
Weighting vectors for machine learning: numerical
harmonic analysis applied to boundary detection

Eric Bunch
American Family Insurance

Madison, WI 53783
ebunch@amfam.com

Daniel Dickinson
American Family Insurance

Madison, WI 53783
ddickins@amfam.com

Jeffery Kline
American Family Insurance

Madison, WI 53783
jklin1@amfam.com

Glenn Fung
American Family Insurance

Madison, WI 53783
gfung@amfam.com

Abstract

Metric space magnitude, an active subject of research in algebraic topology, aims
to quantify the effective number of distinct points in a space. The contribution
of each point to a metric space’s global magnitude, which is encoded by the
weighting vector, captures much of the underlying geometry of the original metric
space. When the metric space is Euclidean, the weighting vector also serves as an
effective tool for boundary detection. This allows the weighting vector to serve
as the foundation of novel algorithms for classic machine learning tasks such
as classification, outlier detection and active learning. We demonstrate, using
experiments and comparisons on classic benchmark datasets, the promise of the
proposed magnitude and weighting vector-based approaches.

1 Introduction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1: A visualization of two weighting vectors. The set in the left-hand figure is supported within
four disjoint components, and they live in R2. The set in the right-hand figure is supported on an
embedding of Möbius strip, and it lives in R3. In both images, the weight of each point is represented
using color and point size.

Topological Data Analysis and Beyond Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.

Magnitude is a scalar quantity that has meaning for many different kinds of data, and as with
other scalar quantities such as rank, diameter, and measure, it has wide applicability, an intuitive
interpretation and a solid theoretical foundation. Magnitude has been discovered, and rediscovered
multiple times in both practical and theoretical contexts. In this paper, our goal is to apply recent
developments drawn from magnitude theory to machine learning, and to empirically demonstrate
characteristics of magnitude that, while implicitly described by abstract theoretical results, have not,
to our knowledge, been explicitly stated before, nor have they been leveraged for practical purpose.

Informally, magnitude aims to quantify the effective number of points in a space. Our aim is more
subtle: we wish to identify which points are considered “effective” and “important.” We do this using
the weighting vector. The weighting vector appears naturally in the definition of magnitude, and we
find that the weighting vector, under appropriate conditions, serves as an effective boundary detector.
It is this behavior that makes the weighting vector especially well suited for machine learning tasks.
The remainder of section 1 presents background and notation, section 2 demonstrates our algorithms,
and seciton 3 has conclusions and directions for future work.
Definition 1. Let X be a finite metric space with metric d. Denote the number of points in X by
|X|. The similarity matrix of X is defined to be ζXpi, jq :“ expp´dpxi, xjqq for 1 ď i, j ď |X|.
Whenever the inverse of ζX exists, we define the weighting vector of X to be

wX :“ ζ´1
X 1,

where 1 is the |X| ˆ 1 column vector of all ones. The magnitude of X is defined to be the quantity

MagpXq :“ 1
TwX “ 1

T ζ´1
X 1.

That is, MagpXq is the sum of all the entries of the weighting vector wX .
Example. When X is a finite subset of Euclidean space, ζX is a symmetric positive definite matrix
[Theorem 2.5.3, [5]]. In particular, ζ´1

X is guaranteed to exist. Hence, the weighting vector and
magnitude exist for finite subsets of Rn.

It is not at all clear by inspection of the definition that a weighting vector might carry useful
information about a set’s boundary. There is early work empirically investigating the weighting
vector for examples of finite metric spaces [11]. The theoretical foundation of using weighting
vectors for boundary detection leverages the theory of Bessel potential functions and other machinery
of harmonic analysis. We offer a hint at how the gap between established theory and empirical
application is traversed. Let X Ă Rn be a compact set that possesses a weighting (see [7] Theorem
4.1) and supposeX Ă X is a finite set, uniformly distributed about X . The discrete sum that defines a
weighting vector for X , namely ζwX “ 1, approximates an integral which, after introducing suitable
concepts and notation, expresses a weighting function w as a function that satisfies z ˚ w “ IX ,
where ˚ denotes convolution and IX is the characteristic function of X . One then “solves” this linear
equation to find w “ ZIX , where Z is a generalized function. When n is odd, Z decomposes into a
“nice” part on the interior of X , and a singular part that is supported on BX ([1] Theorem 5 and [8]).
More details are in Appendix B.

