
On the Variance of Temporal Difference Learning and
its Reduction Using Control Variates

Hsiao-Ru Pan
MPI for Intelligent Systems, Tübingen

Bernhard Schölkopf
MPI for Intelligent Systems, Tübingen

Abstract

We analyze the finite-sample variance of temporal difference (TD) learning in the
phased TD setting, and show that one of the mechanisms behind bootstrapping’s
ability to reduce variance is by effectively aggregating over a larger number of
independent trajectories. Based on this insight, we demonstrate that asymptotically,
the variance of TD learning is bounded from above by Monte-Carlo (MC) estima-
tors. In addition, we draw connections to Direct Advantage Estimation (DAE), a
method for estimating the advantage function, and show that it can be seen as a
type of regression-adjusted control variate, which further reduces the variance of
TD. Finally, we illustrate the asymptotic behaviors of these estimators empirically
with carefully designed environments.

1 Introduction

Policy evaluation, that is, estimating returns from given states (or state-action pairs) is a central
problem in reinforcement learning (RL) [Sutton et al., 1998]. Among various estimation methods,
temporal difference (TD) learning [Sutton, 1988] stands out as a cornerstone technique for this class
of problems. Traditional methods like Monte-Carlo (MC) methods estimate returns by averaging
returns from sample trajectories, typically resulting in unbiased but high variance estimates. In
contrast, TD learning updates value estimates iteratively through bootstrapping (i.e., estimate based
on previous estimates), thereby avoiding the need for full trajectories and tends to exhibit lower
variance.Previously, it was shown that bootstrapping can be seen as a form of bias-variance trade-
off [Kearns and Singh, 2000], where the high variance estimates from sample trajectories are replaced
with low variance bootstrapped values. While this intuition largely holds true, it is not difficult to see
that the full story is more complex than this. For example, suppose we initialize the value estimates
with the ground truth value function and update them using TD learning. If the step-size is non-zero
and the rewards are not deterministic, then we essentially inject variance into the estimates and
increase the estimation error. This shows that the way bootstrapping reduces variance may be more
nuanced than simply "replace a high variance trajectory with a biased estimate".

In the present work, we analyze the variance of multi-step TD learning in the phased setting [Kearns
and Singh, 1998], which abstracts away some of the complexities due to stochastic approximations,
and reveal one of the mechanisms behind bootstrapping’s variance reduction property. Beyond
TD learning, we also draw connections to Direct Advantage Estimation (DAE) [Pan et al., 2022],
a recently proposed method that simultaneously estimates the value function and the advantage
function, and show that DAE can be seen as a type of control variate regression that further reduces
the variance of TD learning. To summarize, we show that

• Asymptotically, the variance of multi-step TD learning is bounded above by the variance of
MC methods.

• The advantage function can be seen as control variates for value estimation, which reduces
the variance of multi-step learning, and DAE is a type of regression-adjusted control variate.

18th European Workshop on Reinforcement Learning (EWRL 2025).

Finally, we construct examples to illustrate the asymptotic behaviors of these estimators.

2 Background

We consider a discounted Markov Decision Process [Puterman, 2014] (S,A, p, r, γ) with finite state
space S, finite action space A, transition probability p(s′|s, a), reward function r : S × A → R,
and discount factor γ ∈ [0, 1). For simplicity, we assume the reward function is determinis-
tic. A policy π(·|s) is a function that maps states to distributions over A. The state and state-
action value functions are defined by V π(s) = Eπ[

∑∞
t=0 γ

tr(st, at)|s0=s], and Qπ(s, a) =
Eπ[
∑∞

t=0 γ
tr(st, at)|s0=s, a0=a], respectively (Eπ indicates that actions are sampled from π).

The advantage function is defined by Aπ(s) = Qπ(s, a) − V π(s). For the present work, we will
consider π as fixed and omit it in the discussion when the context is clear.

The goal of reinforcement learning (RL) [Sutton et al., 1998] is to find the optimal policy through
interactions in a given MDP, and the value function is at the core of various policy optimization
algorithms. However, the value function is typically unknown a priori, and one central problem in RL
is how to learn value functions efficiently. One classical method is TD learning [Sutton, 1988], which
updates the value function through bootstrapping. More precisely, TD(0) estimates the value function
by sampling (s, a, r, s′) tuples and updating the values by V (s)← V (s) + α(r + γV (s′)− V (s)),
where α ∈ R is the learning rate. One downside of TD(0) is that it only updates the value one-step
at a time, which can be inefficient when rewards are delayed. As such, it is common to consider
multi-step TD learning by sampling multiple timesteps before updating the value, that is,

V (s0)← V (s0) + α(r0 + γr1 + · · ·+ γkV (sk)− V (s0)). (1)

Phased TD We presently consider the phased setting [Kearns and Singh, 1998], which removes
some of the complexities of TD learning due to asynchronous updates and stochastic approximations.
In phased TD(k) (k denotes the backup horizon), value estimates are updated in phases, where each
phase consists of (1) sampling n k-step trajectories for each state: D = {τs,i}s∈S,i∈[1,··· ,n], where
τs,i = (s, ai0, r

i
0, s

i
1, · · · , sik) (n is assumed to be fixed throughout the paper unless otherwise stated),

and (2) updating the value of each state synchronously by

V T+1
TD(k)(s)←

1

n

n∑
i=1

(
ri0 + γri1 + · · ·+ γk−1rik−1 + γkV T

TD(k)

