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ABSTRACT

High accuracy medical image classification can be limited by the costs of acquiring
more data as well as the time and expertise needed to label existing images. In this
paper, we apply active learning to medical image classification, a method which
aims to maximise model performance on a minimal subset from a larger pool of data.
We present a new active learning framework, based on deep reinforcement learning,
to learn an active learning query strategy to label images based on predictions
from a convolutional neural network. Our framework modifies the deep-Q network
formulation, allowing us to pick data based additionally on geometric arguments in
the latent space of the classifier, allowing for high accuracy multi-class classification
in a batch-based active learning setting, enabling the agent to label datapoints that
are both diverse and about which it is most uncertain. We apply our framework to
two medical imaging datasets and compare with standard query strategies as well
as the most recent reinforcement learning based active learning approach for image
classification.

1 INTRODUCTION

Modern methods in machine learning (ML), including deep learning (DL) frameworks, require large
amounts of labelled data to train sufficiently well to obtain high performance. Depending on the
training task, these data can be very expensive to obtain or annotate, to the extent that traditional
approaches become prohibitively costly. Active learning (AL) aims to alleviate this problem by
adaptively selecting training samples with the highest value to construct a minimal training dataset
with the most information for the ML model.

In order to select training samples with the most information, different strategies are used in different
AL cycles which can be either constructed based on knowledge of the specific problem one is aiming
to learn, or using theoretical criteria to approximate mathematical bounds on information contained
in the data. Standard query strategies in AL include the uncertainty-based approach (Lewis and
Gale, 1994; Lewis and Catlett, 1994; Shannon, 1948; Scheffer et al., 2001; Esuli and Sebastiani,
2009; Seung et al., 1992; Dagan and Engelson, 1995), which aim to quantify the model uncertainty
about the samples to be selected using different hand-crafted heuristics. Other approaches aim to
estimate the expected model change (Roy and Mccallum, 2001; Freytag et al., 2014), or employ
diversity-based approaches to promote diversity in sampling (Bilgic and Getoor, 2009; Gal et al.,
2017; Nguyen and Smeulders, 2004).

Some approaches combine different techniques in hybrid-based query strategies, to take into account
the uncertainty and diversity of query samples (Ash et al., 2019; Zhdanov, 2019; Shui et al., 2019;
Beluch et al., 2018). Other methods leverage the exploration-exploitation trade-off and reformulate
the AL framework as a bandit problem (Hsu and Lin, 2015; Chu and Lin, 2016) or a reinforcement
learning problem (Ebert et al., 2012; Long and Hua, 2015; Konyushkova et al., 2017a), which are
however still limited by their reliance on hand-crafted strategies, as opposed to learning a new one.

The move towards combining deep learning methods with active learning, to combine the learning
capability of the former in the context of high-dimensional data, with the data efficiency of the latter,
have led to further methods development. However, combining the two is non-trivial; traditional
active learning query strategies label samples one-by-one, and so batch-model deep active learning
aims to use batch-based sample querying (Gal and Ghahramani, 2015; Gal et al., 2017; Kirsch et al.,
2019; Cardoso et al., 2017) to ensure efficiency in sampling the data.
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Modern diversity-based approaches in deep active learning include the coreset approach (Sener and
Savarese, 2018; Killamsetty et al., 2020; Wei et al., 2015; Shen et al., 2017; Mirzasoleiman et al.,
2019), which aim to minimise the Euclidean distance between the sampled and unsampled data points
in the latent space of the trained model. Whilst the coreset approach has been shown to work well for
image classification tasks (Sener and Savarese, 2018), the performance deteriorates as the number of
classes grows. Furthermore, as the dimensionality of the data grows, the distance measure between
data points becomes indistinct due to the curse of dimensionality. Semi-supervised approaches (Sinha
et al., 2019; Kim et al., 2020; Zhang et al., 2020) aim to alleviate this issue by using an adversarial
network as a sampling strategy to pick data with the largest amount of information in the latent space.