2 Algorithms

2.1 Weighting vector as a classifier

In this section, we develop an algorithm that uses metric space magnitude for a machine learning
classification task. In a classification task, we are given a set X of m training examples in Rn,
xi P X Ă Rn, i P t1, 2, ...,mu, with m ă 8. Each xi has an associated label, lpxiq P L, which is
an element of a finite set of possible labels, |L| “ k ă 8. Given an unlabeled new point, x1 P Rn,
we seek to assign it an associated label lpx1q P L. Since X is finite, the term “boundary” is not
well-defined so we use the following convention: A point xi P X Ă Rn with |X| ă 8 is in the
interior of X if its weight value is sufficiently small (where “sufficient” is context-specific). Note that
our convention matches with intuition on densely sampled subsets of Y Ă Rn, as all points away
from BY have small weight.

Let L “ tL1, L2, ..., Lku be the set of labels, and Xi “ tx P X | lpxq “ Liu. If x1 is an unlabeled
point, the logic proceeds as follows. For each label Li, compute w1i, the weight of x1 in the set
tx1uYXi. Intuitively, ifw1i has a low value, it likely is an interior point ofXi and therefore lpx1q “ Li

2

Figure 2: Upper left: Training data
X , with L0 “ ´ and L1 “ `. Up-
per right: X Y x1, with a star denot-
ing x1. Lower left: tx1u Y X0, with
w10 “ 0.517, and the sizes of markers
indicate weight. Lower right: tx1uYX1,
with w11 “ 0.026, and the sizes of mark-
ers indicate weight.

Figure 3: Outlier detection for synthetic
data, τ “ 0.2. Inlier data was generated
from two Gaussian distributions, and out-
liers were drawn from a uniform distri-
bution.

is appropriate. However, if w1i has a high value, it is likely not on the interior of Xi, so another label
is more appropriate. Figure 2 shows an example.

If classes are imbalanced or have different underlying distributions, the values of w1i will not neces-
sarily be comparable. Our algorithm therefore incorporates a function SCALEi : pR,R|Xi|q Ñ R,
which serves to normalize w1i relative to weights of other points with label Li, for example absolute
value or percentile.

We select a class label using a function DECIDE which operates on the w1i after they have been
scaled using SCALEi, for example argmax. By allowing DECIDE to accept one additional threshold
parameter, however, the algorithm can account for previously unseen classes as follows. If all w1i are
above the threshold parameter, it is likely the point is far from any of the labeled points, and thus from
an unseen class, so it is assigned NULL. Otherwise, apply the decision function as described above.
Note that for simplicity and readability, we omit the threshold parameter from the basic version
presented in Algorithm 1.

Algorithm 1 Classification via weighting vector.

input: Data set X , L “ tL1, L2, ..., Lku labels, function DECIDE : Rk Ñ t1, 2, ..., ku, function
SCALEi : pR,R|Xi|q Ñ R for each i P t1, 2, ..., ku

input: unlabeled point x1
p = []
for i P t1, 2, ..., ku do

Y “ tx1u YXi

w1i “ wY px
1q

w “ SCALEipw1i,WXi
q

p.append(w)
let j “ DECIDEppq

output: Lj

2.2 Weighting vector for active learning

Let L (the labeled dataset) and U the (unlabeled dataset) be two subsets of the available pool of
training data X , with X “ U Y L and U X L “ H. An iteration of the algorithm will pick some
points in U to be labeled by an oracle (transferring them to L). The current model will be then
updated using the new updated dataset L and its corresponding labels. For simplicity we will state

3

the algorithm for a binary classification problem i.e. when L “ tL0, L1u, however it can be trivially
extended to a multi-class problem.

