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Abstract

Membership inference attacks (MIAs) aim to
determine whether a specific example was
used to train a given language model. While
prior work has explored prompt-based attacks
such as ReCALL, these methods rely heav-
ily on the assumption that using known non-
members as prompts reliably suppresses the
model’s responses to non-member queries. We
propose EM-MIA, a new membership infer-
ence approach that iteratively refines prefix ef-
fectiveness and membership scores using an
expectation-maximization strategy without re-
quiring labeled non-member examples. To sup-
port controlled evaluation, we introduce OL-
MoMIA, a benchmark that enables analysis of
MIA robustness under systematically varied
distributional overlap and difficulty. Experi-
ments on WikiMIA and OLMoMIA show that
EM-MIA outperforms existing baselines, par-
ticularly in settings with clear distributional
separability. We highlight scenarios where EM-
MIA succeeds in practical settings with partial
distributional overlap, while failure cases ex-
pose fundamental limitations of current MIA
methods under near-identical conditions. We
will release our code and evaluation pipeline
upon publication to encourage reproducible and
robust MIA research.

1 Introduction

As large language models (LLMs) (Brown et al.,
2020; Touvron et al., 2023b) continue to ad-
vance in scale and capability, growing concerns
have emerged regarding the provenance and trans-
parency of their training data (Henderson et al.,
2023; Liang et al., 2023). This issue is cru-
cial in both research and real-world deployments,
where uncertainty about what data a model has
seen can lead to legal and ethical risks, such
as privacy breaches (Staab et al., 2023; Kandpal
et al., 2023), copyright infringement (Meeus et al.,
2024c), and the leakage of sensitive or proprietary
content (Chang et al., 2023).

Membership inference attacks (MIAs) offer a
concrete framework for probing this issue by at-
tempting to determine whether a specific example
was included in a model’s training corpus (Shokri
et al., 2017; Carlini et al., 2022). By doing so,
they enable auditing of model behavior and expo-
sure, helping practitioners evaluate data contam-
ination (Magar and Schwartz, 2022; Sainz et al.,
2023, 2024) or compliance with data usage poli-
cies (Voigt and Von dem Bussche, 2017; Legisla-
ture, 2018). Despite their utility, MIAs on LLMs re-
main fundamentally challenging due to the massive
size of pre-training corpora and the subtle bound-
ary between memorization and generalization in
natural language (Duan et al., 2024). Recent work
has proposed prompt-based MIA techniques such
as ReCALL (Xie et al., 2024), which assume that
known non-members can serve as effective prompts
for distinguishing members from non-members.
However, we find that the effectiveness of such
prompts is highly inconsistent and difficult to pre-
dict, motivating the need for a more adaptive ap-
proach that can account for variability in prompt
effectiveness.

To address the limitations of approaches that
rely on arbitrarily or randomly chosen prompts,
we propose EM-MIA, a novel membership infer-
ence method that jointly refines prefix effectiveness
and membership scores through an expectation-
maximization procedure. Our approach is moti-
vated by the observation that the usefulness of a
prompt, defined as its ability to differentiate mem-
bers from non-members, varies widely across ex-
amples and cannot be reliably determined in ad-
vance. Instead of relying on labeled non-members
or assuming the quality of predefined prompts, EM-
MIA uses the model’s own responses to iteratively
estimate which prefixes are informative and which
examples are likely to be members. This interac-
tion allows the model to bootstrap its predictions
over both prompt selection and membership esti-



mation in a fully unsupervised manner. As a result,
EM-MIA offers greater flexibility and robustness
across diverse settings, particularly when prompt-
based assumptions do not hold or ground-truth non-
member data is unavailable.

To facilitate more controlled and reproducible
evaluation of membership inference methods, we
introduce OLMoMIA, a benchmark constructed
from the pre-training corpus and checkpoints of
the OLMo open-source LLM series (Groeneveld
et al., 2024). Unlike existing benchmarks such as
WikiMIA (Shi et al., 2023) and MIMIR (Duan et al.,
2024), which provide limited control over the simi-
larity between member and non-member examples,
OLMoMIA allows researchers to systematically
vary distributional overlap and assess how different
methods perform across a range of difficulty levels.
By partitioning the data based on semantic simi-
larity and membership status with respect to the
pre-training data, OLMoMIA supports fine-grained
analysis of robustness, generalization, and failure
modes in both easy and near-indistinguishable set-
tings. Its design enables rigorous comparison of in-
ference strategies under controlled conditions, and
we will release both the benchmark and its genera-
tion pipeline to support scalable and reproducible
MIA research.

Our experiments show that EM-MIA outper-
forms existing MIA methods on WikiMIA across
models of varying sizes and achieves robust results
on OLMoMIA under systematically controlled dif-
ficulty conditions. In particular, EM-MIA demon-
strates strong performance without access to la-
beled non-member data and maintains robustness
to prompt variability, highlighting its practical
value in realistic gray-box scenarios. At the same
time, our results expose the inherent difficulty
of membership inference when member and non-
member distributions are nearly identical, which
poses a significant challenge for all existing meth-
ods, including ours. These findings underscore
the importance of evaluating MIA methods across
a range of separability conditions and offer new
insight into the limits and opportunities of prompt-
based membership inference.

2 Related Work

Membership Inference on LLMs. Membership
inference on LLMs presents unique challenges.
First, LLMs are trained on massive corpora, and
individual examples are typically seen only once

or a few times (Lee et al., 2021), leaving minimal
memorization footprint. Second, defining member-
ship is inherently ambiguous in natural language, in
that texts often repeat or partially overlap even af-
ter rigorous decontamination (Kandpal et al., 2022;
Tirumala et al., 2024), and paraphrased or semanti-
cally similar content can blur membership bound-
aries (Shilov et al., 2024; Mattern et al., 2023;
Mozaffari and Marathe, 2024). Traditional MIA
methods often rely on training shadow models us-
ing labeled data from a similar distribution (Shokri
et al., 2017), but this is impractical in LLM set-
tings due to limited access to comparable data and
training specifications.

In contrast, MIA methods for LLMs typically
use the model’s loss (e.g., negative log-likelihood)
as a membership score, under the assumption that
models tend to memorize or overfit their training
data (Yeom et al., 2018; Carlini et al., 2022). Build-
ing on this idea, several techniques calibrate mem-
bership scores based on input difficulty (Ye et al.,
2022), using reference models (Carlini et al., 2022),
compression-based heuristics (Carlini et al., 2021),
or nearest neighbors in embedding space (Mat-
tern et al., 2023). Other methods focus on low-
likelihood tokens (Shi et al., 2023) or compute cal-
ibrated token-level ratios (Zhang et al., 2024).

ReCALL (Xie et al., 2024) proposes a different
strategy by using known non-member examples
as prompts to condition the model’s response. It
assumes that such prompts suppress memorization
signals, enabling members to stand out by their ele-
vated likelihood under the same prompt. However,
this assumption is brittle, as prompt effectiveness
varies significantly across examples, and a fixed
prompt often fails to generalize across models or
domains. We address this limitation by proposing
a fully unsupervised method that jointly estimates
prompt effectiveness and membership likelihood,
without relying on labeled non-members or fixed
prompting strategies.

