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ABSTRACT

Self-attention (SA) is a critical component of Transformer neural networks that
have succeeded in automatic speech recognition (ASR). In this paper, we analyze
the role of SA in Transformer-based ASR models for not only understanding the
mechanism of improved recognition accuracy but also lowering the computational
complexity. We reveal that SA performs two distinct roles: phonetic and linguistic
localization. Especially, we show by experiments that phonetic localization in the
lower layers extracts phonologically meaningful features from speech and reduces
the phonetic variance in the utterance for proper linguistic localization in the upper
layers. From this understanding, we discover that attention maps can be reused
as long as their localization capability is preserved. To evaluate this idea, we im-
plement the layer-wise attention map reuse on real GPU platforms and achieve up
to 1.96 times speedup in inference and 33% savings in training time with notice-
ably improved ASR performance for the challenging benchmark on LibriSpeech
dev/test-other dataset.

1 INTRODUCTION

Recent advances in end-to-end automatic speech recognition (ASR) have been driven by Trans-
former models (Vaswani et al., 2017). Transformer was first introduced for natural language process-
ing (NLP) tasks such as neural machine translation (Vaswani et al., 2017; Ott et al., 2018), language
modeling (Dai et al., 2019; Rae et al., 2019), and text generation (Raffel et al., 2020). Thanks to its
superior performance in processing sequence input, Transformer has been widely adopted in vari-
ous state-of-art ASR models (Zhang et al., 2020b; Ng et al., 2021; Guo et al., 2021). Self-attention
(SA) is a core component of Transformer-based ASR, which dynamically collects information from
multiple frames of an audio sequence. However, the computation and memory costs of SA increase
quadratically with the length of a sequence, which is particularly problematic for ASR. For exam-
ple, just a 30-second utterance corresponds to about 750 frames with a widely used window stride
of 40ms.

Understanding the role of SA may provide essential insights for the efficient design of Transformer-
based ASR models. Extensive studies have examined the behavior of SA in the field of NLP (Koval-
eva et al., 2019; Park et al., 2019; Gong et al., 2019; Rogers et al., 2020). Recently, several studies
further attempted to discover the characteristics of SA in the speech domain. Yang et al. (2020)
revealed that self-attention features in the self-supervised audio Transformer are categorized into
global, vertical, and diagonal patterns. Zhang et al. (2021b) focused on the diagonality of upper
SA layers in ASR models for improving efficiency. However, these prior works revealed limited
insights on the patterns discovered in SA, constraining its use for improving model efficiency. Thus,
providing a holistic view of the role of SA is desirable for efficient ASR model design.

In this work, we reveal that SA plays two distinct roles in the success of Transformer-based ASR
models: phonetic and linguistic localization, as illustrated in Figure 1. First, phonetic localization
of lower SA layers attends to the phonologically meaningful global context. Second, linguistic lo-
calization of upper SA layers mainly attends to the local context of a near-diagonal attention map.
We hypothesize that the phonetic variance in utterances such as variations in pronunciation is stan-
dardized in the lower SA layers so that the upper SA layers can identify local linguistic features
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Figure 1: Illustration of the role of SA layers in Transformer-based ASR models and the proposed
layer-wise attention map reuse. We discover that lower layers and upper layers show different be-
havior.

for accurate transcription. To investigate the behavior of SA layers, we propose phoneme attention
relationship (PAR) to explain how phoneme localization works quantitatively. Interestingly, we dis-
cover that the phonetic localization represents the traditional knowledge on phonetics; for example,
labial, velar, or nasal phonemes tend to attend to each other.

Based on this understanding, we propose a practical method for efficient ASR model design. We
reuse the attention maps of SA layers while preserving the phonetic localization capability of the
lower SA layers, resulting in up to 1.96x speedup in inference and 33% savings of training time with
considerably improved performance in challenging ASR tasks (LibriSpeech dev/test-other dataset).

Our contributions can be summarized as follows:

• We reveal that SA layers contribute to ASR with two distinct roles: phonetic localization
in the lower layers and linguistic localization in the upper layers. This unique distinction
leads to an in-depth analysis of phonetic SA for the first time. We further propose phoneme
attention relationship (PAR) to quantitatively identify the role of phonetic localization.

• We propose layer-wise attention map reuse for efficient Transformer-based ASR models.
In particular, we discover that attention map reuse is possible in lower SA layers as long
as the phonetic localization property quantified by PAR is preserved. We demonstrate with
the popular ASR model and dataset that ASR performance can be maintained or slightly
improved even if the attention map is reused.

• We implement the attention map reuse on real GPU platforms and achieve up to 1.96x in-
ference speedup and 33% savings in training time, demonstrating that the proposed method
is practical.

2 BACKGROUND

2.1 ASR ENCODER AND SELF-ATTENTION

SA is usually utilized as a module inside the ASR model consisting of stacked Transformer encoder
layers. ASR encoder takes a sequence of short-time Fourier-transformed (STFT) audio features,
known as a ‘frame’, as input and extracts a high-level feature of each frame through multiple layers.
As illustrated in Figure 1, the extracted high-level feature changes for each layer; stacked SA layers
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first extract phonetic features from audio features and utilize these features to build linguistic features
for the output transcription.

