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Abstract

Dense retrieval models are commonly used in001
Information Retrieval (IR) applications, such as002
Retrieval-Augmented Generation (RAG). Since003
they often serve as the first step in these sys-004
tems, their robustness is critical to avoid fail-005
ures. In this work, by repurposing a relation006
extraction dataset (e.g. Re-DocRED), we de-007
sign controlled experiments to quantify the008
impact of heuristic biases, such as favoring009
shorter documents, in retrievers like Dragon+010
and Contriever. Our findings reveal significant011
vulnerabilities: retrievers often rely on superfi-012
cial patterns like over-prioritizing document be-013
ginnings, shorter documents, repeated entities,014
and literal matches. Additionally, they tend to015
overlook whether the document contains the016
query’s answer, lacking deep semantic under-017
standing. Notably, when multiple biases com-018
bine, models exhibit catastrophic performance019
degradation, selecting the answer-containing020
document in less than 3% of cases over a bi-021
ased document without the answer. Further-022
more, we show that these biases have direct023
consequences for downstream applications like024
RAG, where retrieval-preferred documents can025
mislead LLMs, resulting in a 34% performance026
drop than not providing any documents at all. 1027

1 Introduction028

Retrieval-based language models have demon-029

strated strong performance on a range of030

knowledge-intensive NLP tasks (Lewis et al., 2020;031

Asai et al., 2023; Gao et al., 2024). At the core of032

these models is a retriever that identifies relevant033

context to ground the generated output. Dense re-034

trieval methods such as Contriever (Izacard et al.,035

2021)—where passages or documents are stored as036

learned embeddings—are especially appealing for037

their scalability across large knowledge bases and038

handling lexical gaps (Ni et al., 2022; Shao et al.,039

1Code and data will be released upon paper acceptance.
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Figure 1: Paired t-test statistics comparing retriever
scores between document pairs (D1 vs. D2) across five
evaluation aspects. Document pairs are designed for
controlled experiments shown in Table 1. Positive val-
ues indicate a retriever’s preference for the more biased
document in each bias scenario, while for answer impor-
tance, they reflect a preference for answer-containing
documents. The results show that retrieval biases often
outweigh the impact of answer presence.

2024), compared to alternatives like BM25 (Robert- 040

son and Zaragoza, 2009) or ColBERT(Khattab and 041

Zaharia, 2020). Yet despite their widespread use, 042

relatively little is understood about how these dense 043

models encode and organize information, leaving 044

key questions about their robustness against po- 045

tential biases unanswered. Existing evaluations of 046

retrieval models often focus on downstream task 047

performance, as seen in benchmarks like BEIR 048

(Thakur et al., 2021), without probing the under- 049

lying behavior of retrievers. Some studies have 050

analyzed specific issues in information retrieval 051

(IR) models, such as position bias (Coelho et al., 052

2024) or lexical overlap (Ram et al., 2023). 053

In this work, we systematically study multiple 054

biases—both individually and in combination—for 055

the first time. To enable fine-grained control 056
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Document 1 (Higher Query Document Similarity Score) - D1 Document 2 (Lower Query Document Similarity Score) - D2
A

ns
w

er
Im

pa
ct Query: What is the sister city of Leonessa?

Document: Leonessa is twinned with the French town of Gonesse .
Its population in 2008 was around 2,700 . Situated in a small plain at the foot of Mt.
Terminillo .....

Query: What is the sister city of Leonessa?
Document: Leonessa is a town and comune in the far northeastern part of the Province
of Rieti in the Lazio region of central Italy .
Its population in 2008 was around 2,700 . Situated in a small plain at the foot of Mt.
Terminillo .....

Po
si

tio
n

B
ia

s Query: Which country is Wonyong Sung a citizen of?
Document: Wonyong Sung ( born 1950s ) , South Korean professor of electronic
engineering Won - yong is a Korean masculine given name ..... People with this name
include : Kang Won - yong ( 1917 – 2006 ) ..... , South Korean swimmer

Query: Which country is Wonyong Sung a citizen of?
Document: Won - yong is a Korean masculine given name ..... People with this name
include : .... Jung Won - yong ( born 1992 ) , South Korean swimmer Wonyong Sung (
born 1950s ) , South Korean professor of electronic engineering

L
ite

ra
lB

ia
s Query: When was Seyhun born?

Document: Seyhun , ( August 22 , 1920 – May 26 , 2014 ) was an Iranian architect ,
sculptor , painter , scholar and professor . He studied fine arts at .....

Query: When was Seyhun born?
Document: Houshang Seyhoun , ( August 22 , 1920 – May 26 , 2014 ) was an Iranian
architect , sculptor , painter , scholar and professor . He studied fine arts at .....

B
re

vi
ty

B
ia

s Query: What series is Lost Verizon part of?
Document: " Lost Verizon " is the second episode of The Simpsons ’ twentieth season .

Query: What series is Lost Verizon part of?
Document: " Lost Verizon " is the second episode of The Simpsons ’ twentieth season .
It first aired on the Fox network in the United States on October 5 , 2008 . Bart becomes
jealous of his friends and their cell phones . Working at a golf course , Bart takes the
cell phone of Denis Leary .....

R
ep

et
iti

on
B

ia
s Query: Where was James Paul Maher born?

Document: Born in Brooklyn , New York , Maher graduated from St. Patrick ’s
Academy in Brooklyn . James Paul Maher ( November 3 , 1865 – July 31 , 1946 ) was a
U.S. Representative from New York . Maher was elected as a Democrat to the Sixty -
second and to the four succeeding Congresses ( March 4 , 1911 – March 4 , 1921 ) .