Evaluation Benchmarks. Robust evaluation of
MIA methods for LLMs remains challenging be-
cause existing benchmarks rarely provide both reli-
able membership labels and controllable distribu-
tional settings. Most benchmarks fall into one of
two categories. Some, such as WikiMIA (Shi et al.,
2023; Meeus et al., 2024a), determine member-
ship based on document timestamps and model re-
lease dates. This approach risks conflating member-
ship inference with distribution shift detection (Das



etal., 2024; Meeus et al., 2024b; Maini et al., 2024).
Others, such as MIMIR (Duan et al., 2024), use ran-
dom splits to ensure that member and non-member
distributions are nearly identical. In such cases, no
existing method performs significantly better than
random guessing.

These limitations make it difficult to understand
how well a method generalizes across different
data conditions. Pre-training corpora are typically
drawn from diverse sources, while inference-time
inputs may come from entirely different domains.
Effective evaluation therefore requires testing un-
der a range of membership separability conditions.
However, constructing such benchmarks is prac-
tically difficult, especially given the lack of true
non-member data and the challenge of controlling
test distributions. There is a clear need for evalu-
ation setups that reflect varied, realistic scenarios
while maintaining access to reliable ground-truth
labels (Meeus et al., 2024b; Eichler et al., 2024).

3 Method

3.1 Problem Formulation

We consider membership inference in a gray-box
setting, where the attacker has access to a language
model M and can query M to obtain token-level
probabilities or log-likelihoods. Given an input
Z € Dyest, the goal is to predict a binary member-
ship label indicating whether = was included in the
pretraining corpus Dyain of M.

3.2 ReCaLL: Assumptions and Limitations

ReCalL (Xie et al.,, 2024) is a prompt-based
membership inference method that computes the
ratio between the conditional and unconditional
log-likelihoods of a target example x under M.
Given a prefix p, the ReCalLL score is defined
as ReCaLL,(z; M) = LL(z | p; M)/LL(z; M),
where LL denotes the average log-likelihood over
tokens, and p = p; @ --- @ p, is a concatena-
tion of non-member examples p;. The intuition
is that conditioning on non-members tends to re-
duce the likelihood of members more than that of
non-members, making the ratio indicative for mem-
bership prediction.

ReCaLLL demonstrates strong empirical per-
formance, achieving over 90% AUC-ROC on
WikiMIA (Shi et al., 2023) and outperforming prior
methods such as Min-K%++ (Zhang et al., 2024).
However, this performance depends on strong as-
sumptions and lacks theoretical justification. In
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Figure 1: Distribution of prefix scores (measured by
AUC-ROC in the oracle setting) for members and non-
members on WikiMIA (Shi et al., 2023) (length 128)
using Pythia-6.9B (Biderman et al., 2023).

its original implementation, ReCaLL constructs
prefixes by randomly selecting non-members from
the test set, assuming that (1) ground-truth non-
members are available at inference time, and (2) all
non-members are equally effective as prompts.

In practice, such assumptions rarely hold so la-
beled non-members are often unavailable, espe-
cially when the training and test data distributions
substantially overlap (Villalobos et al., 2022; Muen-
nighoff et al., 2024). Even synthetic prefixes gener-
ated using GPT-4, as explored in Xie et al. (2024),
rely on seed non-members drawn from the test dis-
tribution. This reliance on known non-members
gives ReCaLL an unfair advantage over methods
that operate without access to test labels.

Ablation studies in Xie et al. (2024) further show
that ReCalLL’s performance degrades when the pre-
fix and test inputs differ in distribution, and that dif-
ferent random samples yield significant variance in
accuracy. These findings suggest that non-members
vary widely in their effectiveness as prompts, and
that ReCaLLLL does not generalize reliably across
domains or distribution shifts. These limitations
motivate the need for a more flexible and fully unsu-
pervised approach that does not depend on labeled
non-members or assume prompt effectiveness in
advance.

3.3 Motivation: Sensitivity to Prefix Choice

We empirically examine how ReCal.L’s perfor-
mance varies with the choice of prefix, particularly
when labeled non-members are unavailable. To this
end, we define a prefix score r(p) as the effective-
ness of a prefix p in distinguishing members from
non-members when used in ReCaLL.



Algorithm 1 EM-MIA

Test dataset D

Input: Target LLM M, Test dataset Dyest
Output: Membership scores f(x) for & € Dyegt

1: Initialize f(z) with an existing off-the-shelf MIA method

2: repeat

3: Update prefix scores r(p) = S(ReCaLLy, f, Diest) for p € Dyegt
4:  Update membership scores f(x) = —r(z) for & € Diest
5: until Convergence (no significant difference in f)

test
/
Target model M
SN~

Membership score f(x) MIA

EM algorithm
(iterative updates)

Prefix score r(p)

In an oracle setting with access to ground-truth
membership labels, we compute 7(p) as the AUC-
ROC of ReCaLL,(x) over a test set Diegt, using
each & € Dy as a standalone prefix. This allows
us to empirically measure the effectiveness of each
test example when used as a prefix.

Figure 1 shows that non-member prefixes gen-
erally lead to strong ReCal.LL performance, with
AUC-ROC often exceeding 0.7. In contrast, mem-
ber prefixes perform poorly, with scores clustering
near 0.5 (i.e., random guessing). Additional com-
parisons using alternative metrics for prefix scoring
are included in Appendix C. These results highlight
two limitations of current ReCaLL-based methods:
(1) Even among non-members, prefix effectiveness
varies widely; (2) In realistic scenarios, ground-
truth labels needed to evaluate or filter prefixes are
unavailable.

These findings underscore the need for an ap-
proach that can identify effective prefixes and infer
membership without access to labels. We address
this challenge in the following section by propos-
ing a fully unsupervised method that jointly esti-
mates membership likelihood and prefix effective-
ness through iterative refinement.

3.4 EM-MIA: Joint Estimation via EM

To address the practical setting where neither la-
beled non-members nor reliable prompt effective-
ness can be assumed, we propose EM-MIA, a fully
unsupervised method that jointly estimates prefix
effectiveness and membership likelihood using an
expectation-maximization (EM) procedure.

Let f(x) denote the membership score for each
test example © € Diegt, and r(p) denote the ef-
fectiveness score of a prefix p. The key insight
is that membership scores and prefix scores can
reinforce each other: better membership estimates
allow more accurate estimation of prefix effective-
ness, and more reliable prefixes lead to improved
membership predictions. This mutual dependency

motivates an iterative procedure in which each set
of scores is refined based on the other.

Algorithm 1 outlines the overall procedure of
EM-MIA. We initialize membership scores using
any existing off-the-shelf MIA method such as
Loss (Yeom et al., 2018) or Min-K%-++ (Zhang
et al., 2024) (Line 1). We then alternate between
two updates: (1) estimating prefix scores r(p)
based on current membership scores f(x) (Line
3), and (2) updating f(x) using the refined r(p)
(Line 4). This process continues until convergence
(Line 5). Because EM-MIA is a general framework,
initialization, score update rules, stopping criteria,
and datasets (see Appendix A) can be adapted to
different applications.

