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Abstract
Membership inference attacks (MIAs) aim to001
determine whether a specific example was002
used to train a given language model. While003
prior work has explored prompt-based attacks004
such as ReCALL, these methods rely heav-005
ily on the assumption that using known non-006
members as prompts reliably suppresses the007
model’s responses to non-member queries. We008
propose EM-MIA, a new membership infer-009
ence approach that iteratively refines prefix ef-010
fectiveness and membership scores using an011
expectation-maximization strategy without re-012
quiring labeled non-member examples. To sup-013
port controlled evaluation, we introduce OL-014
MoMIA, a benchmark that enables analysis of015
MIA robustness under systematically varied016
distributional overlap and difficulty. Experi-017
ments on WikiMIA and OLMoMIA show that018
EM-MIA outperforms existing baselines, par-019
ticularly in settings with clear distributional020
separability. We highlight scenarios where EM-021
MIA succeeds in practical settings with partial022
distributional overlap, while failure cases ex-023
pose fundamental limitations of current MIA024
methods under near-identical conditions. We025
will release our code and evaluation pipeline026
upon publication to encourage reproducible and027
robust MIA research.028

1 Introduction029

As large language models (LLMs) (Brown et al.,030

2020; Touvron et al., 2023b) continue to ad-031

vance in scale and capability, growing concerns032

have emerged regarding the provenance and trans-033

parency of their training data (Henderson et al.,034

2023; Liang et al., 2023). This issue is cru-035

cial in both research and real-world deployments,036

where uncertainty about what data a model has037

seen can lead to legal and ethical risks, such038

as privacy breaches (Staab et al., 2023; Kandpal039

et al., 2023), copyright infringement (Meeus et al.,040

2024c), and the leakage of sensitive or proprietary041

content (Chang et al., 2023).042

Membership inference attacks (MIAs) offer a 043

concrete framework for probing this issue by at- 044

tempting to determine whether a specific example 045

was included in a model’s training corpus (Shokri 046

et al., 2017; Carlini et al., 2022). By doing so, 047

they enable auditing of model behavior and expo- 048

sure, helping practitioners evaluate data contam- 049

ination (Magar and Schwartz, 2022; Sainz et al., 050

2023, 2024) or compliance with data usage poli- 051

cies (Voigt and Von dem Bussche, 2017; Legisla- 052

ture, 2018). Despite their utility, MIAs on LLMs re- 053

main fundamentally challenging due to the massive 054

size of pre-training corpora and the subtle bound- 055

ary between memorization and generalization in 056

natural language (Duan et al., 2024). Recent work 057

has proposed prompt-based MIA techniques such 058

as ReCALL (Xie et al., 2024), which assume that 059

known non-members can serve as effective prompts 060

for distinguishing members from non-members. 061

However, we find that the effectiveness of such 062

prompts is highly inconsistent and difficult to pre- 063

dict, motivating the need for a more adaptive ap- 064

proach that can account for variability in prompt 065

effectiveness. 066

To address the limitations of approaches that 067

rely on arbitrarily or randomly chosen prompts, 068

we propose EM-MIA, a novel membership infer- 069

ence method that jointly refines prefix effectiveness 070

and membership scores through an expectation- 071

maximization procedure. Our approach is moti- 072

vated by the observation that the usefulness of a 073

prompt, defined as its ability to differentiate mem- 074

bers from non-members, varies widely across ex- 075

amples and cannot be reliably determined in ad- 076

vance. Instead of relying on labeled non-members 077

or assuming the quality of predefined prompts, EM- 078

MIA uses the model’s own responses to iteratively 079

estimate which prefixes are informative and which 080

examples are likely to be members. This interac- 081

tion allows the model to bootstrap its predictions 082

over both prompt selection and membership esti- 083
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mation in a fully unsupervised manner. As a result,084

