Sweeping Heterogeneity with Smart MoPs:
Mixture of Prompts for LLM Task Adaptation

Chen Dun* Mirian Hipolito Garcia* Guoqing Zheng
Rice University Microsoft Microsoft
cd460@rice.edu mirianh@microsoft.com zheng@microsoft.com

Ahmed Hassan Awadallah
Microsoft

hassanam@microsoft.com

Anastasios Kyrillidis Robert Sim
Rice University Microsoft
anastasios@rice.edu rsim@microsoft.com
Abstract

Large Language Models (LLMs) have the ability to solve a variety of tasks, such
as text summarization and mathematical questions, just out of the box, but they
are often trained with a single task in mind. Due to high computational costs,
the current trend is to use prompt instruction tuning to better adjust monolithic,
pretrained LLMs for new —but often individual- downstream tasks. Thus, how one
would expand prompt tuning to handle —concomitantly— heterogeneous tasks and
data distributions is a widely open question. To address this gap, we suggest the
use of Mixture of Prompts, or MoPs, associated with smart gating functionality: the
latter —whose design is one of the contributions of this paper— can identify relevant
skills embedded in different groups of prompts and dynamically assign combined
experts (i.e., collection of prompts), based on the target task. Additionally, MoPs are
empirically agnostic to any model compression technique applied —for efficiency
reasons— as well as instruction data source and task composition. In practice,
MoPs can simultaneously mitigate prompt training "interference” in multi-task,
multi-source scenarios (e.g., task and data heterogeneity across sources), as well as
possible implications from model approximations. As a highlight, MoPs manage
to decrease final perplexity from ~ 20% up to ~ 70%, as compared to baselines,
in the federated scenario, and from ~ 3% up to ~ 30% in the centralized scenario.

1 Introduction

Recent advances in large language models (LLMs) demonstrate that LLMs are very powerful general
purpose language models. However, LLMs are not very good at diverse language instruction tasks
(multi-tasks) needed by consumers, due to their general purpose decoder-style training.

Several papers propose to further finetune LLMs on diverse instruction datasets, using adapters or
prompt tunning. However, due to data privacy, we might require to perform such LLM finetunning
using federated learning, where each client holds its own portion of instruction data, highly non-iid in
language domain and task type, while without any domain or task labels. At the same time, due to
limited device memory and computation capacity in such federated training and in deployment, we
cannot fit the full LLM model, which further requires us to only use compressed LLM.

*Authors contributed equally.

RO-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.

Thus, we focus on the less explored but important direction: federated instruction training of
compressed LLM. And our aim is that for any incoming new user without any domain/instruction task
label, our model is able to create an efficient zero-shot personalized model with good performance.

We follow previous research on instruction prompt training and propose federated instruction prompt
training. We further demonstrate how federated prompt training suffers from sub-optimal model
caused by non-iid local data and task distribution. We accordingly propose a novel gating function
that can dynamically adapt the combination of prompts based on the data domain and tasks of current
input, which guides the specialization of prompts and avoids model drift problem. And during testing
such gating function can create zero-shot personalized model by selecting relevant prompts for test
data from test clients without any domain and task labels.

2 Introduction

Background. Recent advances in large language models (LLMs) demonstrate that they are powerful
general-purpose models; for some, it is believed that, through LLMs, we are getting closer to the holy
grail of task-agnostic Artificial General Intelligence (AGI) [5,4}16]]. A factor towards such a belief
is the ability of LLMs to solve drastically different instructed tasks out of the box —often known as
emergent abilities |35, which in turn are also under criticism [31]- ranging from text summarization
[L1} 23 16] to solving mathematical questions [32, 20} 6.

Yet, despite this success, recent studies put LLMs’ performance under the spotlight on a broad set
of tasks, hinting that their task-agnostic ability might be brittle. Summarizing these results, one
might observe that ¢) small changes on handcrafted task prompts [40, [13] and/or i7) changes in the
model size and function family class [26, [36] and/or éi7) the use of model compression techniques
to save computation costs [37]], all result in —often non-negligible— performance variability, if not
deterioration. As such, there is an inevitable trade-off between accuracy and efficiency, resulting in a
decrease in the overall performance of LLMs.

The ML/AI community has responded to these challenges. For instance, (soft) prompt instruction
tuning —based on downstream task data— is proposed to better fine-tune deployed models, in order
to adjust to —often individual- downstream tasks [27} 19} 3| 34]. Similar —and relatively concurrent—
attempts created the term parameter-efficient fine-tuning (PEFT) methods [14} 9], including adapter
tuning [14, [16], prefix tuning [22]], prompt tuning [21], low-rank adaptation (LoRA) [15], and
compression aware prompts [37]], among others.