Manually designing the DL models in addition to AL query strategies requires both expert knowledge
about the task at hand, as well as a lot of compute resources to train the DL model. Furthermore, as
the labelling heuristic is generally specific to the dataset of interest, there is little likelihood that the
learnt acquisition function is transferrable to other datasets, whereas one based on a meta-learning
approach may be more easily applied to other data domains.

In this paper we combine active learning, deep learning and reinforcement learning into an end-to-
end framework which can automate the design of the acquisition function for active learning with
high-dimensional, multi-class data, in a pool-based active learning setting. We additionally introduce
a batched-labelling approach, enabling us to label multiple datapoints at each step, allowing for much
more efficient training.

By employing coreset-inspired methods, we encourage the reinforcement learning agent to label
samples which maximise uncertainty and are also diverse. We apply our model to medical image
classification datasets, covering binary and multi-label classification problems as well as differing
imaging modalities. We add a range of noise to the images, in order to simulate a real-world
annotation setting, and show that our framework is robust to high levels of noise. We compare the
classification accuracies to a wide range of sampling methods, including (Konyushkova et al., 2018),
the most similar framework to ours, and we show we outperform all other strategies.

2 RELATED WORK

Recent papers on combining active learning with reinforcement learning aim to instead learn a policy
for labelling data from the unlabelled pool in order to maximise model performance. In (Bachman
et al., 2017; Liu et al., 2018), they use information gathered from an expert oracle to learn the
policy, whilst (Pang et al., 2018; Padmakumar et al., 2018) use policy gradient methods to learn the
acquisition function. Current papers which aim to combine deep reinforcement learning with active
learning are not able to label more than one datapoint per step (Konyushkova et al., 2018; Woodward
and Finn, 2017; Pang et al., 2018; Padmakumar et al., 2018; Bachman et al., 2017; Liu et al., 2018;
Woodward and Finn, 2017), with the exception of (Casanova et al., 2020) which labels batches of
pixels for semantic segmentation tasks.

Many existing works on reinforced active learning focus on the simpler task of a stream-based
active learning approach (Fang et al., 2017; Woodward and Finn, 2017) or are limited to binary
tasks (Konyushkova et al., 2018; Pang et al., 2018; Liu et al., 2019), which limit their application to
more general, and difficult classification tasks. In (Haussmann et al., 2019), they learn an acquisition
function using a Bayesian neural network which is layered onto a bootstrapped existing heuristic.

In this work we focus on medical image classification tasks, which has attracted attention in the field
of deep active learning, due to the cost of acquiring medical image data as well as the relatively small
size of the datasets. Image segmentation tasks in active learning have traditionally used hand-crafted
uncertainty-based acquisition functions (Wen et al., 2018; Smailagic et al., 2018; Konyushkova
et al., 2016; Gal and Ghahramani, 2015; Gal et al., 2017; Yang et al., 2017; Ozdemir et al., 2018).
Generative adversarial network (GAN) based methods, used widely for image synthesis, have been
used in order to add informative labelled data to limited training sets, which is directly applicable
for active learning scenarios (Zhao et al., 2019; Mahapatra et al., 2018; Last et al., 2020). There
recently has been some research applying meta-learning to medical image tasks in an active learning
setting; in MedSelect (Smit et al., 2021) they use reinforcement learning to label medical images, and
in (Konyushkova et al., 2017b) they use a regression model to learn a query strategy using greedy
selection.
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Our work is closest to (Konyushkova et al., 2018), in that we use a double deep Q-network (van
Hasselt et al., 2015) (DDQN), a generalisation of the deep Q-network (Mnih et al., 2015) to learn
the acquisition function and to avoid bias from overestimation of the action values and stabilise
training, in a pool-based setting. Our work extends that of (Konyushkova et al., 2018) in several ways.
Firstly, we show that we are not limited to binary classification tasks and can accurately predict in a
multi-class, high dimensional setting, by integrating a deep learning approach into the framework.
Secondly, we use batch-based active learning to label multiple datapoints at a time, thus greatly
improving on the efficiency of the framework. We also aim to perform the data labelling in a much
more realistic environment, and so we add realistic levels of noise to our data, specific to the differing
image modalities, to simulate a real-world setting where the images are distorted.