Query: Where was James Paul Maher born?
Document: Born in Brooklyn , New York , Maher graduated from St. Patrick ’s
Academy in Brooklyn . Apprenticed to the hatter ’s trade , he moved to Danbury ,
Connecticut in 1887 and was employed as a journeyman hatter . He became treasurer of
the United Hatters of North America in 1897 .

Fo
il

vs
.E

vi
de

. Query: Who is the publisher of Assassin ’s Creed Unity?
Document: " Assassin ’s Creed Unity " " Assassin ’s Creed Unity " Assassin ’s Creed
Unity received mixed reviews upon its release .

Query: Who is the publisher of Assassin ’s Creed Unity?
Document: Isa is a town and Local Government Area in the state of Sokoto in Nigeria
. It shares borders with ..... Assassin ’s Creed Unity is an action - adventure video
game developed by Ubisoft Montreal and published by Ubisoft. Isa is a town and Local
Government Area in the state of Sokoto in Nigeria . It shares borders with .....

Table 1: Examples from our framework highlighting Evidence, Head Entity, and Tail Entity. In all cases, retrieval
models favor Document 1 over Document 2, assigning higher retrieval scores accordingly. (Explained in §3.3)

over document structure and factual positioning,057

we repurpose a document-level relation extraction058

dataset (Re-DocRED (Tan et al., 2022)).059

We first investigate biases individually, identify-060

ing tendencies such as an over-prioritization of061

document beginnings, document brevity, repeti-062

tion of matching entities, and literal matches at063

the expense of ignoring answer presence. Our sta-064

tistical approach, illustrated in Figure 1, allows for065

comparative analysis across different biases. Ad-066

ditionally, we explore the interplay between these067

biases and propose an adversarial benchmark that068

combines multiple vulnerabilities.069

The results of our investigation reveal con-070

cerning patterns in current retriever architectures.071

When exposed to multiple interacting biases,072

even top-performing models exhibit dramatic073

degradation, selecting the answer-containing doc-074

ument over the foil document—filled with bi-075

ases—less than 3% of the time. Moreover, we076

demonstrate that these biases can be exploited077

to manipulate Retrieval-Augmented Generation078

(RAG), causing retrievers to favor misleading or079

adversarially constructed documents, which mis-080

guide LLMs into using incorrect information and081

ultimately degrade its performance.082

2 Related Work 083

Benchmarking in Information Retrieval Pop- 084

ular benchmarks like BEIR (Thakur et al., 2021; 085

Guo et al., 2021; Petroni et al., 2021; Muennighoff 086

et al., 2023) have played a crucial role in evaluating 087

retrieval models across diverse datasets and tasks. 088

In addition to general IR benchmarks, domain- 089

specific benchmarks such as COIR (Li et al., 2024) 090

for code retrieval and LitSearch (Ajith et al., 2024) 091

for scientific literature search address retrieval chal- 092

lenges in specialized domains. While these bench- 093

marks have advanced the evaluation of IR models, 094

they primarily focus on downstream performance 095

rather than conducting systematic analyses of bi- 096

ases inherent in retrieval systems. 097

Information Retrieval Model Analysis Prior 098

work in information retrieval has explored various 099

dimensions of retrieval performance, including po- 100

sitional biases (Coelho et al., 2024). Studies have 101

also examined how dense retrievers exhibit biases 102

towards common entities and struggle with OOD 103

scenarios (Sciavolino et al., 2021). Furthermore, 104

analysis by projecting representations to the vo- 105

cabulary space has shown that supervised dense 106

retrievers tend to learn relying heavily on lexical 107

overlap during training (Ram et al., 2023). Sim- 108

ilarly, BehnamGhader et al. (2023) has indicated 109

that Dense Passage Retrieval (DPR) models often 110
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fail to retrieve statements requiring reasoning be-111

yond surface-level similarity. Furthermore, neu-112

ral IR models have been shown to exhibit over-113

penalization for extra information, where adding a114

relevant sentence to a document can unexpectedly115

decrease its ranking (Usuha et al., 2024). Addi-116

tionally, Reichman and Heck (2024) takes a mech-117

anistic approach to analyze the impact of DPR fine-118

tuning, showing that while fine-tuned models gain119

better access to pre-trained knowledge, their re-120

trieval capabilities remain constrained by the pre-121

existing knowledge in their base models. Further,122

MacAvaney et al. (2022) provides a framework for123

analyzing neural IR models, identifying key biases124

and sensitivities in these models.125

Adversarial Attacks in Information Retrieval126

Numerous studies have explored various dimen-127

sions of robustness in information retrieval, in-128

cluding aspects related to adversarial robustness129

(Liu et al., 2024). Adversarial perturbations, for130

instance, have been shown to significantly degrade131

BERT-based rankers’ performance, revealing their132

brittleness to subtle modifications (Wang et al.,133

2022). Existing retrieval attack methods primar-134

ily encompass corpus poisoning (Lin et al., 2024;135

Zhong et al., 2023), backdoor attacks (Long et al.,136

2024), and encoding attacks (Boucher et al., 2023).137

While previous work has analyzed some retrieval138

biases, most studies focus on task-specific super-139

vised models and a single aspect in isolation. Our140

work provides a comprehensive comparative anal-141

ysis of popular retrieval models across multiple142

dimensions of vulnerability. We systematically in-143

vestigate how these biases interact and affect the144

retrieval capabilities of dense retrievers. By re-145

purposing a relation extraction dataset, we gain146

precise control over factual information in docu-147

ments, enabling a rigorous evaluation of retrieval148

robustness. This multi-dimensional approach pro-149

vides a nuanced understanding of the strengths and150

weaknesses of dense retrievers.151

3 Experiments152

3.1 A Framework for Identifying Biases in153

Retrievers154

To gain fine-grained control over the facts present155

in a document, we take a novel approach by repur-156

posing a relation extraction dataset that provides157

relation-level fact granularity. This enables a struc-158

tured analysis of retrieval biases by explicitly link-159

ing queries to individual factual statements.160

Model pooling nDCG@10 Recall@10

Dragon RoBERTa cls 0.55 0.75
Dragon+ cls 0.54 0.74
COCO-DR Base MSMARCO cls 0.50 0.71
Contriever MSMARCO avg 0.50 0.71
RetroMAE MSMARCO FT cls 0.48 0.68
Contriever avg 0.25 0.41

Table 2: Models’ performance on NQ dataset with test
set queries and 2,681,468 corpus size.