The intuition behind the algorithm is simple: at each iteration i, we assign every training data point
to one of the sets X̃0 or X̃1 according to its predicted label by the current classifier fi. We will
calculate the corresponding weight vectors wX̃0

and wX̃1
. Then, we choose to label the point with

the minimum value (interior point) and the with the maximum value (likely to be in the boundary)
for both sets X̃0 and X̃1. By choosing this way we are aiming to: (a) reinforce, validate and refine
high confidence classifier information (labels) acquired in prior iterations (exploitation) and (b) to
acquire labels in the predicted class boundaries where our classifier confidence is potentially lower
(exploration). The proposed active learning algorithm is stated in Algorithm 2. We present some
numerical experiments in Section A.

Algorithm 2 Active learning via weighting vector.

input: Data set X
L “ H; U “ X
initialize L ; U “ X ´ L; with it’s corresponding YL
f “ train_classifierpL,YL)
while (not converged) or (labeling budget not reached) do

X̃i “ tx P X | fpxq “ iu for i “ 0, 1.
calculate weighting vectors wX̃i

Qmin,i “ arg min
U

abspwX̃i
q for i “ 0, 1

Qmax,i “ arg max
U

abspwX̃i
q for i “ 0, 1

YQ=query_labels(Qmin,0,Qmax,0,Qmin,1,Qmax,1)
L “ LY tQmin,0,Qmax,0,Qmin,1,Qmax,1u

YL “ YL Y YQ
U “ X ´ L;
f “ train_classifierpL,YL)

output: f

2.3 Weighting vector for Outlier Detection

Suppose we have a data set X Ă Rn, and wish to determine if a new point x P Rn should be
considered an outlier with respect to X . By looking at the value γXx :“ MagpX Y txuq ´MagpXq,
we can see if adding x increased the magnitude substantially, thereby greatly extending the "border"
of X . By Lemma 3.1.3 in [5] we have that 0 ď γXx. Care must be taken, however; both the points
on the boundary of X , and the outlier points will have high weight relative to the interior of the X .
Thus we collect all points in X whose weight is below a fixed threshold, and denote this subset as
Xin, the inliers. We say XzXin are the outlier candidates. Next, for each x P XzXin with γXx
less than a user-defined threshold 0 ď τ , we move from XzXin to Xin. We record this algorithm in
Algorithm 3, and Figure 3 displays example results of this algorithm.

Algorithm 3 Outlier detection via weighting vector.

input: dataset X , threshold τ
Xin “ tx P X | abspwXpxqq ă medianpwXq ` 1.5stdpwXqu
for x P XzXin do

if γXx ă τ then
Xin Ð x

output: XzXin

3 Conclusions

We apply the concepts of metric space magnitude and weighting vector to a wide variety of classical
machine learning tasks. We introduce practical algorithms that are suited to these tasks, and we

4

demonstrate performance that is competitive with, and in many cases, surpasses the performance of
benchmark methods. Additionally, we introduce the notion that the weighting vector can accurately
identify boundaries on scattered data that lives in a Euclidean space.

Prior work in the field of metric space magnitude has generally been theoretical and focused on the
magnitude functional itself, and the properties of the weighting vector have been overshadowed.
Practical aspects of metric space magnitude and the weighting vector is still an emergent field. Since
magnitude and the weighting vector are well-defined for an extraordinarily wide class of sets, we
believe that one natural aim of future work would be to develop vector weighting and magnitude into
a robust, unifying foundation for the analysis of familiar, but also highly unusual, spaces.

Acknowledgments and Disclosure of Funding

We would like to thank Mark Meckes for extremely useful conversation related to this work.

References
[1] J. Barceló and A. Carbery. On the magnitudes of compact sets in Euclidean spaces. American

Journal of Mathematics, 140(2):449–494, 2018.

[2] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press, 2000.

[3] G. Folland. Real analysis: modern techniques and their applications. Pure and applied
mathematics. Wiley, 1999.

[4] G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In KDD ’01,
2001.

[5] T. Leinster. The magnitude of metric spaces. Documenta Mathematica, 18:857–905, 2013.

[6] D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. CoRR,
abs/cmp-lg/9407020, 1994.

[7] M. W. Meckes. Magnitude, diversity, capacities, and dimensions of metric spaces. Potential
Analysis, 42(2):549–572, 2015.

