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Abstract
Maximum entropy reinforcement learning
(MaxEnt-RL) has become the standard approach
to RL due to its beneficial exploration properties.
Traditionally, policies are parameterized using
Gaussian distributions, which significantly limits
their representational capacity. Diffusion-based
policies offer a more expressive alternative,
yet integrating them into MaxEnt-RL poses
challenges—primarily due to the intractability of
computing their marginal entropy. To overcome
this, we propose Diffusion-Based Maximum
Entropy RL (DIME). DIME leverages recent
advances in approximate inference with diffusion
models to derive a lower bound on the maximum
entropy objective. Additionally, we propose a
policy iteration scheme that provably converges to
the optimal diffusion policy. Our method enables
the use of expressive diffusion-based policies
while retaining the principled exploration benefits
of MaxEnt-RL, significantly outperforming
other diffusion-based methods on challenging
high-dimensional control benchmarks. It is also
competitive with state-of-the-art non-diffusion
based RL methods while requiring fewer algorith-
mic design choices and smaller update-to-data
ratios, reducing computational complexity1.

1. Introduction
The maximum entropy reinforcement learning (MaxEnt-RL)
objective augments the task reward in each time step with
the entropy of the policy (Ziebart et al., 2008; Toussaint,
2009; Haarnoja et al., 2017; 2018b). This objective has
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several favorable properties among which improved explo-
ration (Ziebart, 2010; Haarnoja et al., 2017) is crucial for
RL. Recent successful model-free RL algorithms leverage
these favorable properties and build upon this framework
(Bhatt et al., 2024; Nauman et al., 2024) improving sam-
ple efficiency and leading to remarkable results. However,
the policies are traditionally parameterized using Gaussian
distributions, significantly limiting their representational ca-
pacity. On the other hand, diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2021; Karras et al.,
2022) are highly expressive generative models and have
proven beneficial in representing complex behavior policies
(Reuss et al., 2023; Chi et al., 2023). However, important
metrics such as the marginal entropy are intractable to com-
pute (Zhou et al., 2024) which restricts their usage in RL.
Because of this shortcoming, recent methods propose dif-
ferent ways to train diffusion-based methods in off-policy
RL. While these methods are discussed in more detail in
the related work section, most of them require additional
techniques to add artificial (in most cases Gaussian) noise
to the generated actions to induce exploration in the behav-
ior generation process. Hence, they do not leverage the
diffusion model to generate potentially non-Gaussian explo-
ration patterns but fall back to mainly Gaussian exploration.
Nonetheless, there have been significant advances in training
diffusion-based models for approximate inference (Berner
et al.; Richter & Berner). Since the policy improvement in
MaxEnt-RL can also be cast as an approximate inference
problem to the energy-based policy (Haarnoja et al., 2017),
it is a natural step to explore these parallels.

We propose Diffusion-Based Maximum Entropy Reinforce-
ment Learning (DIME). DIME leverages recent advances
in approximate inference with diffusion models (Richter &
Berner) to derive a lower bound on the MaxEnt objective.
We propose a policy iteration framework with monotonic
policy improvement that converges to the optimal diffusion
policy. Additionally, building on recent off-policy RL algo-
rithms such as Cross-Q (Bhatt et al., 2024) and distributional
RL (Bellemare et al., 2017), we propose a practical version
of DIME that can be used for training diffusion-based RL
policies. On 13 challenging continuous high-dimensional
control benchmarks, we empirically validate that DIME sig-
nificantly outperforms other diffusion-based baselines on
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all environments and consistently outperforms other state-
of-the-art RL methods based on a Gaussian policy on 10
out of 13 environments, while being computationally more
efficient and requiring less algorithmic design choices as the
current state of the art baseline BRO (Nauman et al., 2024).

2. Related Work
Maximum Entropy RL. The maximum entropy RL frame-
work uses the entropy of the policy at each time step as
an additional objective, providing a principled way of in-
ducing exploration in the RL policy. It is different from
entropy regularized RL (Neu et al., 2017), where the en-
tropy of the policy is maximized only for the current time
step. Haarnoja et al. (2017) proposed Soft-Q Learning,
where amortized Stein variational gradient descent (Wang
& Liu, 2016) (SVGD) is used to train a parameterized sam-
pler that can sample from the energy-based policy. SAC
(Haarnoja et al., 2018b) proposes an actor-critic RL method
but frames the policy update as an approximate inference
problem to the energy-based policy using a Gaussian policy
parameterization. SAC has been extended to energy-based
policies using SVGD in (Messaoud et al.), where the au-
thors also propose a new method to estimate the entropy
in closed form. While SVGD is a powerful method for
learning an energy-based policy, it is harder to scale these
approaches to high-dimensional control problems. For im-
proving exploration, LSAC (Ishfaq et al., 2025) proposes
leveraging Langevin Monte Carlo (Welling & Teh, 2011) in
conjunction with a distributed critic objective to sample a
state-action value. Haarnoja et al. (2018a) proposes learning
a latent variable model as a policy representation, but relies
on the change of variable formula to express the density of
the policy by calculating the Jacobian of the transformations.
Recent advances of SAC also define the state-of-the-art in
off-policy RL in many domains, such as CrossQ (Bhatt et al.,
2024) and BRO (Nauman et al., 2024). CrossQ proposed
removing the target network by leveraging batch renormal-
ization and BRO scales to large networks in RL by using
several methods such as optimistic exploration (Nauman &
Cygan, 2023), network resets (Nikishin et al., 2022), weight
decay, and high update-to-data ratios.

Diffusion-Based Policies in RL. Early works have re-
searched diffusion models in offline RL (Lange et al., 2012;
Levine et al., 2020) as trajectory generators (Janner et al.,
2022) or as expressive policy representations (Wang et al.,
2023; Kang et al., 2023; Hansen-Estruch et al., 2023; Chen
et al., 2023; Ding & Jin, 2024; Mao et al., 2024; Fang et al.,
2025; Lu et al., 2023). More recently, diffusion models in
online RL have become more popular. DIPO (Yang et al.,
2023) proposes training a diffusion-based policy using a
behavior cloning loss. The actions in the replay buffer serve
as target actions for the policy improvement step and are

updated using the gradients of the Q-function ∇aQ(s, a).
DIPO has been extended to develop methods for learning
multi-modal behaviors(Li et al., 2024) by leveraging hierar-
chical clustering to isolate different behavior modes. DIPO
relies on the stochasticity inherent to the diffusion model for
exploration and does not explicitly control it via an objec-
tive. QSM (Psenka et al., 2024) directly matches the policy’s
score with the gradient of the Q-function∇aQ(s, a). While
their objective avoids differentiating through the whole dif-
fusion chain, the proposed objective disregards the entropy
of the policy and, therefore, exploration. Consequently,
QSM needs to add noise to the final action of the diffusion
chain. More recently, DACER (Wang et al., 2024) proposed
using the data-generating process as the policy representa-
tion and backpropagating the gradients through the diffusion
chain. However, they do not consider a backward process as
we do, and their objective for updating the diffusion model
is based on the expected Q-values only. To incentivize the
exploration, DACER adds diagonal Gaussian noise to the
sampled actions, where the variance of this noise is con-
trolled by a scaling term that is updated automatically using
an approximation of the marginal entropy by extracting a
Gaussian Mixture Model from the diffusion policy. Con-
currently, QVPO (Ding et al., 2024) proposed weighting
their diffusion loss with their respective Q-values after ap-
plying transformations. However, QVPO relies on sampling
actions from a uniform distribution to enforce exploration.

DIME distinguishes from prior works in that we use the
maximum entropy RL framework for training the diffusion
policy, which was not considered before. This allows direct
control of the exploration-exploitation trade-off arising nat-
urally through this objective without the need for additional
approximations. DIME is leveraging the diffusion model
to generate non-Gaussian exploration actions which is in
contrast to most other diffusion RL approaches that still
require including Gaussian or uniform exploration noise.

