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Abstract—Bimanual manipulation is a longstanding challenge
in robotics due to the large number of degrees of freedom
and the strict spatial and temporal synchronization required to
generate meaningful behavior. Humans learn bimanual manip-
ulation skills by watching other humans and by refining their
abilities through play. In this work, we aim to enable robots
to learn bimanual manipulation behaviors from human video
demonstrations and fine-tune them through interaction. Inspired
by seminal work in psychology and biomechanics, we propose
modeling the interaction between two hands as a serial kinematic
linkage — as a screw motion, in particular, that we use to
define a new action space for bimanual manipulation: screw
actions. We introduce SCREWMIMIC, a framework that lever-
ages this novel action representation to facilitate learning from
human demonstration and self-supervised policy fine-tuning. Our
experiments demonstrate that SCREWMIMIC is able to learn
several complex bimanual behaviors from a single human video
demonstration, and that it outperforms baselines that interpret
demonstrations and fine-tune directly in the original space of
motion of both arms. For more information and video results,
https://robin-lab.cs.utexas.edu/ScrewMimic/

I. INTRODUCTION

Manipulation in human environments often requires co-
ordinating the motion of two arms, e.g., opening a bottle,
cutting a block in two pieces, or stirring a pot. In dexterous
bimanual manipulation, the agent has to generate behavior
for both arms that are synchronized spatially and temporally,
rendering it even more complex to generate than two in-
dependent unimanual manipulations. Due to its complexity,
in nature, this kind of behavior is almost unique to higher-
level primates [1, 2, 3, 4], and it requires several years to
fully develop in humans [5, 6], being mastered only after
a significant amount of time of observing expert bimanual
agents and practicing through trial-and-error. This work aims
to endow robots with novel capabilities to learn bimanual
manipulation tasks.

Learning to generate dexterous bimanual manipulation in
robots is challenging due to the large state and action spaces
resulting from the two arms, and the strict requirements of
spatial and temporal synchronization between them to achieve
success [7, 8, 9]. As a result, exploring randomly in this space
is prohibitively difficult, especially on real robot hardware,
limiting some of the successes to simulation [10, 11, 12, 13].
A promising approach to reduce the challenge of searching
for a successful bimanual manipulation policy is to observe
a human performing a bimanual manipulation and imitate
it. However, due to the morphology differences between the
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Fig. 1. Bimanual manipulation tasks can be represented by a screw
axis (red line) constraining and synchronizing the motion of both hands.
SCREWMIMIC maps a single human demonstration into a screw axis,
improves it with an iterative interactive exploration procedure, and learns to
predict it for new object instances and poses, enabling their manipulation.

human and the robot, the direct execution of the observed
bimanual interaction may not be successful, necessitating an
exploratory refinement to adapt to the robot’s embodiment and
capabilities, which reintroduces the challenges of exploring
directly in the space of motion of both arms.

The main insight in this work is that for many bimanual
manipulation tasks, the relative motion between hands can be
explained by a simple one-degree-of-freedom (1-DoF) screw
joint. This virtual joint constrains the motion in a way that
matches an existing physical constraint in the environment
(e.g., when opening a laptop or a bottle with both hands) or
just facilitates the manipulation (e.g., when cutting a block or
stirring a pot, see Fig. 1). The type of 1-DoF screw joint —
prismatic, revolute, screw— captures different modalities of
bimanual manipulation, while the screw joint parameters fully
specify the motion. This insight works at several levels: in
perception, it serves as a prior for interpreting noisy sensor
signals and facilitates understanding a human-demonstrated
bimanual manipulation. And, in exploration, it provides an
action space where both arm motions are coordinated by
design, allowing efficient action fine-tuning to find successful
behaviors with the real robot’s embodiment.

We present a novel method, SCREWMIMIC, that leverages
this insight for one-shot visual imitation learning of bimanual
manipulation from a human demonstration. Our method uses
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a single demonstration as input as an RGB-D video of a hu-
man performing a bimanual manipulation task. SCREWMIMIC
interprets the demonstration as a screw motion between both
hands and uses the perceived bimanual grasp and virtual joint
to train a prediction model on 3D point clouds. This model
predicts full bimanual manipulation behaviors composed of
bimanual grasping strategies and two-arm relative motion in a
possibly moving reference frame, for novel views of the object.
These predictions form the starting hypothesis for a self-
practicing iterative process. Here, the robot engages in biman-
ual interactions, learning to overcome morphological differ-
ences by optimizing a reward signal generated autonomously,
resulting in successful bimanual manipulation strategies. The
new strategy can then be used in a self-improving loop to
retrain a better prediction model that is also able to generalize
to new instances of the same object class thanks to a set of
geometric augmentations.

We demonstrate the performance of our solution in six
challenging bimanual manipulation tasks involving different
types of screw motion between both hands, both in objects
with physical kinematic constraints and in tasks where the
constraints need to be virtually created by the agent. Our
experiments indicate that the projection into the screw-axis
space is a robust representation for bimanual manipulation—
leading to sample efficient exploration and strong performance
in executing bimanual tasks.

II. RELATED WORK

SCREWMIMIC is a novel solution to generate and refine au-
tonomous robot bimanual manipulation behavior bootstrapped
with a single video of a human demonstration. In the follow-
ing, we contrast SCREWMIMIC to the most relevant prior work
in robot bimanual manipulation and visual imitation learning.

a) Bimanual Manipulation: Early on, robotics re-
searchers acknowledged the need for bimanual manipulators to
solve tasks in unstructured environments [14, 15, 16]. Gener-
ating coordinated behavior for both arms became a significant
challenge [8, 17] that researchers have attempted to solve with
planning [7, 18, 19], control [20], reinforcement learning [21],
and imitation learning [22, 23]. To generate bimanual ma-
nipulation behavior, these solutions have to explore a large
action space with strict temporal and spatial synchronization.
A common strategy is to coordinate behavior using stable
static postures or keypoints [24, 25, 26], or with explicit
spatial or temporal constraints typically extracted via kines-
thetic teaching [27, 28, 29, 30]. Oftentimes, these approaches
necessitate specialized teleoperation hardware like custom
devices [31, 32, 33] or motion capture [34, 35] that limit
their scalability and availability. In contrast, SCREWMIMIC
uses a single RGB-D video of a human demonstration, which
is cheaper to acquire, scalable and does not require controlling
a robot.