One such dataset is DocRED (Yao et al., 2019), 161

a relation extraction dataset constructed from 162

Wikipedia and Wikidata. DocRED consists of 163

human-annotated triplets (head entity, relation, tail 164

entity)—for example, (Albert Einstein, educated 165

at, University of Zurich). However, DocRED suf- 166

fers from a significant false negative issue, as many 167

valid relations are missing from the annotations. 168

To address this, we use Re-DocRED (Tan et al., 169

2022), a re-annotated version of DocRED that re- 170

covers missing facts, leading to more complete and 171

reliable annotations. 172

To construct a retrieval dataset from Re- 173

DocRED, we map each relation to a query tem- 174

plate. For example, for the relation "educated at," 175

we use the template "Where was {Head Entity} 176

educated?" This transformation allows us to sys- 177

tematically examine how retrievers handle different 178

types of factual queries. 179

The answers to these queries are the tail entities 180

found in the evidence sentences provided by the 181

dataset. For our analysis, we ensure that each query 182

has a single evidence sentence (Sev) within the 183

original document (S ∈ Dorig) that contains both 184

the head and tail entities. This constraint makes 185

the sentence self-contained, allowing for precise 186

control over the document structure in subsequent 187

sections. We also introduce the notation S+h
−t for 188

sentences in Dorig that contain the head entity but 189

not the tail entity, and S−h
−t for sentences that do 190

not contain either entity. In each of the following 191

sections, we will use this notation to construct a 192

pair of document sets, D1 and D2, enabling a sys- 193

tematic investigation of retrieval score variations 194

and potential biases. As a result, for each of our 195

six analysis settings, we compile 250 queries, each 196

with a single corresponding gold document, based 197

on the test and validation sets of Re-DocRED. 198

3.2 Models Performance & Bias Discovery 199

First, we evaluate several dense retrievers on the 200

NQ dataset (Kwiatkowski et al., 2019), compar- 201

ing their performance using nDCG@10 and Re- 202
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Figure 2: Visualization of the contribution of each query and document token to the final retrieval score using
DecompX. Literal Bias reflects the model’s preference for exact word matches, such as failing to match "esteban
goemz" with "estevao gomes." Position Bias indicates a preference for entities earlier in the document receiving
more attention. Repetition Bias shows that repeating an entity multiple times increases its score. Lastly, Answer
Importance demonstrates that the query’s answer entity receives less attention compared to head entity matches.

call@10 metrics. Table 2 shows that Dragon mod-203

els lead in performance, and the significant im-204

provement of fine-tuned Contriever over its unsu-205

pervised counterpart highlights the importance of206

supervision and task-specific adaptation. Models207

also differ in pooling mechanisms, with Contriever208

using average pooling and others using CLS pool-209

ing. For details, refer to the appendix A.1.210

In our preliminary analysis, we utilized De-211

compX (Modarressi et al., 2023, 2022), a method212

that decomposes the representations of encoder-213

based models such as BERT into their constituent214

token-based representations. By applying De-215

compX to the embeddings generated by dense re-216

trievers, we obtain decomposed representations for217

both the query and the document. Instead of using218

the original embeddings, we compute the similarity219

score via a dot product of the decomposed vectors.220

This approach enables us to visualize the contribu-221

tion of each query and document token to the final222

similarity score as a heatmap (Figure 2), revealing223

biases in token-level interactions.224

In our preliminary error analysis of 60 retrieval225

failure examples, we identified potential biases226

and limitations in the models (Table A.3). Fig-227

ure 2 highlights some of these biases, such as Lit-228

eral Bias, where the term "esteban gomez" fails to229

match "estevao gomez," reflecting a preference for230

exact matching. In subsequent sections, we design231

experiments and perform statistical tests to evaluate232

these observed biases.233

3.3 Bias Types in Dense Retrieval234

The following experiments are meticulously de-235

signed to control for all other factors and biases,236

isolating the specific bias under evaluation. 237

3.3.1 Answer Importance 238

An effective retrieval model should accurately iden- 239

tify the query’s intent. It should retrieve relevant 240

documents that address the query, rather than just 241

matching entities. To assess whether dense retrieval 242

models truly recognize the presence of answers or 243

merely focus on entity matching, we developed a 244

controlled experimental framework. Our experi- 245

mental design contrasts two carefully constructed 246

document types. 1. Document with Evidence: 247

Contains a leading evidence sentence with both the 248

head entity and the tail entity (answer). 2. Docu- 249

ment without Evidence D2: Contains a leading 250

sentence with only the head entity but no tail. 251

D1 := Sev +
∑

S−h
−t ∈Dorig

S−h
−t

D2 := S+h
−t +

∑
S−h
−t ∈Dorig

S−h
−t

(1) 252

Here, S+h
−t is another sentence from Dorig that re- 253

places the original evidence Sev while containing 254

the head entity but not containing the tail entity 255

to isolate the impact of answer presence. The re- 256

mainder of both documents consists of neutral sen- 257

tences S−h
−t ∈ Dorig, carefully filtered to exclude 258

any sentences containing similar head relations or 259

tail entities. This ensures the answer information 260

appears exclusively in the leading sentence of the 261

evidence document. We strategically positioned the 262

key sentences at the beginning of both documents 263

to mitigate potential position bias effects, which 264

we analyze in subsequent sections. An example of 265

this setup is presented in Table 1 (Answer Impact). 266
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Answer Importance:
Answer-Present vs. Answer-Absent Docs

Figure 3: Paired t-test statistics comparing dot product
similarity between the first sentence containing both
head and tail (Answer) entities versus only the head
entity, with 95% CI error bars. Higher values indicate
recognition of the answer’s importance.