Approximate Inference with Diffusion Models. Early
works on approximate inference with diffusion models were
formalized as a stochastic optimal control problem using
Schrödinger-Föllmer diffusions (Dai Pra, 1991; Tzen & Ra-
ginsky, 2019; Huang et al., 2021) and only recently realized
with deep-learning based approaches (Vargas et al., 2023;
Zhang & Chen, 2021). Vargas et al.; Berner et al. later
extended these results to denoising diffusion models. A
more general framework where both forward and backward
processes of the diffusion model are learnable was concur-
rently proposed by Richter & Berner; Nusken et al. (2024).
Recently, many extensions have been proposed, see e.g.
(Akhound-Sadegh et al., 2024; Noble et al., 2024; Geffner
& Domke, 2023; Zhang et al., 2023; Chen et al., 2024;
Blessing et al., 2025b;a; Chen et al., 2025). Our work can
be seen as an instance of the sampler presented in (Berner
et al.). However, our formulation allows using different
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diffusion samplers such as those presented in (Richter &
Berner; Blessing et al., 2025a), while we restrict ourselves
in this work to the sampler presented in (Berner et al.).

3. Preliminaries
3.1. Maximum Entropy Reinforcement Learning

Notation We consider the task of learning a policy π :
S × A → R+, where S and A denote a continuous
state and action space, respectively using reinforcement
learning (RL). We formalize the RL problem using an
infinite horizon Markov decision process consisting of
the tuple (S,A, r, p, ρπ, γ), with bounded reward func-
tion r : S × A → [rmin, rmax] and transition density
p : S × S × A → R+ which denotes the likelihood for
transitioning into a state s′ ∈ S when being in s ∈ S and
executing an action a ∈ A. We follow (Haarnoja et al.,
2018b) and slightly overload ρπ which denotes the state and
state-action marginals induced by a policy π. Moreover,
γ ∈ [0, 1) denotes the discount factor. For brevity, we use
rt ≜ r(st, at). Lastly, we denote objective functions that
we aim to maximize as J and minimize as L.

Control as inference. The goal of maximum entropy rein-
forcement learning (MaxEnt-RL) is to jointly maximize the
sum of expected rewards and entropies of a policy

J(π) =

∞∑
t=l

γt−lEρπ
[rt + αH(π(at|st))] , (1)

where H(π(a|s)) = −
∫
π(a|s) log π(a|s)da is the differ-

ential entropy, and α ∈ R+ controls the exploration ex-
ploitation trade-off (Haarnoja et al., 2017). To keep the
notation uncluttered we absorb α into the reward function
via r ← r/α. Defining the Q-function of a policy π as

Qπ(st, at) = rt +
∞∑
l=1

γlEρπ
[rt+l +H (π(at+l|st+l))] ,

(2)
with Qπ : S ×A → R, the MaxEnt objective can be cast as
an approximate inference problem of the form

L(π) = DKL

(
π(at|st)

∣∣∣expQπ(st, at)

Zπ(st)

)
, (3)

in a sense that maxπ J(π) = minπ L(π). Here, DKL de-
notes the Kullback-Leibler divergence and

Zπ(s) =

∫
expQπ(s, a)da (4)

is the state-dependent normalization constant.

Policy iteration is a two-step iterative update scheme that
is, under certain assumptions, guaranteed to converge to the

optimal policy with respect to the maximum entropy ob-
jective. The two steps include policy evaluation and policy
improvement. Given a policy π, policy evaluation aims to
evaluate the value of π. To that end, (Haarnoja et al., 2018b)
showed that repeated application of the Bellman backup
operator T πQk with

T πQ(st, at) ≜ rt + γE [Q(st+1, at+1) +H(at+1|st+1)] ,
(5)

converges to Qπ as k →∞, starting from any Q. To update
the policy, that is, to perform the policy improvement step,
the Q-function of the previous evaluation step, Qπold is used
to obtain a new policy according to

πnew = argmin
π∈Π

DKL

(
π(at|st)

∣∣∣expQπold(st, at)

Zπold(st)

)
, (6)

where Π is a set of policies such as a family of parame-
terized distributions. Note that Zπold(st) is not required
for optimization as it is independent of π. Haarnoja et al.
(2018b) showed that for all state-action pairs (s, a) ∈ S×A
it holds that Qπnew(s, a) ≥ Qπold(s, a) ensuring that policy
iteration converges to the optimal policy π∗ in the limit of
infinite repetitions of policy evaluation and improvement.

3.2. Denoising Diffusion Policies

For a given state s ∈ S, we consider a stochastic process
on the time-interval [0, T ] given by an Ornstein-Uhlenbeck
(OU) process 2 (Särkkä & Solin, 2019)

dat = −βtatdt+ η
√

2βtdBt, a0 ∼ π⃗0(·|s), (7)

with diffusion coefficient β : [0, T ]→ R+, standard Brow-
nian motion (Bt)t∈[0,T ], and some target policy π⃗0. For
t, l ∈ [0, T ], we denote the marginal density of Eq. 7 at t as
π⃗t and the conditional density at time t given l as π⃗t|l. Eq. 7
is commonly referred to as forward or noising process since,
for a suitable choice of β, it holds that π⃗T ≈ N (0, η2I).
Denoising diffusion models leverage the fact, that the time-
reversed process of Eq. 7 is given by

dat =
(
−βtatdt− 2η2βt∇ log π⃗t(at|s)

)
+ η

√
2βtdBt,

(8)
starting from ⃗πT = π⃗T ≈ N (0, η2I) and running back-
wards in time (Nelson, 2020; Anderson, 1982; Haussmann
& Pardoux, 1986). For the backward, generative or de-
noising process (Eq. 8), we denote the density as ⃗π.
Here, time-reversal means that the marginal densities align,
i.e., π⃗t = ⃗πt for all t ∈ [0, T ]. Hence, starting from
aT ∼ N (0, η2I), one can sample from the target policy
π⃗0 by simulating Eq. 8. However, for most densities π⃗0,

2Please note, for clarity, we slightly abuse notation by using
t to denote the time in the stochastic process. This should not be
confused with the time step in RL. The distinction becomes clear
when we discretize the processes.
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exp(Qπ/α)/Zπ N (0, I)t

(a) α < 1

exp(Qπ/α)/Zπ N (0, I)t

(b) α = 1

exp(Qπ/α)/Zπ N (0, I)t

(c) α > 1

Figure 1. The effect of the reward scaling parameter α. The figures in (a)-(b) show diffusion processes for different α values starting at
a prior distribution N (0, I) and going backward in time to approximate the target distribution exp (Qπ/α)/Zπ . Small values for α (a)
lead to concentrated target distributions with less noise in the diffusion trajectories especially at the last time steps. The higher α becomes
(b) and (c), the more the target distribution is smoothed and the distribution of the samples at the last time steps becomes more noisy.
Therefore, the parameter α directly controls the exploration by enforcing noisier samples the higher α becomes.

the scores (∇ log π⃗t(at|s))t∈[0,T ] are intractable, requiring
numerical approximations. To address this, denoising score-
matching objectives are commonly employed, that is,

LSM(θ) = E
[
βt∥fθ

t (at, s)−∇ log π⃗t|0(at|a0, s)∥2
]
,
(9)

where t is sampled on [0, T ] and fθ denotes a parameterized
score network (Hyvärinen & Dayan, 2005; Vincent, 2011).
For OU processes, the conditional densities ∇ log π⃗t|0 are
explicitly computable, making the objective tractable for
optimizing θ (Song et al., 2021). Once trained, the score
network fθ can be used to simulate the denoising process

dat =
(
−βtatdt− 2η2βtf

θ
t (at, s)

)
+ η

√
2βtdBt, (10)

to obtain samples a0 ∼ πθ
0 that are approximately dis-

tributed according to π⃗0. Here, πθ
t denotes the marginal

distribution of Eq. 10 at time t. While score-matching tech-
niques work well in practice, they cannot be applied to max-
imum entropy reinforcement learning. This is because the
expectation in Eq. 9 requires samples a0 ∼ π⃗0 ∝ expQπ

which are not available. However, in the next section, we
build on recent advances in approximate inference to opti-
mize diffusion models without requiring samples from a0,
relying instead on evaluations of Qπ .