Given the large action space and difficulty of exploration,
reinforcement learning approaches to bimanual manipulation
are prohibitively costly to train on real robot hardware.

As an alternative, researchers have explored sim-to-real ap-
proaches [12, 36, 37]. These approaches suffer from the reality
gap which is exacerbated in contact-rich manipulation tasks
with complicated dynamics [38]. An alternative approach is
to employ movement primitives [39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51] which reduce the search space but limit
expressiveness and typically require substantial engineering
effort. Recently, Grannen et al. [52] proposed a stabilizing-
acting bimanual manipulation framework where the stabiliz-
ing hand is trained using human annotations and the acting
hand is trained using kinesthetic demonstrations. In contrast,
SCREWMIMIC leverages a novel action representation that
efficiently learns bimanual manipulation policies given only
a single human video demonstration, and can correct failed
actions through a self-supervised policy fine-tuning method.

b) Visual Imitation Learning: Recent work has sought to
imbue robots with the ability to learn from large collections
of unstructured human videos like Ego4D [53] or YouTube
videos [54, 55]. Some works have proposed learning cost func-
tions from video and language data [56, 57, 58, 59], whereas
others propose pretraining objectives [60, 61]. More direct
approaches generally track human hands in videos (e.g. with
FrankMocap [62]), mapping the hand trajectories to the robot’s
action space [63, 64, 65, 66, 67]. A common approach in
these works is to structure video understanding by modelling
manipulation using affordances (i.e. detecting contact points
[68]) and subsequent interaction trajectories . Since the robot’s
embodiment differs from a human demonstrator and tracking
is generally noisy, interactive fine-tuning is generally necessary
to obtain a reliable behavior policy [69, 70, 71]. DEFT [66],
for example, trains an affordance prediction model on large-
scale data and obtains the interaction trajectory given a human
demonstration at test time. This trajectory is then refined
through interaction. Inspired by this line of work, we propose
a novel formulation of synchronized bimanual manipulation
learned solely by watching human-object interactions in video.
In contrast to prior work in unimanual manipulation, our focus
here is on the action representation. Our unique formulation of
bimanual motion in terms of screw joints abstracts complex
high-DoF manipulation into a unified framework—enabling
efficient imitation learning from video.

III. PRELIMINARIES: SCREW THEORY

SCREWMIMIC models bimanual manipulation as a screw
motion between the two hands. Chasles’ theorem states that
any rigid body motion can be written as the composition of
a rotation of the body about a unique line in space and a
translation along the same line. This line is referred to as the
screw axis of that motion. A screw axis S can be represented
as (q, ŝ, h) where q ∈ R3 is any point on the axis, ŝ ∈ R3 is a
unit vector in the direction of the axis, and h ∈ R+ is the pitch
of the screw, defining the ratio of linear motion along the screw
axis to the rotational motion around the screw axis [73, 74].

Assuming some angular displacement θ ∈ R along a screw
axis S, the corresponding rigid body motion in exponential
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Fig. 2. Overview of SCREWMIMIC. a) Given an RGB-D video of a human performing a bimanual task, we use off-the-shelf hand tracking (HT)
models [62, 68] to extract a trajectory of wrist poses τh and grasp contact points (ghl , g

h
r ). SCREWMIMIC interprets τh as a screw motion between both

hands to estimate screw axis parameters Sh (Sec. IV-A). b) Next, we apply geometric augmentations on the 3D object point cloud to train a PointNet [72]
model to estimate screw actions for novel object views (Sec. IV-B). c) Finally, the trained model generates an initial hypothesis that the robot executes and
iteratively refines using an autonomously generated reward signal. The successful data point is further used to improve the prediction model (Sec. IV-C).

coordinates, ξ = (ω, v) ∈ R6 is given by

ξ = Sθ =

[
ω
v

]
=

[
ŝθ

−ŝθ × q + hŝθ

]
(1)

where ω ∈ R3 represents angular motion, and v ∈ R3

represents linear motion. To transform this into a homoge-
neous transformation matrix, T ∈ SE(3) (SE(3) the Spe-
cial Euclidean Lie Group) we apply the matrix exponential:
T = exp([S]θ), where [S]θ ∈ se(3) (se(3) is the Lie algebra)
is the matrix representation of the exponential coordinates:

[S]θ =

[
[ω] v
0 0

]
. (2)

with [ω] ∈ so(3) is a skew-symmetric matrix representing
orientation.

Conversely, given a rigid body transformation, T ∈ SE(3),
we can compute the corresponding screw axis as follows. In
the case of a pure translation (h = ∞), the screw axis can
be recovered as ŝ pointing in the direction of linear motion,
and q is any point. In the case of pure rotation (h = 0), we
can recover the corresponding twist in matrix form [S] using
the matrix logarithm: [S]θ = log(T ). Applying Eq. 1, we can
obtain the screw axis parameters as

ŝ =
ω

||ω||
, q =

ŝ× v

||ω||
. (3)

For the general case with h /∈ {0,∞} and further details, we
refer the reader to Lynch and Park [74].

We will use the definitions above to infer a screw axis
from a sequence of relative transformations between human
hands, and to generate relative motion between robot hands

for a given screw axis. In this work, we will consider three
screw types: pure translation (h = ∞, prismatic), pure
rotation (h = 0, revolute), and rotation with a fixed
orientation (revolute3D). We describe the axis computation
and trajectory generation for each case in Sec. IV below.

IV. SCREWMIMIC: POLICY LEARNING WITH SCREW
ACTIONS

Seminal research in psychology and biomechanics [75]
indicates that bimanual behavior in humans can be modeled as
if “a serial kinematic chain would connect both hands”, where
one hand (left) sets a spatial reference frame and the other
(right) moves relative to it. Inspired by this work, we propose
a novel action space parametrization for robotic bimanual
manipulation that we call screw actions, that fully specifies
the behavior of both hands through a screw joint between the
hands. A screw action is defined as, σ = (gl, gr, S, τl) in its
most general form. gl and gr are the grasping/placing locations
for left and right hands. S is a 1-DoF screw axis describing
the relative motion between left and right hands. Finally, τl
is a possible sequence of left-hand pose changes during the
interaction (e.g. moving a pot to the stove while stirring) that
can be empty if the left hand just fixates/stabilizes the object.