(
sik
))
∀s ∈ S, (2)

where T denotes the phase. It was shown that phased TD is analogous to TD learning with a
fixed learning rate under mild assumptions. Kearns and Singh [2000] used this setting to analyze
the bias-variance tradeoff of multi-step TD learning, and showed that the estimation error ∆T =
maxs |V T (s)− V π(s)| satisfies

∆T+1 ≤

∣∣∣∣∣ 1n
n∑

i=1

(
k−1∑
t=0

γtrit

)
− E

[(
k−1∑
t=0

γtrt

)∣∣∣∣∣ s0=s

]∣∣∣∣∣︸ ︷︷ ︸
variance

+γk ∆T︸︷︷︸
bias

.

The variance term accounts for the stochasticity from the sample rewards, while the bias term accounts
for the error from bootstrapping. The error can be further bounded by a PAC style bound (without
loss of generality, assume ∆0 = 1),

∆T ≤
1− γkT

1− γ

√
3 log(k/δ)

n
+ γkT , lim

T→∞
∆T ≤

1

1− γ

√
3 log(k/δ)

n
(asymptotic), (3)

with probability 1− δ. Intuitively, increasing k reduces the bias from bootstrapping at the cost of
increased variances from the rewards. However, this bias-variance decomposition fails to consider
the variance from finite samples of sik (merged into the bias term) and the variance from the previous
estimate V T

TD(k). Furthermore, as k →∞ (MC estimation), this bound becomes vacuous even though
the rewards are bounded.

2

Control Variate Control variate [Asmussen and Glynn, 2007] is a technique for reducing variance
of MC simulation. We briefly review the basics of control variate in the one-dimensional setting, and
refer the reader to Owen [2013] for a more general treatment.

Recall that we can estimate µX = E[X] using MC methods by µ̂X = 1
n

∑n
i=1 Xi, where Xi

iid∼ X .
We now introduce another random variable Y , called the control variate, that is correlated with X
and has known E[Y] (assume E[Y] = 0, otherwise use Z = Y − E[Y]), and define a new estimator

µ̂X,λY =
1

n

n∑
i=1

Xi + λYi, (4)

where (Xi, Yi)
iid∼ (X,Y) and λ is a tunable constant. This new estimator remains unbiased, but has

a different variance Var(µ̂X,λY) = Var(µ̂X)+ λ2

n Var(Y)+ 2λ
n Cov(X,Y). If we choose λ = λ∗ =

−Cov(X,Y)
Var(Y) , then the variance becomes Var(µ̂X,λ∗Y) = Var(µ̂X)− Cov(X,Y)2

nVar(Y) ≤ Var(µ̂X), which
is never worse than the original estimator. Intuitively, one can view E[Y] as our prior knowledge
of the distribution of X , and control variate provides us a way to exploit this knowledge to reduce
variance.In practice, however, λ∗ is usually unknown, and has to be estimated from data. One simple
choice is to replace the variances by their estimators, that is, λ̂ = − sX,Y

sY
. Interestingly, one can show

that this is equivalent to solving the following least squares problem,
n∑

i=1

(θ − xi − λyi)
2, (5)

where θ is the intercept of the linear model. It turns out that the minimizer is (θ, λ) = (µ̂X,λ̂Y , λ̂).
This approach is also known as regression-adjusted control variate, and can be readily generalized to
more complex settings (e.g., multiple control variates). The error of this estimator is:

µ̂X,λ̂Y − µX = (λ̂− λ∗)

n∑
i=1

Yi

n︸ ︷︷ ︸
O(1/n)

+ µ̂X,λ∗Y − µX︸ ︷︷ ︸
O(1/

√
n)

. (6)

As both λ̂− λ∗ and
∑n

i=1
Yi

n approach zero with rates O(1/
√
n), their product converges to 0 with

rate O(1/n). Consequently, the second term dominates the error asymptotically, and µ̂X,λ∗Y can be
seen as a first-order approximation of µ̂X,λ̂Y . Finally, we note that the estimator is, in general, biased

since Yi can be correlated with λ̂ (i.e., E[Yiλ̂] ̸= 0); however, the estimator remains consistent as the
errors approach zero by the law of large numbers.

Direct Advantage Estimation Direct Advantage Estimation (DAE) [Pan et al., 2022] is a method
developed for estimating the advantage function directly from sampled trajectories. Similar to
multi-step TD, DAE can update values by bootstrapping previous estimates. More specifically, DAE
estimates the values by iteratively minimizing the following constrained least-squares

L(Â, V̂) = Eπ

(k−1∑
t=0

γt(rt − Ât) + γkVtarget(sk)− V̂ (s0)

)2
 (7)

(A∗, V ∗) = argmin
Â∈Fπ,V̂

LT (Â, V̂), Fπ = {f |Eπ [f(s, a)|s] = 0 ∀s}. (8)

It was shown that iteratively updating the target and minimizing this objective converges to (Aπ, V π).
In practice, the expectation is replaced with an average over sample trajectories. We note that, if
we force Â ≡ 0 and only optimize with respect to V̂ , then DAE reduces to multi-step TD. DAE
demonstrated strong empirical performance in the deep RL setting; however, it remains unclear
whether estimating the value function this way is beneficial compared to classical approaches.