[8] M. W. Meckes. Personal communication, September 2020.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python . Journal of Machine
Learning Research, 12:2825–2830, 2011.

[10] J. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural
Processing Letters, 9:293–300, 06 1999.

[11] S. Willerton. Heuristic and computer calculations for the magnitude of metric spaces, 2009.

A Results

A.1 Classification Experiments

To test the classification algorithm, we ran a set of ten experiments across 5 classic benchmark datasets
from the UCI repository, a synthetic two-dimensional checkerboard dataset, as well as the scikit-learn
digit and iris datasets, and multiple classifiers. Each experiment consisted of using a random stratified
splitting method to partition the the data set into a training set consisting of 70% of the data, and
a testing set consisting of the remaining 30%. The classifiers were trained without fine-tuning any
parameters; the basic algorithm presented in 1 with ARGMAX for DECIDE and absolute value for
SCALEi, and the defaults in scikit-learn [9] for all parameters in the other algorithms. Table 1 records
the average and standard deviation of the accuracy on the testing dataset for all classifiers.

5

Remark. Our model performed quite similarly to k-nearest neighbors in our experiments, which is
quite remarkable given the dramatic differences between the algorithms. We also note the promise it
implies: our initial attempt at using the boundary detection properties of the weighting vector in a
machine learning setting have matched the performance of a well-established and widely-used model.
We believe this will be improved upon and expanded as techniques using the weighting vector are
adopted more widely.

dataset K-Neighbors Logistic Reg. Rand. Forest SVM Weight

2-d checkerboard 0.92 ˘ 0.02 0.51 ˘ 0.04 0.94 ˘ 0.01 0.62 ˘ 0.04 0.92 ˘ 0.01
clevedata.mat 0.82 ˘ 0.04 0.85 ˘ 0.02 0.82 ˘ 0.03 0.84 ˘ 0.03 0.84 ˘ 0.03
dimdata.mat 0.94 ˘ 0.01 0.95 ˘ 0.01 0.95 ˘ 0.00 0.96 ˘ 0.00 0.93 ˘ 0.01
housingdata.mat 0.87 ˘ 0.02 0.87 ˘ 0.03 0.87 ˘ 0.02 0.87 ˘ 0.03 0.87 ˘ 0.02
ionodata.mat 0.84 ˘ 0.05 0.89 ˘ 0.02 0.94 ˘ 0.02 0.95 ˘ 0.02 0.81 ˘ 0.08
iris 0.94 ˘ 0.04 0.87 ˘ 0.05 0.94 ˘ 0.04 0.96 ˘ 0.03 0.85 ˘ 0.13
sklearn digits 0.97 ˘ 0.01 0.96 ˘ 0.01 0.95 ˘ 0.01 0.98 ˘ 0.01 0.97 ˘ 0.00
ticdata.mat 0.85 ˘ 0.02 0.69 ˘ 0.03 0.93 ˘ 0.02 0.88 ˘ 0.02 0.78 ˘ 0.03

Table 1: Classification performance results and benchmarks.

dataset K-Neighbors Logistic Reg. Random Forest SVM Weight

2-d checkerboard 0.01 ˘ 0.00 0.01 ˘ 0.00 0.17 ˘ 0.02 0.02 ˘ 0.00 0.08 ˘ 0.01
clevedata.mat 0.01 ˘ 0.00 0.01 ˘ 0.00 0.15 ˘ 0.02 0.01 ˘ 0.00 0.02 ˘ 0.00
dimdata.mat 0.11 ˘ 0.01 0.02 ˘ 0.00 0.48 ˘ 0.06 0.07 ˘ 0.01 6.38 ˘ 0.62
housingdata.mat 0.01 ˘ 0.00 0.01 ˘ 0.00 0.15 ˘ 0.01 0.01 ˘ 0.00 0.03 ˘ 0.00
ionodata.mat 0.01 ˘ 0.00 0.01 ˘ 0.00 0.16 ˘ 0.01 0.01 ˘ 0.00 0.03 ˘ 0.00
iris 0.01 ˘ 0.00 0.01 ˘ 0.00 0.13 ˘ 0.01 0.01 ˘ 0.00 0.01 ˘ 0.00
sklearn digits 0.08 ˘ 0.01 0.09 ˘ 0.01 0.29 ˘ 0.04 0.10 ˘ 0.01 0.45 ˘ 0.05
ticdata.mat 0.02 ˘ 0.00 0.01 ˘ 0.00 0.16 ˘ 0.01 0.02 ˘ 0.00 0.09 ˘ 0.01

Table 2: Average with standard deviation of training times in seconds.