EM-MIA offers greater flexibility and robustness085

across diverse settings, particularly when prompt-086

based assumptions do not hold or ground-truth non-087

member data is unavailable.088

To facilitate more controlled and reproducible089

evaluation of membership inference methods, we090

introduce OLMoMIA, a benchmark constructed091

from the pre-training corpus and checkpoints of092

the OLMo open-source LLM series (Groeneveld093

et al., 2024). Unlike existing benchmarks such as094

WikiMIA (Shi et al., 2023) and MIMIR (Duan et al.,095

2024), which provide limited control over the simi-096

larity between member and non-member examples,097

OLMoMIA allows researchers to systematically098

vary distributional overlap and assess how different099

methods perform across a range of difficulty levels.100

By partitioning the data based on semantic simi-101

larity and membership status with respect to the102

pre-training data, OLMoMIA supports fine-grained103

analysis of robustness, generalization, and failure104

modes in both easy and near-indistinguishable set-105

tings. Its design enables rigorous comparison of in-106

ference strategies under controlled conditions, and107

we will release both the benchmark and its genera-108

tion pipeline to support scalable and reproducible109

MIA research.110

Our experiments show that EM-MIA outper-111

forms existing MIA methods on WikiMIA across112

models of varying sizes and achieves robust results113

on OLMoMIA under systematically controlled dif-114

ficulty conditions. In particular, EM-MIA demon-115

strates strong performance without access to la-116

beled non-member data and maintains robustness117

to prompt variability, highlighting its practical118

value in realistic gray-box scenarios. At the same119

time, our results expose the inherent difficulty120

of membership inference when member and non-121

member distributions are nearly identical, which122

poses a significant challenge for all existing meth-123

ods, including ours. These findings underscore124

the importance of evaluating MIA methods across125

a range of separability conditions and offer new126

insight into the limits and opportunities of prompt-127

based membership inference.128

2 Related Work129

Membership Inference on LLMs. Membership130

inference on LLMs presents unique challenges.131

First, LLMs are trained on massive corpora, and132

individual examples are typically seen only once133

or a few times (Lee et al., 2021), leaving minimal 134

memorization footprint. Second, defining member- 135

ship is inherently ambiguous in natural language, in 136

that texts often repeat or partially overlap even af- 137

ter rigorous decontamination (Kandpal et al., 2022; 138

Tirumala et al., 2024), and paraphrased or semanti- 139

cally similar content can blur membership bound- 140

aries (Shilov et al., 2024; Mattern et al., 2023; 141

Mozaffari and Marathe, 2024). Traditional MIA 142

methods often rely on training shadow models us- 143

ing labeled data from a similar distribution (Shokri 144

et al., 2017), but this is impractical in LLM set- 145

tings due to limited access to comparable data and 146

training specifications. 147

In contrast, MIA methods for LLMs typically 148

use the model’s loss (e.g., negative log-likelihood) 149

as a membership score, under the assumption that 150

models tend to memorize or overfit their training 151

data (Yeom et al., 2018; Carlini et al., 2022). Build- 152

ing on this idea, several techniques calibrate mem- 153

bership scores based on input difficulty (Ye et al., 154

2022), using reference models (Carlini et al., 2022), 155

compression-based heuristics (Carlini et al., 2021), 156

or nearest neighbors in embedding space (Mat- 157

tern et al., 2023). Other methods focus on low- 158

likelihood tokens (Shi et al., 2023) or compute cal- 159

ibrated token-level ratios (Zhang et al., 2024). 160

ReCALL (Xie et al., 2024) proposes a different 161

strategy by using known non-member examples 162

as prompts to condition the model’s response. It 163

assumes that such prompts suppress memorization 164

signals, enabling members to stand out by their ele- 165

vated likelihood under the same prompt. However, 166

this assumption is brittle, as prompt effectiveness 167

varies significantly across examples, and a fixed 168

prompt often fails to generalize across models or 169

domains. We address this limitation by proposing 170

a fully unsupervised method that jointly estimates 171

prompt effectiveness and membership likelihood, 172

without relying on labeled non-members or fixed 173

prompting strategies. 174

Evaluation Benchmarks. Robust evaluation of 175

MIA methods for LLMs remains challenging be- 176

cause existing benchmarks rarely provide both reli- 177

able membership labels and controllable distribu- 178

tional settings. Most benchmarks fall into one of 179

two categories. Some, such as WikiMIA (Shi et al., 180

2023; Meeus et al., 2024a), determine member- 181

ship based on document timestamps and model re- 182

lease dates. This approach risks conflating member- 183

ship inference with distribution shift detection (Das 184
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et al., 2024; Meeus et al., 2024b; Maini et al., 2024).185

Others, such as MIMIR (Duan et al., 2024), use ran-186

dom splits to ensure that member and non-member187

distributions are nearly identical. In such cases, no188

existing method performs significantly better than189

random guessing.190

These limitations make it difficult to understand191

how well a method generalizes across different192

data conditions. Pre-training corpora are typically193

drawn from diverse sources, while inference-time194

inputs may come from entirely different domains.195

Effective evaluation therefore requires testing un-196

der a range of membership separability conditions.197

However, constructing such benchmarks is prac-198

tically difficult, especially given the lack of true199

non-member data and the challenge of controlling200

test distributions. There is a clear need for evalu-201

ation setups that reflect varied, realistic scenarios202

while maintaining access to reliable ground-truth203

labels (Meeus et al., 2024b; Eichler et al., 2024).204

3 Method205

3.1 Problem Formulation206

We consider membership inference in a gray-box207

setting, where the attacker has access to a language208

modelM and can queryM to obtain token-level209

probabilities or log-likelihoods. Given an input210

x ∈ Dtest, the goal is to predict a binary member-211

ship label indicating whether x was included in the212

pretraining corpus Dtrain ofM.213

3.2 ReCaLL: Assumptions and Limitations214

ReCaLL (Xie et al., 2024) is a prompt-based215

membership inference method that computes the216

ratio between the conditional and unconditional217

log-likelihoods of a target example x under M.218

Given a prefix p, the ReCaLL score is defined219

as ReCaLLp(x;M) = LL(x | p;M)/LL(x;M),220

where LL denotes the average log-likelihood over221

tokens, and p = p1 ⊕ · · · ⊕ pn is a concatena-222

tion of non-member examples pi. The intuition223

is that conditioning on non-members tends to re-224

duce the likelihood of members more than that of225

non-members, making the ratio indicative for mem-226

bership prediction.227

ReCaLL demonstrates strong empirical per-228

formance, achieving over 90% AUC-ROC on229

WikiMIA (Shi et al., 2023) and outperforming prior230

methods such as Min-K%++ (Zhang et al., 2024).231

However, this performance depends on strong as-232

sumptions and lacks theoretical justification. In233

Figure 1: Distribution of prefix scores (measured by
AUC-ROC in the oracle setting) for members and non-
members on WikiMIA (Shi et al., 2023) (length 128)
using Pythia-6.9B (Biderman et al., 2023).

its original implementation, ReCaLL constructs 234

prefixes by randomly selecting non-members from 235

the test set, assuming that (1) ground-truth non- 236

members are available at inference time, and (2) all 237

non-members are equally effective as prompts. 238

In practice, such assumptions rarely hold so la- 239

beled non-members are often unavailable, espe- 240

cially when the training and test data distributions 241

substantially overlap (Villalobos et al., 2022; Muen- 242

nighoff et al., 2024). Even synthetic prefixes gener- 243

ated using GPT-4, as explored in Xie et al. (2024), 244

rely on seed non-members drawn from the test dis- 245

tribution. This reliance on known non-members 246

gives ReCaLL an unfair advantage over methods 247

that operate without access to test labels. 248

Ablation studies in Xie et al. (2024) further show 249

that ReCaLL’s performance degrades when the pre- 250

fix and test inputs differ in distribution, and that dif- 251

ferent random samples yield significant variance in 252

accuracy. These findings suggest that non-members 253

vary widely in their effectiveness as prompts, and 254

that ReCaLL does not generalize reliably across 255

domains or distribution shifts. These limitations 256

motivate the need for a more flexible and fully unsu- 257

pervised approach that does not depend on labeled 258

non-members or assume prompt effectiveness in 259

advance. 260

3.3 Motivation: Sensitivity to Prefix Choice 261

We empirically examine how ReCaLL’s perfor- 262

mance varies with the choice of prefix, particularly 263

when labeled non-members are unavailable. To this 264

end, we define a prefix score r(p) as the effective- 265

ness of a prefix p in distinguishing members from 266

non-members when used in ReCaLL. 267
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Algorithm 1 EM-MIA
Input: Target LLMM, Test dataset Dtest

Output: Membership scores f(x) for x ∈ Dtest

1: Initialize f(x) with an existing off-the-shelf MIA method
2: repeat
3: Update prefix scores r(p) = S(ReCaLLp, f,Dtest) for p ∈ Dtest

4: Update membership scores f(x) = −r(x) for x ∈ Dtest

5: until Convergence (no significant difference in f )