3 Variance of Monte Carlo Methods

In this section, we show that the variance of the (first-visit) MC estimator can be broken down into
segments, which will become useful later when comparing to multi-step TD.

3

Table 1: Variables names and their definitions. Note that P̄ is a (row) vector of size |S|.
Variable Def. Description

Ḡ 1
n

∑n
i=1

∑∞
t=0 γ

trit Average of sample returns
D

{
(s, ai0, r

i
0, s

i
1, · · · , sik)

}
k-step partial trajectories

R̄ 1
n

∑n
i=1

∑k−1
t=0 γtrit Average of sample k-step returns

P̄ P̄s′ =
1
n

∑n
i=1 I(sik = s′) Empirical k-step transition distribution

Recall that MC methods estimate values by averaging returns from sample trajectories:

VMC(s) =
1

n

n∑
i=1

(∞∑
t=0

γtrit

)
, (9)

where the superscript i denote the ith trajectory. In Table 1, we introduce simplified notations to ease
the presentation. It should be noted that the variables are random variables (vectors) based on the
sampled trajectories at each phase.

We first state a lemma which shows that the variance of the MC estimator can be decomposed into
the sum of the variances of partial trajectories.

Lemma 1. Var(VMC(s)) =
∑∞

m=0 γ
2kmE

[
Var(R̄+ γkP̄Vπ|skm)

∣∣ s0=s
]
, where Vπ ∈ R|S| is

the true value function.

Proof. Note that, when conditioned on D, both R and P become constants. Using this fact, we have
the following recurrence relation:

Var(VMC(s)) = Var
(
Ḡ
∣∣ s0=s

)
= Var

(
E
[
Ḡ
∣∣D, s0=s

]∣∣ s0=s
)
+ E

[
Var

(
Ḡ
∣∣D, s0=s

)∣∣ s0=s
]

= Var
(
R̄+ γkP̄Vπ

∣∣ s0=s
)
+ E

[
Var

(
1

n

n∑
i=1

∞∑
t=k

γtrit

∣∣∣∣∣D
)∣∣∣∣∣ s0=s

]

= Var
(
R̄+ γkP̄Vπ

∣∣ s0=s
)
+

1

n
E

[
n∑

i=1

Var
(
γkVMC(s

i
k)
)∣∣∣∣∣ s0=s

]
= Var

(
R̄+ γkP̄Vπ

∣∣ s0=s
)
+ γ2kE [Var (VMC(sk)) |s0=s] .

Since Var(VMC(·)) is bounded, Lemma 1 follows from expanding this recursion.

We abused the notation slightly by denoting the variance starting from state skm as Var(·|skm) to
avoid confusion with the s0 in the outer conditional expectation. As we will see, the variance of TD
can be similarly decomposed with Vπ replaced by bootstrapping values.

4 Variance of Multi-Step TD Learning

In this section, we show that the variance decomposition presented in Lemma 1 is closely related to
the variance of TD learning, and use it to analyze the variance of TD learning.

We first rewrite Equation 2 into the following:

V T
TD(k)(s) = R̄T + γkP̄TVT−1

TD(k),

where the superscript T indicates the phase of the corresponding variables, and VT
TD(k) ∈ R|S| is

the random vector with entries V T
TD(k)(s). Without loss of generality, we set V0

TD(k) ≡ 0. Note that
VT

TD(k) is now a random vector for T > 0 as the update involves random variables R̄ and P̄.

4

s0

s1k
s2k

s3k

(a) Independent bootstrapping states

s0

sik

(b) Correlated bootstrapping states

Figure 1: Illustration of how TD can reduce variance. Solid and dashed arrows represent trajectories
collected in the current phase and the previous phase, respectively. (a) The bootstrapping states sik
are independent, and averaging over their values effectively averages over 9 independent trajectories
collected in the previous phase. (b) The bootstrapping states sik are all the same, and averaging their
values provides no variance reduction, as the number of independent trajectories remains 3.

Let us first consider the expectation of VT
TD (note that PT and VT−1

TD are independent):

V̄ T
TD(k)(s) := E

[
V T
TD(k)(s)

]
= E

[
R̄T
]
+ γkE

[
P̄T
]
E
[
VT−1

TD(k)

]
= E

[
k−1∑
t=0

γtrt + γkV̄ T−1
TD(k)(sk)

∣∣∣∣∣ s0=s

]
,

and we recover the k-step Bellman update, implying that the bias of TD decays exponentially fast.
Next, similar to Lemma 1, we show that the upper bound of the variance of VTD also satisfies a
recurrence relation.
Lemma 2. Var(V T

TD(s)) ≤ Var
(
R̄T + γkP̄T V̄T−1

TD

∣∣ s0=s
)
+ γ2kE

[
Var

(
V T−1
TD (sk)

)∣∣ s0=s
]
.