To demonstrate the NULL class label capabilities, we trained the magnitude classifier on examples of
six and nine from the scikit-learn digits dataset, then predicted on images of ones, sixes, and nines.
The confusion matrix with a NULL class threshold of 1´ 10´11 is shown in table 3.

A.2 Active learning Experiments

In order to assess the effectiveness of the weighting-vector-based active learning (AL) algorithm
proposed in Section 2.2, we compared Algorithm 2 to the simplest but highly effective and most
commonly used query AL framework: uncertainty sampling [6]. In this framework, the AL algorithm
queries the instances for which it is least certain about how to label (i.e. for many algorithms
pplabel}xq « 0.5 or where the decision function is close to 0). For simplicity we used a kernelized
Ridge regression model [2] (also refer as to LS-SVM [10] or proximal SVM [4]). Laplacian
kernels were used both as magnitude to calculate the weighting vector and as classification kernel
(kpx, yq “ expp´γ}x´ y}1q with γ “ 0.1. At each iteration of Algorithm 2 the classifier learned
after obtained labels from the oracle has the form fpxq “ Kpx,Lq1w ´ w0, where w0 is the bias
term.

We performed experiments on five classic benchmark datasets from the UCI repository taking 67%
of the data as training pool and the remaining 33% as a testing set. Note that the weighing-vector-

null 6 9

null 53 0 1
6 1 53 0
9 1 0 54

Table 3: Confusion matrix for classifier with NULL class.

6

Figure 4: Active learning results comparing the weighting vector query strategy vs the uncertainty
sampling strategy. Average over 100 runs.

inspired algorithm chooses 4 points per iterations so we picked the four more uncertain points for the
uncertainty sampling algorithm to be fair.

Figure 4 shows average performance curves over 100 runs. The performance from the weighting
vector algorithm seems to perform better in four out of the five datasets and slightly worse on the
Galaxy dim. and Checkerboard datasets.

B Boundary detection

The purpose of this section is to state the theorem in [8], which contributes rigor to the above
discussion about boundary detection. We begin by offering informal comments about how the
finite, discrete sets of the applications relate to the infinite, continuous objects of the theorem. The
background required for this initial part of the discussion is limited to basic familiarity with the
Fourier transform. These comments also serve to present the moral case that weighting vectors ought
to be useful as boundary detectors. The background required to interpret the theorem’s statement
includes substantial familiarity with tempered distributions and related theory.

Let f : Rn Ñ C be a smooth integrable function. We define the Fourier transform of f as

pFfq pξq :“

ż

Rn

e´2πiξ1xfpxq dx.

Then F may be extended unitarily to all square-integrable functions defined on Rn, and since it is
unitary, F has an inverse which we denote F´1. Under suitable conditions on f one has that

p2πiξqk pFfq pξq “
`

F
`

Bkf
˘˘

pξq. (1)

Set htpxq :“ e´2πt}x}. Then (see [3] Chapter 8)

pFhtq pξq “ cn
t

´

t2 ` }ξ}
2
¯pn`1q{2

, (2)

where cn “ π´pn`1q{2Γppn` 1q{2q.

Now suppose X Ă r0, ts is a finite set of equispaced points selected from the interval r0, ts (the
equispacing condition may be relaxed to instead be a uniform random sample). Let Dpi, jq :“
e´}xi´xj} denote the pi, jq entry of the matrix D. Then the linear equation that defines the weighting
vector w is

Dw :“

¨

˚

˝

1
...
1

˛

‹

‚

.