Updating Prefix Scores. As shown in Sec-
tion 3.3, AUC-ROC is an effective function S
for evaluating a prefix p in the oracle setting
given ground truth labels. Since ground-truth
labels are not available, we generate pseudo-
labels using a threshold 7 over current member-
ship scores f(z) and use them to calculate pre-
fix scores: AUC-ROC({(ReCaLLy(x),1f)>7) |
x € Diest}). We typically set 7 to the median
of f(x), assuming a balanced dataset. Alterna-
tively, instead of relying on hard thresholds, we
can measure rank alignment between ReCaLLy,(z)
and f(z) using the average absolute rank difference
or rank correlation coefficients such as Kendall’s
tau (Kendall, 1938) or Spearman’s rho (Spearman,
1961).

Updating Membership Scores. Section 3.3 also
shows that a negative prefix score —r () is a simple
yet effective membership score. Alternatively one
could construct a prefix p = p1 B - - - B p,, using top-
k examples ranked by r(x), and compute f(z) =
ReCaLL,(x) using this prefix. The ordering of p;
within p is also a design choice. Placing stronger
prefixes closer to z may amplify their influence due
to LLMs’ attention bias toward recent tokens.
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Figure 2: The basic setup of OLMoMIA benchmark.
The horizontal line indicates a training step. For any
intermediate checkpoint at a specific step, we can con-
sider training data before and after that step as members
and non-members, respectively.

4 OLMOoOMIA Benchmark

Motivation. To enable controlled and repro-
ducible evaluation of MIA methods under vary-
ing difficulty levels, we introduce OLMoMIA, a
new benchmark constructed from the training data
and checkpoints of the OLMo-7B model (Groen-
eveld et al., 2024), which was pre-trained on the
Dolma dataset (Soldaini et al., 2024). Unlike ex-
isting benchmarks such as WikiMIA (Shi et al.,
2023), which rely on time-based heuristics, or
MIMIR (Duan et al., 2024), which draws member
and non-member examples from randomly parti-
tioned subsets of the same data distribution, OLMo-
MIA allows systematic control over the distribu-
tional overlap between members and non-members.
This allows evaluation under more realistic and am-
biguous conditions, where membership inference
is inherently more difficult.

Membership Label Assignment. Figure 2 illus-
trates the benchmark setup. OLMo provides inter-
mediate model checkpoints and a detailed index
mapping training steps to data examples, offering
a rare opportunity to precisely define membership.
We use four OLMo-7B checkpoints saved at 100k,
200k, 300k, and 400k training steps, where one
full epoch consists of just over 450k steps. We
define member examples as those seen before step
100k and non-members as those introduced be-
tween steps 400k and 500k. This setup reflects
a practical incremental training scenario. Some am-
biguity in membership may remain despite dedu-
plication, as discussed in Section 2.

Dataset Sampling with Varying Difficulty We
construct six dataset variants to simulate different
levels of distributional overlap. The basic Random
setting samples member and non-member exam-
ples uniformly from their respective intervals. This
is analogous to MIMIR (Duan et al., 2024), which
is known to be more challenging than WikiMIA
due to minimal distributional differences between
members and non-members (Gao et al., 2020).

To introduce controlled variation in difficulty,
we first embed the candidate examples using N'V-
Embed-v2 (Lee et al., 2024), the top-performing
model on the MTEB leaderboard (Muennighoff
et al., 2022) as of August 2024. We then perform
K-means clustering (Lloyd, 1982) separately on
member and non-member embeddings with K =
50. To ensure diversity within clusters, we apply
greedy deduplication by removing examples that
are too similar (cosine distance below 0.6) to other
points in the same cluster.

Based on these clusters, we define three
difficulty-controlled variants: FEasy selects the
most dissimilar member and non-member clusters
and samples examples furthest from the opposing
group; Hard selects the most similar clusters and
samples examples closest to the opposing group;
Medium selects clusters with median inter-cluster
distance and samples randomly from each.

We additionally define two hybrid settings: Mix-
1 combines members from Random and non-
members from Hard, simulating tightly clustered
test-time distributions; Mix-2 does the reverse, com-
bining members from Hard and non-members from
Random. Together, these configurations span a
broad range of separability conditions, providing a
robust testbed for evaluating MIA methods. Formal
definitions of each construction step are included
in Appendix D.

Dataset Specifications. Each difficulty variant
includes two subsets with maximum sequence
lengths of 64 and 128 tokens. Each subset con-
tains 500 members and 500 non-members, for a
total of 1,000 examples per dataset.

Release Plan. We will release the OLMoMIA
datasets along with the code used to generate each
difficulty variant from the OLMo corpus and check-
points. This will support scalable and reproducible
MIA research under realistic gray-box conditions.

S Experimental Setup

5.1 Datasets and Models

We evaluate EM-MIA and compare it with baseline
methods on WikiMIA (§6.1) and OLMoMIA (§6.2)
using AUC-ROC as a main evaluation metric. We
also report TPR@1%FPR results in Appendix F.
WikiMIA (Shi et al., 2023) provides length-based
splits of 32, 64, and 128, and we follow prior
work (Xie et al., 2024; Zhang et al., 2024) in using
Mamba 1.4B (Gu and Dao, 2023), Pythia 6.9B (Bi-



derman et al., 2023), GPT-NeoX 20B (Black et al.,
2022), LLaMA 13B/30B (Touvron et al., 2023a),
and OPT 66B (Zhang et al., 2022) as target models.
For OLMoMIA, we use all six controlled difficulty
settings of Easy, Medium, Hard, Random, Mix-1,
and Mix-2, and evaluate using OLMo-7B check-
points after 100k, 200k, 300k, and 400k training
steps. We exclude MIMIR (Duan et al., 2024) from
our experiments since it lacks a baseline that per-
forms meaningfully better than random guessing,
which is required for initialization in EM-MIA.

5.2 Baselines

We compare EM-MIA against the following base-
lines: Loss (Yeom et al., 2018), Ref (Carlini et al.,
2022), Zlib (Carlini et al., 2021), Min-K% (Shi
et al., 2023), and Min-K%++ (Zhang et al., 2024).
We use Pythia-70m for WikiMIA and StableLM-
Base-Alpha-3B-v2 model (Tow, 2023) for OLMo-
MIA as the reference model of the Ref method,
following Shi et al. (2023) and Duan et al. (2024).
We use K = 20 for Min-K% and Min-K%-++.
Among the commonly used baselines, we omit
Neighbor (Mattern et al., 2023) because it is not
the best in most cases though it requires LLM in-
ference multiple times for neighborhood texts, so
it is much more expensive.

5.3 ReCalL-based Baselines

We include several variants of ReCaL.L that dif-
fer in how the prefix p = p; & --- @ p, is
constructed: Rand, RandM, RandNM, and Top-
Pref. Rand randomly selects any data from Diegt.
RandM randomly selects member data from Dyegt.
RandNM randomly selects non-member data from
Diest. TopPref selects data from Dieg with the
highest prefix scores calculated with ground truth
labels the same as §3.3.