To quantify the models’ ability to distin-267

guish between these document types, we employ268

Paired t-Test2 to analyze the difference in simi-269

larity scores. The t-test statistic (t) is calculated270

as:271

t =
d̄

SE(d̄)
=

Average Difference
Standard Error

(2)272

273
where d̄ = mean (R(D1)−R(D2)) is the274

mean difference between paired observations3, and275

SE(d̄) is the standard error of these differences4.276

A positive t-statistic indicates higher scores for277

D1 documents, while negative values suggest a278

preference for D2 documents. In this scenario,279

positive values are desirable as they indicate the280

model prefers D1 which contains the answer over281

D2 which does not.282

As shown in Figure 3, our analysis reveals283

variations across models. Dragon+ and Dragon-284

RoBERTa demonstrate superior tail recognition,285

achieving the highest positive t-statistics. In con-286

trast, Contriever exhibits poor performance, yield-287

ing negative t-statistics that indicate a failure to288

properly distinguish answer-containing passages.289

The vanilla Contriever’s underwhelming perfor-290

mance can be attributed to its unsupervised training291

methodology, which differs from models trained292

on MS MARCO (Bajaj et al., 2018). While MS293

MARCO provides supervised training with ex-294

plicit query-passage relevance labels, Contriever295

2Using ttest_rel function of SciPy (Virtanen et al., 2020).
3R is the retriever’s score
4SE = σ√

n
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Figure 4: Paired t-test statistics comparing the effect of
moving the evidence sentence position within the docu-
ment to keeping it in the first position. Negative values
indicate a bias towards the beginning of the document.

employs unsupervised contrastive learning. It gen- 296

erates positive pairs through data augmentation 297

from document segments and derives negative ex- 298

amples implicitly via in-batch sampling from other 299

texts. This training approach, while efficient for 300

general text representation, appears insufficient for 301

developing the fine-grained discrimination needed 302

to understand query intent in retrieval tasks. 303

3.3.2 Position Bias 304

Position bias refers to the preference of retrieval 305

models for information located in specific positions 306

within a document, typically favoring content at the 307

beginning over content appearing later. This bias 308

is problematic as it may lead to the underrepre- 309

sentation of relevant information that is positioned 310

deeper within documents, thus reducing the overall 311

retrieval quality and fairness. 312

Our analysis reveals a strong positional bias in 313

dense retrievers, with models consistently priori- 314

tizing information at the beginning of documents. 315

As shown in Figure 4, we conducted paired t- 316

tests comparing retrieval scores when the evidence 317

sentence is placed at different positions to scores 318

when it is placed at the document’s beginning 319

(R(Di)−R(D1)). 320

D1 := Sev + 1S−h
−t + 2S−h

−t + 3S−h
−t + ...+ nS−h

−t

D2 := 1S−h
−t + Sev + 2S−h

−t + 3S−h
−t + ...+ nS−h

−t

D3 := 1S−h
−t + 2S−h

−t + Sev + 3S−h
−t + ...+ nS−h

−t

(3) 321

To ensure fairness, the examples were curated 322

so that the remaining content was free of any ev- 323

idence or head entity (S−h
−t ) like the last section. 324

This design ensured that the evidence’s position 325
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Model Contriever
MSMARCO Dragon+

Q1 D1 Q2 D2

long long long short +21.05 +21.04
short long +22.04 +13.40

short short long short +4.62 +9.04
short long +14.37 +16.62

Table 3: Paired t-test statistics (p-values < 0.05) compar-
ing retrieval scores between exact name matches (Q1-
D1) and variant name pairs (Q2-D2). Positive statistics
indicate a preference for exact literal matches over se-
mantically equivalent name variants (e.g., “US”-“US”
over “US”-“United States”). (All models in Table A.7.)

was the sole factor under evaluation. The consis-326

tently negative t-statistics across models in Fig-327

ure 4 confirm a strong bias favoring content at doc-328

ument beginnings.5 This bias is most pronounced329

in Dragon-RoBERTa and Contriever-MSMARCO,330

which show the most negative t-statistics, indicat-331

ing severe degradation in recognizing evidence fur-332

ther into the document. While Dragon+ and Retro-333

MAE perform better, their negative t-statistics still334

confirm position bias in these models.335

These findings align with recent research by336

Coelho et al. (2024), who demonstrated that po-337

sitional biases emerge during the contrastive pre-338

training phase and worsened through fine-tuning on339

MS MARCO dataset with T5 (Raffel et al., 2020)340

and RepLLaMA (Ma et al., 2023) models. This can341

significantly impact retrieval performance when rel-342

evant information appears later in documents.343

3.3.3 Literal Bias344

Retrieval models should ideally recognize semantic345

equivalence across different surface forms of the346

same entity. For instance, a robust model should347

understand that "Gomes" and "Gomez" refer to348

the same person, or that "US" and "United States"349

represent the same entity. However, our analysis350

reveals that current models exhibit a strong bias351

toward exact literal matches rather than semantic352

matching.353

In our dataset, each head entity can be repre-354

sented by multiple alternative names. To investi-355

gate literal bias, we created different combinations356

of query and document by replacing all head enti-357

ties with the shortest or longest name variants as358

illustrated in Table 1 (Literal Bias). For example,359

an entity might be represented as "NYC" (shortest)360

or "New York City" (longest), allowing us to test361

5Fig. 1 shows the impact of evidence placement (beginning
vs. end), detailed in Appendix A, with an example in Table 1.