In an oracle setting with access to ground-truth268

membership labels, we compute r(p) as the AUC-269

ROC of ReCaLLp(x) over a test set Dtest, using270

each x ∈ Dtest as a standalone prefix. This allows271

us to empirically measure the effectiveness of each272

test example when used as a prefix.273

Figure 1 shows that non-member prefixes gen-274

erally lead to strong ReCaLL performance, with275

AUC-ROC often exceeding 0.7. In contrast, mem-276

ber prefixes perform poorly, with scores clustering277

near 0.5 (i.e., random guessing). Additional com-278

parisons using alternative metrics for prefix scoring279

are included in Appendix C. These results highlight280

two limitations of current ReCaLL-based methods:281

(1) Even among non-members, prefix effectiveness282

varies widely; (2) In realistic scenarios, ground-283

truth labels needed to evaluate or filter prefixes are284

unavailable.285

These findings underscore the need for an ap-286

proach that can identify effective prefixes and infer287

membership without access to labels. We address288

this challenge in the following section by propos-289

ing a fully unsupervised method that jointly esti-290

mates membership likelihood and prefix effective-291

ness through iterative refinement.292

3.4 EM-MIA: Joint Estimation via EM293

To address the practical setting where neither la-294

beled non-members nor reliable prompt effective-295

ness can be assumed, we propose EM-MIA, a fully296

unsupervised method that jointly estimates prefix297

effectiveness and membership likelihood using an298

expectation-maximization (EM) procedure.299

Let f(x) denote the membership score for each300

test example x ∈ Dtest, and r(p) denote the ef-301

fectiveness score of a prefix p. The key insight302

is that membership scores and prefix scores can303

reinforce each other: better membership estimates304

allow more accurate estimation of prefix effective-305

ness, and more reliable prefixes lead to improved306

membership predictions. This mutual dependency307

motivates an iterative procedure in which each set 308

of scores is refined based on the other. 309

Algorithm 1 outlines the overall procedure of 310

EM-MIA. We initialize membership scores using 311

any existing off-the-shelf MIA method such as 312

Loss (Yeom et al., 2018) or Min-K%++ (Zhang 313

et al., 2024) (Line 1). We then alternate between 314

two updates: (1) estimating prefix scores r(p) 315

based on current membership scores f(x) (Line 316

3), and (2) updating f(x) using the refined r(p) 317

(Line 4). This process continues until convergence 318

(Line 5). Because EM-MIA is a general framework, 319

initialization, score update rules, stopping criteria, 320

and datasets (see Appendix A) can be adapted to 321

different applications. 322

Updating Prefix Scores. As shown in Sec- 323

tion 3.3, AUC-ROC is an effective function S 324

for evaluating a prefix p in the oracle setting 325

given ground truth labels. Since ground-truth 326

labels are not available, we generate pseudo- 327

labels using a threshold τ over current member- 328

ship scores f(x) and use them to calculate pre- 329

fix scores: AUC-ROC({(ReCaLLp(x),1f(x)>τ ) | 330

x ∈ Dtest}). We typically set τ to the median 331

of f(x), assuming a balanced dataset. Alterna- 332

tively, instead of relying on hard thresholds, we 333

can measure rank alignment between ReCaLLp(x) 334

and f(x) using the average absolute rank difference 335

or rank correlation coefficients such as Kendall’s 336

tau (Kendall, 1938) or Spearman’s rho (Spearman, 337

1961). 338

Updating Membership Scores. Section 3.3 also 339

shows that a negative prefix score−r(x) is a simple 340

yet effective membership score. Alternatively one 341

could construct a prefix p = p1⊕· · ·⊕pn using top- 342

k examples ranked by r(x), and compute f(x) = 343

ReCaLLp(x) using this prefix. The ordering of pi 344

within p is also a design choice. Placing stronger 345

prefixes closer to x may amplify their influence due 346

to LLMs’ attention bias toward recent tokens. 347
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Figure 2: The basic setup of OLMoMIA benchmark.
The horizontal line indicates a training step. For any
intermediate checkpoint at a specific step, we can con-
sider training data before and after that step as members
and non-members, respectively.