Among these, only Randis fully unsupervised;
the others either partially or fully rely on labels in
the test dataset, making them unsuitable for real-
istic scenarios. For all methods using a random
selection (Rand, RandM, and, RandNM), we ex-
ecute five times with different random seeds and
report the average. We fix n = 12 since it provides
a reasonable performance while not too expensive.
We report the results from the original ReCalLLL
paper but explain why this is not a fair comparison
in Appendix B.

We also evaluate two unsupervised averag-
ing variants. Avg and AvgP average ReCalL
scores over all data points in Dyest: Avg(r) =

"Dtlest‘ Zpeptest RecaLLp(x) and AVgP(p) =

m > weDyes, ReCaLlly (7). The intuition is av-
eraging will smooth out ReCalLL scores with a
non-discriminative prefix while keeping ReCaL.L
scores with a discriminative prefix without exactly
knowing discriminative prefixes.
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As described in Section 3.4, EM-MIA is a general
framework where each component can be tuned for
improvement, but we use the following options as
defaults based on results from preliminary experi-
ments. Overall, Min-K%++ performs best among
baselines without ReCalLL-based approaches, so
we use it as a default choice for initialization. Alter-
natively, we may use ReCalLL-based methods that
do not rely on any labels like Avg, AvgP, or Rand.
For the update rule for prefix scores, we use AUC-
ROC as a default scoring function S. For the update
rule for membership scores, we use negative prefix
scores as new membership scores. For the stopping
criterion, we repeat ten iterations and stop without
thresholding by the score difference since we ob-
served that membership scores and prefix scores
converge quickly after a few iterations. We also ob-
served that EM-MIA is not sensitive to the choice
of the initialization method and the scoring func-
tion .S and converges to similar results. Ablation
study on different initializations and scoring func-
tions can be found in Section 6.3. Discussion on
computational costs can be found in Appendix E.

6 Results and Discussion

6.1 WikiMIA

Table 1 and Table 3 show results on WikiMIA, us-
ing AUC-ROC and TPR@1%FPR as evaluation
metrics respectively. EM-MIA achieves state-of-
the-art performance across all models and length
splits, significantly outperforming all baselines, in-
cluding ReCalL, even without access to labeled
non-member examples. In all cases, EM-MIA ex-
ceeds 96% AUC-ROC. For the largest model, OPT-
66B, it reaches over 99% AUC-ROC for length 32
and 64, whereas ReCaLL falls below 86%.

All non-ReCaL.L baselines remain below 76%
AUC-ROC on average. The performance or-
der among ReCal.L-based variants is consistent:
RandM < Avg, AvgP < Rand < RandNM < TopPref.
This pattern confirms that ReCaL.L is highly sensi-
tive to the choice of prefix. Particularly, the signifi-
cant performance gap between Rand and RandNM



Method Mamba-14B  Pythia-6.9B LLaMA-13B  NeoX-20B  LLaMA-30B OPT-66B Average
32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128
Loss 61.0 58.2 63.3 63.8 60.8 65.1 67.5 63.6 67.7 69.1 66.6 70.8 69.4 66.1 70.3 65.7 62.3 65.5 66.1 62.9 67.1
Ref 60.3 59.7 59.7 63.2 62.3 63.0 64.0 62.5 64.1 68.2 67.8 68.9 65.1 64.8 66.8 63.9 62.9 62.7 64.1 63.3 64.2
Zlib 61.9 60.4 65.6 64.3 62.6 67.6 67.8 65.3 69.7 69.3 68.1 72.4 69.8 67.4 71.8 65.8 63.9 67.4 66.5 64.6 69.1
Min-K% 63.3 61.7 66.7 66.3 65.0 69.5 66.8 66.0 71.5 72.1 72.1 75.7 69.3 68.4 73.7 67.5 66.5 70.6 67.5 66.6 71.3
Min-K%++ 66.4 67.2 67.7 70.2 71.8 69.8 84.4 84.3 83.8 75.1 76.4 75.5 84.3 84.2 82.8 69.7 69.8 71.1 75.0 75.6 75.1
Avg 70.2 68.3 65.6 69.3 68.2 66.7 77.2 77.3 74.6 71.4 72.0 68.7 79.8 81.0 79.6 64.6 65.6 60.0 72.1 72.1 69.2
AvgP 64.0 61.8 56.7 62.1 61.0 59.0 63.1 60.3 56.4 63.9 61.8 61.1 60.3 60.0 55.4 86.9 94.3 95.1 66.7 66.5 63.9
RandM 254 25.1 26.2 249 262 24.6 21.0 149 68.6 25.3 28.3 29.8 14.0 15.1 70.4 33.9 40.9 429 24.1 25.1 43.8
Rand 72.7 782 64.2 67.0 73.4 68.7 73.9 75.4 68.5 68.2 74.5 67.5 66.9 71.7 70.2 64.5 67.8 58.6 68.9 73.5 66.3
RandNM 90.7 90.6 88.4 87.3 90.0 88.9 92.1 93.4 68.8 85.9 89.9 86.3 90.6 92.1 71.8 78.7 77.6 67.8 87.5 88.9 78.7
TopPref 90.6 91.2 88.0 91.3 92.9 90.1 93.5 94.2 71.8 88.4 92.0 90.2 92.9 93.8 74.8 83.6 79.6 72.1 90.0 90.6 81.2
Xie et al. (2024) 90.2 91.4 91.2 91.6 93.0 92.6 92.2 95.2 92.5 90.5 93.2 91.7 90.7 94.9 91.2 85.1 79.9 81.0 90.1 91.3 90.0
EM-MIA 97.1 97.6 96.8 97.5 97.5 96.4 98.1 98.8 97.0 96.1 97.6 96.3 98.5 98.8 98.5 99.0 99.0 96.7 97.7 98.2 96.9

Table 1: AUC-ROC results on WikiMIA benchmark. The second block (grey) is ReCal.L-based baselines. RandM,
RandNM, ReCaLL, and TopPref use labels in the test dataset, so comparing them with others is unfair. We report
their scores for reference. We borrow the original ReCaL.L results from Xie et al. (2024) which is also unfair to be

compared with ours and other baselines.

Method Easy Medium Hard Random Mix-1 Mix-2

64 128 64 128 64 128 64 128 64 128 64 128
Loss 325 633 589 49.0 433 515 512 523 657 49.0 30.8 547
Ref 568 268 614 472 49.1 507 497 499 599 497 389 509
Zlib 240 51.8 448 507 40.5 51.1 523 505 632 472 315 543
Min-K% 324 500 540 519 430 512 517 510 608 504 349 51.7
Min-K%++ 452 594 564 457 464 514 510 519 579 500 39.8 532
Avg 619 539 523 570 47.6 515 503 486 633 564 355 444
AvgP 792 399 539 617 502 514 490 50.1 557 63.0 427 418
RandM 323 227 392 303 458 505 48.1 482 497 480 29.1 28.7
Rand 637 463 560 594 489 521 497 49.1 606 68.0 38.0 38.6
RandNM 87.1 755 71.8 812 505 532 504 50.0 665 737 49.1 480
TopPref 889 885 797 644 557 545 523 527 799 802 553 621
EM-MIA 99.8 974 983 998 472 502 514 509 883 80.8 834 771

Table 2: AUC-ROC results on OLMoMIA benchmark. The second block (grey) is ReCalLL-based baselines. RandM,
RandNM, ReCal.L, and TopPref use labels in the test dataset, so comparing them with others is unfair. We report

their scores for reference.

highlights ReCal.L’s reliance on the availability
of given non-members. Importantly, Rand, which
uses no test labels, performs worse than Min-K%++
on average, indicating that ReCaL.L alone is insuf-
ficient under a fully unsupervised setting.