We briefly review the SA1 computation procedure. Consider a sequence of d-dimensional column
vectors X = {x1, x2, ...xT } as input. Each vector corresponds to each frame of speech where the
total number of T frames are included. The input feature vector X is projected to query (Q), key
(K), and value (V ) of h-th attention head as follows:

qh,i =WQ
h xi, kh,i =WK

h xi, vh,i =WV
h xi

(
WQ

h ,W
K
h ,WV

h ∈ Rdh×d
)

(1)

WQ,K,V indicates projection matrices for Q, K, V , respectively. dh = d/H is the dimension of
each attention head where H is the number of attention heads. The attention map (Ah), which
represents how much frames attend to each other, is computed by scaled dot-product operation
followed by softmax. The resulting attention map takes a form of a 2D matrix where each row
is a probability vector. A single element of the attention map (Ah[i, j]) represents how much i-th
frame attends to j-th frame. The attention head (dh) is a weighted sum of V using the attention
map as weight. Note that each attention head corresponds to a different attention map Ah; this
multi-head design enables focusing on various perspectives within a single SA layer. The output
O = {o1, o2, ...oT } is computed by the projection (WO ∈ Rd×d) on the concatenated attention
heads2.

Ah[i, :] = Softmax
j

(
qh,ik

T
h,j√
dh

)
, dh,i =

T∑
j=1

Ah[i, j]vh,j , oi =WOConcat
h

(dh,i) (2)

SA layer contains O(d2) parameters.As shown in equations, SA requires quadratic computation and
memory complexityO(T 2), in exchange for the ability to access any location in the sequence. When
N layers of SA are stacked, the burden proportionally increases.

2.2 PREVIOUS WORK ON SELF-ATTENTION ANALYSIS

ASR considers both phonetic and linguistic aspects to transform audio input to text output. However,
the studies on NLP mostly analyze the linguistic characteristics of SA, and the studies on self-
supervised audio representation learning (SSAL) mainly focus on the phonetic behaviors of SA.
The valuable findings from both domains cannot be directly applied to ASR.

NLP The behavior of SA has been widely studied in the NLP domain (Rogers et al., 2020), mostly
focused on BERT (Devlin et al., 2019), a self-supervised language representation learning model.
Kovaleva et al. (2019) and Guan et al. (2020) suggested that attention patterns can be clustered into
several groups and the pattern may change depending on the fine-tuning task. Clark et al. (2019) and
Tenney et al. (2019) observed attention maps that correspond to linguistic concepts of the language.
Voita et al. (2019) also characterized linguistic attention heads and connected the knowledge to
efficient model structure. However, studies on NLP only provide analysis on linguistic attention.

SSAL Recently, several studies have been introduced to understand how the audio information is
encoded in SSAL models, such as CPC (Oord et al., 2018), Wav2Vec 2.0 (Baevski et al., 2020),
Mockingjay (Liu et al., 2020), HuBERT (Hsu et al., 2021), and Audio ALBERT (Chi et al., 2021).
Ma et al. (2021) and Shah et al. (2021) demonstrated that a wide spectrum of phonetic information is
included in these models. Especially, Yang et al. (2020) categorized attention maps into three cate-
gories: global, vertical, and diagonal, where diagonal heads attend to local frames and vertical heads
either focus or neglect specific phonemes. However, Yang et al. (2020) only discovered attention
patterns without an explanation on how phonetic feature extraction is achieved with these patterns.

ASR Previous works have investigated the redundancy of attention maps mainly based on di-
agonality. From the observation that attention maps in upper layers show highly diagonal patterns,
Zhang et al. (2021b) proposed replacing upper SA layers to feed-forward layers without performance
loss. Zhang et al. (2021a) removed SA heads of high diagonality during training as a regularization

1In this paper, SA is equivalently used as a multi-head SA.
2The two terms ‘head’ and ‘attention head’ are used interchangeably.
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Figure 2: Cumulative at-
tention diagonality (CAD)
of each attention head.
Four points for each layer
correspond to the CAD of
four attention heads. The
black line connects the
median across the layers.

but keep every head for the test time. Similarly, Chang et al. (2020) introduced adaptive attention
span where each attention head equips a different attention span width to reduce the sequence length
for the computation, starting from the intuition that some heads only attend to neighboring frames.
These approaches mainly focus on reducing the burden of diagonal and concentrated attention, how-
ever, diagonality-based analysis has limitations in optimizing phonetic attention. We distinguish SA
into two groups and provide proper analysis for each.

3 UNDERSTANDING THE ROLE OF SELF-ATTENTION IN ASR

3.1 ANALYSIS SETUP

We train and evaluate the model on the LibriSpeech-960 (Panayotov et al., 2015) dataset. The dataset
include two types of data, clean and other, where other contains more challenging utterances. We
extract the 80-dimensional log-Mel filterbank feature from a 25ms window with a stride of 10ms. We
use 128 sub-word tokens as vocabulary, built on SentencePiece (Kudo & Richardson, 2018) library
using the byte-pair encoding (Sennrich et al., 2016). The analyses are performed on LibriSpeech
test-clean dataset unless specified.

We use Conformer-M(medium) (Gulati et al., 2020) as the baseline ASR encoder, trained with CTC
(Graves et al., 2006) loss. Conformer is a variant of Transformer, which combines an additional
convolution module to enhance the ability to collect local neighboring features. We follow recently
introduced state-of-the-art ASR studies (Zhang et al., 2020b; Ng et al., 2021; Guo et al., 2021)
that have adopted Conformer as their ASR encoder. We train the model with AdamW (Loshchilov
& Hutter, 2018) optimizer for 200K iterations. Please see Appendix A.1 and A.2 for the model
configuration and training details.