Given a screw action, the motion of both hands of the
robot during the bimanual manipulation is fully specified.
Our main hypothesis is that our new action space simplifies
robot dexterous bimanual manipulation at two levels: first,
it aids in learning from visual human demonstrations by
projecting noisy multi-hand motion into a simpler constrained
space, and second, it facilitates fine-tuning the perceived
motions by providing a constrained space in which real-world



exploration is more efficient. We propose a novel solution,
SCREWMIMIC, that leverages this insight to learn bimanual
policies. SCREWMIMIC integrates three modules: a perceptual
module to interpret a single human demonstration as a screw
action, a prediction model that predicts screw actions based
on a point cloud of an object, and a self-supervised iterative
fine-tuning algorithm that explores in screw action space to
find optimal parameters for bimanual tasks. In the following,
we explain each of these modules in detail.

A. Extracting a Screw Action from a Human Demonstration

The first module of SCREWMIMIC (Fig. 2a) parses an RGB-
D video of a human demonstrating a bimanual task into a
suitable action representation for robot execution, in our case,
a screw action σh = (ghl , g

h
r , S

h, τhl ) (h indicates human).
SCREWMIMIC first extracts the grasping/placing location of
the human hands (ghl and ghr ) using an off-the-shelf hand-
object detector [68], detecting the first intersection of the hand
and the object bounding boxes in the RGB image sequence,
and projecting it into the 3D point cloud of the object, P ,
using the information of the depth channel.

SCREWMIMIC then extracts the 6-DoF trajectories (position
and orientation) of the human hands using an off-the-shelf
hand-tracking solution (FrankMocap [62]) to detect the wrist
poses over time, τhl and τhr . A direct approach would use these
trajectories to imitate and fine-tune the bimanual manipulation.
However, the original trajectories contain noise from the visual
tracker, the motion of both hands is not constrained to be
synchronized, and an embodiment gap exists between the
human hand and the robot gripper, making it harder to imitate
and fine-tune (as shown in Sec. V); SCREWMIMIC overcomes
these limitations by interpreting the trajectories as a screw
action.

Inspired by models of human bimanual manipulation [75],
we assign an acting and reference role to the right and
left hands, respectively, keeping τhl as the trajectory of the
left hand. SCREWMIMIC finds then the screw axis Sh by
transforming τhr to the left hand reference frame and ana-
lyzing the left-right relative motion to obtain the screw-joint
type, m, and parameters, ŝ and q. For that, SCREWMIMIC
assumes three possible screw joint types, prismatic, revolute
and revolute with fixed orientation, as explained in Sec. III.
Assuming m = prismatic, SCREWMIMIC obtains the
screw parameters by fitting a 3D line to the trajectory of the
right wrist. When m = revolute, the screw axis parameters
can be obtained by transforming each pose of the right wrist
relative to the left wrist to exponential coordinates using the
matrix logarithm, applying Eq. 3, and averaging the resulting ŝ
and q. Finally, if m = revolute3D, SCREWMIMIC first fits
a plane to the trajectory of the right wrist; the normal to the
plane provides, ŝ. The right wrist trajectory is then projected
onto the plane and SCREWMIMIC fits a circle to it; the center
of the circle provides q. We employ a Maximum a Posteriori
Estimation (MAP) method to determine the screw joint type
(m) corresponding to a human demonstration. In this case,
we want to estimate m based on the hand pose observations,

Fig. 3. Human demonstrations as screw actions. Three frames of a
human demonstration for three bimanual tasks (top row: opening a bottle,
m = revolute, middle row: stirring a pot, m = revolute3D, bottom
row: opening a zipper, m = prismatic) and the perceived screw axis
explaining the motion (fourth column, orange indicates the axis line). Our
screw action representation facilitates the interpretation of noisy hand trajec-
tory observations in a bimanual interaction as evidence of a simple 1-DoF
constraint between both hands

τhr . To do this, SCREWMIMIC evaluates the likelihood of
each joint type (m), by comparing the observed demonstration
trajectory τhr with the trajectory computed based on m. This
comparison involves evaluating a score function that mea-
sures the distance between the two trajectories, considering
both positional and angular differences at each waypoint. A
lower distance indicates greater similarity between trajectories.
SCREWMIMIC picks the joint type with the highest likelihood.
Examples of the extracted screw axes for each type are
depicted in Fig. 3.

B. Predicting a Screw Action from a Point Cloud

Once the robot perceives the human demonstration of the
bimanual task and represents it in the screw action space, how
can it generalize to novel object instances and configurations?
To tackle this, the second module of SCREWMIMIC (Fig. 2b)
includes a PointNet [72] based model trained to predict the
screw action from an object’s point cloud. Concretely, given
an RGB-D observation, we use MDETR [76] to segment out
the object and extract its partial point cloud, P . The goal is
to learn a perception model M : P 7→ σM = (gMl , gMr , SM )
(M indicates Model). Here gMl , gMr refer to the grasp contact
points predicted by the perception model for the left and the
right grippers respectively and SM refers to the predicted
screw axis. From here on, we omit the left-hand trajectory, τl,
since our experiments focus on learning the relative motion
between hands, but the left-hand motion is enabled by our
general formalism, as shown in additional trials in Appendix A
and website.

SCREWMIMIC benefits from the 3D nature of both the
input observation and screw action representation that al-
lows for straightforward geometric augmentations of the data:
translation, rotation, and scaling. These augmentations are
applied to the point cloud, P , and corresponding robot action
σM . As a result, we generate an extensive training dataset



from just a single human demonstration. Using PointNet [72]
as the backbone, we construct two networks: a regression
network trained with MSE loss to predict the axis and a
segmentation network trained with negative log likelihood loss
for identifying contact points. We train task-specific prediction
models. The training of each model is efficient, requiring on
average 40 minutes for 2000 epochs on a RTX 4090 GPU.
This rapid training cycle enables quick model refinement and
incorporation of new data, as we will discuss in the next
section.

C. Self-Supervised Screw-Action Policy Fine-Tuning

Given that human pose tracking is inherently noisy, the
prediction model trained on the human hand trajectory will
necessarily have some error. Thus, if the robot directly ex-
ecutes the bimanual manipulation defined by the predicted
screw action, it will probably fail (as evidenced in our ex-
periments). Nevertheless, the predicted screw action produces
a behavior close to a successful manipulation and thus can
be used as initialization for a fine-tuning procedure through
interaction. The third module of SCREWMIMIC consists of
a self-supervised policy improvement algorithm that refines
the noisy screw action (Fig. 2c). As our experiments indicate
(Sec. V), the use of screw actions as policy parameterization
is critical for more efficient bimanual exploration and allows
SCREWMIMIC to achieve success in multiple tasks. In the
following, we first explain how a screw action is used by
SCREWMIMIC to generate a bimanual manipulation behavior,
and then, we describe the iterative process to fine-tune an
initial (failing) screw action into a successful one.