A gap that persists. Yet, the scenarios considered as part of the above studies do not correspond
to some practical scenarios found in reality. For instance, consider the following LLM instruction
tuning scenario: Company XYZ intends to develop a general purpose office assistant application that
solves different types of assistant tasks. For these targeted tasks, company XYZ uses human “labelers”
to generate demonstration data of related tasks; these are stored in a central server. At the same
time, company XYZ agrees with clients to locally utilize their own local demonstration data (i.e.,
previous human assistant work record). Overall, company XYZ desires to decrease both training
and inference cost of the final model, by aiming in the generation of specialized “experts” that can
be used on-the-fly and just-in-time for most incoming clients, without necessarily requiring further
fine-tuning|

What company XYZ is facing is the following challenge: Can existing prompt-tuning strategies utilize
all the available data from both central server and local clients to construct specialized experts
—instead of randomized ones— while maintaining desirable computation/communication costs? Such
scenarios suggest a multi-source, multi-task prompt tuning approach, which includes both centralized
training and federated learning scenarios as special cases. The emphasis though is in the training of
specialized prompts that operate in a modular way such that, when combined together, they tackle
tasks in a just-in-time manner.

While multi-task learning and multi-source learning in LLMs has been considered in the past
[29,130, [17, 16], to the best of our knowledge, there is limited work on PEFT methods that satisfy the
above desiderata. From the federated learning perspective, [2,[7]] considers the federated version of
LoRA [15]; [38]] considers the federated version of adapters; while [[18] suggests on-going pretraining
of the full-model for better domain adaptation, based on the findings in [[12]. Yet, to the best of our

'The definition of an “expert” here will be apparent later on in the text; this should not be necessarily assumed
as MLP experts in sparse mixture of experts [28§].

understanding, these works focus mostly on the periodic aggregation and averaging of the PEFT-
based parameters, without targeting necessarily on specialized experts (i.e., prompts) that —when
combined- outperform on just-in-time tasks, based on compressed models. Other concurrent work
on multiple prompts, as in [33} 1], assumes a prior knowledge of skills/tasks and uses hand-designed
“expert” prompts. The latter works also do not consider multi-source data heterogeneity, while [33]
uses a limited capacity random forest as a gating function.

Overview of our approach and contributions. Inspired by work on mixture of experts, we propose
to use Mixture of Prompts (or MoPs) in multi-source, multi-task prompt instruction tuning, in order to
efficiently leverage all available data from both the central server and local clients. Our hypothesis is
that key obstacle in such settings is the appearance of implicit “interference” during training; see the
sections that follow. In this work, the use of MoPs is guided by a novel gating functionality that can
identify relevant skills embedded in different groups of prompts (“experts” in this work), based on
the data domain of the current input, and dynamically selecting the combination of relevant prompts.
This is in stark contrast with existing work on mixtures of prompts, where one naively aggregates
the updated prompts that have been simultaneously trained on different tasks and/or diverse data
distributions. Our contributions are threefold:

» Tackling task/data heterogeneity. We design MoPs with the property of being agnostic to the
training instruction data source. MoPs could utilize either solely centralized data, collected by
human “labelers", or heterogeneous local data (e.g., stored on edge devices), or a combination of
those, while being agnostic about the composition of instruction data.

* Model compression resiliency. Via experiments, we have observed an emerging ability of MoPs:
they work out of the box, regardless of any reasonable model compression ratio or technique (i.e.
pruning, quantization). MoPs consistently outperform existing baselines across various metrics and
datasets, demonstrating its effectiveness and robustness.

* Empirical performance. As a highlight of our results, MoPs manage to decrease final perplexity
from ~ 20% up to ~ 70%, as compared to baselines, in the federated scenario, and from ~ 3%
up to ~ 30% in the centralized scenario. Our gains in the federated setup further support our
hypothesis that our gating function overcomes data heterogeneity under highly skewed distributions,
reducing the model drift problem.

3 Background and Related Work

LLMs with Trainable Prompts: Following [27, 19, [3| 34], we consider trainable prompts to
perform efficient instruction tuning on LLMs. Using similar notation and additional K train-
able prompts P? € R%*X | the forward pass of the /-th module can be formulated as below:
where Wf;, W2, Wh W, Wy, are

all frozen, while PV is the only trainable - 4 X

set of parameters during training. After B = Concat(P*, X) € R**("+/)

first layer, we treat P* as normal tokens ¢ — Concat (P!, X!) € Ré*(n+K)

embedding through LLM layers. M’ , T K X
is the modified decoder attention mask A" = Softmax (M/ (WqB (Wi C))) € RHOX (O,
where all prompts are never masked out

. Tk h h l Y4 dp X (n+K),
for all input tokens. Vi=A (choncat(P X)) eR™ ;

Injection of prompts. Inspired by ex- O = W,Concat (\70, A4 \AIH) € RUX ().
periments in [22], we further propose to 041 bt

inject trainable prompts in middle layers. Concat(P™", X)) = Win(Relu(Wm O)),

An illustrative example can be seen in

Figure[I] The benefits of this design are

twofold. First, it reduces the computational cost of training by reducing the number of layers that need
to be backpropagated. Second, it allows for greater flexibility in the design of the model architecture,
as the prompts can be placed in any layer, rather than just the first layer.