3.2 DISTINGUISHING BETWEEN PHONETIC AND LINGUISTIC SELF ATTENTIONS

To understand the role of SA, we start by examining the attention map Ah, which characterizes the
functionality of SA. The attention map indicates how a frame attends the other frames in terms of
probabilistic distribution for each attention head. Thus, analysis on attention maps across the heads
of a SA layer would discover important characteristics of SA. To measure the diagonality of the
attention map, we introduce cumulative attention diagonality (CAD) defined as the integral of the
sum of attention probabilities constrained by distance as below:

CADh =

∫ 1

r=0

1

T

T∑
i=1

T∑
j=1

Ah[i, j] · I[|i− j| ≤ r(T − 1)]dr (3)

where T is the number of frames in a sequence, r determines the range of distribution in the at-
tention map under test, and h is an index of the attention head. Appendix B.1.1 provides detailed
explanations of above equation and visualizes some CAD examples.

Figure 2 shows the attention diagonality analysis for the SA layers. There is a clear transition of
CAD from lower layers (layer 1-8) to upper layers (layer 9-16). We emphasize this is a unique trend
observed in ASR models compared to other domains: Kovaleva et al. (2019) classified attention
maps in BERT but did not report the grouping of the same types. Yang et al. (2020) also categorized
attention maps in SSAL but those categories broadly appear through layers. In ASR, Zhang et al.
(2021b) observed a similar diagonality pattern for SA layers, but they considered it as an increase
of diagonality over layers and did not separate the distinct patterns.
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Figure 3: Visualization of the phonetic localization. Each element corresponds to A[i, j] where i, j
indicates the frame index. Several rows that correspond to a certain phoneme, give higher attention
to similar phonemes across the columns. For better visualization, we selectively draw boxes on three
representative patterns (S, ER, and IY).

From the diagonality analysis, we categorize the role of SA layers into two parts: phonetic and
linguistic localization. In ASR, linguistic localization refers to the behavior of the attention map
that focuses on local (near in distance) frames and aggregates the information for text transcription.
Since these local frames are particularly important in audio to text transcription in ASR, the attention
map is characterized with a diagonal pattern. As shown in Figure 2, the upper layers tend to exhibit
diagonally dominant patterns, implying their role as a linguistic localizer. We visualize two cases
of diagonal attention patterns in Figure 1, extracted from layers 12 and 15 of the baseline model.
Our observation is consistent with the prior work such as Zhang et al. (2021b). On the other hand,
there has been little discussion about the role of lower layers in ASR in the context of phoneme
localization. We discuss this in detail in the next section.

3.3 CHARACTERISTIC OF PHONETIC LOCALIZATION

Phonetic localization denotes the role of the attention map that focuses on similar (near in content)
frames and extracts the phonologically meaningful features. We observe two characteristics of pho-
netic localization. First, phonetic localization is realized as attention to similar phonemes across the
sequence. Second, the localization transforms each corresponding frame more likely to others.

To analyze phonetic attention, we exploit the phoneme information to find out the relationship be-
tween attention and phonemes. For the LibriSpeech dataset, we use the frame-level phoneme align-
ments obtained from Montreal Forced Aligner (McAuliffe et al., 2017). Table 1 lists all phoneme
classes. Please visit Appendix A.3 for details on phoneme pre-processing.

Idx. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Phn. AA AE AW AY AH EH ER EY IY IH O UH UW L R M N NG

Idx. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Phn. B D DH G K P T F CH SH TH S Z V JH W Y HH

Table 1: Phoneme index for the analysis. Phonemes are extracted from the LibriSpeech lexicon and
collapsed into 36 classes. Phonemes are reordered according to their phonological properties.

Figure 3 demonstrates the first characteristic of phoneme localization. The attention map presents
that the same or similar phonemes tend to assign high attention weight to each other, for example,
(‘S’ to ‘Z’), (‘ER’ to ‘R’), and (‘IY’ to ‘IH’).

We evaluate our second statement by phoneme classification on hidden layer representations (out-
put of layers, also known as a hidden activation or hidden vector), similar to previous approaches
(Baevski et al., 2021; Liu et al., 2021). We extract hidden layer representations and train a soft-
max classifier for each layer. Input is 256-dimensional vector and output contains total 37 output
classes (36 phonemes + “silence”). See Appendix A.5 for the details on training the classifier and
visualization of the confusion matrix.
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Figure 4: Phoneme classi-
fication accuracy on Lib-
riSpeech test datasets. The
zeroth entry implies the
classifier is trained from
hidden representations ob-
tained before the first SA
layer.

Figure 4 shows the phoneme classification accuracy for different layers. The accuracy increases for
the lower layers (layer 1-8) where phonetic localization dominates. Specifically, the accuracy of
layer 0 (before SA) is only 53.8%, but it consistently increases to 81.7% at layer 8. The phoneme
classification accuracy indicates how well hidden vectors can be distinguished according to their
phoneme classes. Therefore, the accuracy increase on lower layers implies that hidden layer repre-
sentations are more standardized by phonetic localization. We assume that the accuracy decreases
for the upper layers because they perform the linguistic localization and convert phoneme-level in-
formation to output text.