4 OLMoMIA Benchmark348

Motivation. To enable controlled and repro-349

ducible evaluation of MIA methods under vary-350

ing difficulty levels, we introduce OLMoMIA, a351

new benchmark constructed from the training data352

and checkpoints of the OLMo-7B model (Groen-353

eveld et al., 2024), which was pre-trained on the354

Dolma dataset (Soldaini et al., 2024). Unlike ex-355

isting benchmarks such as WikiMIA (Shi et al.,356

2023), which rely on time-based heuristics, or357

MIMIR (Duan et al., 2024), which draws member358

and non-member examples from randomly parti-359

tioned subsets of the same data distribution, OLMo-360

MIA allows systematic control over the distribu-361

tional overlap between members and non-members.362

This allows evaluation under more realistic and am-363

biguous conditions, where membership inference364

is inherently more difficult.365

Membership Label Assignment. Figure 2 illus-366

trates the benchmark setup. OLMo provides inter-367

mediate model checkpoints and a detailed index368

mapping training steps to data examples, offering369

a rare opportunity to precisely define membership.370

We use four OLMo-7B checkpoints saved at 100k,371

200k, 300k, and 400k training steps, where one372

full epoch consists of just over 450k steps. We373

define member examples as those seen before step374

100k and non-members as those introduced be-375

tween steps 400k and 500k. This setup reflects376

a practical incremental training scenario. Some am-377

biguity in membership may remain despite dedu-378

plication, as discussed in Section 2.379

Dataset Sampling with Varying Difficulty We380

construct six dataset variants to simulate different381

levels of distributional overlap. The basic Random382

setting samples member and non-member exam-383

ples uniformly from their respective intervals. This384

is analogous to MIMIR (Duan et al., 2024), which385

is known to be more challenging than WikiMIA386

due to minimal distributional differences between387

members and non-members (Gao et al., 2020).388

To introduce controlled variation in difficulty, 389

we first embed the candidate examples using NV- 390

Embed-v2 (Lee et al., 2024), the top-performing 391

model on the MTEB leaderboard (Muennighoff 392

et al., 2022) as of August 2024. We then perform 393

K-means clustering (Lloyd, 1982) separately on 394

member and non-member embeddings with K = 395

50. To ensure diversity within clusters, we apply 396

greedy deduplication by removing examples that 397

are too similar (cosine distance below 0.6) to other 398

points in the same cluster. 399

Based on these clusters, we define three 400

difficulty-controlled variants: Easy selects the 401

most dissimilar member and non-member clusters 402

and samples examples furthest from the opposing 403

group; Hard selects the most similar clusters and 404

samples examples closest to the opposing group; 405

Medium selects clusters with median inter-cluster 406

distance and samples randomly from each. 407

We additionally define two hybrid settings: Mix- 408

1 combines members from Random and non- 409

members from Hard, simulating tightly clustered 410

test-time distributions; Mix-2 does the reverse, com- 411

bining members from Hard and non-members from 412

Random. Together, these configurations span a 413

broad range of separability conditions, providing a 414

robust testbed for evaluating MIA methods. Formal 415

definitions of each construction step are included 416

in Appendix D. 417

Dataset Specifications. Each difficulty variant 418

includes two subsets with maximum sequence 419

lengths of 64 and 128 tokens. Each subset con- 420

tains 500 members and 500 non-members, for a 421

total of 1,000 examples per dataset. 422

Release Plan. We will release the OLMoMIA 423

datasets along with the code used to generate each 424

difficulty variant from the OLMo corpus and check- 425

points. This will support scalable and reproducible 426

MIA research under realistic gray-box conditions. 427

5 Experimental Setup 428

5.1 Datasets and Models 429

We evaluate EM-MIA and compare it with baseline 430

methods on WikiMIA (§6.1) and OLMoMIA (§6.2) 431

using AUC-ROC as a main evaluation metric. We 432

also report TPR@1%FPR results in Appendix F. 433

WikiMIA (Shi et al., 2023) provides length-based 434

splits of 32, 64, and 128, and we follow prior 435

work (Xie et al., 2024; Zhang et al., 2024) in using 436

Mamba 1.4B (Gu and Dao, 2023), Pythia 6.9B (Bi- 437
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derman et al., 2023), GPT-NeoX 20B (Black et al.,438

2022), LLaMA 13B/30B (Touvron et al., 2023a),439

and OPT 66B (Zhang et al., 2022) as target models.440

For OLMoMIA, we use all six controlled difficulty441

settings of Easy, Medium, Hard, Random, Mix-1,442

and Mix-2, and evaluate using OLMo-7B check-443

points after 100k, 200k, 300k, and 400k training444

steps. We exclude MIMIR (Duan et al., 2024) from445

our experiments since it lacks a baseline that per-446

forms meaningfully better than random guessing,447

which is required for initialization in EM-MIA.448

5.2 Baselines449

We compare EM-MIA against the following base-450

lines: Loss (Yeom et al., 2018), Ref (Carlini et al.,451

2022), Zlib (Carlini et al., 2021), Min-K% (Shi452

et al., 2023), and Min-K%++ (Zhang et al., 2024).453

We use Pythia-70m for WikiMIA and StableLM-454

Base-Alpha-3B-v2 model (Tow, 2023) for OLMo-455

MIA as the reference model of the Ref method,456

following Shi et al. (2023) and Duan et al. (2024).457

We use K = 20 for Min-K% and Min-K%++.458

Among the commonly used baselines, we omit459

Neighbor (Mattern et al., 2023) because it is not460

the best in most cases though it requires LLM in-461

ference multiple times for neighborhood texts, so462

it is much more expensive.463

5.3 ReCaLL-based Baselines464

We include several variants of ReCaLL that dif-465

fer in how the prefix p = p1 ⊕ · · · ⊕ pn is466

constructed: Rand, RandM, RandNM, and Top-467

Pref. Rand randomly selects any data from Dtest.468

RandM randomly selects member data from Dtest.469

RandNM randomly selects non-member data from470

Dtest. TopPref selects data from Dtest with the471

highest prefix scores calculated with ground truth472

labels the same as §3.3.473

Among these, only Randis fully unsupervised;474

the others either partially or fully rely on labels in475

the test dataset, making them unsuitable for real-476

istic scenarios. For all methods using a random477

selection (Rand, RandM, and, RandNM), we ex-478

ecute five times with different random seeds and479

report the average. We fix n = 12 since it provides480

a reasonable performance while not too expensive.481

We report the results from the original ReCaLL482

paper but explain why this is not a fair comparison483

in Appendix B.484

We also evaluate two unsupervised averag-485

ing variants. Avg and AvgP average ReCaLL486

scores over all data points in Dtest: Avg(x) =487

1
|Dtest|

∑
p∈Dtest

ReCaLLp(x) and AvgP(p) = 488
1

|Dtest|
∑

x∈Dtest
ReCaLLp(x). The intuition is av- 489

eraging will smooth out ReCaLL scores with a 490

non-discriminative prefix while keeping ReCaLL 491

scores with a discriminative prefix without exactly 492

knowing discriminative prefixes. 493

5.4 EM-MIA 494

As described in Section 3.4, EM-MIA is a general 495

framework where each component can be tuned for 496

improvement, but we use the following options as 497

defaults based on results from preliminary experi- 498

ments. Overall, Min-K%++ performs best among 499

baselines without ReCaLL-based approaches, so 500

we use it as a default choice for initialization. Alter- 501

natively, we may use ReCaLL-based methods that 502

do not rely on any labels like Avg, AvgP, or Rand. 503

For the update rule for prefix scores, we use AUC- 504

ROC as a default scoring function S. For the update 505

rule for membership scores, we use negative prefix 506

scores as new membership scores. For the stopping 507

criterion, we repeat ten iterations and stop without 508

thresholding by the score difference since we ob- 509

served that membership scores and prefix scores 510

converge quickly after a few iterations. We also ob- 511

served that EM-MIA is not sensitive to the choice 512

of the initialization method and the scoring func- 513

tion S and converges to similar results. Ablation 514

study on different initializations and scoring func- 515

tions can be found in Section 6.3. Discussion on 516

computational costs can be found in Appendix E. 517

6 Results and Discussion 518

6.1 WikiMIA 519

Table 1 and Table 3 show results on WikiMIA, us- 520

ing AUC-ROC and TPR@1%FPR as evaluation 521

metrics respectively. EM-MIA achieves state-of- 522

the-art performance across all models and length 523

splits, significantly outperforming all baselines, in- 524

cluding ReCaLL, even without access to labeled 525

non-member examples. In all cases, EM-MIA ex- 526

ceeds 96% AUC-ROC. For the largest model, OPT- 527

66B, it reaches over 99% AUC-ROC for length 32 528

and 64, whereas ReCaLL falls below 86%. 529

All non-ReCaLL baselines remain below 76% 530

AUC-ROC on average. The performance or- 531

der among ReCaLL-based variants is consistent: 532

RandM < Avg, AvgP < Rand < RandNM < TopPref . 533

This pattern confirms that ReCaLL is highly sensi- 534

tive to the choice of prefix. Particularly, the signifi- 535

cant performance gap between Rand and RandNM 536
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Method Mamba-1.4B Pythia-6.9B LLaMA-13B NeoX-20B LLaMA-30B OPT-66B Average