7

This statement has, via Riemann summation, a continuous analogue expression for a “weighting
function” v for the entire interval, r0, ts. Let h :“ h1{2π . This analogue has the form,

h ˚ vpxq “

ż

R
hpx´ yqvpyq dy “

ż

R
e´|x´y|vpyq dy “ Ir0,tspxq.

From Eq. 2,
`

FIr0,ts
˘

pξq “ pFph ˚ vqq pξq
“ pFhq pξq pFvq pξq

“
2

1` 4π2ξ2
pFvq pξq,

or

1

2
p1` 4π2ξ2qF

`

Ir0,ts
˘

pξq “ pFvq pξq. (3)

Applying Eq. 1 and the operator F´1 to Eq. 3, one has

1

2

`

Ir0,ts ´ B
2Ir0,ts

˘

“ v. (4)

In Eq. 4, the term B2Ir0,ts vanishes everywhere except at the points 0 and t, where it behaves as second-
order derivative operator. Informally, v is constant on the open interior p0, tq, and it approximates a
discrete second-order derivative operator at the boundary points 0 and t. This informal argument may
be adapted to n ą 1 dimensions, where Ir0,ts is replaced by more general A Ă Rn.

We now turn to the theorem statement. The Bessel potential space is the Hilbert space of tempered
distributions

Hs :“
!

φ P S1pRnq : p1` }¨}
2
qs{2Fφ P L2pRnq

)

that is equipped with norm

}φ}Hs :“

ˆ
ż

Rn

´

1` }ξ}
2
¯s

|pFφq pξq|2 dξ
˙1{2

.

For for compact A Ă Rn, the definition of a weighting, as well as necessary and sufficient conditions
for A to have a weighting, can be found in Definition 3.3 and Theorem 4.1 of [7].

Theorem 2. Let n be odd, A Ă Rn compact with weighting z P H´pn`1q{2pRnq, and let λA denote
Lebesgue measure restricted to intA. Then

z “
1

n!ωn
λA ` ν (5)

for some ν P H´pn`1q{2pRnq that is supported on BA. The constant ωn :“ πn{2{Γpn{2` 1q is the
volume of the unit n-ball.

The decomposition of z stated in Eq. 5 agrees with informally-derived expression for v stated in
Eq. 4. Numerically, we find that n odd does not seem to be required. Finally, we note that under extra
regularity assumptions, a similar result follows from Theorem 5 of [1].

C Useful properties of magnitude

In this section, we offer some techniques that are useful when working with weighting vectors. We
discuss how the computation of the weighting vector may be effectively computed by breaking the
computation into smaller pieces and “gluing” the results together.

8

C.1 Inclusion-Exclusion for Weight and Magnitude

We demonstrate a practical way to calculate the weighting vector for a set Z :“ X Y Y that is the
union of two finite X,Y Ă Rn. To approach this, first we investigate the case when X and Y are
disjoint. Then we will look at the case Y Ă X , and show how to calculate either wX or wY when
one knows the other. Finally we will state an inclusion-exclusion principle for magnitude, as well as
the weighting vector.

Before proceeding, we recall the definition of the Schur complement.

Definition 3. Let M :“

„

A B
C D



be the block matrix where the matrices A,B,C,D are of dimen-

sions nˆ n, nˆm,mˆ n, and mˆm respectively. If D is invertible, then the Schur complement
of D in M is the nˆ n matrix

M{D “ A´BD´1C.

Similarly, if A is invertible, then the Schur complement of A in M is the mˆm matrix

M{A “ D ´ CA´1B.

LetH ‰ Y Ă X Ă Rn be finite sets. Without loss of generality, we can index the points of X such
that the first |Y | of them correspond to those points in Y . Then we can see that ζX can be written as
a block matrix

ζX “

„

ζY ζY,Ȳ
ζT
Y,Ȳ

ζȲ



, (6)

where Ȳ “ XzY , and ζY,Ȳ denotes the submatrix of ζX formed by taking the rows corresponding to
Y and columns corresponding to Ȳ . We can now rewrite the formula ζXw “ 1 using equation 6 as
the system of equations