Given a predicted screw action σM = (gMl , gMr , SM ), the
two grippers first go to gMl and gMr at pre-defined orienta-
tions using a whole-body controller [77]. The end of this
initial motion is the beginning of the bimanual manipulation
described in Sec. III by the screw axis S. While the left
hand is possibly executing a trajectory τl, the right hand
will move relative to it following the constraints indicated
by S. SCREWMIMIC creates k ∈ 1 . . .K waypoints along
the screw axis with steps of θT /K, where θT is a pre-
determined total amount of translation along the axis-line for
m = prismatic type, or the total amount of rotation around
the axis-line for m = revolute and m = revolute3D
types. In the latter case, the orientation of the right hand is
kept constant during the motion. Assuming an initial 6D pose
for the right hand of T right

0 with respect to the left hand, the
right-hand poses will be given by Ti = exp([S]θk) T right

0 ,
where exp is the matrix exponential and θk = kθT /K.

Given the method explained above to generate bimanual
manipulation behavior based on a screw action, we now
explain the iterative procedure to fine-tune an initially failing
action. Inspired by prior exploratory approaches [66, 70, 78],
SCREWMIMIC implements a sampling-based optimization
framework based on the cross-entropy method (CEM). The
process starts with obtaining the initial screw action from
the prediction model that was trained on the human demon-
stration. Next, an initial sampling distribution, D, is used

to sample screw axis parameters around the initial screw
axis. E samples, ξ1,e, are drawn from this distribution. CEM
then requires a reward to score each sample and guide a
reweighting of the sampling distribution (D) for the next
epoch. In SCREWMIMIC, the CEM optimization process is
self-supervised through an autonomously generated reward
based on the length of the episode and the amount of force
employed, measured by a force-torque (FT) sensor in the right
hand’s wrist. Concretely, after each epoch, all the trajectories
up to that epoch are ranked by their length: the longer an
episode runs without failure, the better it is. We implement
three self-detected failures: 1) when the robot is not applying
enough force (norm of the wrench signal is below a threshold),
indicating that it may be moving in free space instead of
manipulating, 2) when the robot is applying too much force
(norm of the wrench signal is above a threshold), indicating
that it is trying to manipulate an object in the wrong way,
and 3) when the robot loses grasp (measured by the finger
proprioception). After all the episodes are ranked by their
lengths, SCREWMIMIC takes the top T trajectories and ranks
them by the mean wrenches employed over the episode; using
lower force for the manipulation is considered more efficient.
These episodes form the elite set. SCREWMIMIC updates
the sampling distribution based on the elite set and uses the
new distribution in another epoch. The process repeats for N
epochs or until the bimanual manipulation succeeds. The CEM
fine-tuning procedure is summarized in Algorithm 1.

The successfully executed screw action σr = (grl , g
r
r , S

r)
is added to the training dataset (see Fig. 2) to enhance the
action prediction model. This iterative process, if performed
repeatedly, can facilitate continuous improvement of both
the robot’s policy and the prediction model, creating a self-
supervised feedback loop where each component bolsters the
other as demonstrated in Sec. V.

Algorithm 1 Cross-Entropy Method Optimization
Require: parameter distribution D, total epochs N , episodes

in each epoch E, elite trajectories threshold T , Sinit =
(ŝinit, qinit) initial screw axis

ξinit ← (ŝinit, qinit)
D ← N(0, σ2)
for n = 1...N do

for e = 1...E do
Sample ϵn,e ∼ D
Execute ξn,e = ξinit + ϵn,e
Collect reward Rn,e; reset environment

end for
ξ1, ξ2...ξT ← Order trajectories ξ0,0, ξ0,1 ... ξn,E based

on rewards
Ω← {ϵξ1 , ϵξ2 ... ϵξT }
Fit D to Ω

end for
ξfinal ← ξinit + ϵfinal



V. EXPERIMENTAL EVALUATION

We evaluate SCREWMIMIC on six real-world bimanual
tasks: open bottle, close zipper, insert roll,
close laptop, stir and cut. These tasks collectively
encompass three types of screw joint models: prismatic,
revolute, and revolute3D. They also involve screw
actions in two types of objects: articulated objects with actual
physical joints constraining their motion (as in bottles, rolls,
and laptops) and objects without constraints, where the screw
action creates a virtual joint that facilitates the correct biman-
ual manipulation (as in stirring, cutting, and zipping a jacket).
While the manipulation of articulated objects has been studied
more extensively in the past [79, 80, 81, 82, 83], this is the first
time, to the best of our knowledge, that a framework unifies the
bimanual manipulation of rigid and articulated objects through
virtual joints. In the following, we explain each task in brief:
• open bottle: A bottle with its cap closed is placed

upright on the table. The robot performs the opening action
as defined by the screw action, followed by a lift arm
command. We consider success if the cap is separated from
the base of the bottle at the end.

• close zipper: A jacket is kept in a configuration as
shown in the first row of Fig. 4. We consider success if the
robot zips 90% of the jacket at the end.

• insert roll. A roll is placed beside the box aligned as
shown in the fourth row of Fig. 4. We consider success if
the robot inserts 90% of the roll inside the box at the end.

• close laptop: A laptop is placed on the table, opened
to around 100◦. We consider success if the robot closes the
laptop (final opening < 10◦).

• stir: A container with a ladle propped against its side is
placed in front of the robot. The container has two different
colored beans, initially separated. We consider success if the
two types of beans are significantly mixed after the stirring
as measured by a human evaluator.

• cut: The robot is holding a scraper knife in one gripper and
tasked with cutting a block of clay (∼7 cm in height). We
consider success if the block of clay is cut into two pieces
at the end.
In all our experiments, we use a PAL-Robotics Tiago++

bimanual manipulator and control its two arms using a whole-
body controller that maps desired end-effector poses for both
arms to joint torques using an inverse-kinematics-based so-
lution with task-priority control to avoid self-collisions [77].
For perception, we use an Orbbec Astra S RGB-D camera
mounted on Tiago++’s head both to observe humans and to
predict screw actions on objects, and an ATI mini45 force-
torque sensor mounted on the right hand’s wrist.