4. Diffusion-Based Maximum Entropy RL
Here, we explain how diffusion models can be used within a
maximum entropy RL framework. To that end, we express
the maximum entropy objective as an approximate inference
problem for diffusion models. We then use these results to
introduce a policy iteration scheme that provably converges
to the optimal policy. Lastly, we propose a practical algo-
rithm for optimizing diffusion models.

4.1. Control as Inference for Diffusion Policies

Directly maximizing the maximum entropy objective

J( ⃗π) =

∞∑
t=l

γt−lEρπ

[
rt(st, a

0
t ) + αH( ⃗π0(a

0
t |st))

]
,

for a diffusion model is difficult as the marginal entropy
H( ⃗π0(a|s)) of the denoising process in Eq. 8 is intractable.
Please note that we use superscripts for the actions to in-
dicate the diffusion step to avoid collisions with the time
step used in RL. Moreover, we will again absorb α into
the reward and use rt ≜ r(st, a

0
t ). To overcome this in-

tractability, we propose to maximize a lower bound. We
start by discretizing the stochastic processes introduced in
Section 3.2 and use the results as a foundation to derive this
lower bound. Note that while similar results can be derived
from a continuous-time perspective (see e.g., Berner et al.;
Richter & Berner; Nusken et al. (2024)), such derivation
would require a background in stochastic calculus, making
it less accessible to a broader audience.

The Euler-Maruyama (EM) discretization (Särkkä & Solin,
2019) of the noising (Eq. 7) and denoising (Eq. 8) process
is given by

an+1 = an − βna
nδ + ϵn and (11)

an−1 = an +
(
βna

n + 2η2βn∇ log π⃗n(a
n|s)

)
δ + ξn,

(12)

respectively, with ϵn, ξn ∼ N (0, 2η2βnδI). Here, δ de-
notes a constant discretization step size such that N = T/δ
is an integer. To simplify notation, we write an, instead of
anδ . Under the EM discretization, the noising and denoising
process admit the following joint distributions

π⃗0:N (a0:N |s) = π⃗0(a
0|s)

N−1∏
n=0

π⃗n+1|n(a
n+1

∣∣an, s), (13)

⃗π0:N (a0:N |s) = ⃗πN (aN |s)
N∏

n=1

⃗πn−1|n(a
n−1

∣∣an, s),
(14)

in a sense that π⃗0:N and ⃗π0:N converge to the law of
(at)t∈[0,T ] in Eq. 7 and 8, as δ → 0, respectively (Doucet
et al., 2022). Here, π⃗n+1|n and ⃗πn−1|n are Gaussian transi-
tion densities that directly follow from Eq. 11 and 12.
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To obtain a maximum entropy objective for diffusion mod-
els, we make use of the following lower bound on the
marginal entropy, that is,H( ⃗π0(a0|s)) ≥ ℓ ⃗π(a

0, s), where

ℓ ⃗π(a
0, s) = E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
. (15)

Please note that similar bounds have been used, e.g., in
(Agakov & Barber, 2004; Tran et al., 2015; Ranganath et al.,
2016; Maaløe et al., 2016; Arenz et al., 2018), or, more
generally, follow from the data processing inequality (Cover,
1999). A derivation can be found in Appendix A. From Eq.
15, it directly follows that

J( ⃗π) ≥ J̄( ⃗π) =

∞∑
t=l

γt−lEρπ

[
rt + ℓ ⃗π(a

0
t , st)

]
. (16)

Next, we cast Eq. 16 as an approximate inference problem
to make the objective more interpretable. To that end, let us
define the Q-function of a denoising policy ⃗π with respect
to the maximum entropy objective J̄ as

Q ⃗π(st, a
0
t ) = rt +

∑
l=1

γlEρπ

[
rt+l + ℓ ⃗π(a

0
t+l, st+l)

]
,

(17)
with Q ⃗π : S × A → R. With Eq. 17 we identify the
corresponding approximate inference problem as finding ⃗π
which minimizes (please see Appendix A for derivation)

L̄( ⃗π) = DKL
(

⃗π0:N (a0:N |s)|π⃗0:N (a0:N |s)
)
, (18)

where the target policy, i.e., the marginal of the noising
process in Eq. 13 is given by the exponentiated Q-function
of the diffusion policy

π⃗0(a
0|s) = expQ ⃗π(s, a0)

Z ⃗π(s)
. (19)

Recall from Section 3.2 that we aim to time-reverse the nois-
ing process, that is, to ensure for all states s ∈ S, it holds
that ⃗π0:N = π⃗0:N . Please note that this is precisely what Eq.
18 is trying to accomplish, i.e., we aim to learn a diffusion
model ⃗π, such that the denoising process time-reverses the
noising process, and, in particular, has a marginal distri-
bution given by π0 = expQ ⃗π/Z ⃗π. Lastly, from the data
processing inequality, it directly follows that

DKL

(
⃗π0(a

0|s)
∣∣∣expQ ⃗π(s, a0)

Z ⃗π(s)

)
≤ DKL

(
⃗π(a0:N |s)|π⃗(a0:N |s)

)
, (20)

which shows the approximate inference problem in Eq. 18
indeed optimizes the same inference problem stated in Eq. 3.
Next, we will use these results to develop a policy iteration
scheme for diffusion models.

4.2. Diffusion-based Policy Iteration

We propose a policy iteration scheme for learning an optimal
maximum entropy policy, similar to (Haarnoja et al., 2018b).
However, here we restrict the family of stochastic actors to
diffusion policies ⃗π ∈ ⃗Π ⊂ Π. Throughout this section, we
assume finite action spaces to enable theoretical analysis,
but relax this assumption in Section 4.3. All proofs of this
section are deferred to Appendix A.

For policy evaluation, we aim to compute the value of a
policy ⃗π. We define the Bellman backup operator as

T ⃗πQ(st, a
0
t ) ≜ rt+γE

[
Q(st+1, a

0
t+1) + ℓ ⃗π(a

0
t+1, st+1)

]
.

(21)
Note that Eq. 21 contains the entropy-lower bound ℓ ⃗π. By
applying standard convergence results for policy evaluation
(Sutton & Barto, 1999) we can obtain the value of a policy
by repeatedly applying T ⃗π as established in Proposition 4.1.
Proposition 4.1 (Policy Evaluation). Let T ⃗π be the Bellman
backup operator for a diffusion policy ⃗π as defined in Eq.
21. Further, let Q0 : S × A → R and Qk+1 = T ⃗πQk.
Then, it holds that limk→∞ Qk = Q ⃗π where Q ⃗π is the Q
value of ⃗π.

For the policy improvement step, we seek to improve the
current policy based on its value using the Q-function. For-
mally, we need to solve the approximate inference problem

⃗πnew = argmin
⃗π∈ ⃗Π

DKL
(

⃗π0:N (a0:N |s)|π⃗ old
0:N (a0:N |s)

)
,

(22)
for all s ∈ S, where π⃗ old

0:N (a0:N |s) is as in Eq. 13 with
marginal density

π⃗ old
0 (a0|s) = expQ ⃗πold(s, a0)

Z ⃗πold(s)
. (23)

Indeed, solving Eq. 22 results in a policy with higher value
as established below.
Proposition 4.2 (Policy Improvement). Let ⃗πold, ⃗πnew ∈ ⃗Π
be defined as in Eq. 23 and 22, respectively. Then for all
(s, a) ∈ S ×A it holds that Q ⃗πnew(s, a) ≥ Q ⃗πold(s, a).

Combining these results leads to the policy iteration method
which alternates between policy evaluation (Proposition 4.1)
and policy improvement (Proposition 4.2) and provably
converges to the optimal policy in ⃗Π (Proposition 4.3).
Proposition 4.3 (Policy Iteration). Let ⃗π0, ⃗πi+1, ⃗πi, ⃗π∗ ∈
⃗Π. Further, let ⃗πi+1 be the policy obtained from ⃗πi after

a policy evaluation and improvement step. Then, for any
starting policy ⃗π0 it holds that limi→∞ ⃗πi = ⃗π∗, with ⃗π∗

such that for all ⃗π ∈ ⃗Π and (s, a) ∈ S × A it holds that
Q ⃗π∗

(s, a) ≥ Q ⃗π(s, a).