3 METHODOLOGY

As stated above, our approach aims to reformulate the active learning framework as a reinforcement
learning problem, by casting pool-based active learning as a Markov decision process (MDP), inspired
by (Konyushkova et al., 2018) and (Casanova et al., 2020) and then use a reinforcement learning
agent to find an optimal labelling strategy. By using not only a meta-learning approach, but a
full reinforcement learning approach, the selection strategies are learnt in a data-driven way, thus
removing the bias incurred from using hand-crafted acquisition functions.

3.1 ACTIVE LEARNING AS A REINFORCEMENT LEARNING TASK

In order to use reinforcement learning to learn a query strategy, we need to cast active learning as
a MDP. An MDP is defined by the tuple {(st, at, rt+1, st+1)}. For each state st ∈ S, the agent
can perform actions at ∈ A to choose which sample(s) to annotate from an unlabelled dataset
Ut ∈ D. The data are then added to the labelled dataset Lt ∈ D. Let ft be a classifier (in our case,
a convolutional neural network) trained on the labelled data Lt. The action at is then a function
of ft,Lt and Ut. Depending on the sample(s) chosen to be labelled by the agent, it then receives a
reward rt+1.

We can then formulate active learning as an episodic MDP. We initialise the active learning loop with
a small labelled set L0 ∈ D alongside the unlabelled dataset U0 = D\L0 where |U0| � |L0|. At
each iteration we then

1. Train the classifier ft on the initial labelled data L0.
2. Compute the state st as a function of the prediction of the CNN ft : ŷt(xi) 7→ ŷi, as well as
Lt and Ut.

3. The active learning agent selects N actions {ant }Nn=1 ∈ A by following a policy π : st 7→ at
that defines data xt ∈ Ut to be labelled. Each action ant corresponds to one image to be
labelled.

4. An oracle labels the data with yt and updates the sets Lt+1 = Lt ∪ {(xn, yn)}Nn=1, Ut+1 =
Ut\{xn}Nn=1.

5. Train ft one iteration on the new labelled dataset.
6. The agent receives a reward rt+1 based on the performance of ft+1 on a test set.

The episodes terminate when they reach a terminal state, which is when the labelling budget is met.
Once the episode is terminated, we reinitialise the weights of the classifier as well as the labelled and
unlabelled datasets. The aim of the agent is to learn a policy π to maximise the expected discounted
reward until some terminal state is reached

Qπ(s, a) = E

[∑
i=0

γ ri

]
, (1)

where we set the discount factor γ = 0.99. The optimal value is then Qπ∗(s, a) = maxπ Q
π(s, a).

We compute the reward at each time-step as the difference between the accuracy at the current and
previous time-steps of the prediction of the classifier on a hold-out set DR.

rt+1 = ACC(ŷt+1(x̃i), ỹi)− ACC(ŷt(x̃i), ỹi) , x̃, ỹ ∈ DR . (2)
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3.1.1 STATE REPRESENTATION

Following (Konyushkova et al., 2018) we represent the state space S using a set-aside dataset Ds.
We use the sorted list of predictions of ft to represent st. As we use a CNN for our classifier,
unlike (Konyushkova et al., 2018) where they use logistic regression or a support vector classifier, we
can represent the state for multi-class data and are not limited to binary tasks.

3.1.2 ACTION REPRESENTATION

In the active learning setting, taking an action determines which datapoint(s) to label from the
unlabelled pool. We generalise the standard DDQN architecture, by representing each action ant as a
concatenation of 3 features: the score of the classifier ft on xn and measures of distance between xn
and the labelled and unlabelled datasets in the latent space of the classifier. This enables us to label
datapoints explicitly requiring diversity of samples, and not just based on how uncertain the classifier
is about the potential new datapoint. We compute distance measures in the feature space of the
classifier inspired by the coreset approach of (Sener and Savarese, 2018), which, while coresets have
been shown to be ineffective for high-dimensional and multi-class data, we find that by including
latent space distance measures, as opposed to distance measures directly in the space of the data, that
training is substantially faster for little reduction in accuracy.