ζY wX
ˇ

ˇ

Y
` ζY,Ȳ wX

ˇ

ˇ

Ȳ
“ 1Y

ζTY,Ȳ wX
ˇ

ˇ

Y
` ζȲ wX

ˇ

ˇ

Ȳ
“ 1Ȳ ,

where 1Y and 1Ȳ are respectively the |Y | ˆ 1 and
ˇ

ˇȲ
ˇ

ˇˆ 1 column vectors of all ones. Since both ζY
and ζȲ are invertible, we can form both of the Schur complements ζX{ζY and ζX{ζȲ . With these in
hand, we can write

wX
ˇ

ˇ

Y
“ pζX{ζȲ q

´1p1Y ´ ζY,Ȳ wȲ q (7)

wX
ˇ

ˇ

Ȳ
“ pζX{ζY q

´1p1Ȳ ´ ζ
T
Y,Ȳ wY q, (8)

where wY and wȲ are the weight vectors for Y and Ȳ respectively, and wX
ˇ

ˇ

Y
is the weight vector of

X , restricted to those indices corresponding to Y . Thus if we know wY and wȲ , equations 7 and 8
give a way to compute wX .

Next, for finite sets Y Ă X Ă Rn we wish to calculate either the weight vector wX or wY given the
other.

Definition 4. For a block matrix M :“

„

A B
C D



with A invertible, define

ρMA :“

„

A´1BpM{Aq´1CA´1 ´A´1BpM{Aq´1

´pM{Aq´1CA´1 pM{Aq´1



.

Recall that for a block matrix M as in Definition 4,

M´1 “

„

A´1 0
0 0



` ρMA. (9)

Definition 5. For Y Ď X Ă Rn finite sets, assume ζX is in block matrix format as in Equation 6.
Define the matrix

ρXY “ ρζXζY
where ρXY is taken to be the zero matrix when Y “ X , and ρXY is taken to be ζX when Y “ H.

9

Lemma 6. For finite sets Y Ă X Ă Rn, let PXY be a permutation matrix such that

PXY ζXPXY “

„

ζY ζY Ȳ
ζT
Y Ȳ

ζȲ .



Then

wX “ PXY

„

wY
0



` PXY ρXY 1, and

MagpXq “ MagpY q ` 1
T ρXY 1.

Proof. This follows by setting M “ PXY ζXPXY , employing Equation 9, and multiplying on the
right by 1.

We can now calculate the weight vector of X Y Y where X and Y are not necessarily disjoint. This
can be viewed as an inclusion-exclusion principle that applies to weight vectors as well as magnitude.
Theorem 7. For finite sets X,Y Ă Rn, set Z “ X Y Y . Then we have

wZ “ PZX

ˆ„

wX
0



` ρZX1

˙

` PZY

ˆ„

wY
0



` ρZY 1

˙

´ PZXXY

ˆ„

wXXY
0



´ ρZXXY 1

˙

, and

MagpZq “ MagpXq `MagpY q ´MagpX X Y q

` 1
T ρZX1` 1

T ρZY 1´ 1
T ρZXXY 1.

Proof. This follows by applying Lemma 6 to each subset considered, e.g.

wZ “ PZX

„

wX
0



` PZXρZX1.

C.2 Numerical Considerations

In the setting where we have finite sets Y Ă X Ă Rn, and we have calculated wY , we can calculate
wX without having to invert the entire matrix ζX using Corollary 6. Since

wX “

„

wY
0



` ρXY 1,

we only need to invert the matrices ζY –which we are assuming we have already done–and ζX{ζY ,
which is an |XzY | ˆ |XzY | matrix. Then all the matrix products must be performed in the block
matrix formulation of ρXY . In particular, for the case when we are adding a single point to the set Y ,
ζX{ζY is a scalar, and the products needed to form ρXY are matrix-vector products.

10

	Introduction
	Algorithms
	Weighting vector as a classifier
	Weighting vector for active learning
	Weighting vector for Outlier Detection

	Conclusions
	Results
	Classification Experiments
	Active learning Experiments

	Boundary detection
	Useful properties of magnitude
	Inclusion-Exclusion for Weight and Magnitude
	Numerical Considerations