However, performing policy iteration until convergence is in
practice often intractable, particularly for continuous control
tasks. As such, we will introduce a practical algorithm next.
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Figure 2. Reward Scaling Sensitivity (a)-(b). The α parameter controls the exploration-exploitation trade-off. (a) shows the learning
curves for varying values on DMC’s dog-run task. Too high α values (α = 0.1) do not incentivize learning whereas too small α
values (α ≤ 10−5) converge to suboptimal behavior. (b) shows the aggregated end performance for each learning curve in (a). For
increasing α values, the end performance increases until it reaches an optimum at α = 10−3 after which the performance starts dropping.
Diffusion Policy Benefit (c) and (d). We compare DIME to a Gaussian policy with the same implementation details as DIME on the (a)
humanoid-run and (b) dog-run tasks. The diffusion-based policy reaches a higher return (a) and converges faster.

4.3. DIME: A Practical Diffusion RL Algorithm

To obtain a practical algorithm, we use a parameterized
function approximation for the Q-function and the policy,
that is, Qϕ and πθ, with parameters ϕ and θ, respectively.
Here, πθ is represented by a parameterized score network,
see Eq. 10. To perform approximate policy evaluation, we
can minimize the Bellman residual,

JQ(ϕ) =
1

2
E
[(
Qϕ(st, a

0
t )−Qtarget(st, a

0
t )
)2]

, (24)

using stochastic gradients with respect to ϕ. We provide
implementation details in Section 4.4. Moreover, the expec-
tation is computed using state-action pairs collected from
environment interactions and saved in a replay buffer. For
policy improvement, we solve the approximate inference
problem

L(θ) = DKL
(
πθ
0:N (a0:N |s)|π⃗0:N (a0:N |s)

)
, (25)

where the target policy, i.e., the marginal of the noising
process in Eq. 13 is given by the approximate Q-function

π⃗0(a
0|s) = expQϕ(s, a

0)

Zϕ(s)
, (26)

where states are again sampled from a replay buffer. Further
expanding L(θ) yields

L(θ) =Eπθ

[
log πθ

N (aN |s)−Qϕ(s, a
0) (27)

+

N∑
n=1

log
πθ
n−1|n(a

n−1
∣∣an, s)

π⃗n|n−1(an
∣∣an−1, s)

]
+ logZϕ(s),

showing that Zϕ is not needed to minimize Eq. 27 as it is
independent of θ. Moreover, contrary to the score-matching
objective (see Eq. 9) that is commonly used to optimize

diffusion models, stochastic optimization of L(θ) does not
need access to samples a0 ∼ expQϕ/Zϕ, instead relying
on stochastic gradients obtained via reparameterization trick
(Kingma, 2013) using samples from the diffusion model πθ.

4.4. Implementation Details

Autotuning Temperature. We follow implementations
like SAC (Haarnoja et al., 2018c) where the reward scaling
parameter α (also see Fig. 1) is not absorbed into the reward
but scales the entropy term. Choosing α depends on the
reward ranges and the dimensionality of the action space,
which requires tuning it per environment. We instead follow
prior works (Haarnoja et al., 2018c) for auto-tuning α by
optimizing

J(α) = α
(
Htarget − ℓθH

)
, (28)

whereHtarget is a target value for the mismatch between the
noising and denoising processes measured by the log ratio.

Autotuning Diffusion Coefficient. Please note that the
objective function in Eq. 27 is fully differentiable with
respect to parameters of the diffusion process. As such, we
additionally treat the diffusion coefficient β as a learnable
parameter that is optimized end-to-end, further reducing the
need for manual hyperparameter tuning. Further details on
the parameterization can be found in Appendices D and G.

Q-function. Following Bhatt et al. (2024) we adopt the
CrossQ algorithm, i.e., we use Batch Renormalization in the
Q-function and avoid a target network for calculating Qtarget.
When updating the Q-function, the values for the current
and next state-action pairs are queried in parallel. The next
Q-values are used as target values where the gradients are
stopped. Additionally, we employ distributional Q learning
as proposed by (Bellemare et al., 2017). The details are
described in Appendix D.
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Figure 3. Varying the Number of diffusion steps (a)-(b). The number of diffusion steps might affect the performance and the computation
time. (a) shows DIME’s learning curves for varying diffusion steps. Two diffusion steps perform badly, whereas four and eight diffusion
steps perform similar but still worse than 16 and 32 diffusion steps which perform similarly. (b) shows the computation time for 1MIO
steps of the corresponding learning curves. The smaller the diffusion steps, the less computation time is required. Learning Curves on
Gym Benchmark Suite (c)-(d). We compare DIME against various diffusion baselines and CrossQ on the (c) Ant-v3 and (d) Humanoid-v3
from the Gym suite. While all diffusion-based methods are outperformed by DIME, DIME performs on par with CrossQ on the Ant
environment. DIME performs favorably on the high-dimensional Humanoid-v3 environment, where it also outperforms CrossQ.

5. Experiments
We analyze DIME’s algorithmic features with an intensive
ablation study where we clarify the role of the reward scaling
parameter α, the effect of varying diffusion steps, and the
gained performance boost when using a diffusion policy
representation over a Gaussian representation. Additional
analysis on employing distributional Q learning is discussed
in the Appendix G.

In a broad range of 13 sophisticated learning environments
from different benchmark suits, ranging from mujoco gym
(Brockman et al., 2016), deepmind control suit (DMC) (Tun-
yasuvunakool et al., 2020), and myo suite (Caggiano et al.,
2022), we compare DIME’s performance against state-of-
the-art RL baselines that employ diffusion and Gaussian
policy parameterizations. The considered environments are
challenging locomotion and manipulation learning tasks
with up to 39-dimensional action and 223-dimensional ob-
servation spaces.

We consider QSM (Psenka et al., 2024), Diffusion-QL
(Wang et al., 2023), Consistency-AC (Ding & Jin, 2024),
DIPO (Yang et al., 2023), QVPO (Ding et al., 2024), and
DACER (Wang et al., 2024) as baselines for diffusion-based
policy representations.

Additionally, we compare against the state-of-the-art RL
methods CrossQ (Bhatt et al., 2024) and BRO (Nauman
et al., 2024), where we have used the provided learning
curves from the latter. Both methods use a Gaussian param-
eterized policy and have shown remarkable results.

We have run the learning curves for 10 seeds using the offi-
cial code releases and report the interquartile mean (IQM)
with a 95% stratified bootstrap confidence interval as sug-
gested by Agarwal et al. (2021).

5.1. Ablation Studies

Exploration Control. The parameter α balances the
exploration-exploitation trade-off by scaling the reward sig-
nal. We analyze the effect of this parameter by comparing
DIME’s learning curves with different α values on the dog-
run task from the DMC (see Fig. 2a). Additionally, we show
the performance of the last return measurements for each
learning curve in Fig. 2b. Too high α values (α = 0.1) do
not incentivize maximizing the task’s return, leading to no
learning at all, whereas small values (α ≤ 10−5) lead to
suboptimal performance because the policy does not explore
sufficiently. We can also see a clear trend that starting from
α = 10−12, the performance gradually increases until the
best performance is reached for α = 10−3.

Diffusion Policy Benefit. We aim to analyze the perfor-
mance benefits of the diffusion-parameterized policy com-
pared to a Gaussian parameterization in the same setup by
only exchanging the policy and the corresponding policy
update. This comparison ensures that the Gaussian policy
is trained with the identical implementation details from
DIME as described in Sec. 4.4 and showcases the perfor-
mance benefits of a diffusion-based policy. Fig. 2c and
2d show the learning curves of both versions on DMC’s
humanoid-run and dog-run environments. The diffusion
policy’s expressivity leads to a higher aggregated return in
the humanoid-run and to significantly faster convergence
in the high-dimensional dog-run task. We attribute this
performance benefit to an improved exploration behavior.