Prompt-tuning in Federated Learning: Recent approaches adapt FedAvg [24] to prompts tuning
[39,2]. During the local training phase, each client will optimize the local copy of prompts. During
synchronization, all updated copies of prompts are averaged on the server for the next round of
training. This is in stark contrast with this work: while the idea of mixing prompts is not new, we are
focusing on learning relevant skills as expressed via selected subsets of prompts, based on the data

domain of the current input and dynamically selecting the combination of relevant prompts to solve
current and new tasks.

4 Mixture of Prompts (MoPs) with a smart gating function

Our hypotheses in a nutshell. Current prompt tuning approaches (both centralized and federated)
might not operate to their full potential, especially when facing task heterogeneity (i.e., when training
involves multiple tasks simultaneously), data heterogeneity (i.e., when training with imbalanced data,
e.g., across distributed clients), and when approximate (e.g., compressed) models are in use to further
reduce computation costs.

Our hypothesis is that training prompts to handle universally multi-source multi-task scenarios might
result in prompt interference across tasks and across sources. More specifically, one way that prompt
interference can be decomposed is as follows:

* In centralized training, prompts might converge to poor-performing parameter configurations, when
heterogeneous tasks are considered, due to conflicting training signals from different tasks. This
case is especially challenging when the tasks are distinctly diverse.

* In privacy-preserving scenarios, such as federated learning, heterogeneous data distributions add
more training interference across clients. The model can be biased towards the tasks with more
data, losing its capability for generalization.

* For efficiency reasons, compressed LLMs are now widely used for both centralized and federated
learning scenarios. Such model approximations could impose implicit prompt training interference,
since trainable prompts are responsible for both recovering model capacity loss —due to compression—
and model adaptation for downstream tasks.

Algorithm desiderata. Given the above, the designed methodology should: i) be able to learn from
scratch a diverse set of “skills”, that will be embedded in different prompts to avoid interference,
or help to recover such “supressed” skills due to model compression; i) dynamically select and
combine the prompts with relevant skills for any incoming input data; the latter is in contrast to
existing methods that often use all prompts for all subtasks during training and testing.

4.1 Mixture of Experts (MoPs) Design
Prompts as experts. To embed differ-

ent SklllS agross SUbtaSkS’ we utilize [(Frozen Pretrained Prompt J (Input tokens)}
multiple trainable prompts as experts,

each being a collection of prompts e (LM Layer =0)
specializing on different skills; see (LM Layer 0<4<Lmia) @
Figure [I(a). These prompts are then = "y ®) 2
selected by the gating function (see LLM Layer em:-)zl;zri]ngs 5% :
Figure[I[b), and as described below), £= L © - :

depending on the current input; see
Figure [T{c). This allows us to use [LLM Layer M]
different combinations of skills, em- Lig <=L embeddings
bedded in prompts, for different input [T = \&]
tasks, resulting in a more accurate han- £=1 —T
dling of incoming tasks. Per iteration,
a subset of prompts is selected to be Figure 1: Mixture of Prompts with a Smart Gating Function
updated, which avoids the training in- on Compressed LLMs overview.

terference between prompts. Due to consideration of further reduce the training cost, we inject the
prompts in the middle layer as discussed above.

The gating function. To dynamically select expert prompts based on current input question/task,
we design a gating function that embeds the current question. In order to avoid paying extra
computation/memory cost by using another independent embedding network as in common Mixture
of Expert practice, our gating function directly uses first half of the given model (0 < ¢ < Lpq) as
the embedding network without any additional cost; see Figure[I(e). Our gating function utilizes a
shallow MLP network with softmax layer to generate expert score for each expert prompt, which
is used to scale the attention of these expert prompts in the following layers (L;,;q < ¢ < L); see
Figure[I{d). The exact mathematical formulation is shown in Algorithm[I] By using softmax-based
expert score, the gating function “forces” later layers to only focus on selected prompts, which in turn

scale the updates for each prompts accordingly during back propagation. Finally, our gating function
imposes a negligible computation overhead in total.

Pretraining the gating function. To improve the initial performance of our gating function, we
assume we have unlabeled instruction data (instruction/question only) with domain/task labels on
server side. As such data are instruction only, we assume that in both centralized and federated
learning case we can collect such data beforehand. E] We use this data to pretrain the gating function by
manually assigning a one-to-one relationship between each prompt group and each data domain/task.
This provides a good initialization to the gating function, as it assumes that ¢) each subtask is
drastically different and represents one distinct skill, and 7) each prompt embeds the corresponding
skill. Such an assumption does not need to be totally accurate for the available dataset. As shown in
the experiments, such an initialization is good enough: eventually, the gating function, together with
trainable prompts, are able to discover a more accurate relationship between subtasks; i.e., which
skills are shared or not shared between subtasks.