3.4 LAYER-WISE ANALYSIS OF PHONETIC ATTENTIONS

In phonetic attention, we observed that similar phonemes attend to each other and the phonetic
features are clustered through layers. For the next step, we investigate the layer-wise behavior
of phonetic attention to understand the contribution of each phonetic attention layer. We introduce
phoneme attention relationship (PAR) to understand how SA processes phonological information by
exposing how much each phoneme class attends to the other phonemes on average. Specifically, we
directly map an attention probabilityAh[i, j] to Ph[p, q] where i-th frame and j-th frame correspond
to phoneme p and q, respectively. If two phoneme classes p and q are different, we simply transport
the probability from Ah[i, j] to Ph[p, q]. On the other hand, if two frames are within the same
phoneme class p, we exclude consecutive frames of the same class to avoid unnecessarily emphasize
the effect of diagonal attention maps. PAR is computed as below3:

Ph[p, q] =
T

|Cp| · |Cq|
∑
i∈Cp

∑
j∈Cq

Ah[i, j] (p 6= q) (4)

Ph[p, p] =
T

|Cp|
∑
i∈Cp

1

|Cp| − |Ep(i)|
∑

j∈Cp−Ep(i)

Ah[i, j] (p = q) (5)

Cp, Cq indicates the set of frame indices that correspond to phoneme class p and q. Ep(i) indicates
the number of frames that satisfies two conditions: belong to the same class p as i-th frame and all
frames between itself and i-th frame also belong to the same class. In other words, Cp − Ep(i)
indicates the subset of Cp that are not connected to i-th frame by consecutive class p frames. For
the Ph[p, p] calculation, we do not include consecutive frames of the same class. We discuss the
purpose of this exclusion in Appendix B.2.1.

We visualize the average PAR of the lower half and upper half of layers in Figure 5. A prominent
diagonal component appears, representing that phonemes put high attention to themselves. Inter-
estingly, we also discover well-known phonological characteristics in the lower half of layers. For
example, labial (B, P), velar (G, K), and alveolar (S, Z) consonants highly attend to each other. Nasal
phonemes (M, N, NG) also show a high correlation. From the empirical observations, we denote
that phonetic attention map creates heterogeneous patterns. Thanks to the multi-head structure, a
single SA layer can capture multiple phonetic relationships. Please see Figure 12 in Appendix B.2.2
for various PAR examples for each head.

If each phonetic attention map corresponds to different relationships, can we reuse phonetic attention
maps across multiple layers? We answer this question by introducing the PAR coverage, which

3PAR as well as CAD are averaged through the corpora.
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(a) Lower half of layers (b) Upper half of layers

Figure 5: Averaged phoneme attention relationship of the lower half (1st, ... 8th) and upper half
(9th, ... 16th) layers. The result is averaged through layers and heads on test-clean dataset. Each
row and column corresponds to the phoneme index. Brighter (yellow) values indicate stronger
attention between phonemes. Elements that stand out are highlighted, where phonemes with similar
properties tend to attend to each other.

Figure 6: Accumulated PAR coverage of lower layers (1st, ... 8th). Averaged PAR of the baseline
(Figure 5(a)) is set to 1.0, which is considered to be a desirable reference. The left plot on the
accumulated coverage shows how each layer participates in covering the strength of the relationship.
The right table summarizes the coverage of different reuse configurations. A higher average per-
layer coverage ratio implies that each layer performs more similarly to the baseline.

indicates how much each layer covers the phonetic relationship represented in the averaged PAR
from the baseline (Figure 5(a)). The averaged PAR of the baseline is considered to represent all the
essential phoneme relationships. Please refer to Appendix A.4 for details.

To investigate the effect of reuse, we plot the accumulated PAR coverage for different reuse configu-
rations in Figure 6. In calculating the accumulated coverage ratio, we take the average on every PAR
under a certain layer and compare it with the reference PAR. The accumulated coverage consistently
increases to 1, which means that the missing relationships are fulfilled through layers. We test four
configurations (will be introduced in detail in the next Section) X × Y , where X layers share the
same attention map. As the number of reuse increases (2×8→ 4×4→ 8×2), the average per-layer
coverage also grows, which implies that each SA layer tries to capture more phonetic relationships
to recover the performance. However, for 8 × 2, the model fails to fully cover the reference, repre-
sented as a low accumulated coverage ratio of 0.974. In Appendix B.3, we visualize the effect of the
reuse on PAR coverage where phonetic features captured in 2× 8 and 4× 4 are missed in 8× 2.
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Table 2: Word error rate (%) for different attention map reuse configurations. “HX” indicates that
the number of attention heads in the self-attention layer is set to X. All configurations carry almost
the same number of parameters. No external language model is used.

Configuration #Heads Head dim. dev-clean dev-other test-clean test-other

1(H4)× 16 (baseline) 64 64 3.1 8.3 3.2 8.4

2(H4)× 8 32 64 3.0 8.2 3.3 8.2
4(H8) + 4(H8) + 4(H8) + 4(H8) 32 32 3.1 8.1 3.2 8.1
4(H2) + 4(H2) + 4(H4) + 4(H4) 12 128/64 3.1 8.2 3.4 8.3
4(H4) + 4(H4) + 4(H4) + 4(H4) 16 64 3.0 8.2 3.3 8.2
4(H8) + 4(H8) + 4(H4) + 4(H4) 24 32/64 3.1 8.3 3.2 8.4

4(H4) + 4(H4) + 4(H2) + 4(H2) 12 64/128 3.1 8.5 3.4 8.5
4(H4) + 4(H4) + 4(H4) + 4(H4) 16 64 3.0 8.2 3.3 8.2
4(H4) + 4(H4) + 4(H8) + 4(H8) 24 64/32 3.1 8.2 3.3 8.1