RandNM is similar to the original ReCaLL (Xie
et al., 2024) in most cases except for the OPT-
66B model and LLaMA models with sequence
length 128, probably because n = 12 is not op-
timal for these cases. TopPref consistently out-
performs RandNM, demonstrating that prefix qual-
ity varies and that random prefix selection is sub-
optimal. This opens the door to prefix optimiza-
tion (Shin et al., 2020; Deng et al., 2022; Guo et al.,
2023), though finding high-quality prefixes with-
out supervision remains challenging. Our method
approximates prefix quality without labels and uses

it to improve membership prediction.

6.2 OLMoMIA

Table 2 and Table 4 show results on OLMoMIA,
using AUC-ROC and TPR@1%FPR as evaluation
metrics respectively. EM-MIA performs nearly
perfectly on Easy and Medium, similar to its perfor-
mance on WikiMIA. We did not observe consistent
differences across checkpoints, despite the expec-
tation that earlier training data would be harder to
detect. Therefore, we report averages across four
OLMo checkpoints. In contrast, it performs close
to random guessing on Hard and Random similar
to MIMIR, where member and non-member dis-
tributions heavily overlap and all methods are not
sufficiently better than random guessing. On Mix-/
and Mix-2, EM-MIA achieves reasonable scores,



though not as high as in easier settings. In all but
the hardest scenarios, EM-MIA significantly out-
performs all baselines.

None of the baselines without ReCal.L-based
approaches are successful in all settings, which
implies that OLMoMIA is a challenging bench-
mark. The relative order between ReCal.L-based
baselines is again consistent: RandM < Avg, AvgP,
Rand < RandNM < TopPref, although none of the
fully unsupervised variants are successful overall.

Interestingly, RandNM works reasonably well
on Mix-1 but does not work well on Mix-2. This is
likely because non-members from Mix-I are from
the same cluster while non-members from Mix-/
are randomly sampled from the entire distribution.
TopPref again outperforms RandNM, reinforcing
that not all non-members are equally effective as
prompts.

Evaluating MIA for LLMs is difficult due to
unknown test-time data distributions. Benchmarks
like OLMoMIA that simulate varied scenarios offer
a more comprehensive lens than fixed-split bench-
marks. We encourage future work to assess meth-
ods across multiple difficulty levels. While OL-
MoMIA is not intended as a strictly more realistic
benchmark, it captures plausible conditions not
reflected in prior datasets. Our results show that
EM-MIA maintains strong performance across a
wide spectrum of distributional overlap.

6.3 Ablation Study on Initializations and
Scoring Functions

Figure 3 shows the ablation study on initialization
methods (Loss, Ref, Zlib, Min-K%, Min-K%++)
and prefix scoring functions (AUC-ROC, RankDist,
and Kendall-Tau), using WikiMIA with length 128
and Pythia-6.9B. Each curve indicates the change
of AUC-ROC calculated from the estimates of
membership scores at each iteration during the
expectation-maximization algorithm. In most com-
binations, EM-MIA converges to a similar accuracy
within 4-5 iterations. In this figure, there is only
one case in which AUC-ROC decreases quickly
and reaches a value close to 0. It is difficult to
know when this happens, but it predicts members
and non-members oppositely, meaning that using
negative membership scores gives a good AUC-
ROC.

1.01

0.8 4 —e— AUC-ROC

---m--- RankDist

-—-- Kendall-Tau

—— Loss

Ref

Zlib

—— Min-K
Min-K++

AUC-ROC
o o
ES o

0.2 4

0.0 4

0 2 4 6 8 10
Iteration

Figure 3: Performance of EM-MIA for each iteration
with varying baselines for initialization and scoring func-
tions S on WikiMIA (Shi et al., 2023) (length 128) using
Pythia-6.9B (Biderman et al., 2023).

7 Conclusion

We propose EM-MIA, a membership inference
method for large language models that jointly es-
timates membership scores and prompt effective-
ness through an expectation-maximization proce-
dure. Unlike prior work that relies on labeled non-
members or assumes prompt quality in advance,
EM-MIA operates in a fully unsupervised gray-
box setting, making it suitable for more realistic
deployment scenarios. Our method outperforms
ReCalL, even without its strong assumptions, and
achieves state-of-the-art results on WikiMIA. EM-
MIA is modular and flexible, allowing different
initialization strategies, scoring rules, and conver-
gence criteria depending on the application context.

To support more rigorous and controlled evalua-
tion, we introduce OLMoMIA, a new benchmark
built from the OLMo pretraining pipeline that al-
lows fine-grained control over distributional over-
lap between members and non-members. Through
comprehensive experiments, we show that EM-
MIA is robust across a wide range of difficulty
settings, while also identifying scenarios where all
existing methods struggle, particularly when mem-
ber and non-member distributions are nearly identi-
cal. Our findings highlight the importance of eval-
uating MIA methods under diverse and ambiguous
conditions, and suggest that future progress will re-
quire methods that adapt to both prompt variability
and fine-grained data overlap.



Limitations

Our paper focuses on detecting LLMs’ pre-training
data with the gray-box access where computing
the probability of a text from output logits is pos-
sible. However, many proprietary LLMs are usu-
ally further fine-tuned (Ouyang et al., 2022; Chung
et al., 2024), and they only provide generation
outputs, which is the black-box setting. We left
the extension of our approach to MIAs for fine-
tuned LLMs (Song and Shmatikov, 2019; Jagan-
natha et al., 2021; Mabhloujifar et al., 2021; She-
jwalkar et al., 2021; Mireshghallah et al., 2022; Tu
et al., 2024; Feng et al., 2024) or LLMs with black-
box access (Dong et al., 2024; Zhou et al., 2024;
Kaneko et al., 2024) as future work.

References

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397-2430.
PMLR.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang
Song, Andreas Terzis, and Florian Tramer. 2022.
Membership inference attacks from first principles.
In 2022 IEEE Symposium on Security and Privacy
(SP), pages 1897-1914. IEEE.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from
large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633-2650.

Kent K Chang, Mackenzie Cramer, Sandeep Soni, and
David Bamman. 2023. Speak, memory: An archaeol-
ogy of books known to chatgpt/gpt-4. arXiv preprint
arXiv:2305.00118.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1-53.