Number of Diffusion Steps. The number of diffusion steps
determines how accurately the stochastic differential equa-
tions are simulated and is a hyperparameter that affects the
performance. Usually, the higher the number of diffusion
steps the better the model performs at the burden of higher
computational costs. In Fig. 3a we plot DIME’s perfor-
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Figure 4. Training curves on DMC’s dog, humanoid tasks, and the hand environments from the MYO Suite. DIME performs
favorably on the high-dimensional dog tasks, where it significantly outperforms all baselines (dog-run) or converges faster to the final
performance. On the humanoid tasks, DIME outperforms all diffusion-based baselines, CrossQ and BRO Fast, and performs on par with
BRO on the humanoid-stand task and slightly worse on the humanoid-run and humanoid-walk tasks. In the MYO SUITE environments,
DIME performs consistently on all tasks, either outperforming the baselines or performing on par.

mance for varying diffusion steps on DMC’s humanoid-run
environment and report the corresponding runtimes for 1
Mio environment steps in Fig. 3b on an Nvidia A100 GPU
machine. With an increasing number of diffusion steps,
the performance and runtime increases. However, from 16
diffusion steps on, the performance stays the same.

5.2. Performance Comparisons

We consider environments with high-dimensional observa-
tion and action spaces from three benchmark suits for a
robust performance assessment (please see Appendix C).

Gym Environments. Fig 3c and Fig. 3d show the learning
curves for the An-tv3 and Humanoid-v3 tasks respectively.
While the diffusion-based baselines perform reasonably well
on the Ant-v3 task with DIPO outperforming the rest, they
are all outperformed by DIME and CrossQ which perform
comparably. On the Humanoid-v3 DIME achieves a signifi-
cantly higher return than all baselines.

DMC: Dog and Humanoid Tasks (Fig. 4). We bench-
mark on DMC suit’s challenging dog and humanoid envi-
ronments, where we additionally consider BRO and BRO
Fast as a Gaussian-based policy baseline. BRO Fast is iden-
tical to BRO but differs only in the update-to-data (UTD)
ratio of two as DIME and CrossQ. Please note that we used
the online available learning curves provided by the official
implementation for BRO. DIME outperforms all baselines
significantly on the dog-run environment and converges
faster to the same end performance on the remaining dog
environments (see Fig. 4a - 4d). BRO has slightly higher
average performance on the humanoid-run and humanoid-
walk (see Fig. 4f - 4e)) tasks indicating that DIME performs
favorably on more high-dimensional tasks like the dog envi-
ronments and tasks from the myo suite. However, DIME’s
asymptotic behavior in the humanoid-run achieves slightly
higher aggregated performance than BRO, where we have
run both algorithms for 3M steps (Fig. 6c). However, BRO
requires full parameter resets leading to performance drops
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during training and it is run with a UTD ratio of 10 which
is 5 times higher than DIME. This leads to longer training
times. As reported in their paper (Nauman et al., 2024),
BRO needs an average training time of 8.5h, whereas DIME
trains in approximately 4.5h with 16 diffusion steps on the
humanoid-run with the same hardware (Nvidia A100).

MYO Suite (Fig. 4). Except for pen twirl hard (Fig. 4k),
DIME consistently outperforms BRO and BRO Fast in that it
converges to a higher or faster end success rate. DIME also
consistently outperforms CrossQ in terms of the achieved
success rates on all the tasks except for the object hold hard
task 4h, where DIME converges faster.

6. Conclusion and Future Work
In this work, we introduced DIME, a method for learning
diffusion models for maximum entropy reinforcement learn-
ing by leveraging connections to approximate inference. We
view this work as a starting point for exciting future research.
Specifically, we explored denoising diffusion models, where
the forward process follows an Ornstein-Uhlenbeck process.
However, approximate inference with diffusion models is
an active and rapidly evolving field, with numerous recent
advancements that consider alternative stochastic processes.
For example, Richter & Berner proposed learning both the
forward and backward processes, while Nusken et al. (2024)
further enhanced exploration by incorporating the gradient
of the target density into the diffusion process. Additionally,
Chen et al. (2024) combined learned diffusion models with
Sequential Monte Carlo (Del Moral et al., 2006), resulting in
a highly effective inference method. These approaches hold
significant promise for further improving diffusion-based
policies in RL. We have conducted preliminary experiments
on the framework from Richter & Berner and provide them
in Appendix F. Finally, we note that the loss function used
in this work (see Eq. 25) is based on the Kullback-Leibler
divergence. However, in principle, any divergence could be
used. For instance, the log-variance divergence (Richter &
Berner) has shown promising results in optimizing diffusion
models for approximate inference (Chen et al., 2024; Noble
et al., 2024). Exploring alternative objectives could lead
to additional performance improvements. Another interest-
ing future research lies in investigating the effects of using
more sophisticated critic structures, such as transformers, as
proposed by Li et al. (2025).

Acknowledgements
The authors acknowledge support from the state of Baden-
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Schrödinger-föllmer sampler: sampling without ergodic-
ity. arXiv preprint arXiv:2106.10880, 1, 2021.

10

https://openreview.net/forum?id=iXbUquaWbl
https://openreview.net/forum?id=iXbUquaWbl
https://openreview.net/forum?id=dImD2sgy86
https://openreview.net/forum?id=dImD2sgy86


DIME: Diffusion-Based Maximum Entropy Reinforcement Learning

Hyvärinen, A. and Dayan, P. Estimation of non-normalized
statistical models by score matching. Journal of Machine
Learning Research, 6(4), 2005.

Ishfaq, H., Wang, G., Islam, S. N., and Precup, D.
Langevin soft actor-critic: Efficient exploration through
uncertainty-driven critic learning. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=FvQsk3la17.

Janner, M., Du, Y., Tenenbaum, J., and Levine, S. Planning
with diffusion for flexible behavior synthesis. In Interna-
tional Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Kang, B., Ma, X., Du, C., Pang, T., and Yan, S. Efficient
diffusion policies for offline reinforcement learning. Ad-
vances in Neural Information Processing Systems, 36,
2023.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Advances in neural information processing systems, 35:
26565–26577, 2022.

Kingma, D. P. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning: State-of-the-
art, pp. 45–73. Springer, 2012.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Li, G., Tian, D., Zhou, H., Jiang, X., Lioutikov, R., and
Neumann, G. TOP-ERL: Transformer-based off-policy
episodic reinforcement learning. In The Thirteenth Inter-
national Conference on Learning Representations, 2025.

Li, Z., Krohn, R., Chen, T., Ajay, A., Agrawal, P., and
Chalvatzaki, G. Learning multimodal behaviors from
scratch with diffusion policy gradient. arXiv preprint
arXiv:2406.00681, 2024.

Lu, C., Chen, H., Chen, J., Su, H., Li, C., and Zhu, J. Con-
trastive energy prediction for exact energy-guided diffu-
sion sampling in offline reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 22825–
22855. PMLR, 2023.

Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther,
O. Auxiliary deep generative models. In International
conference on machine learning, pp. 1445–1453. PMLR,
2016.

Mao, L., Xu, H., Zhan, X., Zhang, W., and Zhang, A.
Diffusion-dice: In-sample diffusion guidance for offline
reinforcement learning. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems, 2024.

Messaoud, S., Mokeddem, B., Xue, Z., Pang, L., An, B.,
Chen, H., and Chawla, S. S 2 ac: Energy-based reinforce-
ment learning with stein soft actor critic. In The Twelfth
International Conference on Learning Representations.

Nauman, M. and Cygan, M. On the theory of risk-aware
agents: Bridging actor-critic and economics. In ICML
2024 Workshop: Aligning Reinforcement Learning Exper-
imentalists and Theorists, 2023.

Nauman, M., Ostaszewski, M., Jankowski, K., Miłoś, P.,
and Cygan, M. Bigger, regularized, optimistic: scaling for
compute and sample efficient continuous control. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Nelson, E. Dynamical theories of Brownian motion, volume
101. Princeton university press, 2020.