4(H4) + 4(H4) + 8(H4) 12 64 3.1 8.3 3.3 8.2
8(H4) + 4(H4) + 4(H4) 12 64 3.1 8.5 3.3 8.6

8(H4) + 8(H4) 8 64 3.3 8.8 3.6 8.7
8(H8) + 8(H8) 16 32 3.2 8.5 3.4 8.5

4 LAYER-WISE ATTENTION MAP REUSE

We propose layer-wise attention map reuse, a method to design an efficient Transformer-based ASR
encoder by reducing the heavy SA computation. The core idea is to reuse the computed attention
map from the previous layer. More specifically, we reuse attention map of l-th SA layer to (l+1), (l+
2), ...(l+M−1)-th consecutive SA layers. If a single attention map is shared throughM layers, the
computation burden of SA can be reduced by M times. During training, the reused attention map
receives gradients fromM layers. This layer-wise reuse is easy to implement and fully supported by
modern accelerator hardware. The idea of reuse attention map through layers have been proposed
for NLP (Xiao et al., 2019; Ying et al., 2021) but not tested for ASR. We discuss the difference in
Section 5. For SA layers that receive the pre-computed attention map, query and key are not used
and can be removed. To compensate the parameter size for those layers, we simply double the output
dimension of V (WV

h ∈ R2dh×d,WO ∈ Rd×2d).

Table 2 shows the word error rate (WER) on LibriSpeech dev and test dataset. Configuration “X ×
Y ” indicates that X successive layers are grouped to share the same attention map and total Y
groups are built. Therefore, there exist HXY unique attention heads for each model. We also use
the notation ‘+’, for example, 4 × 4 is identical to 4 + 4 + 4 + 4. For each configuration, we train
the model from scratch with the same training setup as the baseline. Note that the increased number
of heads comes with the decreased per-head dimension to keep the parameter size comparable.

Best and Worst We first compare the best (4(H8) × 4) and the worst configuration (8(H4) × 2).
The worst is the most naive setting that just applies very aggressive attention map reuse. Although
the speed is about the same, performance can be improved by increasing the number of heads
(8(H8) × 2). In contrast, the best working setting is carefully designed to maximize performance.
For example, equipping the same number of heads (2(H4) × 8) does not show similar performance
compared to the best configuration.

Sensitivity to Reuse We examine which of the phonetic or linguistic localization is more sensitive
to attention map reuse. Comparing two configurations with the identical number of heads and head
dimensions (4+4+8 vs. 8+4+4) in the 5th block of Table 2, we conclude the phonetic localization
suffers more from increasing the reuse of layers. In other words, the linguistic localization seems to
be more robust to the reuse. We conjecture that too few phonetic localization heads fail to capture
every essential relationship.

Number of Heads in Phonetic Localization To better understand the trade-off between the num-
ber of heads and head dimension, we conduct three experiments that only differ on the number
of heads in lower layers. As shown in the 3rd block of Table 2, among the three configurations,
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Table 3: Effect of different configurations on speed. The numbers inside of the parentheses indicate
the speed-up ratio. The front convolutional sub-sampling is not included. Changing the number of
heads does not make much difference to the speed.

Config. #Param Latency(ms) by sequence length (approx. sec) Training
(M) 128 (5.1s) 256 (10.2s) 512 (20.5s) 768 (30.7s) cost(h)

1× 16 25.45 1.43 (x1.00) 3.74 (x1.00) 11.11 (x1.00) 22.32 (x1.00) 430.0
2× 8 24.92 1.25 (x1.15) 2.98 (x1.26) 7.92 (x1.40) 15.05 (x1.48) 337.5
4× 4 24.66 1.14 (x1.25) 2.56 (x1.46) 6.29 (x1.77) 11.38 (x1.96) 288.4
8× 2 24.52 1.08 (x1.32) 2.35 (x1.59) 5.47 (x2.03) 9.55 (x2.34) 268.8

(4(H4) × 4) surpasses the other two in 3 over 4 benchmarks. We expect a trade-off between the
number of phonetic localization heads and per-head dimension; the former enables more various
aspects to be covered while the latter helps richer representation for each head.

Number of Heads in Linguistic Localization We perform the same experiment as above for the
upper layers, shown in the 4th block of Table 2. Interestingly, we found that increasing the number of
heads for linguistic localization tends to improve the overall performance. In addition, a considerable
performance loss is detected when the number of heads is decreased to 2(H2). This observation
implies that the previous studies that only reduce linguistic attention may face limitations when the
remaining linguistic heads are too few.

Inference and Training Speed Table 3 compares different reuse configurations. Both training
and inference speed can be greatly improved by reducing the number of attention computation.
The impact becomes more significant for longer sequences as T increases. Our best configuration
(4(H8)× 4) accelerates the inference by 1.96x times (for 30-second utterance) and reduces training
cost by 33%. Note that the number of parameters is almost equivalent for all configurations because
of the expansion of V dimension. Inference speed is evaluated on a single RTX-Titan(24GB) GPU
and training cost is measured in GPU-hours on A100(40GB) GPU.

5 RELATED WORK

Attention Map Reuse in NLP Xiao et al. (2019) proposed sharing of attention map through con-
secutive layers for neural machine translation. They determine the reuse policy by Jensen-Shannon
divergence (JSD) values between two attention maps. Ying et al. (2021) propose a similar approach
for BERT but with manual reuse configurations. In addition to the critical difference in the do-
main (NLP vs. ASR), both works depend on the similarities of the attention map, however, do not
investigate why the similarity is developed.