Proof.

Var(V T
TD(k)(s)) = Var

(
R̄T + γkP̄TVT−1

TD(k)

∣∣∣ s0=s
)

= Var
(
E
[
R̄T + γkP̄TVT−1

TD(k)

∣∣∣D]∣∣∣ s0=s
)
+ E

[
Var

(
R̄T + γkP̄TVT−1

TD(k)

∣∣∣D)∣∣∣ s0=s
]

= Var
(
R̄T + γkP̄T V̄T−1

TD(k)

∣∣∣ s0=s
)
+ γ2kE

[
Var

(
P̄TVT−1

TD(k)

∣∣∣D)∣∣∣ s0=s
]

≤ Var
(
R̄T + γkP̄T V̄T−1

TD(k)

∣∣∣ s0=s
)
+ γ2kE

[
P̄TVar

(
VT−1

TD(k)

)∣∣∣ s0=s
]

(Jensen’s ineq.)

= Var
(
R̄T + γkP̄T V̄T−1

TD(k)

∣∣∣ s0=s
)
+ γ2kE

[
Var

(
V T−1
TD(k)(sk)

)∣∣∣ s0=s
]
.

Expanding this recursion gives us:

Var(V T
TD(k)(s)) ≤

T−1∑
m=0

γ2kmE
[
Var

(
R̄T−m + γkP̄T−mV̄T−1−m

TD(k)

∣∣∣ skm)∣∣∣ s0=s
]
,

and we arrive at a similar expression to the MC estimator (Lemma 1). In fact, we get, in the limit:
Theorem 1. limT→∞ Var(V T

TD(k)(s)) ≤ Var(VMC(s)).

See Appendix A.1 for a proof. This bound shows that, asymptotically, TD learning is no worse than
MC methods, independent of the backup length k; however, it also suggests that TD learning, in
the worst case, can suffer from the same variance as MC methods. To understand when this could
happen, let us examine the only inequality used in the derivation, namely, Var

(
P̄VT−1

TD(k)

∣∣∣D) ≤
P̄Var

(
VT−1

TD(k)

)
. Note that the left-hand side is simply the variance of the average of the bootstrap

5

values, and this inequality becomes an equality when the value estimates have correlation 1 (e.g., sik
are the same for all i). This suggests that one way bootstrapping reduces variance is by effectively
aggregating over a larger pool of independent trajectories, as illustrated in Figure 1. In Section 7, we
also construct toy examples to illustrate this effect.

5 Control variate and the advantage function

We now turn to the question of how we can use control variates to reduce variance. We begin by
considering the π-centered function class Fπ = {f |Eπ [f(s, a)|s] = 0 ∀s}, which has the following
property:

Eπ

[∞∑
t=0

γt (r(st, at)− f(st, at))

]
= Eπ

[∞∑
t=0

γtr(st, at)

]
∀f ∈ Fπ.

In other words, introducing f does not bias the MC estimate, and f can be seen as a control variate.
A natural question is, then, what would be the optimal choice of f∗ that minimizes the variance, i.e.,

f∗ = argmin
f∈Fπ

Var

(∞∑
t=0

γt (r(st, at)− f(st, at))

)
Pan et al. [2022] proved that the advantage function Aπ is the unique minimizer of this variance
under mild coverage assumptions on the policy. Now, if the advantage function is known, we can
combine it with the MC estimator to reduce its variance via

VMC−A(s) =
1

n

n∑
i=1

(∞∑
t=0

γt
(
rit −Aπ(sit, a

i
t)
))

. (10)

One may wonder to what extent can this control variate reduce the variance of MC estimates. To
answer this, we use the return decomposition proposed by Pan and Schölkopf [2024]

∞∑
t=0

γtrt = V π(s0) +

∞∑
t=0

γt(Aπ(st, at) +Bπ(st, at, rt, st+1)),

where Bπ(st, at, rt, st+1) = rt + γV π(st+1) − E[r + γV π(s′)|st, at]. Now, if Bπ ≡ 0 (e.g.,
deterministic environment), then the decomposition reduces to

∞∑
t=0

γtrt = V π(s0) +

∞∑
t=0

γtAπ(st, at). (11)

Combine this with Equation 10, we have Var(VMC−A(s)) = Var(V π(s)) = 0. This means that Aπ

can fully explain the variance, and we suffer no variance by using the MC estimator in this case.
For more general environments, Bπ is required to account for the variance caused by stochastic
transitions, and it remains open whether Bπ can be easily estimated in model-free settings. As such,
we focus on the advantage function in the present work.

In practice, the advantage function is rarely known a priori, and we have to estimate both the value
function and the advantage function simultaneously. In Section 6, we show that Direct Advantage
Estimation (DAE) [Pan et al., 2022] can be seen as a type of regression-adjusted control variate,
which achieves this.