Neu, G., Jonsson, A., and Gómez, V. A unified view of
entropy-regularized markov decision processes. arXiv
preprint arXiv:1705.07798, 2017.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. In International conference on machine learn-
ing, pp. 16828–16847. PMLR, 2022.

Noble, M., Grenioux, L., Gabrié, M., and Durmus, A. O.
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A. Derivations
Lower-Bound Derivation. H(π0(a0|s)) ≥ ℓ ⃗π(a

0, s)

H(π0(a0|s)) = −E ⃗π0:N

[
log

⃗π0:N (a0:N |s)
⃗π1:N |0(a1:N |s, a0)

]
(29)

= −E ⃗π0:N

[
log

⃗π0:N (a0:N |s)π⃗1:N |0(a
1:N |s, a0)

⃗π1:N |0(a1:N |s, a0)π⃗1:N |0(a1:N |s, a0)

]

= E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |s, a0)

⃗π0:N (a0:N |s)

]
+ E ⃗π0:N

[
log

⃗π1:N |0(a
1:N |s, a0)

π⃗1:N |0(a1:N |s, a0)

]
(30)

= E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |s, a0)

⃗π0:N (a0:N |s)

]
+ Eπ0

[
DKL

(
⃗π1:N |0(a

1:N |s, a0)∥ π⃗1:N |0(a
1:N |s, a0)

)]
(31)

≥ E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |s, a0)

⃗π0:N (a0:N |s)

]
, (32)

where we have used the relation

π0(a0|s) =
⃗π0:N (a0:N |s)

⃗π1:N |0(a1:N |s, a0)
(33)

and the fact that the KL divergence is always non-negative

Approximate Inference Formulation. Recall the definition of the Q-function

Q ⃗π(st, a
0
t ) = rt +

∑
l=1

γlEρπ

[
rt+l + ℓ ⃗π(a

0
t+l, st+l)

]
. (34)

and

ℓ ⃗π(a
0, s) = E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
. (35)

We start reformulating the objective

J( ⃗π) ≥ J̄( ⃗π) =

∞∑
t=l

γt−lEρπ

[
rt + ℓ ⃗π(a

0
t , st)

]
. (36)

=

∞∑
t=l+1

γt−lEρπ

[
rt + ℓ ⃗π(a

0
t , st)

]
+ Eρπ

[
rl + ℓ ⃗π(a

0
l , sl)

]
(37)

= Eρπ

[
Q ⃗π(st, a

0
t )
]
+ Eρπ

[
ℓ ⃗π(a

0
l , sl)

]
(38)

= Eρπ

[
Q ⃗π(st, a

0
t ) + ℓ ⃗π(a

0
l , sl)

]
(39)

= Eρπ, ⃗π0:N

[
Q ⃗π(st, a

0
t ) + log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
(40)

= −Eρπ

[
DKL

(
⃗π(a0:N |s)∥ π⃗(a0:N |s)

)
− logZ ⃗π(s)

]
, (41)

where we used

π⃗0(a
0|s) = expQ ⃗π(s, a0)

Z ⃗π(s)
(42)

in the last step. When minimizing, the negative sign in front of the KL vanishes. Please note that the expectation over the
marginal state distribution was ommited in the main text to avoid cluttered notation.
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B. Proofs
Proof of Proposition 4.1 (Policy Evaluation). Let’s define the entropy-augmented reward of a diffusion policy as

r ⃗π(st, a
0
t ) ≜ rt(st, a

0
t ) + E ⃗π0:N

[
log

π⃗1:N |0(a
1:N |a0, s)

⃗π0:N (a0:N |s)

]
(43)

and the update rule for the Q-function as

Q(st, a
0
t )← r ⃗π(st, a

0
t ) + γEst+1∼p,a0

t+1∼ ⃗π

[
Q(st+1, a

0
t+1)

]
. (44)

This formulation allows us to apply the standard convergence results for policy evaluation as stated in (Sutton & Barto,
1999).

Proof of Proposition 4.2 (Policy Improvement). It holds that

⃗π(i+1)(a0:N |s) = expQπ(i)

(s, aN )

Zπ(i)(s)
π⃗(i)(a0:N−1|aN , s) (45)

Moreover, using the fact that the KL divergence is always non-negative, we obtain

0 = DKL

(
⃗π(i+1)(a0:N |s)∥ ⃗π(i+1)(a0:N |s)

)
≤ DKL

(
⃗π(i)(a0:N |s)∥ ⃗π(i+1)(a0:N |s)

)
(46)

Rewriting the KL divergences yields

E ⃗π(i+1)

[
log

⃗π(i+1)(a0:N |s)
⃗π(i+1)(a0:N |s)

]
≤ E ⃗π(i)

[
log

⃗π(i)(a0:N |s)
⃗π(i+1)(a0:N |s)

]
(47)

⇐⇒ E ⃗π(i+1)

[
log ⃗π(i+1)(a0:N |s)

]
− E ⃗π(i+1)

[
log ⃗π(i+1)(a0:N |s)

]
(48)

≤ E ⃗π(i)

[
log ⃗π(i)(a0:N |s)

]
− E ⃗π(i)

[
log ⃗π(i+1)(a0:N |s)

]
⇐⇒ E ⃗π(i+1)

[
log ⃗π(i+1)(a0:N |s)

]
− E ⃗π(i+1)

[
log

expQπ(i)

(s, aN )

Zπ(i)(s)
π⃗(i)(a0:N−1|aN , s)

]
(49)

≤ E ⃗π(i)

[
log ⃗π(i)(a0:N |s)

]
− E ⃗π(i)

[
log

expQπ(i)

(s, aN )

Zπ(i)(s)
π⃗(i)(a0:N−1|aN , s)

]

⇐⇒ E ⃗π(i+1)

[
Qπ(i)

(s, aN )
]
+ E ⃗π(i+1)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i+1)(a0:N |s)

]
(50)

≥ E ⃗π(i)

[
Qπ(i)

(s, aN )
]
+ E ⃗π(i)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i)(a0:N |s)

]

To keep the notation uncluttered we use

d(i+1)(s, aN ) = E ⃗π(i+1)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i+1)(a0:N |s)

]
and d(i)(s, aN ) = E ⃗π(i)

[
log

π⃗(i)(a0:N−1|aN , s)

⃗π(i)(a0:N |s)

]
(51)

14



DIME: Diffusion-Based Maximum Entropy Reinforcement Learning

Figure 5. Considered environments. The Humanoid-v3 and the Ant-v3 are environments from the mujoco gym benchmark (Brockman
et al., 2016). The three environmentshumanoid-run,humanoid-walk and humanoid-stand are from the deepmind control suite (DMC)
benchmark (Tunyasuvunakool et al., 2020). The dog environments consist of dog-run, dog-walk, dog-stand, dog-trot and are also from the
DMC sutie benchmark. Finally, the myo suite hand environments object-hold-hard,reach-hard, key-turn-hard, pen-twirl-hard are from the
myo suite (Caggiano et al., 2022).

Qπ(i)

(s, aN ) = r0 + E
[
γ
(
d(i)(s1, a

N
1 ) + E ⃗π(i)

[
Qπ(i)

(s1, a
N
1 )

])]
(52)

≤ r0 + E
[
γ
(
d(i+1)(s1, a

N
1 ) + E ⃗π(i+1)

[
Qπ(i)

(s1, a
N
1 )

])]
(53)

= r0 + E
[
γ
(
d(i+1)(s1, a

N
1 ) + r1

)
+ γ2

(
d(i)(s2, a

N
2 ) + E ⃗π(i)

[
Qπ(i)

(s2, a
N
2 )

])]
(54)

≤ r0 + E
[
γ
(
d(i+1)(s1, a

N
1 ) + r1

)
+ γ2

(
d(i+1)(s2, a

N
2 ) + E ⃗π(i+1)

[
Qπ(i)

(s2, a
N
2 )

])]
(55)

... (56)

≤ r0 + E

[ ∞∑
t=1

γt
(
d(i+1)(st, a

N
t ) + rt

)]
= Qπ(i+1)

(s, aN ) (57)

Since Q improves monotonically, we eventually reach a fixed point Q(i+1) = Q(i) = Q∗

Proof of Proposition 4.3 (Policy Iteration). From Proposition 4.2 it follows that Q ⃗πi+1

(s, a) ≥ Q ⃗πi

(s, a). If for
limk→∞ ⃗πk = ⃗π∗, then it must hold that Q ⃗π∗(s,a) ≥ Q ⃗π(s, a) for all ⃗π ∈ ⃗Π which is guaranteed by Proposition 4.2.