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

Loss 61.0 58.2 63.3 63.8 60.8 65.1 67.5 63.6 67.7 69.1 66.6 70.8 69.4 66.1 70.3 65.7 62.3 65.5 66.1 62.9 67.1
Ref 60.3 59.7 59.7 63.2 62.3 63.0 64.0 62.5 64.1 68.2 67.8 68.9 65.1 64.8 66.8 63.9 62.9 62.7 64.1 63.3 64.2
Zlib 61.9 60.4 65.6 64.3 62.6 67.6 67.8 65.3 69.7 69.3 68.1 72.4 69.8 67.4 71.8 65.8 63.9 67.4 66.5 64.6 69.1
Min-K% 63.3 61.7 66.7 66.3 65.0 69.5 66.8 66.0 71.5 72.1 72.1 75.7 69.3 68.4 73.7 67.5 66.5 70.6 67.5 66.6 71.3
Min-K%++ 66.4 67.2 67.7 70.2 71.8 69.8 84.4 84.3 83.8 75.1 76.4 75.5 84.3 84.2 82.8 69.7 69.8 71.1 75.0 75.6 75.1

Avg 70.2 68.3 65.6 69.3 68.2 66.7 77.2 77.3 74.6 71.4 72.0 68.7 79.8 81.0 79.6 64.6 65.6 60.0 72.1 72.1 69.2
AvgP 64.0 61.8 56.7 62.1 61.0 59.0 63.1 60.3 56.4 63.9 61.8 61.1 60.3 60.0 55.4 86.9 94.3 95.1 66.7 66.5 63.9
RandM 25.4 25.1 26.2 24.9 26.2 24.6 21.0 14.9 68.6 25.3 28.3 29.8 14.0 15.1 70.4 33.9 40.9 42.9 24.1 25.1 43.8
Rand 72.7 78.2 64.2 67.0 73.4 68.7 73.9 75.4 68.5 68.2 74.5 67.5 66.9 71.7 70.2 64.5 67.8 58.6 68.9 73.5 66.3
RandNM 90.7 90.6 88.4 87.3 90.0 88.9 92.1 93.4 68.8 85.9 89.9 86.3 90.6 92.1 71.8 78.7 77.6 67.8 87.5 88.9 78.7
TopPref 90.6 91.2 88.0 91.3 92.9 90.1 93.5 94.2 71.8 88.4 92.0 90.2 92.9 93.8 74.8 83.6 79.6 72.1 90.0 90.6 81.2
Xie et al. (2024) 90.2 91.4 91.2 91.6 93.0 92.6 92.2 95.2 92.5 90.5 93.2 91.7 90.7 94.9 91.2 85.1 79.9 81.0 90.1 91.3 90.0

EM-MIA 97.1 97.6 96.8 97.5 97.5 96.4 98.1 98.8 97.0 96.1 97.6 96.3 98.5 98.8 98.5 99.0 99.0 96.7 97.7 98.2 96.9

Table 1: AUC-ROC results on WikiMIA benchmark. The second block (grey) is ReCaLL-based baselines. RandM,
RandNM, ReCaLL, and TopPref use labels in the test dataset, so comparing them with others is unfair. We report
their scores for reference. We borrow the original ReCaLL results from Xie et al. (2024) which is also unfair to be
compared with ours and other baselines.

Method Easy Medium Hard Random Mix-1 Mix-2

64 128 64 128 64 128 64 128 64 128 64 128

Loss 32.5 63.3 58.9 49.0 43.3 51.5 51.2 52.3 65.7 49.0 30.8 54.7
Ref 56.8 26.8 61.4 47.2 49.1 50.7 49.7 49.9 59.9 49.7 38.9 50.9
Zlib 24.0 51.8 44.8 50.7 40.5 51.1 52.3 50.5 63.2 47.2 31.5 54.3
Min-K% 32.4 50.0 54.0 51.9 43.0 51.2 51.7 51.0 60.8 50.4 34.9 51.7
Min-K%++ 45.2 59.4 56.4 45.7 46.4 51.4 51.0 51.9 57.9 50.0 39.8 53.2

Avg 61.9 53.9 52.3 57.0 47.6 51.5 50.3 48.6 63.3 56.4 35.5 44.4
AvgP 79.2 39.9 53.9 61.7 50.2 51.4 49.0 50.1 55.7 63.0 42.7 41.8
RandM 32.3 22.7 39.2 30.3 45.8 50.5 48.1 48.2 49.7 48.0 29.1 28.7
Rand 63.7 46.3 56.0 59.4 48.9 52.1 49.7 49.1 60.6 68.0 38.0 38.6
RandNM 87.1 75.5 71.8 81.2 50.5 53.2 50.4 50.0 66.5 73.7 49.1 48.0
TopPref 88.9 88.5 79.7 64.4 55.7 54.5 52.3 52.7 79.9 80.2 55.3 62.1

EM-MIA 99.8 97.4 98.3 99.8 47.2 50.2 51.4 50.9 88.3 80.8 88.4 77.1

Table 2: AUC-ROC results on OLMoMIA benchmark. The second block (grey) is ReCaLL-based baselines. RandM,
RandNM, ReCaLL, and TopPref use labels in the test dataset, so comparing them with others is unfair. We report
their scores for reference.

highlights ReCaLL’s reliance on the availability537

of given non-members. Importantly, Rand, which538

uses no test labels, performs worse than Min-K%++539

on average, indicating that ReCaLL alone is insuf-540

ficient under a fully unsupervised setting.541

RandNM is similar to the original ReCaLL (Xie542

et al., 2024) in most cases except for the OPT-543

66B model and LLaMA models with sequence544

length 128, probably because n = 12 is not op-545

timal for these cases. TopPref consistently out-546

performs RandNM, demonstrating that prefix qual-547

ity varies and that random prefix selection is sub-548

optimal. This opens the door to prefix optimiza-549

tion (Shin et al., 2020; Deng et al., 2022; Guo et al.,550

2023), though finding high-quality prefixes with-551

out supervision remains challenging. Our method552

approximates prefix quality without labels and uses553

it to improve membership prediction. 554

6.2 OLMoMIA 555

Table 2 and Table 4 show results on OLMoMIA, 556

using AUC-ROC and TPR@1%FPR as evaluation 557

metrics respectively. EM-MIA performs nearly 558

perfectly on Easy and Medium, similar to its perfor- 559

mance on WikiMIA. We did not observe consistent 560

differences across checkpoints, despite the expec- 561

tation that earlier training data would be harder to 562

detect. Therefore, we report averages across four 563

OLMo checkpoints. In contrast, it performs close 564

to random guessing on Hard and Random similar 565

to MIMIR, where member and non-member dis- 566

tributions heavily overlap and all methods are not 567

sufficiently better than random guessing. On Mix-1 568

and Mix-2, EM-MIA achieves reasonable scores, 569
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though not as high as in easier settings. In all but570