6 Direct Advantage Estimation and Control Variate Regression

Recall that DAE estimates the value function and the advantage function by solving a constrained
least-square problem (Equation 7). Similar to TD learning, DAE can also bootstrap with previous
estimates. For the present work, we focus only on the value estimate and treat Â as nuisance
parameters. This allows us to remove the constraint and reformulate the empirical objective into:

1

n

n∑
i=1

(
k−1∑
t=0

γt

(
rit −

(
Âi

t −
∑
a

π(a|st)Â(sit, a)

))
+ γkV T

DAE(k)(s
i
k)− V̂ (s0)

)2

,

6

1 2
...

... 8
...· · ·

Figure 2: Chain MDP with S = {1, 2, ..., 8},
A = {1, ..., |A|}, and r(a) = (−1)a

4 (indepen-
dent of state). After state 8, the agent returns to
state 1.

Figure 3: Parameters of the experiment.

Param. Description
|A| action space size
n number of sample trajectories
k backup length
pr probability of reward masking
ps probability of sticky transition

where Âi
t = Â(sit, a

i
t). The update rule then becomes solving for the minimizing (Â, V̂) of this

empirical objective. Under this formulation, AT+1
DAE(k) may no longer be unique, but V T+1

DAE(k) remains
unchanged. Let us now consider DAE in the phased setting, which turns out to have a similar update
rule as TD learning. We first introduce M ∈ Rn×|S||A|:

Mi,(s,a) =

k−1∑
t=0

γt
(
I(sit=s, ait=a)− π(a|s)I(sit=s)

)
. (12)

Essentially, this matrix compares the empirical occupancy measure of each trajectory to the occupancy
measure given the policy. Notice that the finite-sample phased DAE update can be written as:

(AT , V T
DAE(k)(s)) = argmin

Â,V̂ (s)

n∑
i=1

(
k−1∑
t=0

γtrit + γkVT−1
DAE(k)(s

i
k)−MT−1

i Â− V̂ (s)

)2

, (13)

where Â ∈ R|S||A| is a parameter vector. Comparing this to Equation 5, we see that DAE is a case of
regression-adjusted control variate, where M is the control variate with E[M] = 0 and corresponding
coefficients Â. Let M̄ := 1

n

∑n
i=1 Mi, then the update rule is equal to:

V T
DAE(k)(s) = R̄T + γkP̄TVT−1

DAE − M̄TAT .

As pointed out in Section 2, the control variate regression estimator behaves similarly to the one
with optimal control variate coefficients up to first-order approximation. Consequently, we have
V T
DAE(k)(s) ≈ V ∗T

DAE(k)(s), where V ∗T
DAE denotes the estimator with optimal control variate coeffi-

cients. One can then show that:
Theorem 2. lim supT→∞ Var(V ∗T

DAE(s)) ≤ Var(VMC−A(s)) ≤ Var(VMC(s)).

See Appendix A.2 for a proof. Comparing this to Corollary 1, we find that, asymptotically and up to
first-order approximation, DAE enjoys a lower upper bound on the variance by using control variates.

7 Empirical Illustration

In this section, we illustrate the behaviors of different estimators through experiments based on
variants of the chain environment shown in Figure 2. Despite its simplicity, the environment is
sufficiently expressive to elucidate various properties pertaining to the estimators analyzed in the
present study.

All experiments are based on the phased setting, where values are updated synchronously at the end
of each phase. We fix the policy π to be uniform, the discount factor at γ = 0.99, and consider two
types of stochasticity:

1. Reward masking: The rewards are
masked out with probability pr

p(r(a)) =

{
pr r(a) = 0

1− pr r(a) = (−1)a

4

2. Sticky transition: With probability ps, the
agent stays in the current state instead of
advancing to the next state

p(st+1|st) =
{
ps st+1 = st
1− ps st+1 = st mod 8 + 1

7

100 101 102 103
0.0

0.5

1.0

M
SE

100 101 102 103
10 15

10 11

10 7

10 3

Lo
g

M
SE

100 101 102 103
0.0

0.5

1.0

M
SE

100 101 102 103
10 15

10 11

10 7

10 3

Lo
g

M
SE

100 101 102 103

Phase

0.25
0.50
0.75
1.00

M
SE

100 101 102 103

Phase

10 1

100

Lo
g

M
SE

k-step
64
16
4

Method
TD
DAE
Bellman
MC
MC-A

Figure 4: The deterministic case (top), the sticky transition case (middle), and the reward masking
case (bottom). Lines and shadings represent (mean ± 3 standard error).

For simplicity, we consider cases where |A| is even, such that V π ≡ 0, and the variances of the MC
and the MC-A estimators are equal to

Var(VMC(s)) =
(1− pr)

16(1− γ2)n
, and Var(VMC−A(s)) = prVar(VMC(s)). (14)

We note that the variances do not depend on ps due to the symmetric nature of the states.

For the following experiments, the number of phases is fixed at 2500, which we found sufficient for
the estimators to converge, and each run (configuration) is repeated for 1000 different random seeds
to ensure statistical significance. We compare the mean squared error (MSE) between the true value
function and the estimated value function averaged over all states.