how the model performs when matching different 362

combinations of these representations. 363

Table 3 presents the paired t-test statistics com- 364

paring different combinations of name selections 365

in queries and documents. The results consistently 366

show positive statistics when Query 1 and Docu- 367

ment 1 contain similar name representations. For 368

our subsequent analysis of bias interplay, we specif- 369

ically examine the comparison between two scenar- 370

ios (Figure A.1): one where both query and docu- 371

ment use the shortest name variant (short-short) ver- 372

sus cases where the query uses the short name but 373

the document contains the long name variant (short- 374

long). This corresponds to +14.37 and +16.62 in 375

Table 3 for Contriever and Dragon+, respectively.6 376

3.3.4 Brevity Bias 377

Brevity bias refers to the tendency of retrievers 378

to favor concise text, such as a single evidence 379

sentence, over longer documents that include the 380

same evidence alongside additional context. This 381

bias is problematic because retrievers may favor 382

a shorter, non-relevant document over a relevant 383

one. We will discuss this potential hazard further 384

in Section 3.5. 385

Here, we performed paired t-tests to compare the 386

similarity scores of queries with two sets of docu- 387

ments: (1) Single Evidence, consisting of only the 388

evidence sentence, and (2) Evidence+Document, 389

consisting of the evidence sentence followed by the 390

rest of the document. The examples are carefully 391

selected to ensure the evidence sentence includes 392

both the head and tail entity and the rest of the doc- 393

ument contains no repetition of the head entity or 394

additional evidence. 395

D1 := Sev

D2 := Sev +
∑

S−h
−t ∈Dorig

S−h
−t (4) 396

Figure 1 and A.4, illustrate the paired t-test 397

statistics, where significant positive values indi- 398

cate a strong bias toward brevity, as models assign 399

higher scores to concise texts (D1) than to longer 400

ones with the same evidence (D2). This behavior 401

likely stems from the way dense passage retrievers 402

compress document representations. Most retriev- 403

ers use either a mean-pooling strategy or a [CLS] 404

token-based method. Both methods struggle with 405

integrating useful evidence into the representation 406

6We avoid long-long combinations to control for confound-
ing effects, as they span multiple tokens and may introduce
repetition bias due to token overlap
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Figure 5: The average retrieval score of Contriever MS-
MARCO increases with head entity repetitions but de-
creases with document length (all models in Figure A.5).

when unrelated content is present, leading to a “pol-407

lution effect.” As a result, the additional context408

in longer documents dilutes the importance of the409

evidence, causing retrievers to favor concise input.410

3.3.5 Repetition Bias411

Repetition bias refers to the tendency of retrieval412

models to prioritize documents or passages with413

repetitive content, particularly repeated mentions414

of head entities present in the query. This bias is415

problematic as it may skew retrieval results toward416

redundant or verbose documents, undermining the417

goal of surfacing concise and diverse information.418

To analyze repetition bias, we conducted an ex-419

periment evaluating the average retrieval dot prod-420

uct score of the models for samples with varying421

document lengths and head entity repetitions (Fig-422

ure 5 and A.5). A key concern is that longer doc-423

uments naturally have a higher chance of lexical424

overlap with the query, as they may contain more425

repeated mentions of the head entity. This makes426

it difficult to disentangle the effects of document427

length from the number of entity repetitions. There-428

fore, we structure our analysis to separately exam-429

ine these two factors. Our findings (Figure 5) reveal430

that the retrieval score increases with the number431

of head entity mentions, indicating a preference432

for documents with repeated entities. Conversely,433

the retrieval score decreases as document length434

increases, suggesting that longer documents are pe-435

nalized despite potential relevance. Figure A.5 in436

the appendix generalizes these observations across437

all models. This experiment highlights the trade-off438

between repetition and document length, emphasiz-439

ing the need for retrieval systems to balance these440

factors to mitigate bias.441

We further explored this phenomenon through442

Model Accuracy Paired t-Test
Statistic p-value

Contriever 0.4% -34.58 < 0.01
RetroMAE MSMARCO FT 0.4% -41.49 < 0.01
Contriever MSMARCO 0.8% -42.25 < 0.01
Dragon RoBERTa 0.8% -36.53 < 0.01
Dragon+ 1.2% -40.94 < 0.01
COCO-DR Base MSMARCO 2.4% -32.92 < 0.01

Table 4: The accuracy and paired t-test comparing a foil
document (exploiting biases but lacking the answer) to
a second document with evidence embedded in unre-
lated sentences. All retrieval models perform extremely
poorly (<3% accuracy), highlighting their inability to
distinguish biased distractors from genuine evidence.