Efficient Attention Map Computation for ASR Several studies have been proposed to reduce
the cost of attention computation for ASR. Wang et al. (2021) proposed a prob-sparse SA that only
computes the top-k queries that are less uniform. For the streaming purpose, block processing of
input sequence has been widely adopted (Yeh et al., 2021; Shi et al., 2021). Masked attention,
which restricts the attention range to local neighbors, have also been used (Zhang et al., 2020a;
Tripathi et al., 2020; Audhkhasi et al., 2021). While these approaches focus on reducing the effective
sequence length, our method directly reduces SA computation.

6 CONCLUSION

In this paper, we analyze the role of self-attention in Transformer-based ASR and show that the role
can be distinguished into two types: phonetic and linguistic localization. Especially, we showed that
the phonetic localization captures various phonetic relationships and contributes to the performance
by standardizing the features over similar phonemes, verified by the increasing phoneme classifica-
tion accuracy over lower layers. The distinguished roles of SA in lower and upper layers also lead to
an efficient ASR model that reuses the attention map for multiple SA layers. The proposed method
has achieved a significant 1.96 times of speedup in inference and 33% reduced training time, with
the reduction of word error rate from 8.40% to 8.05% on the LibriSpeech test-other dataset.
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REPRODUCIBILITY STATEMENT

We explain extra details for the model architecture, training procedure, pre-processing steps, and
experiments for analyses in Appendix A. We also provide the source code for the experiments in
supplemental materials.
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A DETAILS

A.1 MODEL

Our baseline model is Conformer-M(medium) (Gulati et al., 2020) trained with CTC (Graves et al.,
2006) loss. Table 4 shows the configuration of the model. Unspecified details follow the original
Conformer paper. We observed that SyncBN (Peng et al., 2018) is critical for the overall perfor-
mance. We employ weak attention suppression (WAS) (Shi et al., 2020) of γ = 0.5 for faster
convergence and improved performance.

Encoder
#Layers 16 Hidden dim. 256
#Heads 4 Feed-forward dim. 1024
Conv. kernel size 31 Conv. normalization SyncBN
BN momentum 0.005 BN epsilon 1e-5
Hidden drop prob. 0.1 Attention drop prob. 0.1

Conv. Subsampling
#Layers 2 #Channels 256
Conv. kernel size 3 Conv. normalization SyncBN
Conv. stride 2 Activation func. ReLU

Table 4: Conformer-M implementation details.

We decide to use Conformer as our baseline, following recent state-of-the-art ASR models, because
these models can benefit the most from the proposed efficient model design. However, there may
be several concerns on the clarity of our analysis on SA because the convolution module is jointly
used with SA inside Conformer. Because the ability to gather information from the entire sequence
is only equipped in SA, the analysis results on the role of phonetic heads could not be presented
without SA. The convolution kernel size of 31, which covers about 1.2 seconds, is too short to
gather long-range information. We believe that the convolution module may guide the model to
focus on local information first at the early stage of the training, however, the role of SA is not much
affected by the difference between Conformer and Transformer.

A.2 TRAINING

Optimizer & Scheduler
Maximum LR 1.5e-3 Weight decay 1e-5
Adam epsilon 1e-8 Adam betas (0.9, 0.99)
LR warm-up iters 5K LR keep iters 95K
Total iters 200K Batch size 480

Additional Details
#Frequency masking 2 Frequency mask width 27
#Time masking 10 Time mask width 0.05 (5%)
#Models for SWA 45 Variational noise 0.02
CTC beam size 32 Gradient norm clip 20

Table 5: Training details including optimizer, scheduler, augmentation and other hyper-parameters.

We use AdamW (Loshchilov & Hutter, 2018) optimizer with the inverse square-root learning rate
schedule (Vaswani et al., 2017). Table 4 shows the training configuration. We linearly increase
the learning rate (LR) to the maximum value for 5K iterations and keep LR at maximum for 95K
iterations, followed by 100K iterations of LR decrease. We use 4x A100(40GB) GPUs for the
experiments. To fit the batch size of 480 in these GPUs, we assign 40 samples per GPU and ac-
cumulate the gradient of 3 batches. We don’t use bucketing for generating the mini-batch during
training. We also employ adaptive SpecAugment (Park et al., 2020), stochastic weight averaging
(SWA) (Izmailov et al., 2018), and variational noise.
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A.3 PHONEME PRE-PROCESSING

For phonetic analyses, We employ the collapsed list of phonemes that are included in the Lib-
riSpeech lexicon. We collapse (‘AA, AO’ to ‘AA’), (‘OW, OY’ to ‘O’), and (‘SH, ZH’ to ‘SH’),
which leads to the phoneme classes in Table 1, for better understanding the characteristics. Because
the LibriSpeech dataset does not provide frame-wise phoneme alignments, we extract the phoneme
alignment from MFA (McAuliffe et al., 2017) and map these alignments to each frame. Especially,
we exploit the fact that each frame corresponds to a 40ms interval after passing through two convolu-
tional layers (convolutional sub-sampling) of stride 2 in front of the model. We assign the phoneme
class to each frame if the center of the frame is within the phoneme duration, including the ‘silence’
phoneme.