Debeshee Das, Jie Zhang, and Florian Tramer. 2024.
Blind baselines beat membership inference at-
tacks for foundation models.  arXiv preprint
arXiv:2406.16201.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning.
arXiv preprint arXiv:2205.12548.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, and
Ge Li. 2024. Generalization or memorization: Data
contamination and trustworthy evaluation for large
language models. arXiv preprint arXiv:2402.15938.

Michael Duan, Anshuman Suri, Niloofar Mireshghallah,
Sewon Min, Weijia Shi, Luke Zettlemoyer, Yulia
Tsvetkov, Yejin Choi, David Evans, and Hannaneh
Hajishirzi. 2024. Do membership inference attacks
work on large language models? In Conference on
Language Modeling (COLM).

Cédric Eichler, Nathan Champeil, Nicolas Anciaux,
Alexandra Bensamoun, Heber Hwang Arcolezi, and
José Maria De Fuentes. 2024. Nob-mias: Non-biased
membership inference attacks assessment on large
language models with ex-post dataset construction.
arXiv preprint arXiv:2408.05968.

Qizhang Feng, Siva Rajesh Kasa, Hyokun Yun,
Choon Hui Teo, and Sravan Babu Bodapati. 2024.
Exposing privacy gaps: Membership inference attack
on preference data for llm alignment. arXiv preprint
arXiv:2407.06443.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Dirk Groeneveld, 1z Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
et al. 2024. Olmo: Accelerating the science of lan-
guage models. arXiv preprint arXiv:2402.00838.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqging Liu, Jiang Bian, and Yu-
jiu Yang. 2023. Connecting large language models



with evolutionary algorithms yields powerful prompt
optimizers. arXiv preprint arXiv:2309.08532.

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori
Hashimoto, Mark A Lemley, and Percy Liang. 2023.
Foundation models and fair use. Journal of Machine
Learning Research, 24(400):1-79.

Abhyuday Jagannatha, Bhanu Pratap Singh Rawat, and
Hong Yu. 2021. Membership inference attack suscep-
tibility of clinical language models. arXiv preprint
arXiv:2104.08305.

Nikhil Kandpal, Krishna Pillutla, Alina Oprea, Peter
Kairouz, Christopher A Choquette-Choo, and Zheng
Xu. 2023. User inference attacks on large language
models. arXiv preprint arXiv:2310.09266.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022.
Deduplicating training data mitigates privacy risks
in language models. In International Conference on
Machine Learning, pages 10697-10707. PMLR.

Masahiro Kaneko, Youmi Ma, Yuki Wata, and Naoaki
Okazaki. 2024. Sampling-based pseudo-likelihood
for membership inference attacks. arXiv preprint
arXiv:2404.11262.

Maurice G Kendall. 1938. A new measure of rank
correlation. Biometrika, 30(1-2):81-93.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. 2024. Nv-embed: Improved techniques for
training 1lms as generalist embedding models. arXiv
preprint arXiv:2405.17428.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2021. Deduplicating training
data makes language models better. arXiv preprint
arXiv:2107.06499.

California State Legislature. 2018. California con-
sumer privacy act (ccpa). https://oag.ca.gov/
privacy/ccpa.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2023. Holistic evaluation of language mod-
els. Transactions on Machine Learning Research.

Stuart Lloyd. 1982. Least squares quantization in pcm.
IEEE transactions on information theory, 28(2):129—
137.

Inbal Magar and Roy Schwartz. 2022. Data contami-
nation: From memorization to exploitation. arXiv
preprint arXiv:2203.08242.

Saeed Mahloujifar, Huseyin A Inan, Melissa Chase,
Esha Ghosh, and Marcello Hasegawa. 2021. Mem-
bership inference on word embedding and beyond.
arXiv preprint arXiv:2106.11384.

10

Pratyush Maini, Hengrui Jia, Nicolas Papernot, and
Adam Dziedzic. 2024. Llm dataset inference:
Did you train on my dataset?  arXiv preprint
arXiv:2406.06443.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing
Jin, Bernhard Scholkopf, Mrinmaya Sachan, and Tay-
lor Berg-Kirkpatrick. 2023. Membership inference
attacks against language models via neighbourhood
comparison. arXiv preprint arXiv:2305.18462.

Matthieu Meeus, Shubham Jain, Marek Rei, and Yves-
Alexandre de Montjoye. 2024a. Did the neurons read
your book? document-level membership inference
for large language models. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 2369-2385.

Matthieu Meeus, Shubham Jain, Marek Rei, and Yves-
Alexandre de Montjoye. 2024b. Inherent challenges
of post-hoc membership inference for large language
models. arXiv preprint arXiv:2406.17975.

Matthieu Meeus, Igor Shilov, Manuel Faysse, and
Yves-Alexandre de Montjoye. 2024c. Copyright
traps for large language models. arXiv preprint
arXiv:2402.09363.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit
Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
2022. Quantifying privacy risks of masked language
models using membership inference attacks. arXiv
preprint arXiv:2203.03929.

Hamid Mozaffari and Virendra J Marathe. 2024. Se-
mantic membership inference attack against large
language models. arXiv preprint arXiv:2406.10218.

Niklas Muennighoff, Alexander Rush, Boaz Barak,
Teven Le Scao, Nouamane Tazi, Aleksandra Piktus,
Sampo Pyysalo, Thomas Wolf, and Colin A Raffel.
2024. Scaling data-constrained language models.

Advances in Neural Information Processing Systems,
36.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Oscar Sainz, Jon Ander Campos, Iker Garcia-Ferrero,
Julen Etxaniz, Oier Lopez de Lacalle, and Eneko
Agirre. 2023. Nlp evaluation in trouble: On the
need to measure 1lm data contamination for each
benchmark. arXiv preprint arXiv:2310.18018.

Oscar Sainz, Iker Garcia-Ferrero, Alon Jacovi, Jon An-
der Campos, Yanai Elazar, Eneko Agirre, Yoav Gold-
berg, Wei-Lin Chen, Jenny Chim, Leshem Choshen,
et al. 2024. Data contamination report from the 2024
conda shared task. arXiv preprint arXiv:2407.21530.


https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa

Virat Shejwalkar, Huseyin A Inan, Amir Houmansadr,
and Robert Sim. 2021. Membership inference attacks
against nlp classification models. In NeurIPS 2021
Workshop Privacy in Machine Learning.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo
Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. 2023. Detecting pretraining
data from large language models. arXiv preprint
arXiv:2310.16789.

Igor Shilov, Matthieu Meeus, and Yves-Alexandre
de Montjoye. 2024. Mosaic memory: Fuzzy dupli-
cation in copyright traps for large language models.
arXiv preprint arXiv:2405.15523.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. 2017. Membership inference attacks
against machine learning models. In 2017 IEEE sym-
posium on security and privacy (SP), pages 3—18.
IEEE.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
et al. 2024. Dolma: An open corpus of three tril-
lion tokens for language model pretraining research.
arXiv preprint arXiv:2402.00159.

Congzheng Song and Vitaly Shmatikov. 2019. Audit-
ing data provenance in text-generation models. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 196-206.

Charles Spearman. 1961. The proof and measurement
of association between two things. The American
Journal of Psychology.