C. Environments
All environments are visualized in Fig. 5. We consider the Ant-v3 and the Humanoid-v3 environments from mujoco gym
(Brockman et al., 2016). The humanoid-stand, humanoid-walk , humanoid-run, dog-stand, dog-walk, dog-trot and dog-run
environments from the deepmind control suite (DMC) (Tunyasuvunakool et al., 2020). The hand environments from myo
suite are the object-hold-random,reach-random, key-turn-random and pen-twirl-random environments (Caggiano et al.,
2022). The action and observation spaces of the respective environments are shown in Table 1.

D. Implementation Details
We consider a score network with 3 layers and a 256 dimensional hidden layer with gelu activation function. We use Fourier
features to encode the timestep and scale the embedding using a feed-forward neural network with two layers, with a hidden
dimension of 256. For the diffusion coefficient, we use a cosine schedule and additionally optimize a scaling parameter for
the diffusion coefficient per dimension end-to-end (i.e,. we learn the parameter β (please see Appendix G).

We employ distributional Q following (Bellemare et al., 2017), where the Q-model outputs probabilities q over b bins. Using
the bellman backup operator for diffusion models from Eq. 21 and the bin values b we follow (Bellemare et al., 2017) and
calculate the target probabilities qtarget. Using the entropy-regularized cross-entropy loss L(ϕ) = −∑

qtarget log qϕ −
0.005

∑
qϕ log qϕ we update the parameters ϕ of the Q-function. Please note that the entropy regularization was not

proposed in the original paper from (Bellemare et al., 2017), however, we noticed that a small regularization helps improve
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Training Environment Observation Space Dim. Action Space Dim.

Ant-v3 111 8
Humanoid-v3 376 17
dog-run 223 38
dog-walk 223 38
dog-trot 223 38
dog-stand 223 38
humanoid-run 67 24
humanoid-walk 67 24
humanoid-stand 67 24
myoHandObjHoldRandom-v0 91 39
myoHandReachRandom-v0 115 39
myoHandKeyTurnRandom-v0 93 39
myoHandPenTwirlRandom-v0 83 39

Table 1. Observation and Action Space Dimensions for Various Training Environments

the performance in the early learning stages but does not change the asymptotic performance. Additionally, we follow
(Nauman et al., 2024) and use the mean of the two Q-values instead of the min as it has usually been used in RL so far.

The expected Q-values for updating the actor can be easily calculated using the expectation Q(s, a0t ) =
∑

i qi(st, a
0
t )bi

Action Scaling. Practical applications have a bounded action space that can usually be scaled to a fixed range. However, the
action range of the diffusion policy ⃗π is unbounded. Therefore, we follow recent works (Haarnoja et al., 2018b) and propose
applying the change of variables with a tanh squashing function at the last diffusion step n = 0. For the backward process
⃗q0:N (u0:N |s) with unbounded action space u ∈ RD we can squash the action a0 = tanhu0 such that a0 ∈ (−1, 1) and its

density is given by

⃗π0:N (a0:N |s) = ⃗q0:N (u0:N |s) det
∣∣∣∣∣
(

da0

du0

)∣∣∣∣∣
−1

, (58)

with the corresponding log-likelihood

log ⃗π0:N (a0:N |s) = log ⃗qN (uN ) +

N∑
n=1

log ⃗qn−1(u
n−1|un, s)−

D∑
i=1

log
(
1− tanh2

(
uN
i

))
. (59)

This means that the Gaussian kernels of the diffusion chain have the same log probabilities except for the correction term of
the last step at n = 0.

Algorithm 1 DIME: Diffusion-Based Maximum Entropy Reinforcement Learning

Input: Initialized parameters θ, ϕ, α, learningrates λ
1: for k = 1 to M do
2: if k % UTD then
3: a0:Tt ∼ πθ

0:N (a0:N |st)
4: st+1 ∼ p(st+1|a0t , st)
5: D ← D⋃{st, a0t , rt, st+1}
6: end if
7: ϕ← ϕ− λϕ∇ϕJQ(ϕ) (Eq. 24)
8: if k % POLICYDELAY then
9: θ ← θ − λθ∇θL(θ) (Eq. 25)

10: α← α− λαJ(α) (Eq. 28)
11: end if
12: end for
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Algorithm 1 shows the learning procedure of DIME. Note that policy delay refers to the number of delayed updates of the
policy compared to the critic. UTD is the update to data ratio.

E. List of Hyperparameters
Please note that we have used the official code releases of the respective baseline methods for training. For BRO and BRO
Fast we used the provided learning curves

DIME QSM Diff-QL Consistency-AC DIPO DACER QVPO

Update-to-data ratio 2 1 1 1 1 1 1
Discount 0.99 0.99 0.99 0.99 0.99 0.99 0.99
batch size 256 256 256 256 256 256 256
Buffer size 1e6 1e6 1e5 1e5 1e6 1e6 1e6
Htarget 4dim(A) N/A N/A N/A N/A -0.9dimA N/A
Critic hidden depth 2 2 2 3 3 3 2
Critic hidden size 2048 2048 256 256 256 256 256
Actor/Score depth 3 3 4 4 4 3 2
Actor/Score size 256 256 256 256 256 256 256
Num. Bins/Quantiles 100 N/A N/A N/A N/A 2 N/A
Temp. Learn. Rate 1e-3 N/A N/A N/A N/A 3e-2 N/A
Learn. Rate Critic 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Learn. Rate Actor/Score 3e-4 3e-4 1e-5 1e-5 3e-4 3e-4 3e-4
Optimizer Adam Adam Adam Adam Adam Adam Adam
Diffusion Steps 16 15 5 N/A 100 20 20
Prior Distr. N (0, 2.5) N (0, 1) N/A N/A N/A N (0, 1) N (0, 1)
Exploration Steps 5000 1e4 1e4 1e4 1e4 1e4 1e4
Score-Q align. factor N/A 50 N/A N/A N/A N/A N/A

Table 2. Hyperparameters of DIME and all diffusion-based algorithms for all benchmark suits. Varying hyperparameters for different
benchmark suits are described in the text.

DIME BRO BRO Fast CrossQ

Polyak weight N/A 0.005 0.005 N/A
Update-to-data ratio 2 10 2 2
Discount 0.99 0.99 0.99 0.99
batch size 256 128 128 256
Buffer size 1e6 1e6 1e6 1e6
Htarget 4dim(A) dim(A)/2 dim(A)/2 dim(A)
Critic hidden depth 2 BRONET BRONET 2
Critic hidden size 2048 512 512 2048
Actor/Score depth 3 BRONET BRONET 3
Actor/Score size 256 256 256 256
Num. Bins/Quantiles 100 100 100 N/A
Temp. Learn. Rate 1e-3 3e-4 3e-4 3e-4
Learn. Rate Critic 3e-4 3e-4 3e-4 7e-4
Learn. Rate Actor/Score 3e-4 3e-4 3e-4 7e-4
Optimizer Adam AdamW AdamW Adam
Diffusion Steps 16 N/A N/A N/A
Prior Distr. N (0, 2.5) N/A N/A N/A
Exploration Steps 5000 2500 2500 5000

Table 3. Hyperparameters of DIME and Gaussian-based algorithms for all benchmark suits. Varying hyperparameters for different
benchmark suits are described in the text.
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DIME. For DIME, we use distributional Q, where the maximum and minimum values for the bins have been chosen
per benchmark suite. We have used vmin = −1600 and vmax = 1600 for the gym environments, vmin = −200 and
vmax = 200 for the DMC suite and vmin = −3600 and vmax = 3600 for the myo suite.