the results shown in Figures 1 and A.3. Here, we 443

performed paired t-tests to compare the dot product 444

similarity scores of queries with two sets of docu- 445

ments: (1) More Heads, comprising an evidence 446

sentence and two sentences containing head men- 447

tions but no tails, and (2) Fewer Heads, comprising 448

an evidence sentence and two sentences without 449

head or tail mentions from the document (Table 1). 450

D1 := Sev + S+h
−t + S+h

−t

D2 := Sev + S−h
−t + S−h

−t

(5) 451

Positive paired t-test values indicate higher simi- 452

larity for sentences with more head mentions (Fig- 453

ure A.3). The results strongly suggest that the 454

model favors sentences with repeated heads, con- 455

firming the presence of repetition bias. 456

3.4 Interplay Between Bias Types 457

To understand how different biases interact and 458

amplify retrieval model weaknesses, we conduct a 459

systematic analysis using a controlled 250-sample 460

dataset across all experiments. This consistent sam- 461

ple size ensures comparability of paired t-test statis- 462

tics across bias types and provides a robust basis 463

for evaluating their interplay. 464

As illustrated in Figure 1, the paired t-test results 465

reveal that brevity bias, literal bias, and position 466

bias are the most problematic for dense retrievers. 467

In contrast, repetition bias, while still detrimental, 468

exhibits a relatively lower impact, suggesting that 469

models are slightly more robust against this type 470

of bias. Answer importance demonstrates an ac- 471

ceptable distinction between evidence-containing 472

and no-evidence documents. However, the scores 473

are not as strong as one would expect from models 474

designed for accurate answer retrieval, highlighting 475

the need for further improvement in this area. 476

To further investigate the compounded effects of 477

multiple biases, we conducted another experiment 478

7



MODEL Poison Doc Foil Doc No Doc Evidence Doc

gpt-4o-mini 32.0% 44.0% 52.0% 88.0%
gpt-4o 30.8% 62.8% 64.8% 93.6%

Table 5: RAG accuracy when using different document
versions as references. The poisoned document, pre-
ferred by retrievers 100% of the time (Table A.4), re-
sults in worse performance than providing no document,
highlighting the impact of retriever biases on RAG.

that combines several bias types into a single chal-479

lenging setup. In this experiment, we created two480

document types. 1) Foil Document with Multiple481

Biases: This document contains multiple biases,482

such as repetition and position biases. It includes483

two repeated mentions of the head entity in the484

opening sentence, followed by a sentence that men-485

tions the head but not the tail (answer). So it does486

not include the evidence. 2) Evidence Document487

with Unrelated Content: This document includes488

four unrelated sentences from another document,489

followed by the evidence sentence with both the490

head and tail entities. The document ends with491

the same four unrelated sentences. An example is492

shown in Table 1 (Foil vs. Evide.).7493

D1 := 2× h+ S+h
−t

D2 := 4× S̃−h
−t + Sev + 4× S̃−h

−t

(6)494

Table 4 presents the accuracy (proportion of495

times the model prefers D2 over D1), paired t-test496

statistics, and p-values. The results are striking: all497

models exhibit extremely poor performance, with498

accuracy dropping below 3%. The paired t-test499

statistics are highly negative across all models, in-500

dicating a consistent preference for foil documents501

over the correct evidence-containing ones. This502

outcome highlights the severity of bias interplay503

and its detrimental impact on model reliability. Fur-504

thermore, a sufficient number of biased documents505

can potentially cause the model to select all top-k506

documents from only biased results.507

3.5 Impact on RAG508

To assess the impact of the identified vulnerabilities509

on RAG systems, we use GPT-4o models (OpenAI510

et al., 2024) and provide them with different ver-511

sions of the reference document for a given query.512

Additionally, we construct a poisoned document513

by modifying the foil document from §3.4, intro-514

ducing a poisoned evidence sentence (Table A.5).515

7S̃ are sentences from an unrelated document

Specifically, we generate this sentence using GPT- 516

4o by replacing the tail entity with a contextually 517

plausible but entirely incorrect entity. This ap- 518

proach ensures that the poisoned document both 519

exploits the previously discussed retrieval biases 520

and contains an incorrect answer to the query.8 521

D1 := 2× h+ S+h
−t + S+h

+PoisonTail

D2 := 4× S̃−h
−t + Sev + 4× S̃−h

−t

(7) 522

Table 5 reports the RAG accuracy,9 showing that, 523

as expected, providing the evidence document en- 524

ables the LLM to achieve high accuracy. However, 525

since retrievers prefer the foil document from §3.4, 526

which lacks evidence, LLM performance drops 527

to levels near10 the no-document condition. This 528

preference is concerning, as it allows biases to be 529

exploited, making certain documents more likely to 530

be retrieved despite embedding incorrect informa- 531

tion. This is evident with the poisoned document, 532

which degrades performance even worse than pre- 533

senting no document by introducing false facts. In 534

summary, retriever biases can mislead RAG sys- 535

tems by providing poisoned or non-informative 536

documents, ultimately harming performance. 537

4 Conclusions 538

In this work, we introduced a comprehensive frame- 539

work for analyzing biases in dense retrieval mod- 540

els. By leveraging a relation extraction dataset 541

(Re-DocRED), we constructed a diverse set of con- 542

trolled experiments to isolate and evaluate specific 543

biases, including literal, position, repetition, and 544

brevity biases as well as the answer’s importance. 545

Our findings reveal that retrieval models often 546

prioritize superficial patterns, such as exact string 547

matches, repetitive content, or information posi- 548

tioned early in documents, over deeper semantic un- 549

derstanding and the existence of the answer. More- 550

over, when multiple biases combine, retriever per- 551

formance deteriorates dramatically. 552

Furthermore, Our analysis shows that retriever 553

biases can undermine RAG’s reliability by favor- 554

ing poisoned or non-informative documents over 555

evidence-containing ones, leading to degraded per- 556

formance of LLMs. These findings underscore the 557

need for dense retrieval models that are robust to bi- 558

ases and capable of prioritizing semantic relevance. 559

8Despite this, retrievers prefer the poisoned document over
the evidence document in 100% of cases (Table A.4).