Except for the phoneme classification, our analysis excludes ‘silence’ frames by exploiting frame-
level phoneme alignments. Then, we re-normalize the remaining attention probability to preserve the
probability sum to 1. We observe that these silence frames sometimes consume too much probability
mass for both linguistic and phonetic heads, which makes our analysis difficult. Note that this
phenomenon of assigning strong attention to ambiguous tokens, such as [CLS] or [SEP], has been
also reported in NLP (Kobayashi et al., 2020; Sun & Marasović, 2021). Recently, Kobayashi et al.
(2020) introduced the concept of norm-based analysis and reported that those [CLS] and [SEP] does
not contribute much to the output even though their attention weight is large. We leave analysis
using effective attention as a future work.

A.4 PHONEME ATTENTION RELATIONSHIP COVERAGE

Figure 7: Top-10 phoneme classes
(column) for each phoneme (row)
in the reference phoneme atten-
tion relationship of Figure 5(a).

The coverage ratio R of the target PAR compared to the reference PAR is calculated as below:

Rh[p, q] = Minimum
(

PARh[p, q]

PARref
h [p, q]

, 1

)
, Rh =

1

|P |
∑
p∈P

1

|Qp|
∑
q∈Qp

Rh[p, q] (6)

P indicates every phoneme class andQp indicates top-10 phoneme classes in the order of the largest
PAR elements for the phoneme p (Rh[p, :]). Top-10 classes are visualized in Figure 7. We exploit
topmost phoneme classes because our interest is at the important relationships.

A.5 PHONEME CLASSIFICATION

For the phoneme classification, we train a single fully-connected layer as a classifier. We choose
the simplest architecture as a classifier to more directly correlate the phoneme accuracy and hidden
layer representations. These representations are extracted from dev-clean and dev-other dataset and
evaluated on test-clean and test-other dataset. We use SGD with a learning rate of 0.1, momentum of
0.9, and weight decay of 1e-3. The training takes 15 epochs, where the learning rate is multiplied by
0.1 for every 3 epochs. We visualize confusion matrices of the phoneme classification in Figure 8.
As layer proceeds, wrongly classified phonemes (non-diagonal) disappear and leave a clear diagonal
line on the confusion matrix.

15



Published as a conference paper at ICLR 2022

Figure 8: Confusion matrix and phoneme accuracy for selected layers. Visualized the result from
the LibriSpeech test-other dataset. Each row and column corresponds to the 37 phoneme classes,
including ‘silence’ as zeroth class.

Figure 9: Examples of typical cumulative attention diagonality (CAD). (a) and (b) visualizes curves
(before the integral) of four attention heads in each layer. x-axis and y-axis depict the relative
distance r and accumulated attention probability, respectively. CAD is represented as the area under
curve. CAD values of each head are also listed.

B ADDITIONAL RESULTS AND DISCUSSIONS

B.1 DIAGONALITY

B.1.1 CAD RESULTS

The CAD is a good indicator of how fast the accumulated attention increases over the distance,
directly represents the diagonality of the attention weight. The CAD is interpreted as the area under
the function D(r), where D(r) calculates the amount of total attention weight within the restricted
range j ∈ [i − r(T − 1), i + r(T − 1)]. (T − 1) is the maximum possible distance between two
frames where T is the number of frames.

CADh =

∫ 1

r=0

1

T

T∑
i=1

( min(T,
i+r(T−1))∑
j=max(1,

i−r(T−1))

Ah[i, j]

)
dr =

∫ 1

r=0

D(r)dr (7)

If the r is same, a largerD(r) means that the attention is more concentrated near the diagonal. Please
note that D(r) is a monotonically increasing function whose output is always in the range [0, 1].

To help understand the concept of CAD, we visualize two typical examples of the cumulative atten-
tion diagonality in Figure 9. For layer 2, where attention heads perform the phonetic localization,
CAD values are low. In contrast, for layer 14 that concentrates on linguistic localization, CAD
values are much higher.

Figure 10 plots the sorted CAD values. We determined the threshold (0.75) where the curve of
sorted CAD values changes from convex to concave. The higher CAD value represents that more
probability mass is concentrated near the diagonal in the attention map, while the lower CAD value
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Figure 10: Sorted CAD over attention heads in the baseline model. Over 64 heads, 42 heads belong
to the CAD value under 0.75. The table on the right side indicates the number of linguistic attention
heads that are of CAD value under 0.75.

implies that the distribution is more uniformly distributed. We observe that diagonally concentrated
heads take a large portion in upper layers.

B.1.2 PREVIOUS DIAGONALITY ANALYSIS

Previous studies utilized a different metric to calculate the diagonality of an attention map (Zhang
et al., 2021b; Yang et al., 2020). In this version of diagonality, the metric is interpreted as the
negative normalized average attention distance (span-length). In Yang et al. (2020), the diagonality
is calculated as below:

Dh = 1− 1

T 2

T∑
i=1

T∑
j=1

Ah[i, j] · |i− j| (8)

We introduced the cumulative attention diagonality (CAD) because the previous diagonality metric
lacks information about how attention is distributed by distance. In other words, CAD is more com-
prehensive because it provides the overall diagonality value as well as the tendency of the attention
according to the distance. Our CAD metric dearly captures the flat region in lower layers (Figure 2).
In contrast, in Zhang et al. (2021b), the diagonality increases from the lower layers to the upper
layers, which may not be sufficient observation in ASR.