For each task, SCREWMIMIC begins with the screw action
predicted by the trained model after observing a single human
interaction using a perceived point cloud as input, and fine-
tunes it using its self-supervised iterative procedure. Each trial
of the procedure is limited to a maximum of 5 epochs, each
containing 5 episodes, after which, if the procedure did not find
a successful screw action, we consider the trial a failure. The

fine-tuning takes around 40 minutes, demonstrating a reason-
able real-world exploration time. Success is verified manually
after each episode, and a human resets the environment if
necessary.

Experiments and Results:

In our experiments, we aim to answer four questions:
Q1) Is a single human demonstration enough for

SCREWMIMIC to achieve success in bimanual manipulation
tasks? To evaluate this question, we perform three trials per
human demonstration for each of the tasks and observe if,
in the trials, SCREWMIMIC successfully achieves the biman-
ual tasks with its self-supervised fine-tuning in screw action
space. We also annotate the amount of interaction (episodes)
necessary on average to succeed in the task. We use a single
demonstration per task, but each trial starts with a different
(novel) location of the object(s). Therefore, SCREWMIMIC
needs to predict the screw action in a new location and start
the iterative process there. A trial for each task is depicted in
each row of Fig. 4, columns 1 to 6. The results are summarized
in Table I.

TABLE I
GENERALIZATION TO NEW OBJECT POSES

# Successes Avg Epochs and Episodes

Open Bottle 2/3 (3, 18)
Close Zipper 3/3 (2, 11)
Insert Roll 3/3 (1, 8)
Close Laptop 3/3 (2, 12)
Stir 2/3 (3, 16)
Cut 3/3 (1, 7)

Overall, SCREWMIMIC achieves an aggregated success of
90% in all trials. SCREWMIMIC failed only in one trial of
the open bottle and the stir tasks as the fine-tuning
process finished without any successful screw action. Due to
the small number of episodes (25 maximum), we observe a
marked dependency on the first screw action samples for the
fine-tuning procedure, which could be alleviated with a larger
number of episodes per epoch. Despite that, we consider that
our experiments indicate that, in most cases, SCREWMIMIC
succeeds in all studied bimanual manipulation tasks using
only a single video of a human demonstration, thanks to
the structure provided by the screw action for perception and
self-supervised exploration. Additionally, we also conduct ex-
periments to analyze the robustness of SCREWMIMIC to noisy
demonstrations. We observe that despite noisy demonstrations,
SCREWMIMIC is able to extract a screw axis sufficiently accu-
rate for fine-tuning. The details and results of the experiment
are shown in Appendix D.

Q2) Can a policy fine-tuning and model retraining loop
enable SCREWMIMIC to continually improve and generalize
to new objects? We assess if SCREWMIMIC can use the
corrected screw action obtained after fine-tuning to improve
the prediction model and generalize to unseen objects. In
this experiment, the screw action prediction model is first
trained with the noisy screw action parsed from the human



Human 
Demonstration

Predicted Axis 
using M1 

Predicted Axis 
using M2

Axis 
Corresponding 

To SuccessRobot Execution/Exploration

Fig. 4. Screw action fine-tuning and prediction model re-training result. The first column shows the human demonstration for each task. The second
column shows the axis predicted by M1, the model trained on the axis extracted from the human demonstration, with the object at a novel pose. Columns 3-5
show snapshots from an episode in the fine-tuning stage. Column 6 shows the axis corresponding to the successful trajectory obtained during the aforementioned
process. Column 7 shows the predicted axis for a novel object pose from the prediction model re-trained on the corrected axis. This result shows how the
robot starts from a noisy screw axis and using the screw action fine-tuning, corrects the axis. Furthermore, it also shows that this corrected axis can be used
to re-train the prediction model to output a more accurate axis.

demonstration (denoted M1 in Table II). The robot then
executes and fine-tunes this screw action to obtain a corrected
one and uses it to re-train the prediction model, obtaining
the model M2. SCREWMIMIC then uses model M2 to predict
and execute the bimanual tasks and performance is measured.
Table II reports the exploration iterations required until success
is achieved as (epochs, episodes), where each epoch consists
of 5 episodes and the policy is updated after each epoch.
Our experiments indicate that, after retraining, SCREWMIMIC
succeeds at the task with the same object (second column)
almost zero-shot, showing that the prediction model can be
iteratively improved using the corrected action obtained from
the fine-tuning stage.

We then assess how SCREWMIMIC handles new objects. We
place a novel object of the same category at a new pose and
run the same experiment (see Fig. 5). For certain tasks such
as open bottle and stir, initially, using M2, the screw
action prediction is sub-par (Table II, third column). This is
due to the large geometric difference between the bottle that

M2 was trained on and the new bottle. However, after fine-
tuning and obtaining model M3, SCREWMIMIC can complete
the task with the new object almost zero-shot (Table II, fourth
column). For certain other tasks such as insert roll
and cut, the initial screw action prediction is good as the
structural difference is smaller between the old and the new
object. This indicates that SCREWMIMIC helps create a self-
learning loop where the robot can continually expand its
manipulation capabilities to new objects. We also compare
training from scratch with a pre-trained PointNet model and
observe an improvement in the screw axis prediction on novel
objects. The details and results are shown in Appendix C

Q3) What benefits does the screw axis representation have
compared to a more direct, N×6-DoF representation? To
assess the importance of the screw axis representation we
compare it with two baselines visualized in Fig. 6. First, the
FM + N×6-DoF baseline (Table III, first row) extracts the
initial trajectory from hand tracker using the wrist poses as
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Fig. 5. Generalization to new objects. The first column shows the axis predicted by M2, the model trained on the corrected screw action for the first object.
Columns 2-4 show snapshots from an episode in the fine-tuning stage. Column 5 shows the axis corresponding to the successful trajectory obtained during
the aforementioned process. Column 6 shows the predicted axis from the prediction model re-trained on the corrected axis (M3). Thus, SCREWMIMIC can
obtain reasonable screw action predictions and fine-tune them to generalize to new objects. We show results for other tasks in Appendix, Sec. E.