3.2 LEARNING A POLICY FOR DATA ANNOTATION

We employ a DDQN (van Hasselt et al., 2015), parameterised by a multi-layered perceptron, φ, to
find π∗. We train the DDQN with a labeled training set DT and compute rewards using a hold-out set
DR.

Similarly to (Casanova et al., 2020), we aim to annotate the unlabelled data at each step in a data-
efficient manner, by labelling batches of data at a time. As we are focused on image classification, as
opposed to semantic segmentation, we do not consider regions of images to be labelled, rather we
wish to label entire images at each step. We can therefore label N images by calculating the top-N
Q-values at each step

{ant }Nn=1 = argmax
ant ∈A,|ant |=N

∑
Qπ∈ant

Q(st, a
n
t ;φ) . (3)

To stabilise training and alleviate the overestimation bias of the DQN framework, we use a target
network with weights φ′ using an adapted DDQN architecture, to enable us to work with actions
represented by vectors, and the network is trained using the temporal difference (TD) error (Sutton,
1988)

yt = rt+1 + γ Q

st+1, argmax
ant ∈A,|ant |=N

∑
Qπ∈ant

Q(st, a
n
t ;φ
′);φ

 . (4)

4 EXPERIMENTS

In this section we wish to evaluate our method against different medical image datasets, which span
differing imaging modalities. We will introduce the datasets we use, as well as the experimental
set-up and baselines against which we compare.

4.1 BASELINES

We will compare our method with several baselines. Firstly, as our work can be considered a
generalisation and extension of LAL-RL (Konyushkova et al., 2018), we compare our results against
theirs. We then compare our method with ‘standard’ active learning query strategies, implemented
using the modAL package (Danka and Horvath). Namely, the baselines we compare against are

• LAL-RL (Konyushkova et al., 2018), using logistic regression as the base classifier, as done
in the original work.

• Random sampling, where the datapoint to be labelled is picked at random.
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• Margin sampling (Scheffer et al., 2001), which selects the instances where the difference
between the first most likely and second most likely classes are the smallest.

• Entropy sampling (Shannon, 1948) , which selects the instances where the class probabili-
ties have the largest entropy.

• Uncertainty sampling (Lewis and Gale, 1994) , which selects the least sure instances for
labelling.

• Average confidence (Esuli and Sebastiani, 2009), a query strategy designed for multi-label
classification.

For the baseline query strategies except for LAL-RL, we use the same CNN classifier as the active
learner as in our implementation, which is a pre-trained resnet50 (He et al., 2015) model with a linear
layer added to ensure the correct number of labels are classified for a given dataset.

4.2 IMPLEMENTATION DETAILS

As we use a pre-trained resnet50 CNN as the classifier for our approach and those all benchmark
methods except LAL-RL, we apply transforms to the images in the differing datasets consistent with
the image size and normalisations required (see paper for full details, (He et al., 2015)). In order
to ensure consistency across the benchmarks we apply these transformations to the data also when
comparing against LAL-RL.

To compute Qπ(s, a) we use a multi-layered perceptron with 3 hidden layers and 128 neurons in
each layer with ReLU activation function. We train the DDQN with a fixed learning rate of 0.0001,
requiring the DDQN to train until the average reward obtained has stabilised using early stopping.
As stated above, the classifier, f , is the standard resnet50 CNN classifier with an additional linear
layer to enable multi-label classification, which we train for 200 epochs with a fixed learning rate of
0.0001.

Due to the similarities between our approach and those of (Konyushkova et al., 2018), all the overlap-
ping reinforcement learning hyperparameters are kept consistent when running the experiments. In
practice, this means that the classifier and action representations are the main parameters which are
changed between the two methods. Due to the very large compute resources required by LAL-RL, as
we will discuss in detail below, we only initialise the DDQN for both methods with 16 warm start
random episodes. For each method, we show results on the accuracy of the classifier on the test set for
each dataset, after having been trained on a set number of datapoints. We show results for 5 different
random initialisations, showing the mean and 68% confidence level intervals for all methods.