The Deterministic Case (|A| = 2, n = 8, k ∈ {4, 16, 64}, ps = 0, pr = 0) We first examine the
effect of k in the simplest setting with a deterministic environment. Since the bootstrapping state is
fully deterministic and independent of actions, our analysis (Section 4) suggests that bootstrapping
will lose its ability to reduce the variance, and TD would behave like MC asymptotically. Indeed,
Figure 4 (top) shows that TD learning, independent of k, approaches the same MSE as MC. Note that
this cannot be explained by the bound given by Equation 3, which predicts that the asymptotic error
would grow as k increases. On the other hand, we see DAE converging to the true value function
with rates matching Bellman iterations, indicating its effectiveness in variance reduction.

The Sticky Transition Case (|A| = 2, n = 8, k ∈ {4, 16, 64}, ps = 0.25, pr = 0) We now
examine how stochastic transitions affect the MSE. Figure 4 (middle) shows that, counterintuitively,
stochasticity reduces the variance of TD. Furthermore, the learning curves now follow the common
bias-variance tradeoff intuition of multi-step learning (i.e., larger k learns faster but leads to higher
variance and vice versa). We emphasize that this setting effectively differs from the deterministic
case only in how the bootstrapping states are sampled. As such, the variance reduction can only
be explained by TD learning’s ability to effectively aggregate over a larger number of independent
trajectories (cf. Figure 1). DAE converges with rates similar to Bellman iterations again, since Bπ

does not depend on ps.

So far, both cases have almost full coverage of the state-action space from the data in each phase,
and have variances that can be fully explained by the advantage function (cf. Equation 11). This

8

100 101 102 103

Phase

0.2

0.4

0.6

0.8

1.0

M
SE

100 101 102 103

Phase

10 6

10 4

10 2

100

Lo
g

M
SE

Method
TD DAE Bellman MC MC-A

| |
4 16 64

Figure 5: The low coverage case. Lines and shadings represent (mean ± 3 standard error). Note that
TD does not depend on |A|.

allowed DAE to converge almost as fast as Bellman iterations. To see when this breaks down, we
next consider the stochastic reward (Bπ ̸≡ 0) and the large |A| settings.

The Reward Masking Case (|A| = 2, n = 8, k ∈ {4, 16, 64}, ps = 0, pr = 0.2) Similar to
the deterministic case, Figure 4 (bottom) shows that, asymptotically, TD performs similar to MC
irrespective of k, as the bootstrapping states are deterministic. On the other hand, the variance of
MC-A is no longer zero since Bπ ̸≡ 0, and DAE converges slightly above MC-A, indicating that the
finite-sample bias introduced by control variate regression is no longer negligible.

The Low Coverage Case (|A| ∈ {4, 16, 64}, n = 8, k = 16, ps = 0, pr = 0) Finally, we consider
the low coverage case, where the least squares become underdetermined. In the context of RL, this
means that most of the actions are not sampled, and the advantage estimates become unreliable. We
follow the common practice of choosing the minimum Euclidean-norm solution, as implemented
by popular least-squares solvers [Anderson et al., 1999]. Figure 5 shows that, when |A| ≥ 16, DAE
converges to suboptimal solutions compared to the full coverage cases. Nonetheless, we find that
DAE converges to a lower MSE than TD, suggesting that the advantage estimates may help reduce
variance even when they are poorly estimated. 1

8 Related Work

The bias-variance tradeoff between MC and TD has been discussed in classical texts such as Sutton
et al. [1998] or Szepesvari [2010]; however, only case studies were given, and a rigorous analysis
remained desirable. Kearns and Singh [2000] analyzed the error bounds of multi-step TD learning in
the phased setting [Kearns and Singh, 1998], which also serves as the basis of the present work. In the
batch setting, Grunewalder et al. [2007] showed that LSTD [Bradtke and Barto, 1996] is statistically
more efficient than MC when the Markovian structure of the environment can provide additional
information. More recently, Cheikhi and Russo [2023] derived a more precise statistical relationship
between batch TD and MC by analyzing trajectory pooling. However, the batch setting abstracts
away the iterative nature of TD, and their implications in the online setting remain unclear. Similar
problems have also been studied in function approximation settings [Dalal et al., 2018, Bhandari
et al., 2018], where finite-sample (time) error bounds were given.

The advantage function [Baird, 1995] is commonly used as control variates for policy gradient
methods [Sutton et al., 1999, Greensmith et al., 2004].The present work demonstrates that the
advantage function can also be used as control variates for policy evaluation, and shows that DAE [Pan
et al., 2022] can be seen as regression adjusted control variates.

9 Discussion

We analyzed the asymptotic behaviors of MC, TD, and DAE, and revealed one of the mechanisms
behind the variance reduction property of bootstrapping, namely, the ability to aggregate over a larger

1We find DAE converging to the true value function again if one uses iterative solvers (see Appendix B.1).

9

number of independent trajectories. Furthermore, we established a connection between DAE and
control variate regression, and demonstrated how it can further reduce the variance of TD learning.
At its core, DAE exploits our knowledge of the policy to reduce variances and an interesting future
direction would be to explore other types of control variates for policy evaluation.