the hardest scenarios, EM-MIA significantly out-571

performs all baselines.572

None of the baselines without ReCaLL-based573

approaches are successful in all settings, which574

implies that OLMoMIA is a challenging bench-575

mark. The relative order between ReCaLL-based576

baselines is again consistent: RandM < Avg, AvgP,577

Rand < RandNM < TopPref , although none of the578

fully unsupervised variants are successful overall.579

Interestingly, RandNM works reasonably well580

on Mix-1 but does not work well on Mix-2. This is581

likely because non-members from Mix-1 are from582

the same cluster while non-members from Mix-1583

are randomly sampled from the entire distribution.584

TopPref again outperforms RandNM, reinforcing585

that not all non-members are equally effective as586

prompts.587

Evaluating MIA for LLMs is difficult due to588

unknown test-time data distributions. Benchmarks589

like OLMoMIA that simulate varied scenarios offer590

a more comprehensive lens than fixed-split bench-591

marks. We encourage future work to assess meth-592

ods across multiple difficulty levels. While OL-593

MoMIA is not intended as a strictly more realistic594

benchmark, it captures plausible conditions not595

reflected in prior datasets. Our results show that596

EM-MIA maintains strong performance across a597

wide spectrum of distributional overlap.598

6.3 Ablation Study on Initializations and599

Scoring Functions600

Figure 3 shows the ablation study on initialization601

methods (Loss, Ref, Zlib, Min-K%, Min-K%++)602

and prefix scoring functions (AUC-ROC, RankDist,603

and Kendall-Tau), using WikiMIA with length 128604

and Pythia-6.9B. Each curve indicates the change605

of AUC-ROC calculated from the estimates of606

membership scores at each iteration during the607

expectation-maximization algorithm. In most com-608

binations, EM-MIA converges to a similar accuracy609

within 4–5 iterations. In this figure, there is only610

one case in which AUC-ROC decreases quickly611

and reaches a value close to 0. It is difficult to612

know when this happens, but it predicts members613

and non-members oppositely, meaning that using614

negative membership scores gives a good AUC-615

ROC.616

Figure 3: Performance of EM-MIA for each iteration
with varying baselines for initialization and scoring func-
tions S on WikiMIA (Shi et al., 2023) (length 128) using
Pythia-6.9B (Biderman et al., 2023).

7 Conclusion 617

We propose EM-MIA, a membership inference 618

method for large language models that jointly es- 619

timates membership scores and prompt effective- 620

ness through an expectation-maximization proce- 621

dure. Unlike prior work that relies on labeled non- 622

members or assumes prompt quality in advance, 623

EM-MIA operates in a fully unsupervised gray- 624

box setting, making it suitable for more realistic 625

deployment scenarios. Our method outperforms 626

ReCaLL, even without its strong assumptions, and 627

achieves state-of-the-art results on WikiMIA. EM- 628

MIA is modular and flexible, allowing different 629

initialization strategies, scoring rules, and conver- 630

gence criteria depending on the application context. 631

To support more rigorous and controlled evalua- 632

tion, we introduce OLMoMIA, a new benchmark 633

built from the OLMo pretraining pipeline that al- 634

lows fine-grained control over distributional over- 635

lap between members and non-members. Through 636

comprehensive experiments, we show that EM- 637

MIA is robust across a wide range of difficulty 638

settings, while also identifying scenarios where all 639

existing methods struggle, particularly when mem- 640

ber and non-member distributions are nearly identi- 641

cal. Our findings highlight the importance of eval- 642

uating MIA methods under diverse and ambiguous 643

conditions, and suggest that future progress will re- 644

quire methods that adapt to both prompt variability 645

and fine-grained data overlap. 646
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Limitations647

Our paper focuses on detecting LLMs’ pre-training648

data with the gray-box access where computing649

the probability of a text from output logits is pos-650

sible. However, many proprietary LLMs are usu-651

ally further fine-tuned (Ouyang et al., 2022; Chung652

et al., 2024), and they only provide generation653

outputs, which is the black-box setting. We left654

the extension of our approach to MIAs for fine-655

tuned LLMs (Song and Shmatikov, 2019; Jagan-656

natha et al., 2021; Mahloujifar et al., 2021; She-657

jwalkar et al., 2021; Mireshghallah et al., 2022; Tu658

et al., 2024; Feng et al., 2024) or LLMs with black-659

box access (Dong et al., 2024; Zhou et al., 2024;660

Kaneko et al., 2024) as future work.661
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A Using External Data967