4.3 DATASETS

We evaluate our method on two open source medical imaging datasets under CC BY 4.0 licence1,
with an aim to cover very different imaging modalities and types of data present in medical image
classification tasks, and to look at the binary and multi-label classification scenarios.2

Pneumonia The first dataset consists of chest X-rays of paediatric patients (Kermany et al., 2018a;b)
with the classification task being to determine whether the patient presents with pneumonia or not.

Colorectal cancer This 8-class classification problem consists of histopathology tiles from patients
with colorectal adenocarcinoma (Kather et al., 2016a;b). The data consists of 8 differing types of
tissue.

4.4 RESULTS

We show in Fig. 1 the accuracy of the differing query strategies as a function of labelled datapoints
for the pneumonia (left) and colorectal cancer histopathology (right) datasets. Error bands are the

1https://creativecommons.org/licenses/by/4.0/legalcode
2The human biological samples were sourced ethically and their research use was in accord with the terms of

the informed consents under an IRB/EC approved protocol.

5

https://creativecommons.org/licenses/by/4.0/legalcode


Under review as a conference paper at ICLR 2023

0 10 20 30 40 50 60 70 80 90 100
Number of annotations

0.0

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y
margin sampling
random sampling
uncertainty sampling
entropy sampling
avg confidence
ours
lal rl

0 10 20 30 40 50 60 70 80 90 100
Number of annotations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

margin sampling
random sampling
uncertainty sampling
entropy sampling
avg confidence
ours
lal rl

0 10 20 30 40 50 60 70 80 90 100
Number of annotations

0.0

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

ours
lal rl

0 10 20 30 40 50 60 70 80 90 100
Number of annotations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

ours
lal rl

Figure 1: Top: Accuracy on the test set as a function of labelled datapoints for the pneumonia (left)
and colorectal cancer histopathology (right) dataset for the differing labelling strategies. Error bands
are the 68% confidence level intervals over random initialisations of 5 seeds. Bottom: Same as before
but with just the results of the two reinforcement learning approaches.

68% confidence level intervals over random initialisations of 5 seeds. As we wish to emphasise
the generalisation of our method over existing reinforcement learning based active learning query
strategies, we plot the same results in the bottom panel for our method and LAL-RL.

We observe that, regardless of query strategy, our method on average outperforms all others, impor-
tantly reaching near-optical accuracy on the test set for the colorectal cancer histopathology dataset
with very few labelled datapoints. This suggests that, because our method is substantially more
general than the other strategies, it is able to better deal with the multi-class labelling task for the
histopathology slides. Importantly, our method outperforms LAL-RL on the binary classification
pneumonia dataset, for which LAL-RL is designed to work with, whilst ours is agnostic to the number
of classes present in the data. The standard deviation of results both in our approach and LAL-RL are
also much smaller than those of the traditional querying methods, suggesting that a reinforcement
learning based approach is in fact more stable with respect to random initialisations of the dataset
and hyperparameters.

A fundamental difference between our approach and that of LAL-RL is how we compute the
generalised action representation; i.e., how one determines the distances between the labelled and
unlabelled datasets. Our approach is inspired by coreset methods (Sener and Savarese, 2018), where
we minimise the Euclidean distance between the sampled and unsampled data points in the latent
space of the trained model. LAL-RL, however, compute the pairwise distances in the space of the
data, which, in the case of very high dimensional data as we have here, can become computationally
intractable. Indeed, our experiments show that training the colorectal cancer histopathology dataset
for 5 episodes, allowing 20 datapoints to be annotated with the two reinforcement learning methods
with identical overlapping hyperparameters is 267 times slower using LAL-RL than our method.

4.4.1 COMMENT ON BENCHMARK RESULTS

As we mentioned above, this extremely slow performance requires us to use very lightweight models
for the two reinforcement learning based approaches in order to be able to benchmark between them,
preventing the true predictive power of either of them from being accurately represented. We therefore
emphasise that the results we show in this section are only indicative of the general improvement of
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Figure 2: Same as in Fig. 1 but additionally showing results for the two datasets with a slightly larger
model for our method.
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Figure 3: Test accuracy on the colorectal cancer histopathology histopathology dataset where training
noise has been added to 10% (left) of the dataset and 100% (right).

our approach over other query strategies and by no means the best predictive power possible for our
method on the two datasets we show in this work.