TABLE II
GENERALIZATION TO NEW OBJECTS 1

Same object New object
M1 M2 M2 M3

Open Bottle (3, 16) (0, 1) (2, 14) (0, 1)
Close Zipper (1, 9) (0, 1) (0, 3) (0, 1)
Insert Roll (1, 7 ) (0, 2) (0, 3 ) (0, 1)
Close Laptop (2, 12) (0, 1) (0, 4) (0, 2)
Stir (3, 16) (0, 1) (1, 6) (0, 2)
Cut (1, 7) (0, 1) (0, 2) (0, 1)

1 Results reported as (Epochs, Episodes) until a success is reached.

N waypoints directly. We call this space as N×6-DoF as
it has N waypoints with each waypoint described by a 6-
DoF pose. During fine-tuning, it explores in the N×6-DoF
space by adding noise to the initial waypoints (Fig. 6a). With
this baseline, we ablate the screw representation both as the
human demonstration parser and as the action space during
fine-tuning. Note that this baseline emulates DEFT’s [66] fine-
tuning stage. Due to the unavailability of DEFT’s code/model,
we attempt to approximate DEFT’s methodology as closely as
possible. Key differences include: 1) the use of both hands in
our method, 2) the extraction (rather than prediction) of grasp-
ing locations directly from demonstrations, and 3) a reliance
on SCREWMIMIC’s self-generated CEM reward, rather than
human-assigned scores. The second baseline, Screw + N×6-
DoF (Table III, second row) extracts the initial trajectory from
the output of the hand tracker using SCREWMIMIC’s parser
module as a screw axis, but explores by adding Gaussian noise
in SE(3) during fine-tuning (Fig. 6b). This baseline parses
the human demonstration in the same way as SCREWMIMIC
but explores differently. We compare against our proposed
SCREWMIMIC (Table III, third row), indicated as screw +
screw (Fig. 6c).

Each baseline obtains an initial trajectory from a human
demonstration, then performs the fine-tuning procedure in the
corresponding action space. For each method, we run one trial
of the exploration process for each of the three tasks —open
bottle, insert roll and close laptop as shown in
Table III. We indicate whether the robot can achieve success

TABLE III
ACTION REPRESENTATION COMPARISON

Task Success? #Episodes Dense Metric

FM + N×6-DoF Bottle No 25/25 0%
(DEFT*) Roll No 25/25 0%

Laptop No 25/25 10%

Screw + N×6-DoF Bottle No 25/25 10%
Roll No 25/25 50%
Laptop No 25/25 50%

Screw + Screw Bottle Yes 16/25 100%
(SCREWMIMIC) Roll Yes 7/25 100%

Laptop Yes 11/25 100%

in the allotted 5 epochs (5 episodes each), as well as the
percentage of the task that the robot completes (Table III, last
column), measured by a human.

Our results in Table III indicate that neither FM + N×6-
DoF nor Screw + N×6-DoF representations enable task
success, as exploring in the N×6-DoF space is much more
challenging. We hypothesize that, for FM + N×6-DoF, the
failing behavior is not only caused by the large uncorre-
lated exploration space but also by a more noisy initial
trajectory that keeps the inherent noise present in the hand-
tracking module. In contrast, the use of screw actions enables
SCREWMIMIC to clean the perceived human demonstration
and also makes the fine-tuning process more efficient by
exploring in the reduced screw axis space.

Q4) Are both autonomous reward signals correctly guid-
ing the policy fine-tuning stage? The screw action policy
fine-tuning stage requires a way to rank episodes in our
CEM procedure, guiding the robot to explore around good
episodes while disregarding bad ones to converge to success.
SCREWMIMIC uses two signals to rank any episode as de-
scribed in Sec. IV-C: the length of an episode (based on a loss
of grasp/fixation or exceeding a Force-Torque (FT) threshold),
and the mean wrench measured over the episode. To assess
the importance of these two signals for the fine-tuning stage,
we ablate each component individually. Since removing the
FT sensor threshold can be dangerous for the robot and the
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(a) FM + N × 6-DoF Noise (b) Screw + N × 6-DoF Noise (c) Screw + Screw
Fig. 6. Exploration intuition. The different action representations from
Table III are illustrated in 2D for the insert tissue roll task. The
true (prismatic) screw axis is visualized as a dashed line. The resulting
initial and sampled exploration trajectories are visualized as black and red,
respectively. (a) The baseline FM + N×6-DoF: obtaining an initial trajectory
from FrankMocap as N 6-DoF waypoints, then performing exploration around
that trajectory with noise in 6-DoF space. (b) The baseline Screw + N×6-
DoF: perceiving the initial trajectory as a screw axis but exploring with
noise in 6-DoF space. (c) SCREWMIMIC (Screw + Screw), perceiving the
demonstration as a screw action and exploring in the space of screw axes.

Fig. 7. Reward intuition. Each row shows the screw axis and the snapshots
of the corresponding episode to showcase the use of the reward components
– Grasp lost (first row), FT sensor reaching the threshold (second row). Each
snapshot has the corresponding FT sensor reading until that timestep. The pink
line shows the FT threshold. The last row shows an example of a success with
the corresponding FT sensor readings.

objects, we always retain it. Fig. 7 provides examples of the
roles of these reward terms. The results in Table IV indicate
that for the open bottle and stir tasks, if either of the
two components is absent, the policy fine-tuning process fails
and the robot fails to complete the task within the allotted
rollouts. For the insert roll task, there was never a grasp
lost in any episode, so SCREWMIMIC succeeds even without
the grasp loss detection. However, it fails without the mean
episode sensed wrench. This shows that both reward signals
are critical for SCREWMIMIC’s policy fine-tuning stage.