9Evaluated using GPT-4o. Prompts in Table A.6
10Slightly lower, as the model sometimes abstains by stat-

ing, “The document does not provide information.”
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Limitations560

Quality of the Relation Extraction Dataset Our561

framework relies on a relation extraction dataset,562

making both annotation accuracy (precision) and563

completeness (recall) critical. We use Re-DocRED,564

which addresses annotation issues in DocRED, but565

it may still contain imperfections that introduce566

minor noise into our experiments. To mitigate this,567

we employ statistical tests and report error mar-568

gins and p-values to ensure the robustness of our569

findings.570

Limitations of RAG Evaluation by LLMs In571

our RAG experiments, we utilized GPT-4o models572

and carefully designed prompts (Table A.6) to poi-573

son documents, generate answers using RAG, and574

evaluate the results against gold-standard answers.575

Although GPT-4o is one of the most advanced mod-576

els available, it is not infallible and may introduce577

some variance in the RAG results and evaluations.578

Nevertheless, we believe the observed trends and579

findings remain valid given the model’s high per-580

formance and the consistency of our experimental581

setup.582
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A Appendix975

A.1 Models Downstream Performance976

We evaluate several dense retrievers on the Nat-977

ural Questions (NQ) dataset (Kwiatkowski et al.,978

2019), comparing their performance using standard979

retrieval metrics: nDCG@10 and Recall@1011.980

The models differ in training objectives, datasets,981

and pooling mechanisms, offering a comprehensive982

view of their retrieval capabilities in our experimen-983

tal setup. Table 2 (and A.2) summarizes the results.984

Dragon RoBERTa and Dragon+ (Lin et al., 2023)985

demonstrate the highest performances due to di-986

verse data augmentations and multiple supervision987

sources, which progressively enhance their gener-988

alization.12989

COCO-DR (Yu et al., 2022) adopts continuous990

contrastive learning and implicit distributionally991

robust optimization (DRO) to address distribution992

shifts in dense retrieval tasks. It exhibits moderate993

performance, scoring lower than Dragon models.994

Contriever (Izacard et al., 2021) uses unsuper-995

vised contrastive learning but performs poorly with-996

out fine-tuning (nDCG@10: 0.25). Fine-tuning997

on MSMARCO significantly improves its perfor-998

mance (nDCG@10: 0.50), underscoring the impor-999

tance of fine-tuning for robust retrieval.1000

RetroMAE (Xiao et al., 2022), which introduces1001

a retrieval-oriented pre-training paradigm based on1002

Masked Auto-Encoder (MAE), featuring innova-1003

tive designs like asymmetric masking, achieves1004

slightly lower performance (nDCG@10: 0.48)1005

compared to fine-tuned Contriever.1006

The models also differ in their pooling mech-1007

anisms. Contriever uses average pooling, where1008

token representations are averaged to form a dense1009

vector for retrieval. In contrast, the other models1010

use CLS pooling, where the representation of the1011

[CLS] token is taken as the sentence embedding.1012

In summary, Dragon models lead in perfor-1013

mance, and the significant improvement of fine-1014

tuned Contriever over its unsupervised counterpart1015

highlights the importance of supervision and task-1016

specific adaptation in dense retrieval.1017

A.2 Position Bias: First vs. Last1018

Further evidence is provided in Figure A.2,1019

where we compared two document variants:1020

11Using BEIR framework (Thakur et al., 2021)
12Dragon RoBERTa is initialized from RoBERTa and

Dragon+ from RetroMAE

1. Beginning-Evidence Document D1: The ev- 1021

idence sentence is positioned at the start of the 1022

document. 2. End-Evidence Document D2: The 1023

same evidence sentence is positioned at the end of 1024

the document. 1025

D1 := Sev +
∑

S−h
−t ∈Dorig

S−h
−t

D2 :=
∑

S−h
−t ∈Dorig

S−h
−t + Sev

(8) 1026

An example of the document pairs (Position 1027

Bias) is shown in Table 1. The resulting t-statistics 1028

(Figure 1 and A.2), where higher positive values 1029

indicate a stronger preference for evidence at the 1030

beginning (D1) over the end (D2), provide another 1031

clear metric of positional bias. These results serve 1032

as a foundation for our subsequent analysis in the 1033

interplay between biases section. 1034

Model Citation

facebook/dragon-plus-query-encoder Lin et al. (2023)
facebook/dragon-plus-context-encoder

facebook/dragon-roberta-query-encoder Lin et al. (2023)
facebook/dragon-roberta-context-encoder

facebook/contriever-msmarco Izacard et al. (2021)

facebook/contriever Izacard et al. (2021)

OpenMatch/cocodr-base-msmarco Yu et al. (2022)

Shitao/RetroMAE_MSMARCO_finetune Xiao et al. (2022)

gpt-4o-mini-2024-07-18 OpenAI et al. (2024)

gpt-4o-2024-08-06 OpenAI et al. (2024)

Table A.1: The details of the models we used in this
work.

Model Pooling nDCG@10 Recall@10

Dragon+ cls 0.55 0.63
Dragon RoBERTa cls 0.53 0.59
Contriever MSMARCO avg 0.52 0.59
Contriever avg 0.50 0.59
RetroMAE MSMARCO FT cls 0.49 0.55
COCO-DR Base MSMARCO cls 0.48 0.53

Table A.2: Models’ performance on our refined redo-
cred dataset with 7170 queries and 105925 corpus size.

Issue Count Percentage

Long Document 33 55%
Missing Answer 19 32%
Literal Bias 11 18%
Repetition 6 10%
Numbers 2 3%
Position Bias 2 3%

Table A.3: Preliminary findings from our annotation of
60 retrieval errors based on DecompX
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Literal Bias: Matching vs. Different Names

Figure A.1: Paired t-test statistics comparing retrieval
scores between two scenarios: (1) when both query and
document use the shortest name variant, and (2) when
the query uses the short name but the document con-
tains the long name variant of the same entity. Positive
statistics indicate that models favor exact string matches
over semantic matching of equivalent entity names.
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Position Bias:
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Figure A.2: Paired t-test statistics comparing document
scores based on the position of the evidence sentence
(beginning vs. end). Higher positive values reflect a
preference for evidence at the beginning, indicating
positional bias.