We may extend the test dataset Dtest by utilizing968

external data to provide additional signals. Sup-969

pose we have a dataset of known members (Dm),970

a dataset of known non-members (Dnm), and a971

dataset of instances without any membership in-972

formation (Dunk). For example, Dm could be973

old Wikipedia documents, sharing the common974

assumption that LLMs are usually trained with975

Wikipedia. As discussed above, we target the case976

of Dnm = ϕ, or at least Dnm ∩ Dtest = ϕ. How-977

ever, we can construct it with completely unnat-978

ural texts (e.g., “*b9qx84;5zln"). Dunk is desir-979

ably drawn from the same distribution of Dtest980

but could be from any corpus when we do not981

know the test dataset distribution. Finally, we982

can incorporate all available data for better pre-983

diction of membership scores and prefix scores:984

Dtest ← Dtest ∪ Dm ∪ Dnm ∪ Dunk.985

B Comparison with ReCaLL986

As explained in §3.2, the original ReCaLL (Xie987

et al., 2024) uses labeled data from the test dataset,988

which is unfair to compare with the above base-989

lines and ours. More precisely, pi in the pre-990

fix p = p1 ⊕ p2 ⊕ · · · ⊕ pn are known non-991

members from the test set Dtest, and they are ex-992

cluded from the test dataset for evaluation, i.e.,993

Dtest
′ = Dtest \ {p1, p2, · · · , pn}. However, we994

measure the performance of ReCaLL with differ-995

ent prefix selection methods to understand how996

ReCaLL is sensitive to the prefix choice and use it997

as a reference instead of a direct fair comparison.998

Since changing the test dataset every time for999

different prefixes does not make sense and makes1000

the comparison even more complicated, we keep1001

them in the test dataset. A language model1002

tends to repeat, so LL(pi|p;M) ≃ 0. Because1003

LL(pi|p;M) ≪ 0, ReCaLLp(pi;M) ≃ 0. It is1004

likely to ReCaLLp(pi;M) ≪ ReCaLLp(x;M)1005

for x ∈ Dtest \ {p1, p2, · · · , pn}, meaning that Re-1006

CaLL will classify pi as a non-member. The effect1007

would be marginal if |Dtest| ≫ n. Otherwise, we1008

should consider this when we read numbers in the1009

result table.1010

The original ReCaLL (Xie et al., 2024) is sim-1011

ilar to RandNM, except they report the best score1012

after trying all different n values, which is again un-1013

fair. The number of shots n is an important hyper-1014

parameter determining performance. A larger n1015

generally leads to a better MIA performance but1016

Figure 4: ROC curves for MIA using the negative
prefix score as the membership score, evaluated with
different metrics for prefix scores in the oracle setting
on WikiMIA (Shi et al., 2023) (length 128) using Pythia-
6.9B (Biderman et al., 2023).

increases computational cost with a longer p. 1017

C Metrics for Prefix Scores 1018

Figure 4 shows ROC curves when negative pre- 1019

fix scores, computed using different metrics, are 1020

used directly as membership scores. We compare 1021

prefix scoring metrics including AUC-ROC, Accu- 1022

racy, and TPR@k%FPR for k ∈ {0.1, 1, 5, 10, 20}. 1023

Among them, using AUC-ROC to compute prefix 1024

scores yields the best result, achieving 98.6% AUC- 1025

ROC for membership inference. 1026

D Formulation of OLMoMIA Settings 1027

After the filtering of removing close points, let 1028

member clusters as Cm
i for i ∈ [1,K] and non- 1029

member clusters as Cnm
j for j ∈ [1,K]. These 1030

clusters satisfy d(x, y) > 0.6 for all x, y ∈ Cm
i 1031

and d(x, y) > 0.6 for all x, y ∈ Cnm
j . The follow- 1032

ing equations formalize how we construct different 1033

settings of OLMoMIA: 1034

• Random: Drandom = Dm
random ∪ Dnm

random 1035

• Easy: Deasy = Dm
easy ∪ 1036

Dnm
easy, where ieasy, jeasy = 1037

argmax(i,j) Ex∈Ci,y∈Cjd(x, y), 1038

Dm
easy = arg topkx Ey∈Cnm

jeasy
d(x, y), 1039

and Dnm
easy = arg topky Ex∈Cimeasy

d(x, y) 1040

• Hard: Dhard = Dm
hard ∪ 1041

Dnm
hard, where ihard, jhard = 1042

argmin(i,j) Ex∈Ci,y∈Cjd(x, y), Dm
hard = 1043

arg topkx−Ey∈Cnm
jhard

d(x, y), and 1044
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Dnm
hard = arg topky −Ex∈Cim

hard
d(x, y)1045

• Medium: Dmedium = Dm
medium ∪1046

Dnm
medium, where imedium, jmedium =1047

median(i,j) Ex∈Ci,y∈Cjd(x, y), Dm
medium ⊂1048

Cm
imedium

, and Dnm
medium ⊂ Cnm

jmedium
1049

• Mix-1: Dmix−1 = Dm
random ∪ Dnm

hard1050

• Mix-2: Dmix−2 = Dm
hard ∪ Dnm

random1051

E Computational Costs1052

MIAs for LLMs only do inference without any1053

additional training, so they are usually not too ex-1054

pensive. Therefore, MIA accuracy is typically pri-1055

oritized over computational costs as long as it is rea-1056

sonably feasible. Nevertheless, maintaining MIAs’1057

computational costs within a reasonable range is1058

important. Computations on all our experiments1059

with the used datasets (WikiMIA and OLMoMIA)1060

were manageable even in an academic setting. We1061

compare computational complexity between EM-1062

MIA and other baselines (mainly, ReCaLL) and1063

describe how computational costs of EM-MIA can1064

be further reduced below.1065

EM-MIA is a general framework in that the up-1066

date rules for prefix scores and membership scores1067

can be designed differently (as described in §3),1068

and they determine the trade-off between MIA ac-1069

curacy and computational costs. For the design1070

choice described in Algorithm 1 that was used in1071

our experiments, EM-MIA requires a pairwise com-1072

putation LLp(x) for all pairs (x, p) once, where1073

x, p ∈ Dtest. These values are reused to calculate1074

the prefix scores in each iteration without recom-1075

putation. The iterative process does not require1076

additional LLM inferences. The time complexity1077

of EM-MIA is O(D2L2), where D = |Dtest| and1078

L is an average token length of each data on Dtest,1079

by assuming LLM inference cost is quadratic to1080

the input sequence length due to the Transformer1081

architecture. In this case, EM-MIA does not have1082

other tuning hyperparameters, while Min-K% and1083

Min-K%++ have K and or ReCaLL has n. This is1084

more reasonable since validation data to tune them1085

is not given.1086

Of course, the baselines other than ReCaLL1087

(Loss, Ref, Zlib, Min-K%, and Min-K%++) only1088

compute a log-likelihood of each target text with-1089

out computing a conditional log-likelihood with1090

a prefix, so they are the most efficient: O(DL2)1091

time complexity. Since ReCaLL uses a long pre-1092

fix consisting of n non-member data points, its1093

time complexity is O(D(nL)2) = O(n2DL2).1094

According to the ReCaLL paper, they sweep n 1095

from 1 to 12 to find the best n, which means 1096

O((12+22+ · · ·+n2)DL2) = O(n3DL2). Also, 1097

in some cases (Figure 3 and Table 7 in their paper), 1098

they used n = 28 to achieve a better result. In the- 1099

ory, it may seem EM-MIA does not scale well with 1100

respect to D. Nevertheless, the amount of compu- 1101

tation and time for EM-MIA with D ∼ 1000 is not 1102

significantly larger than ReCaLL, considering the 1103

n factor. 1104

Moreover, ReCaLL requires O(n2) times larger 1105

memory than others including EM-MIA, so it may 1106

not be feasible for hardware with a small memory. 1107

In this sense, EM-MIA is more parallelizable, and 1108

we make EM-MIA faster with batching. Lastly, 1109

there is room to improve the time complexity of 1110

our method. We have not explored this yet, but for 1111

example, we may compute ReCaLL scores on a 1112

subset of the test dataset to calculate prefix scores 1113

as an approximation of our algorithm. We left im- 1114

proving the efficiency of EM-MIA as future work. 1115

F TPR@1%FPR Results 1116

TPR@low FPR is a useful MIA evaluation met- 1117

ric (Carlini et al., 2022) in addition to AUC-ROC, 1118

especially when developing a new MIA and com- 1119

paring it with other MIAs. Due to the space limita- 1120

tion in the main text, we put TPR@low FPR here: 1121

Table 3 for WikiMIA and Table 4 for OLMoMIA. 1122
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Method Mamba-1.4B Pythia-6.9B LLaMA-13B NeoX-20B LLaMA-30B OPT-66B Average