Finally, we note some limitations: (1) The phased setting is highly simplified by assuming the ability
to sample trajectories uniformly from each state. It remains unclear how we can analyze DAE in an
iterative setting, and to what extent the results hold under more realistic sampling (e.g., Markovian
sampling) settings. (2) We focused mainly on the variance reduction property of DAE, but it should
be noted that DAE also incurs additional space (to store M) and time (to solve linear least-squares)
complexities. (3) The theoretical results for DAE only hold up to the first-order approximation case
where the control variate coefficients are optimal, and while empirical results seem to suggest that the
variance reduction is beneficial, a more rigorous analysis remains desirable.

References
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition, 1999. ISBN 0-89871-447-8 (paperback).

S. Asmussen and P. W. Glynn. Stochastic simulation: algorithms and analysis, volume 57. Springer,
2007.

L. Baird. Residual algorithms: Reinforcement learning with function approximation. In Machine
Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

J. Bhandari, D. Russo, and R. Singal. A finite time analysis of temporal difference learning with
linear function approximation. In Conference on learning theory, pages 1691–1692. PMLR, 2018.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference learning.
Machine learning, 22(1):33–57, 1996.

R. M. Burton and U. Rösler. An l2 convergence theorem for random affine mappings. Journal of
applied probability, 32(1):183–192, 1995.

D. Cheikhi and D. Russo. On the statistical benefits of temporal difference learning. In International
Conference on Machine Learning, pages 4269–4293. PMLR, 2023.

G. Dalal, B. Szörényi, G. Thoppe, and S. Mannor. Finite sample analyses for td (0) with function
approximation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

E. Greensmith, P. L. Bartlett, and J. Baxter. Variance reduction techniques for gradient estimates in
reinforcement learning. Journal of Machine Learning Research, 5(9), 2004.

S. Grunewalder, S. Hochreiter, and K. Obermayer. Optimality of lstd and its relation to mc. In 2007
International Joint Conference on Neural Networks, pages 338–343. IEEE, 2007.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, Sept. 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.
1038/s41586-020-2649-2.

M. Kearns and S. Singh. Finite-sample convergence rates for q-learning and indirect algorithms.
Advances in neural information processing systems, 11, 1998.

M. J. Kearns and S. Singh. Bias-variance error bounds for temporal difference updates. In COLT,
pages 142–147, 2000.

10

http://github.com/jax-ml/jax
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

A. B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/mc/,
2013.

C. C. Paige and M. A. Saunders. Lsqr: An algorithm for sparse linear equations and sparse least
squares. ACM Transactions on Mathematical Software (TOMS), 8(1):43–71, 1982.

H.-R. Pan and B. Schölkopf. Skill or luck? return decomposition via advantage functions. arXiv
preprint arXiv:2402.12874, 2024.

H.-R. Pan, N. Gürtler, A. Neitz, and B. Schölkopf. Direct advantage estimation. Advances in Neural
Information Processing Systems, 35:11869–11880, 2022.

M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley
& Sons, 2014.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3(1):
9–44, 1988.

R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning. 1998.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. Advances in neural information processing systems, 12,
1999.

C. Szepesvari. Algorithms for Reinforcement Learning. Morgan & Claypool Publishers, 2010.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:
261–272, 2020. doi: 10.1038/s41592-019-0686-2.

A Proofs

A.1 Proof of Corollary 1

Theorem 1. limT→∞ Var(V T
TD(k)(s)) ≤ Var(VMC(s)).

Proof. First, we show that limT→∞ Var(V T
TD(k)(s)) converges. Note that

V T
TD(k)(s) = R̄T + γkP̄TVT−1

TD(k),

is a special case of random affine iterated system of the form:
Xt = AtXt−1 + bt, (15)

where (At, bt) are i.i.d. random variables. Furthermore, since γkP̄ is a contraction respect to || · ||∞
and R is bounded, we know that the random vector VT

TD(k) will converge in distribution with respect
to the Wassterstein distance W∞ [Burton and Rösler, 1995]. Consequently, all finite moments of
VT

TD(k) also converges as T →∞.

Next, by Lemma 2, we have:

Var(V T
TD(k)(s)) ≤

T−1∑
m=0

γ2kmE
[
Var

(
R̄T−m + γkP̄T−mV̄T−1−m

TD(k)

∣∣∣ skm)∣∣∣ s0=s
]
.

It is enough to show that the summation on the right hand side converges to Var(VMC(s)) as
T → ∞. Let xT−m,m = E

[
Var

(
R̄T−m + γkP̄T−mV̄T−1−m

TD(k)

∣∣∣ skm)∣∣∣ s0=s
]
, we are interested

in the following limit

lim
T→∞

T−1∑
m=0

γ2kmxT−m,m.