Indeed, by simply increasing the number of warm start episodes from 16 to 128 for our method,
so that the replay buffer is filled with a better selection of episodes from which to sample as well
as adding one additional datapoint per step using Eq. equation 3, and keeping all other parameters
the same, we find up to 11.5% improvement in test accuracy for the pneumonia dataset and 23.3%
for the colorectal cancer histopathology dataset, as we show in Fig. 2 where we additionally plot
the results for this slightly larger model. We see that in the multi-class case, the small increase in
size of our DDQN drastically improves performance on the dataset, as well as greatly reducing the
spread of results and is thus much more stable. We can therefore conclude that our method can
easily outperform other active learning query strategies in terms of: predictive power, stability, and
efficiency, as (near-) optimal performance is found by labelling very few data points.

4.4.2 ROBUSTNESS TO NOISE

In this section we modify the training data to account for noise in the data. We randomly augment the
training images by randomly zooming the images, rotating them by up to ±π/12 radians, and adding
random Gaussian multiplicative noise using the MONAI package (MONA, 2022), a medical imaging
deep learning package which provides image transforms of relevance to differing image modalities.
We ran experiments for the aforementioned noise applied to 10% of the training set as well as to 50%
and 100%, to cover a range of eventualities.

In Fig. 3 we again show the test accuracy on the colorectal cancer histopathology dataset for the
differing query strategies where training noise has been added to 10% (left) of the dataset and 100%
(right). It is clear that all query strategies are, to an extent, robust to noise in the data, which suggests
that there is no overfitting in any of the cases. We quantify this in Table 1 where we show the accuracy
on the test set for differing query strategies after labelling 10 datapoints with differing levels of noise
added to the training data and in all cases the mean accuracy is consistent within the error bands.
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Strategy No noise 10% 100%

Ours 0.6202 ± 0.0981 0.6348 ± 0.0638 0.6534 ± 0.0226
LAL-RL 0.3151 ± 0.0238 0.3143 ± 0.0633 0.2978 ± 0.0463
Uncertainty sampling 0.4952 ± 0.0493 0.4813 ± 0.0285 0.4802 ± 0.0670
Random sampling 0.4698 ± 0.0540 0.4516 ± 0.0385 0.4552 ± 0.0697
Margin sampling 0.5063 ± 0.0204 0.5111 ± 0.0435 0.4849 ± 0.0628
Entropy sampling 0.4560 ± 0.0168 0.5020 ± 0.0673 0.5067 ± 0.0589
Average confidence 0.4579 ± 0.0539 0.4655 ± 0.0630 0.4611 ± 0.0731

Table 1: Accuracy on the test set for the colorectal cancer histopathology dataset for differing query
strategies after labelling 10 datapoints with differing levels of noise added to the training data.
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Figure 4: Accuracy on the test set as a function of the number of datapoints labelled at each step,
corresponding to the top-N Q-values as determined by the reinforcement learning algorithm.

4.4.3 PICKING N-DATAPOINTS AT A TIME

As we discuss above, one of the main advantages of our method is the ability to label multiple
datapoints at each stage of the active learning cycle. We do this by labelling the top-N Q-values at
each step, following Eq. equation 3. It is natural to consider several consequences of labelling data in
this way. Firstly, by labelling lower-ranked datapoints at each step, one may ask whether the quality
of prediction of the model deteriorates as we increase N . Secondly, does the model require any
additional time to perform these additional labellings, as the size of the training set now is allowed to
increase.

To answer these questions, we ran our DDQN model on the colorectal cancer histopathology dataset,
training for a fixed number of episodes and allowing 50 total label annotations each episode. At each
step, we allow the agent to label from {1..10} datapoints, and as before, compute the accuracy on the
test set. We chose the colorectal cancer histopathology dataset as here the contrast between the other
reinforcement learning informed query strategy, LAL-RL, is most pronounced. We show in Fig. 4 the
mean and 68% confidence level intervals, averaged over 5 seeds, of this procedure. It is clear that
labelling more than 1 datapoint per step can greatly improve the prediction accuracy of the model,
suggesting our prior results in Sec. 4.4 are conservative with respect to the potential prediction power
of our model. Beyond allowing N > 1, however, within the error bands as reported, it is not obvious
that labelling more data at each step for this dataset helps (or indeed, hinders), prediction accuracy.