Model Accuracy Paired t-Test
Statistic p-value

Dragon+ 0.0% -55.16 < 0.01
Dragon RoBERTa 0.0% -49.17 < 0.01
Contriever MSMARCO 0.0% -46.96 < 0.01
COCO-DR Base MSMARCO 0.0% -40.19 < 0.01
RetroMAE MSMARCO FT 0.0% -48.10 < 0.01
Contriever 1.2% -33.60 < 0.01

Table A.4: The accuracy, paired t-test statistics, and
p-values comparing a poison document, designed to
exploit biases and having a wrong answer (tail), against
a second document containing the evidence sentence
embedded in the middle of eight unrelated sentences
from a different document. All retrieval models perform
extremely poorly (less than 2% accuracy).
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Figure A.3: Paired t-test statistics comparing the dot
product similarity of queries with two sets of sentences:
(1) More Heads, consisting of evidence and two sen-
tences with head mentions but no tails, and (2) Fewer
Heads, consisting of evidence and two sentences with-
out head or tail mentions. Positive values indicate higher
similarity for sentences with more heads.
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Figure A.4: Paired t-test statistics comparing scores for
documents containing only the evidence sentence versus
those containing the evidence plus the full document.
Higher positive values indicate a stronger model bias
toward brevity.
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Method 1 (Higher Query Document Similarity Score) Method 2 (Lower Query Document Similarity Score)

Fo
il

vs
.E

vi
de

. Query: Who is the publisher of Assassin ’s Creed Unity?
Document: " Assassin ’s Creed Unity " " Assassin ’s Creed Unity " Assassin ’s Creed
Unity received mixed reviews upon its release .

Query: Who is the publisher of Assassin ’s Creed Unity?
Document: Isa is a town and Local Government Area in the state of Sokoto in Nigeria
. It shares borders with ..... Assassin ’s Creed Unity is an action - adventure video
game developed by Ubisoft Montreal and published by Ubisoft. Isa is a town and Local
Government Area in the state of Sokoto in Nigeria . It shares borders with .....

Po
is

on
vs

.E
vi

de
. Query: Who is the publisher of Assassin ’s Creed Unity?

Document: " Assassin ’s Creed Unity " " Assassin ’s Creed Unity " Assassin ’s Creed
Unity received mixed reviews upon its release . Assassin ’s Creed Unity is an action -
adventure video game developed by Electronic Arts Montreal and published by Elec-
tronic Arts

Query: Who is the publisher of Assassin ’s Creed Unity?
Document: Isa is a town and Local Government Area in the state of Sokoto in Nigeria
. It shares borders with ..... Assassin ’s Creed Unity is an action - adventure video
game developed by Ubisoft Montreal and published by Ubisoft. Isa is a town and Local
Government Area in the state of Sokoto in Nigeria . It shares borders with .....

Table A.5: Examples from our framework for poison document and evidence document highlighting Evidence,
Head Entity, Tail Entity and Poison replacing true tail entity. In all cases, retrieval models favor Method 1 over
Method 2, assigning higher retrieval scores accordingly.

Prompt Utility Prompt

Poisoning In the sentence: ’{evidence}’, replace the entity ’{tail}’ with a different entity that
makes sense in context but is completely different. Output only the replacement
entity. replacement entity:

RAG Answer the question based on the given document. Only give me the complete
answer and do not output any other words. The following is the given document.
Document: {doc}
Question: {query}
Answer:

RAG for No Doc Answer the question. Only give me the answer and do not output any other words.
Question: {query}
Answer:

Evaluation Query: {query}
Evidence: {evidence_sentence}
Gold Answer: {gold_answer}
Model Answer: {model_answer}
Does the Model Answer contain or imply the Gold Answer based on the evidence?
YES or NO :

Table A.6: The prompts utilized for RAG.

Model COCO-DR
Base MSMARCO

RetroMAE
MSMARCO FT Contriever Contriever

MSMARCO Dragon+ Dragon
RoBERTa

Query Name 1 Doc Name 1 Query Name 2 Doc Name 2

long long long short 20.67 21.92 19.22 21.05 21.03 21.64
short long 23.41 23.53 21.46 22.01 13.40 7.55
short short 18.43 19.60 16.41 17.35 4.99 1.75

short short long short 2.19 3.86 2.32 4.65 9.05 5.57
short long 13.33 13.67 13.31 14.32 16.58 17.18

Table A.7: Paired t-test statistics comparing retrieval scores between exact name matches (Q1-D1) and variant name
pairs (Q2-D2). Positive statistics indicate model preference for exact literal matches over semantically equivalent
name variants (e.g., preferring “US”-“US” over “US”-“United States”).
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Figure A.5: The average retrieval dot product score for samples with different document lengths and head entity
repetitions. (See Figure A.6 for the number of examples in each bin)
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Figure A.6: The number of samples in each bin of Figures A.5 and 5.
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[SEP]
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Figure A.7: Visualization of token-wise effects on retriever scores using DecompX.
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[SEP]
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Figure A.8: Visualization of token-wise effects on retriever scores using DecompX.

[C
LS

] "
un

ite
d

st
at

es
he

al
th

ca
re

re
fo

rm
:

pr
og

re
ss to

da
te

an
d

ne
xt

st
ep

s " is a
re

vi
ew

ar
tic

le by
th

en
-

pr
es

id
en

t of th
e

un
ite

d
st

at
es

ba
ra

ck
ob

am
a in

wh
ich he

re
vi

ew
s

th
e

ef
fe

ct
s of th
e

af
fo

rd
ab

le
ca

re ac
t ( ac

##
a ) , a

m
aj

or
he

al
th

ca
re la
w he

sig
ne

d in
20

10
,

an
d

re
co

m
m

en
ds

he
al

th
ca

re
po

lic
y

Gold Document

[CLS]
when

did
affordable

care
act

start
?

[SEP]
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Figure A.9: Visualization of token-wise effects on retriever scores using DecompX.
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