Robin Staab, Mark Vero, Mislav Balunovi¢, and Martin
Vechev. 2023. Beyond memorization: Violating pri-

vacy via inference with large language models. arXiv
preprint arXiv:2310.07298.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan,
and Ari Morcos. 2024. D4: Improving llm pretrain-
ing via document de-duplication and diversification.
Advances in Neural Information Processing Systems,
36.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

11

Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jonathan Tow. 2023. Stablelm alpha v2 models.

Shangqing Tu, Kejian Zhu, Yushi Bai, Zijun Yao,
Lei Hou, and Juanzi Li. 2024. Dice: Detect-
ing in-distribution contamination in 1llm’s fine-
tuning phase for math reasoning. arXiv preprint
arXiv:2406.04197.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay
Besiroglu, Marius Hobbhahn, and Anson Ho. 2022.
Will we run out of data? an analysis of the limits of
scaling datasets in machine learning. arXiv preprint
arXiv:2211.04325.

Paul Voigt and Axel Von dem Bussche. 2017. The eu
general data protection regulation (gdpr). A Prac-
tical Guide, 1st Ed., Cham: Springer International
Publishing, 10(3152676):10-5555.

Roy Xie, Junlin Wang, Ruomin Huang, Minxing Zhang,
Rong Ge, Jian Pei, Neil Zhengiang Gong, and
Bhuwan Dhingra. 2024. Recall: Membership infer-
ence via relative conditional log-likelihoods. arXiv
preprint arXiv:2406.15968.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda,
Vincent Bindschaedler, and Reza Shokri. 2022. En-
hanced membership inference attacks against ma-
chine learning models. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 3093-3106.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. 2018. Privacy risk in machine learning:
Analyzing the connection to overfitting. In 2018
IEEE 31st computer security foundations symposium
(CSF), pages 268-282. IEEE.

Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang,
Martin Kuo, Jianyi Zhang, Hao Yang, and Hai Li.
2024. Min-k%++: Improved baseline for detecting
pre-training data from large language models. arXiv
preprint arXiv:2404.02936.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Baohang Zhou, Zezhong Wang, Lingzhi Wang, Hongru
Wang, Ying Zhang, Kehui Song, Xuhui Sui, and Kam-
Fai Wong. 2024. Dpdllm: A black-box framework
for detecting pre-training data from large language
models. In Findings of the Association for Computa-
tional Linguistics ACL 2024, pages 644—653.


https://huggingface.co/stabilityai/stablelm-base-alpha-3b-v2

A Using External Data

We may extend the test dataset Dy by utilizing
external data to provide additional signals. Sup-
pose we have a dataset of known members (D),
a dataset of known non-members (D,,), and a
dataset of instances without any membership in-
formation (Dy,x). For example, Dy, could be
old Wikipedia documents, sharing the common
assumption that LLMs are usually trained with
Wikipedia. As discussed above, we target the case
of Dym = ¢, or at least Dy N Diest = ¢. How-
ever, we can construct it with completely unnat-
ural texts (e.g., “¥b9qx84;5zIn"). Dyy is desir-
ably drawn from the same distribution of Dyegt
but could be from any corpus when we do not
know the test dataset distribution. Finally, we
can incorporate all available data for better pre-
diction of membership scores and prefix scores:
Dtest < Dtest U Dm U Dnm U Dunk-

B Comparison with ReCaLL

As explained in §3.2, the original ReCalL.LL (Xie
et al., 2024) uses labeled data from the test dataset,
which is unfair to compare with the above base-
lines and ours. More precisely, p; in the pre-
fix p p1 © p2 @ --- @ p, are known non-
members from the test set Dy, and they are ex-
cluded from the test dataset for evaluation, i.e.,
Dtest, = Drest \ {p17p27 s 7pTL}' However, we
measure the performance of ReCalL. with differ-
ent prefix selection methods to understand how
ReCaLL is sensitive to the prefix choice and use it
as a reference instead of a direct fair comparison.

Since changing the test dataset every time for
different prefixes does not make sense and makes
the comparison even more complicated, we keep
them in the test dataset. A language model
tends to repeat, so LL(p;|p; M) ~ 0. Because
LL(pi|p; M) < 0, ReCaLL,(p;; M) ~ 0. It is
likely to ReCaLLy(p;; M) < ReCaLLy(z; M)
for z € Diegt \ {p1,P2, - , Pn}, meaning that Re-
CaLL will classify p; as a non-member. The effect
would be marginal if |Diest| > n. Otherwise, we
should consider this when we read numbers in the
result table.

The original ReCaLL (Xie et al., 2024) is sim-
ilar to RandNM, except they report the best score
after trying all different n values, which is again un-
fair. The number of shots n is an important hyper-
parameter determining performance. A larger n
generally leads to a better MIA performance but
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Figure 4: ROC curves for MIA using the negative
prefix score as the membership score, evaluated with
different metrics for prefix scores in the oracle setting
on WikiMIA (Shi et al., 2023) (Iength 128) using Pythia-
6.9B (Biderman et al., 2023).

increases computational cost with a longer p.

C Metrics for Prefix Scores

Figure 4 shows ROC curves when negative pre-
fix scores, computed using different metrics, are
used directly as membership scores. We compare
prefix scoring metrics including AUC-ROC, Accu-
racy, and TPR@k%FPR for k € {0.1, 1, 5, 10, 20}.
Among them, using AUC-ROC to compute prefix
scores yields the best result, achieving 98.6% AUC-
ROC for membership inference.

D Formulation of OLMoMIA Settings

After the filtering of removing close points, let
member clusters as C;" for i € [1, K| and non-
member clusters as C7™ for j € [1, K]|. These
clusters satisfy d(x,y) > 0.6 for all z,y € C/"
and d(z,y) > 0.6 for all 2,y € C7™. The follow-
ing equations formalize how we construct different

settings of OLMoMIA:
* Random: Drandom = Drapdom Y Prandom
* Easy: Deasy = Dgsy U
Dg;sly’ where ieasy7 jeasy =

arg max; ;) Ezeci,yecj d(x,y),

Doy = arg topk,, Eyecg’;sy d(z,y),
and Dgyg, = arg topk, Eweciggsy d(z,y)

* Hard: Drard = Dl?;rd U
pm where  ingrds jhard =
argming; j Ezec, yec; d(@,y), Diga =
arg topk, —Eyecyrm d(z,y), and



Dph = arg topky —]Execi%rdd(m, Y)

* Medium: Dimedium = ﬁedium U
'DEIIE dium? where  4mediums Jmedium =
medlan(iyj) EzECi,yECj d(ﬂ?, y)’ Dﬁedium C

m
i . 5
Ymedium

e Mix-1: Dmix—l =
e Mix-2: DmiX,Q =

and D™

medium

nm
m C Cjnm%ir’tﬁm
Drandom U Dhard

Dm d U Dnm

har random
E Computational Costs

MIAs for LLMs only do inference without any
additional training, so they are usually not too ex-
pensive. Therefore, MIA accuracy is typically pri-
oritized over computational costs as long as it is rea-
sonably feasible. Nevertheless, maintaining MIAs’
computational costs within a reasonable range is
important. Computations on all our experiments
with the used datasets (WikiMIA and OLMoMIA)
were manageable even in an academic setting. We
compare computational complexity between EM-
MIA and other baselines (mainly, ReCalLL) and
describe how computational costs of EM-MIA can
be further reduced below.

