designed for exocentric gaze anticipation; hence, we adapt Sharingan Tafasca et al. (2024) for
this task. Sharingan is the SOTA model for exocentric gaze target detection in images. However,
the adapted Sharingan fails to accurately predict future gaze heatmaps across all three examples.
Meanwhile, ST-Gaze can perform either HOI detection or anticipation, but not both simultaneously,
and it fails to predict the correct HOI category in the rightmost example. These results highlight the
advantage of SAGE in jointly modeling spatial and temporal dynamics for comprehensive human
activity understanding.
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