TABLE IV
ABLATION OF REWARD COMPONENTS

Task Success? #Episodes Dense Metric

w/o Grasp Lost Bottle No 25/25 20%
Detection Roll Yes 7/25 100%

Stir No 25/25 None

w/o Mean Episode Bottle No 25/25 30%
FT Roll No 25/25 10%

Stir No 25/25 None

SCREWMIMIC Bottle Yes 16/25 100%
Roll Yes 7/25 100%
Stir Yes 18/25 None

VI. LESSONS AND CONCLUSION

In this work, we present and validate SCREWMIMIC, a
robust representational framework for bimanual manipulation
that significantly boosts performance by simplifying com-
plex tasks into screw actions derived from a single human
demonstration. While our results demonstrate the capabilities
of SCREWMIMIC, it is not without limitations and scope for
future work. First, the screw action formulation, although
versatile, does not fit all bimanual manipulation tasks, e.g.,
tasks where the hands are not constrained to move along
a single axis, such as cutting in a zig-zag motion. Future
work can extend SCREWMIMIC to include sequences of
screw axes, requiring more complex inference and exploration
algorithms. Second, we train a separate prediction model for
each object class, which limits the generalization capabilities
of SCREWMIMIC. This can be addressed by training a single
multi-task model on a diverse array of objects. Large-scale
human-activity datasets [53, 84] offer an exciting avenue to
scale up the range of tasks and objects that SCREWMIMIC
can learn from. For that, our method should also relax the
dependency on depth sensors, which could be obtained instead
from RGB using recent algorithms [85, 86]. Third, episode
success is recorded manually in our experiments. This could
be automated in the future using vision-language foundation
models [87, 88]. Fourth, while SCREWMIMIC focuses on
improving the screw axis prediction, it could be beneficial
to also fine-tune the grasp contact points. Finally, due to 3D
sensor limitations, some reflective surfaces such as the laptop
cannot be correctly perceived from all angles and we need to
cover them. We do not deem this a problem of SCREWMIMIC
but rather of the (relatively outdated) depth sensor—using
more modern 3D sensors would alleviate it. Despite these
limitations, SCREWMIMIC demonstrates that using a screw
axis space representation for bimanual actions facilitates ef-
ficient exploration leading to strong improvements in task
success. Additionally, the incorporation of a self-supervised
fine-tuning process allows the robot to iteratively refine its own
actions. Our work is a promising step towards enabling robots
to efficiently learn complex bimanual manipulation tasks by
watching humans.
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James Kuffner, and Rüdiger Dillmann. Humanoid mo-
tion planning for dual-arm manipulation and re-grasping
tasks. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2464–2470. IEEE,
2009.

[19] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev.
Single-and dual-arm motion planning with heuristic
search. The International Journal of Robotics Research,
33(2):305–320, 2014.

[20] Ping Hsu. Coordinated control of multiple manipulator
systems. IEEE Transactions on Robotics and Automa-
tion, 9(4):400–410, 1993.
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APPENDIX

A. Screw action with Left-Hand Trajectory

Fig. 8 depicts three steps of a robot execution with a
non-empty left-hand trajectory. Since ScrewMimic defines the
screw axis of manipulation as the relative motion between both
hands, the absolute motion of one of them does not affect the
motion generated from the same screw action. We consider the
actuation part of the bimanual manipulation to be the effect
of this relative motion between hands rather than the absolute
motion of them.

Fig. 8. Screw Action execution with left-hand trajectory Three steps
of a robot execution of a stir task with non-zero left-hand motion. Since
SCREWMIMIC focuses on the generation of relative motion between hands,
the same screw action can be used even when there exists any absolute motion
of one of them (left hand).

B. Hyperparameters

TABLE V
SCREW ACTION PREDICTION MODEL HYPERPARAMETERS

Hyperparameters Value
train epochs 2000
batch size 16
optimizer Adam
learning rate 1e-3
pointcloud encoder PointNet [72]
number of points 2048
layer-activations ReLU

Screw Axis Regression
Architecture Conv1d (64, 128, 1024)

+ FC (1024, 512, 256, 6)
Loss MSE

Grasp Contact Segmentation
Architecture Conv1d (64, 128, 128, 512, 2048,

256, 256, 128, 3)
Loss negative log likelihood

C. Using Pretrained PointNet Model

We conduct experiments to analyze if using a pre-trained
PointNet model helps to better generalize to new objects as
compared to training from scratch. We pretrain a PointNet
model on the ModelNet-40 dataset [89] for the classification
task. We then use the pretrained feature encoder and fine-
tune it on the screw axis prediction task. Finally, we compare
this model (M2) to our original model that was trained from
scratch (M1) on the screw action prediction task. The test set
consists of 4 different bottles (1 bottle seen during training
and 3 unseen bottles) as shown in Fig. 9 The test set consists
of 10 poses for each of the four bottles. We use two metrics
to evaluate their performance:

• Mean distance between predicted and ground truth screw
axis (in meters)

• Mean angle between the predicted and ground truth screw
axis (in degrees)

As shown in Table VI, with a pre-trained PointNet, we
indeed observe an improvement in the screw axis prediction on
novel objects, although the performance on the training object
remains the same. While this would not affect the exploration
in case of the training object, it would lead to more efficient
optimization in the CEM phase for novel objects and better
generalization capabilities of the policy

(a) (b)

Fig. 9. (a) Training bottle. (b) Testing Bottles

TABLE VI
POINTNET TRAINED FROM SCRATCH (M1) VS PRETRAINED+FINETUNED

(M2)

M1 M2

Blue Bottle (Training bottle) 0.01 m, 2.1◦ 0.01 m, 2.0◦
Green Bottle (with orange cap) 0.03 m, 3.6◦ 0.01 m, 2.3◦
Black Bottle 0.05 m, 5.3◦ 0.02 m, 3.8◦
Orange Bottle (with black cap) 0.09 m, 6◦ 0.03 m, 4.2◦

D. Robustness to Noisy Demonstrations

To analyze the robustness of SCREWMIMIC to noisy human
demonstrations we conduct the following two experiments:

a) Artificially adding increasing amounts of noise (con-
trolled study): In the first experiment, we investigate how well
ScrewMimic can adapt when increasing amounts of artificial
noise are introduced to a trajectory. We focus on a specific
task — open bottle. We manually annotate the ground
truth screw axis and compute the corresponding noise-free
ground truth hand trajectory (shown in green in Fig. 10).
This trajectory corresponds to the trajectory of an acting
hand relative to a reference hand. We introduce five different
levels of noise to the ground truth hand trajectory, affecting
both position and orientation, and observe the changes in the
screw axis computed by ScrewMimic with increasing noise
levels. These trajectories and their respective screw axes are
illustrated in Fig. 10, where colors transitioning from light
to dark depict the sequence of actions from start to finish.
We only visualize the positions (and not the orientations)
for clarity. We created 20 noisy trajectories for each noise
level, resulting in 100 test trajectories. We use two metrics
to evaluate the performance for each noise level: a) mean
distance error between predicted and ground truth screw axes
(in meters), and b) mean angle error between the predicted
and ground truth screw axis (in degrees).