11

https://artowen.su.domains/mc/

Since x∞,m := limT→∞ xT−m,m = E
[
Var

(
R̄+ γkP̄V π

∣∣ skm)∣∣ s0=s
]

(note that both RT and
PT are i.i.d. for all T), there exists N ∈ N such that if T −m > N then |xT−m,m − x∞,m| < ϵ.
In addition, since R, P and Vπ are all bounded, there exists M ∈ R such that |x∞,m| < M and
|xT−m,m| < M for all m,T −m ∈ Z+. Consequently,∣∣∣∣∣

T−1∑
m=0

γ2kmxT−m,m −
∞∑

m=0

γ2kmx∞,m

∣∣∣∣∣
≤

∣∣∣∣∣
T−1∑
m=0

γ2km(xT−m,m − x∞,m)

∣∣∣∣∣+
∣∣∣∣∣

∞∑
m=T

γ2kmx∞,m

∣∣∣∣∣
≤

∣∣∣∣∣
T−n−1∑
m=0

γ2km(xT−m,m − x∞,m)

∣∣∣∣∣+
∣∣∣∣∣

T−1∑
m=T−n

γ2km(xT−m,m − x∞,m)

∣∣∣∣∣+ Mγ2kT

1− γ2k

≤ ϵ

1− γ2k
+

2Mγ2k(T−n)

1− γ2k
+

Mγ2kT

1− γ2k

is arbitrarily small as T →∞, and

lim
T→∞

Var(V T
TD(k)(s)) ≤ lim

T→∞

T−1∑
m=0

γ2kmxT−m,m =

∞∑
m=0

γ2kmx∞,m = Var(VMC(s)).

A.2 Proof of Corollary 2

Theorem 2. lim supT→∞ Var(V ∗T
DAE(s)) ≤ Var(VMC−A(s)) ≤ Var(VMC(s)).

Proof. Since Aπ is the optimal control variate for MC estimation, Var(VMC−A(s)) ≤ VarVMC(s)
holds. Next, note that V ∗T

DAE(s) is DAE with the optimal control variate coefficients A∗T . Conse-
quently, we must have:

Var(V ∗T
DAE(s)) ≤ Var

(
R̄T + γkP̄TV∗T−1

DAE − M̄TAπ
)
, (16)

where Aπ ∈ R|S||A| is the true advantage function. Since Aπ is a constant vector, and MT is
uniformly bounded, we can rewrite the right hand side of this inequality by

Var
(
R̄′T + γkP̄TV∗T−1

DAE

∣∣ s0 = s
)
, (17)

where R′T = RT − M̄TAπ. By Corollay 1, we know that this variance is bounded above by the
variance of the MC estimator with this new reward function, which is precisely the variance of
VMC−A.

Finally, we make a remark about this corollary. Since the advantage estimate AT now also depends
on VT−1, it is not clear whether the update remains a contraction, or whether higher moments (e.g.,
variance) also converge. As such, we only prove the supremum limit is upper bounded by VMC−A.

B Experimental Details

Algorithm 1 shows the pseudocode. All experiments are based on Python with least-square solvers
implemented by NumPy [Harris et al., 2020], SciPy [Virtanen et al., 2020] or JAX [Bradbury et al.,
2018]. A single run (1 seed, 2500 phases) takes less than a minute on commercial CPUs, except for
the large |A| experiment, where we leveraged GPUs (Nvidia A100) to parallelize the least-square
solver. We use LSQR [Paige and Saunders, 1982] as the default least-square solver as we found it
to be slightly faster. The only exception is the large |A| experiment, where we used the SVD-based
minimum norm solver [Anderson et al., 1999] to ensure reproducibility.

12

Algorithm 1 Phased TD/DAE

Require: n, k, alg∈{TD, DAE}, LSTSQ_SOLVER
1: Initialize V ≡ 0
2: for T = 1, 2, . . . do
3: D = {}
4: for s ∈ S do
5: for i = 1, . . . , n do
6: Sample k-step trajectory τ from environment
7: D ← D ∪ {τ}
8: end for
9: end for

10: if alg == TD then
11: Compute R̄, P̄ from D
12: V← R̄+ γkP̄V
13: else
14: Compute M̄, R̄, P̄ from D
15: V,A← LSTSQ_SOLVER(||R̄+ γkP̄V − V̂ − M̄Â||2)
16: end if
17: end for

100 101 102 103

Phase

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

100 101 102 103

Phase

10 15

10 12

10 9

10 6

10 3

100
Lo

g
M

SE

Method
TD DAE Bellman MC MC-A

| |
4 16 64

Figure 6: The low coverage case with an iterative solver. Lines and shadings represent (mean ± 3
standard error). Note that TD does not depend on |A|.

B.1 Additional Experiments

The Low Coverage Case With an Iterative Solver (|A| ∈ {4, 16, 64}, n = 8, k = 16, ps = 0,
pr = 0) In Section 7, we showed that increasing the size of the action space results in DAE
converging to suboptimal solutions when regularized with minimum norm solutions. In Figure 6,
we rerun the same experiment but with an iterative least-sqaures solver (LSQR [Paige and Saunders,
1982] in this case), where the optimum in the previous phase is used as the initialization for the
current phase. We find that DAE converges again to the true value function, although at a slower rate
as |A| increases. This might partially explain the success of DAE in the deep RL setting [Pan et al.,
2022], where gradient-based optimization is used.

13

	Introduction
	Background
	Variance of Monte Carlo Methods
	Variance of Multi-Step TD Learning
	Control variate and the advantage function
	Direct Advantage Estimation and Control Variate Regression
	Empirical Illustration
	Related Work
	Discussion
	Proofs
	Proof of Corollary 1
	Proof of Corollary 2

	Experimental Details
	Additional Experiments