EM-MIA is a general framework in that the up-
date rules for prefix scores and membership scores
can be designed differently (as described in §3),
and they determine the trade-off between MIA ac-
curacy and computational costs. For the design
choice described in Algorithm 1 that was used in
our experiments, EM-MIA requires a pairwise com-
putation LL,(x) for all pairs (z,p) once, where
x,p € Diest. These values are reused to calculate
the prefix scores in each iteration without recom-
putation. The iterative process does not require
additional LLM inferences. The time complexity
of EM-MIA is O(D?L?), where D = |Dieg;| and
L is an average token length of each data on Dyegt,
by assuming LLM inference cost is quadratic to
the input sequence length due to the Transformer
architecture. In this case, EM-MIA does not have
other tuning hyperparameters, while Min-K% and
Min-K%-++ have K and or ReCaLL has n. This is
more reasonable since validation data to tune them
is not given.

Of course, the baselines other than ReCalLL
(Loss, Ref, Zlib, Min-K%, and Min-K%-++) only
compute a log-likelihood of each target text with-
out computing a conditional log-likelihood with
a prefix, so they are the most efficient: O(DL?)
time complexity. Since ReCaLL uses a long pre-
fix consisting of n non-member data points, its
time complexity is O(D(nL)?) = O(n?DL?).
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According to the ReCaL.L. paper, they sweep n
from 1 to 12 to find the best n, which means
O((12+4+22+4---+n?)DL?) = O(n*DL?). Also,
in some cases (Figure 3 and Table 7 in their paper),
they used n = 28 to achieve a better result. In the-
ory, it may seem EM-MIA does not scale well with
respect to D. Nevertheless, the amount of compu-
tation and time for EM-MIA with D ~ 1000 is not
significantly larger than ReCal.L, considering the
n factor.

Moreover, ReCaLL requires O(n?) times larger
memory than others including EM-MIA, so it may
not be feasible for hardware with a small memory.
In this sense, EM-MIA is more parallelizable, and
we make EM-MIA faster with batching. Lastly,
there is room to improve the time complexity of
our method. We have not explored this yet, but for
example, we may compute ReCalL scores on a
subset of the test dataset to calculate prefix scores
as an approximation of our algorithm. We left im-
proving the efficiency of EM-MIA as future work.

F TPR@1%FPR Results

TPR@Ilow FPR is a useful MIA evaluation met-
ric (Carlini et al., 2022) in addition to AUC-ROC,
especially when developing a new MIA and com-
paring it with other MIAs. Due to the space limita-
tion in the main text, we put TPR@low FPR here:
Table 3 for WikiMIA and Table 4 for OLMoMIA.



Method Mamba-14B  Pythia-6.9B  LLaMA-13B NeoX-20B LLaMA-30B OPT-66B Average

32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

Loss 47 21 14 62 28 36 47 42 79 103 35 43 41 53 72 65 35 36 61 36 47
Ref 05 07 07 16 1.1 14 23 39 29 31 25 14 13 25 36 18 18 07 18 21 18
Zlib 41 49 72 49 60 115 57 81 129 93 63 50 49 95 101 57 7.0 115 58 7.0 9.7
Min-K% 70 42 58 88 39 72 52 60 151 106 39 72 47 70 58 90 7.7 86 75 55 83
Min-K%++ 41 7.0 14 59 10.6 10.1 103 12.0 252 62 95 14 83 67 94 3.6 120 137 64 9.6 102
Avg 39 04 50 80 .1 79 31 70 65 62 21 86 28 67 86 26 21 43 44 32 68
AvgP 05 04 07 18 04 00 00 07 00 13 07 00 00 00 29 21 123 245 09 24 47
RandM 08 01 06 09 00 19 02 04 76 05 03 16 04 06 81 07 01 09 06 02 34
Rand 37 39 24 23 32 76 16 27 73 44 50 47 16 32 79 21 32 32 26 35 55
RandNM 192 83 154 12.6 10.5 18.7 185 17.2 7.5 129 11.6 125 13.8 187 81 5.0 5.0 6.6 13.7 119 115
TopPref 127 42 252 160 1.4 295 142 92 79 134 13.7 209 27.1 299 86 39 56 94 146 10.7 169

Xieetal. (2024) 11.2 11.0 4.0 28.5 20.7 33.3 13.3 30.1 263 253 6.9 30.3 184 183 10 83 53 6.1 175 15:4 16.9

EM-MIA 54.0 47.9 51.8 50.4 56.0 47.5 66.4 757 58.3 51.4 64.1 59.0 61.5 66.2 71.9 83.5 73.2 39.6 61.2 63.8 54.7

Table 3: TPR@ 1%FPR results on WikiMIA benchmark. The second block (grey) is ReCalL.L-based baselines.
RandM, RandNM, ReCalL.L, and TopPref use labels in the test dataset, so comparing them with others is unfair. We
report their scores for reference. We borrow the original ReCaLL results from Xie et al. (2024) which is also unfair
to be compared with ours and other baselines.

Method Easy Medium Hard Random Mix-1 Mix-2

Loss 2.8 12.8 72 1.4 0.1 1.2 1.3 0.7 72 1.7 0.0 0.7
Ref 6.2 4.0 4.9 0.6 1.0 0.9 12 12 8.4 0.5 0.2 1.6
Zlib 2.0 9.8 6.7 1.1 0.2 1.6 0.9 0.7 6.4 1.7 0.0 0.7
Min-K% 1.3 6.5 58 1.4 0.1 1.3 1.1 0.7 6.1 2.0 0.0 0.7
Min-K%-++ 1.4 8.0 5.0 0.7 0.4 1.0 1.0 0.4 5.0 0.9 0.0 0.5
Avg 4.1 11.5 4.0 1.7 0.2 22 12 0.6 6.1 27 0.0 0.9
AvgP 11.7 0.1 2.6 72 0.7 1.6 0.7 1.4 4.8 12.1 0.1 0.0
RandM 3.0 49 2.4 1.1 0.4 2.2 0.9 0.8 7.6 1.3 0.0 0.4
Rand 4.3 7.8 3.7 1.7 0.4 2.7 1.0 0.8 10.6 3.0 0.0 0.7
RandNM 16.9 14.2 52 1.8 0.3 1.9 1.0 0.8 9.2 2.9 0.0 1.1
TopPref 220 16.6 6.3 1.9 0.4 22 1.1 1.4 8.1 5.1 0.0 0.5

EM-MIA 95.0 521 798 96.7 1.8 1.0 1.1 1.4 12.2 3.8 14.8 43

Table 4: TPR@ 1%FPR results on OLMoMIA benchmark. The second block (grey) is ReCalLL-based baselines.
RandM, RandNM, ReCal.L, and TopPref use labels in the test dataset, so comparing them with others is unfair. We
report their scores for reference.
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