Table VII and Fig. 10 show the results of our experiment.
We observe that the accuracy of the screw axis detected by



Green Trajectory: GT Hand trajectory ; Red Trajectory: Noisy hand trajectory obtained by adding noise to the GT hand trajectory
Green Axis: GT Screw Axis ; Red Axis: Screw Axis extracted from ScrewMimic

Level 1 Level 2 Level 4Level 3 Level 5

Fig. 10. ScrewMimic’s axis extraction with increasingly noisy demonstrations. The five levels represent increasing noise applied to the ground truth hand
trajectory (position and orientation). Comparing each screw axis with the ground truth screw axis in this figure and the numbers in Table VII, and performing
the fine-tuning experiment with the axis inferred from the highest noise level, we observe that although ScrewMimic does suffer from increasing noise in the
hand trajectories, it is able to extract an axis sufficiently accurate for fine-tuning.

TABLE VII
SCREWMIMIC’S AXIS EXTRACTION WITH INCREASINGLY NOISY DEMONSTRATIONS

Level 1
pos=N(0, 1.0cm)
orn=N(0, 2.5◦)

Level 2
pos=N(0, 1.5cm)
orn=N(0, 5.0◦)

Level 3
pos=N(0, 2.0cm)
orn=N(0, 7.5◦)

Level 4
pos=N(0, 2.5cm)
orn=N(0, 10.0◦)

Level 5
pos=N(0, 3.0cm)
orn=N(0, 12.5◦)

Distance between
GT axis and
Extracted axis (cm) 0.5cm± 10−5 0.8cm± 10−4 1.1cm± 10−5 1.7cm± 10−4 2.1cm± 10−2

Angle between
GT axis and
Extracted axis (degrees) 4.0◦ ± 2.0◦ 6.5◦ ± 3.0◦ 9.4◦ ± 5.0◦ 11.1◦ ± 8.5◦ 13.1◦ ± 6.0◦

ScrewMimic declines as we increase the noise in the hand
trajectories. To test if ScrewMimic can perform a successful
fine-tuning even with the highest noise level, we conduct the
following experiment: we use the axis inferred by ScrewMimic
from the trajectory in level 5 to bootstrap the ScrewMimic fine-
tuning step. We observe that even in this adversarial condition,
success is achieved after 4 epochs and 21 episodes. This is
comparable to the performance of ScrewMimic on the bottle
opening task in our original experiments as shown in Table I.
Thus, ScrewMimic is able to “clean up” the noise and extract
an axis good enough to bootstrap the fine-tuning step. This
shows that even though the quality of the screw axis inferred
by ScrewMimic declines with increasing noise, the axis still
proves adequate for initiating the fine-tuning process.

b) Naturally occurring noise (perceptual noise): In the
second experiment, we evaluate the robustness of ScrewMimic
to naturally occurring noise when perceiving human demon-
strations. We collect five different human demonstrations for
the bottle opening task for the same pose of the bottle. Vari-
ability in the trajectories arises from differences in individual
demonstrations and noise from the hand-pose detector. We
compare the screw axis computed by ScrewMimic for these
five demonstrations to a manually annotated ground truth
axis. Fig. 11 shows the qualitative results for this experiment:

Fig. 11 (a) on the left helps visually compare the five human
trajectories and the corresponding screw axes as computed
by ScrewMimic. Note that the trajectory corresponds to the
trajectory of the acting hand (right hand in this case) relative
to the reference hand (left hand). Fig. 11 (b) on the right shows
a comparison of the trajectory and computed screw axis with
the ground truth trajectory and screw axis for each of the five
human demonstrations.

Table VIII shows the quantitative results of the distance er-
ror and angle error between the axis computed by Screwmimic
and the ground truth axis. These axis errors are comparable
to the axis errors for the open bottle task in our original
experiments (refer to Sec. V Q1) which are 1.42cm mean
distance error and 11.2◦ mean angle error. As can be seen
in the first row of Table I in the main paper, ScrewMimic’s
fine-tuning process is able to correct the initial noisy axis
and succeed at the task for the most part. Since the errors
in the axes as shown in Table VIII are comparable to the
error in our original open bottle experiments, we can infer
that ScrewMimic would be able to fine-tune these noisy axes.
This shows that despite the diversity in the trajectories due to
variations in demonstrations and detection noise, ScrewMimic
consistently infers a screw axis with an accuracy that proves
adequate for initiating the fine-tuning process.



(a) Comparing Screw Axis extracted from 
ScrewMimic for 5 human demonstrations

(b) Comparing each screw axis extracted by 
ScrewMimic with the ground-truth screw axis

Fig. 11. Screw axis extracted for five human demonstrations. (a) Five human trajectories and their corresponding screw axes extracted by ScrewMimic.
(b) Individual trajectories and extracted screw axis along with the ground truth trajectory and screw axis. Despite the diversity in the trajectories due to
variations in demonstrations and detection noises, ScrewMimic is able to extract a screw axis sufficiently accurate for fine-tuning.

TABLE VIII
ANALYZING SCREW AXIS EXTRACTED FROM FIVE HUMAN DEMONSTRATIONS

Demo 1 Demo 2 Demo 3 Demo 4 Demo 5

Distance between GT and
Extracted axes (cm) 0.91 cm 1.26 cm 1.45 cm 1.33 cm 1.10 cm

Angle between GT axis
and Extracted axis (degrees) 6.0◦ 6.5◦ 6.4◦ 12.3◦ 8.7◦

E. Additional Generalization Results

Fig. 12 shows results for the rest of the four tasks for
the experiment described in Sec. V Q2). Columns 1 and 5
in the figure show that SCREWMIMIC can obtain reasonable
screw actions for new objects and can fine-tune it to generalize

to new objects. Furthermore, the last column shows that re-
training the screw action prediction model with the successful
screw action can improve the prediction model as well. This
helps create a self-learning loop where the robot can continu-
ally expand its manipulation capabilities to new objects.



Predicted Axis using M2 Predicted Axis using M3Axis Corresponding To 
Success

Robot Execution/Exploration

Fig. 12. Generalization to new objects. The first column shows the axis predicted by M2, the model trained on the corrected screw action for the first
object. Columns 2-4 show snapshots from an episode in the fine-tuning stage. Column 5 shows the axis corresponding to the successful trajectory obtained
during the aforementioned process. Column 6 shows the predicted axis from the prediction model re-trained on the corrected axis (M3). Thus, SCREWMIMIC
can obtain reasonable screw action predictions and fine-tune them to generalize to new objects.
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