B.2 PHONEME ATTENTION RELATIONSHIP

B.2.1 EXCLUDING CONSECUTIVE FRAMES

We treat Ph[p, q](p 6= q) and Ph[p, p] differently because we want to separate the effect of the
diagonal (position-based) attention map. An attention map that highly focuses on the surroundings
(diagonal-like) can unintentionally disturb the purpose of PAR in measuring Ph[p, p], because it will
give a high value to p-p relationship not because the contents are similar, but because the location
is close. Our purpose on PAR is to examine the phonetic (content-based) behavior, so excluding
consecutive frames of the same phoneme class better represents SA in lower layers that correspond
to the phonetic localization.

B.2.2 PAR RESULTS

Figure 11 visualizes how averaged PAR changes through layers. Lower layers (first row in Figure)
show noticeable regions that represent the important phoneme relationships, including the diagonal.
Note that the diagonal stands out even though we excluded the consecutive same phoneme classes.
Each lower layer focuses on different aspects, supporting our analysis on the PAR coverage (Figure
6) that the accumulated coverage ratio continuously increases through layers. In other words, each
layer covers a certain part of the reference PAR with less overlap between layers. On the other hand,
the upper layers (second row in Figure) do not show the emphasized pattern. This is expected for
linguistic localization heads that generate highly diagonal attention maps because their attention is
mainly assigned to near frames regardless of their phoneme classes.

For the finer understanding, we also visualize how attention heads compose the averaged PAR.
Figure 12 shows that each head corresponds to different phonological properties but their averaged
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Figure 11: Phoneme attention relationships (PAR) in SA layers. Averaged PAR of even-numbered
layers (2nd, 4th, ... 16th) are visualized. Lower layers show high correlations between similar
phonetic features, but these relationships are weakened in upper layers.

Figure 12: Phoneme attention relationships of self-attention heads. Each head see different aspects,
enriching the overall information the layer captures.

interests mimic the reference PAR. This emphasizes the importance of multiple attention heads
in phonetic localization; each head specializes in capturing the specific phoneme relationship and
contributes differently.

B.2.3 PREVIOUS PHONEME RELATIONSHIP ANALYSIS

The idea of phoneme relationship analysis is first introduced in Yang et al. (2020) as phoneme
relation map (PRM), but our PAR is different from PRM in two ways. First and the most difference
is that PRM do not distinguish consecutive frames and discontinuous frames that corresponds to the
same phoneme class. Therefore, attention heads that only focus on neighbors would also present
heavy self-to-self phoneme relationship in PRM, which hinders the clarity of the analysis. Second,
PRM do not apply correction according to the sequence length. We multiply T to reduce the effect
of sequence length, inspired by the fact that the expectation of (averaged) probability is potentially
smaller for longer sequences.
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Figure 13: Phoneme attention relationship (PAR) for three attention map reuse configurations (2×8,
4×4, 8×2). PAR(a)(b)(c) are obtained by averaging PAR of lower layers. Key missing relationship
is highlighted in white circles, such as (B, P), (G, K), and (DH, TH) in Figure 5(a).

B.3 ATTENTION MAP REUSE AND PAR

For the understanding of the performance loss for extreme reuse cases, we visualize the PAR of
different configurations in Figure 13. We observe that most of the patterns resemble the baseline
model, which implies that heads learn similar roles during training. However, for 8 × 2, several
information is lost; diagonal became unclear and highlighted correlations disappeared.

B.4 COMPARISON TO MASKED ATTENTION

We compare the masked attention (Zhang et al., 2020a; Tripathi et al., 2020; Audhkhasi et al., 2021;
Huang et al., 2020) with the proposed attention map reuse. Masked attention, similar to block-based
attention (Shen et al., 2018; Qiu et al., 2020), is a method to reduce the computational burden of
self-attention by restricting the length of the accessible context. If masked attention is adopted for
ASR, each frame only attends to local neighbors; L frames to the left and R frames to the right,
denoted as [−L,R].

Table 6: Comparison of the word error rate between the proposed attention reuse and the masked
attention. “-” indicates that the attention range is not restricted (unlimited).

Model Lower layers Upper layers dev-clean dev-other test-clean test-other

Baseline - - 3.1 8.3 3.2 8.4
Low64 [−64, 64] - 3.1 8.4 3.4 8.5
Up64 - [−64, 64] 3.1 8.2 3.3 8.2

4(H8)× 4 - - 3.1 8.1 3.2 8.1

We train the models with the same setting as the Conformer-M baseline (as in Table 2) but with
a limited attention range for either lower or upper layers. Among the 16 layers in the baseline,
lower and upper layers consist of 8 layers each and correspond to phonetic localization and linguistic
localization, respectively. For selected layers, we restrict each frame to only attend to near neighbors
within the distance of 64 frames. Table 6 shows the performance on the LibriSpeech dataset.

For lower layers, attention range restriction causes a clear degradation of the recognition accuracy.
We consider that phonetic localization in lower layers demands a wide range of attention. On the
other hand, for upper layers, attention range restriction shows almost comparable performance to the
baseline, and even better in some subsets. We hypothesize that the upper layers for CTC-based ASR
may not require a very wide context, because their attention pattern is highly diagonal. In addition,
the restriction-based computational savings seems to be no larger than the proposed attention reuse.
A context range of 128 (64+64) frames corresponds to about 5.1 seconds, where the average utter-
ance length of the corpora is about 7.4 seconds. Therefore, we expect approximately 30% reduction
in attention calculation when masked attention is applied to every layer. Our attention reuse (4× 4)
reduces about 75% of the attention computation without any degradation in the performance.
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