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

Loss 4.7 2.1 1.4 6.2 2.8 3.6 4.7 4.2 7.9 10.3 3.5 4.3 4.1 5.3 7.2 6.5 3.5 3.6 6.1 3.6 4.7
Ref 0.5 0.7 0.7 1.6 1.1 1.4 2.3 3.9 2.9 3.1 2.5 1.4 1.3 2.5 3.6 1.8 1.8 0.7 1.8 2.1 1.8
Zlib 4.1 4.9 7.2 4.9 6.0 11.5 5.7 8.1 12.9 9.3 6.3 5.0 4.9 9.5 10.1 5.7 7.0 11.5 5.8 7.0 9.7
Min-K% 7.0 4.2 5.8 8.8 3.9 7.2 5.2 6.0 15.1 10.6 3.9 7.2 4.7 7.0 5.8 9.0 7.7 8.6 7.5 5.5 8.3
Min-K%++ 4.1 7.0 1.4 5.9 10.6 10.1 10.3 12.0 25.2 6.2 9.5 1.4 8.3 6.7 9.4 3.6 12.0 13.7 6.4 9.6 10.2

Avg 3.9 0.4 5.0 8.0 1.1 7.9 3.1 7.0 6.5 6.2 2.1 8.6 2.8 6.7 8.6 2.6 2.1 4.3 4.4 3.2 6.8
AvgP 0.5 0.4 0.7 1.8 0.4 0.0 0.0 0.7 0.0 1.3 0.7 0.0 0.0 0.0 2.9 2.1 12.3 24.5 0.9 2.4 4.7
RandM 0.8 0.1 0.6 0.9 0.0 1.9 0.2 0.4 7.6 0.5 0.3 1.6 0.4 0.6 8.1 0.7 0.1 0.9 0.6 0.2 3.4
Rand 3.7 3.9 2.4 2.3 3.2 7.6 1.6 2.7 7.3 4.4 5.0 4.7 1.6 3.2 7.9 2.1 3.2 3.2 2.6 3.5 5.5
RandNM 19.2 8.3 15.4 12.6 10.5 18.7 18.5 17.2 7.5 12.9 11.6 12.5 13.8 18.7 8.1 5.0 5.0 6.6 13.7 11.9 11.5
TopPref 12.7 4.2 25.2 16.0 1.4 29.5 14.2 9.2 7.9 13.4 13.7 20.9 27.1 29.9 8.6 3.9 5.6 9.4 14.6 10.7 16.9
Xie et al. (2024) 11.2 11.0 4.0 28.5 20.7 33.3 13.3 30.1 26.3 25.3 6.9 30.3 18.4 18.3 1.0 8.3 5.3 6.1 17.5 15.4 16.9

EM-MIA 54.0 47.9 51.8 50.4 56.0 47.5 66.4 75.7 58.3 51.4 64.1 59.0 61.5 66.2 71.9 83.5 73.2 39.6 61.2 63.8 54.7

Table 3: TPR@1%FPR results on WikiMIA benchmark. The second block (grey) is ReCaLL-based baselines.
RandM, RandNM, ReCaLL, and TopPref use labels in the test dataset, so comparing them with others is unfair. We
report their scores for reference. We borrow the original ReCaLL results from Xie et al. (2024) which is also unfair
to be compared with ours and other baselines.

Method Easy Medium Hard Random Mix-1 Mix-2

64 128 64 128 64 128 64 128 64 128 64 128

Loss 2.8 12.8 7.2 1.4 0.1 1.2 1.3 0.7 7.2 1.7 0.0 0.7
Ref 6.2 4.0 4.9 0.6 1.0 0.9 1.2 1.2 8.4 0.5 0.2 1.6
Zlib 2.0 9.8 6.7 1.1 0.2 1.6 0.9 0.7 6.4 1.7 0.0 0.7
Min-K% 1.3 6.5 5.8 1.4 0.1 1.3 1.1 0.7 6.1 2.0 0.0 0.7
Min-K%++ 1.4 8.0 5.0 0.7 0.4 1.0 1.0 0.4 5.0 0.9 0.0 0.5

Avg 4.1 11.5 4.0 1.7 0.2 2.2 1.2 0.6 6.1 2.2 0.0 0.9
AvgP 11.7 0.1 2.6 7.2 0.7 1.6 0.7 1.4 4.8 12.1 0.1 0.0
RandM 3.0 4.9 2.4 1.1 0.4 2.2 0.9 0.8 7.6 1.3 0.0 0.4
Rand 4.3 7.8 3.7 1.7 0.4 2.7 1.0 0.8 10.6 3.0 0.0 0.7
RandNM 16.9 14.2 5.2 1.8 0.3 1.9 1.0 0.8 9.2 2.9 0.0 1.1
TopPref 22.0 16.6 6.3 1.9 0.4 2.2 1.1 1.4 8.1 5.1 0.0 0.5

EM-MIA 95.0 52.1 79.8 96.7 1.8 1.0 1.1 1.4 12.2 3.8 14.8 4.3

Table 4: TPR@1%FPR results on OLMoMIA benchmark. The second block (grey) is ReCaLL-based baselines.
RandM, RandNM, ReCaLL, and TopPref use labels in the test dataset, so comparing them with others is unfair. We
report their scores for reference.

14


	Introduction
	Related Work
	Method
	Problem Formulation
	ReCaLL: Assumptions and Limitations
	Motivation: Sensitivity to Prefix Choice
	EM-MIA: Joint Estimation via EM

	OLMoMIA Benchmark
	Experimental Setup
	Datasets and Models
	Baselines
	ReCaLL-based Baselines
	EM-MIA

	Results and Discussion
	WikiMIA
	OLMoMIA
	Ablation Study on Initializations and Scoring Functions

	Conclusion
	Using External Data
	Comparison with ReCaLL
	Metrics for Prefix Scores
	Formulation of OLMoMIA Settings
	Computational Costs
	TPR@1%FPR Results