The training time for the differing values of N was also computed, and we show the test accuracies
for the differing values of N as shown in Fig. 4 alongside the average time for the training in seconds.
We can see that the training time does not begin to deteriorate until N > 8, which as we can see, does
not even come at the gain of improving test accuracy for this dataset. It is therefore reasonable to
consider 1 < N < 9 to be a logical choice of datapoints to label in this experiment.

5 DISCUSSION

In this paper we have introduced a novel method for active learning query strategies, inspired by
previous work which reformulates the active learning cycle as a Markov decision process. Similarly
to previous work (Konyushkova et al., 2018), we use a deep reinforcement learning approach to
cast the task of labelling data as actions for an agent to pick in an environment. Unlike previous
reinforcement learning based active learning query strategies, however, we aim to present a much
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N Test acc Time (seconds)

1 0.6468 ± 0.0197 1511
2 0.7147 ± 0.0220 1633
3 0.7151 ± 0.0307 2505
4 0.6762 ± 0.0272 3313
5 0.7295 ± 0.0168 2123
6 0.7091 ± 0.0185 1222
7 0.7347 ± 0.0321 1255
8 0.6916 ± 0.0203 1290
9 0.7084 ± 0.0148 3374
10 0.6939 ± 0.0206 6504

Table 2: Test accuracy and training time for our model labelling N datapoints at each step.

more general approach to active learning, by enabling multi-label prediction as opposed to just binary
classification. In addition, by enabling the agent to pick an arbitrary number of datapoints at each
step in the MDP, our approach can easily be applied to segmentation tasks where we would like to be
able to label multiple pixels at each step, such as in (Casanova et al., 2020).

We have applied our method to the task of medical image classification, in the binary and multi-
label class case, and across differing image modalities. We have shown that, even with extremely
conservative estimates, our approach outperforms both standard query strategies, as well as the
current state of the art reinforcement learning based approach, LAL-RL. Importantly, our method
has been shown to be much more computationally efficient, as optimal accuracy on the test set can
be reached with very few labelled data points, and by sampling the data in the latent space of our
classifier, requires much less compute resources than LAL-RL. This is a very relevant result in the
space of medical imaging, as, depending on the imaging data, one may be limited by the number
of samples one can obtain but each datapoint is very high-dimensional. In the healthcare domain,
high-d, low-n datasets are abundant, whilst traditional active learning-based approaches generally
assume one can have access to a large pool of unlabelled data.

Both LAL-RL and our method aim to answer the same question; namely, can we create an active
learning framework which contains minimal bias in how data is labelled at each stage? We take this
one step further and consider; can we create an active learning framework which can do this task but
apply it to the deep learning paradigm of active learning? In this paradigm, we do not wish to limit
ourselves to binary classification tasks, we wish to be able to add large batches of data at each step as
opposed to just one datapoint, and we also need to be able to deal with high-dimensional data. We
solve all these problems in our approach: in the first instance, we can clearly outperform LAL-RL on
an eight-label classification task. In the second instance, by ranking the top-N Q-values at each step,
we show we obtain good performance (at improved accuracy and minimal loss of speed), and finally,
by using a coreset-inspired approach for determining the action representation, we are much more
able to deal with very high dimensional data.

5.1 OUTLOOK

There are several avenues for exploration to extend this work. We mention above that image
segmentation would be an interesting application of our approach; indeed, although here we just
consider image classification, our framework is task-agnostic and can in theory be applied to arbitrary
active learning cycles. As we discuss above, although we have empirically seen that our coreset-
inspired approach to ranking Q-values works well, it is known that this method breaks down in the
multi-label regime, and so determining a heuristic which is more efficient for multi-label classification
would of be importance to improve performance of our method.
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