QSM. In certain environments, we observed that QSM with default hyperparameters performed poorly, particularly in
several DMC tasks and the Gym Ant-v3 tasks. To address this, we fine-tuned the hyperparameters for QSM in each of these
underperforming tasks. For the DMC tasks, we found that QSM often requires an α value—representing the alignment
factor between the score and the Q-function (Psenka et al., 2024)—in the range of 100-200, rather than the default value of
50 reported in QSM’s original implementation. In the Ant-v3 task, we determined that α needs to be set to 1. In the original
implementation, the number of diffusion steps is set to be 5, however, we found using more steps, such as 10 and 15, can
significantly improve the performance in these under performed tasks.

CrossQ. We used the hyperparameters from the original paper (Bhatt et al., 2024) for the gym benchmark suite. However,
we used a different set of hyperparameters for the DMC and MYO suites for improved performance. More precisely, we
increased the policy size to 3 layers with 256 hidden size. Additionally, we reduced the learning rate to 7e-4.

F. General Diffusion Policies
DIME’s maximum entropy reinforcement learning framework for training diffusion policies is not specifically restricted
to denoising diffusion policies but can be extended to general diffusion policies. This can be realized using the General
Bridges framework as presented in (Richter & Berner). In this case, we can write the forward and backward process as

dat = [f(at, t) + βu(at, s, t)] dt+
√
2βtdBt, a0 ∼ π⃗0(·|s), (60)

dat = [f(at, t)− βv(at, s, t)] dt+
√

2βtdBt, aT ∼ N (0, I), (61)

with the drift and control functions f, u, v : Rd× [0, T ]→ Rd, the diffusion coefficient β : [0, T ]→ R+, standard Brownian
motion (Bt)t∈[0,T ] and some target policy π⃗0. Again we denote the marginal density of the forward process as π⃗t and the
conditional density at time t given l as π⃗t|l for t, l ∈ [0, T ]. The backward process starts from ⃗πT = π⃗T ∼ N (0, I) and runs
backward in time where we denote its density as ⃗π.

The respective discretization using the Euler Maruyama (EM) (Särkkä & Solin, 2019) method are given by

an+1 = an + [f(an, n) + βu(an, s, n)] δ + ϵn, (62)

an−1 = an − [f(an, n)− βv(an, s, n)] δ + ξn, (63)

where ϵn, ξn ∼ N (0, 2βδI), with the constant discretization step size δ such that N = T/δ is an integer. We have used the
simplified notation where we write an instead of anδ . The discretizations admit the joint distributions

π⃗0:N (a0:N |s) = π0(a
0|s)

N−1∏
n=0

π⃗n+1|n(a
n+1

∣∣an, s), (64)

⃗π0:N (a0:N |s) = ⃗πN (aN |s)
N∏

n=1

⃗πn−1|n(a
n−1

∣∣an, s), (65)

with Gaussian kernels

π⃗n+1|n(a
n+1

∣∣an, s) = N (an+1|an + [f(an, n) + βu(an, s, n)] δ, 2βδI) (66)

⃗πn−1|n(a
n−1

∣∣an, s) = N (an−1|an − [f(an, n)− βv(an, s, n)] δ, 2βδI) (67)

Following the same framework presented in the main text, we can now optimize the controls u and v using the same objective

L̄(u, v) = DKL
(

⃗π0:N (a0:N |s)|π⃗0:N (a0:N |s)
)
, (68)

where the target policy at time step n = 0 is given as

π0(a
0|s) = expQ ⃗π(s, a0)

Z ⃗π(s)
. (69)
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(a) DIME and GB on Dog Run
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(b) DIME and GB on Humanoid Run
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(c) DIME and BRO on Humanoid Run

Figure 6. Preliminary results for the GB sampler on the dog run (a) and humanoid run (b) environments from DMC. Comparison
to BRO on the humanoid run for 3 million steps.
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(a) β0 on the Dog Run
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(b) β10 on the Dog Run
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(c) β20 on the Dog Run
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(d) β30 on the Dog Run

Figure 7. Learned β parameters. DIME’s policy improvement objective (Eq. 27) allows to train various parameters end-to-end, such
as the scaling for the diffusion coefficient β. More concretely, we train a scaling parameter βk per dimension k, that scales the cosine
schedule. We visualize the adaptation of the parameter for the dimension k = 0, 10, 20, 30 over the training, averaged over 10 seeds for
the dog-run task. Clearly, DIME first increases the parameter at the beginning of the training phase. Depending on the dimension, it either
converges to a rather high value (k = 20 and k = 30), or keeps being reduced for other dimensions k = 0 and k = 10.

In practice, we optimize the control functions u and v using parameterized neural networks. We have run preliminary results
using the general bridge framework within the maximum entropy objective as suggested in our work. The learning curves
can be seen in Fig. 6.

G. Additional Experiments
End-To-End Learning of β. We visualize the adaptation of the scaling for the diffusion coefficient β in Fig. 7 during
learning on DMC’s dog-run environment.

Extended Analysis on Distributional Q Learning. DIME employs distributional Q Learning (Bellemare et al., 2017) to
represent the Q-function as a distribution over bins. We compare DIME to baselines when using distributional Q Learning
and when using the well-known Bellman residual (see Eq. 24) for updating the parameters of the Q-function.

We start by comparing DIME with distributional Q learning against diffusion-based baselines that employ distributional Q
learning. Fig. 8a and Fig. 8b show the learning curves on the Ant-v3 and Humanoid-v3, respectively, where we compare
against DACER, a distributional Q variant of Diff-QL, and Consistency-AC. DIME converges faster to the same performance
as DACER on the Ant-v3 task and outperforms the baselines on the Humanoid-v3 task. In the setting without distributional
Q Learning, i.e., when updating the parameters using the residual Bellman function, DIME performs similarly to DIPO and
QVPO on the Ant-v3 task and outperforms all baselines on the higher-dimensional Humanoid-v3 task (Fig. 8c and Fig. 8d).

Additionally, we compare DIME with and without distributional Q Learning on the four dog environments from the DMC
suite (Fig. 8), where we concentrate on the strong baselines BRO (Nauman et al., 2024) and CrossQ (Bhatt et al., 2024).
BRO employs quantile distributional Q learning, whereas CrossQ uses the Bellman residual loss function for updating the
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(b) Humanoid-v3
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(c) Ant-v3 - w/o DistrQ
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(d) Humanoid-v3- w/o DistrQ

Figure 8. Comparison to Diffusion Baselines with (a)-b)) and without Distributional Q (c)-d)) on the Ant-v3 and Humanoid-v3
tasks. We provide the learning curves for distributional versions for Diff-QL and Consistency-AC alongside DACER, which employs
distributional Q by default on the Ant-v3 (a) and Humanoid-v3 (b) tasks. DIME converges faster on the Ant-v3 (a) task to the same
performance achieved by DACER and outperforms all baselines on the more high-dimensional Humanoid-v3 (b) task. Additionally, we
compare DIME without distributional Q against the diffusion baselines without distributional Q on the Ant-v3 (c) and Humanoid-v3
(d) tasks. DIME without distributional Q performs on par with the baselines DIPO and QVPO on the Ant-v3 (c) and outperforms all
baselines on the Humanoid-v3 (d).
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(a) Dog Run
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(b) Dog Trot
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(c) Dog Walk
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Figure 9. Ablation on Distributional Q. Comparison of DIME and DIME without employing distributional Q (dashed line). While there
is a small improvement when using distributional Q, DIME w/o Distributional Q still performs on par, or better than BRO, which employs
quantile distributional RL. DIME w/o DistrQ outperforms CrossQ and BRO (Fast).

Q-function’s parameters. In the main text, we have already observed that DIME with distributional Q performs favorably
over the baselines. Fig. 8 shows a small improvement when using distributional Q. However, DIME without distributional Q
(dashed line) still performs on par, or better than BRO and consistently performs better than BRO (Fast) and CrossQ. Please
note that BRO and BRO (Fast) employ quantile distributional RL (Nauman et al., 2024).
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