Using compressed LLMs for efficient prompt tuning. Due to training efficiency concerns, com-
pressed LLMs are widely used for downstream instruction tuning in both centralized and federated
learning scenarios. We follow this paradigm: our system, depicted in Figure|l} utilizes aggressively
compressed LLMs. To further reduce the computation costs, we strategically add prompts only to the
middle layers of the model, thus avoiding back propagation of the full model during training. The
above are summarized in Algorithm [I]in Appendix.

5 Experiments

In this section, we present experiments conducted to evaluate the performance and effectiveness
of our method on a variety of tasks and contrast it with baseline approaches. Since approximate
LLMs become increasingly valuable in the foreseeable future, due to the faster training and inference
times, as well as the significant reduction in energy consumption, we express our results taking into
consideration different pruning ratios.

Datasets. We evaluated our method using two datasets: Databricks Dolly 15k [8] and Super-Natural
Instructions [25]. Table[3]in Appendix outlines the seven task categories into which we divided both
datasets. These datasets pose a challenge for our method: MoPs have to learn and select relevant
skills from scratch, without any prior knowledge of the complex relationships between the subtasks.
For the centralized setup, we split the original 5k samples from each dataset into 90% training and
10% testing sets. We used a batch size of 1 for both training and testing. In the federated scenario,
we simulated an uneven distribution of data across 100 clients, resulting in different proportions and
sizes of data. The batch size remained at 1. The distribution of data skew across clients is explained
in Appendix A.

Setup. We utilize SparseGPT[10] to perform structured/unstructured pruning of the LLama-7B
model to create an aggressively compressed LLM. Inspired by [37]], we assign 10 prompts as a single
expert, creating in total 7 experts and ensuring a 1:1 relationship between experts and tasks. As
shown later in experiment, such 1:1 relationship between experts and tasks are not hard restriction
as gating function learns to group tasks and change assigned experts based on their similarity, often
using fewer number of experts. Thus when number of tasks are unknown, we can still use fixed
number of experts. Due to recent advance in pruned LLM such as paper [37]], we suggest that in
the future pruned LLM models might will also come with pretained prompts to partially recover
the pruned model performance loss. In order to show our method can even further recover/improve
the performance of pruned model, we also add such pretrained prompts to both our baseline and
our model. In our experiments, we trained these prompts from scratch in a preprocessing step over
20 training steps. These pretrained prompts are frozen during training. For our method, we add 70
prompts to the mid layer (Lyijq = 10) and replace the pretrained prompts in the following layers. The
gating function is designed to create the prompt/expert weight for each group.

In the centralized setting, we use total 20000 steps with learning rate 0.001. In the federated setting,
we adapt FedAvg such that during each synchronization round, we average the updated prompts from
all active clients. We use 100 clients, with 10 active clients per training round, and set each local
training round to 250 training steps. Counting all clients, the total number of training steps is 50000

*We leave for future study in more strict federated learning scenario where such unlabeled instruction are
also federated.

with learning rate 0.001. (Each active client with around 5000 steps in total and 10 active clients at
each time)

Baselines. A reasonable baseline is to directly apply prompt training to both centralized and federated
training without any gating function. In centralized training, we use method from [37] as baseline. In
federated training, we utilize FedPrompt from [39]], which adapts FedAvg to prompt training and
periodically averaging the updated prompts from all clients. In both cases, to match computation and
memory cost with our method during training, we add additional prompts in the mid layer and freeze

the given pretrained prompts in the first layer, thus eliminating the need to calculate gradients before
the mid layer.

Centralized training results. In Table[} we present the results of our method applied to different
structured/unstructured pruning ratios in the centralized learning scenario. For unstructured pruning,
we use X % to denote pruned model with X % weight pruned out. For structured pruning, we follow
the notation in [10]] to use N : M to denote pruning N elements out of consecutive M elements in
weight matrix. We observe that our method achieves a significant reduction in the final PPL for
all cases, with a greater advantage for the highest pruning ratios. This supports our claim that our
method helps to alleviate prompt training interference as higher pruning ratio increases the "burden"
on prompts to recover the skills from model loss while our method reduces such burden on prompts
and gives them more capacity for task adaption. Additionally, we note that the PPL reduction in the

centralized case is more pronounced for the unstructured pruning, as expected due to lower degree of
sparsity.

| Unstructured pruning (Ratio) | Structured pruning (Type & Ratio)
Dataset | Methods | 90% | 85% | 75% 7:8 (87.5%) | 3:4(75%) | 2:4(50%) | 4:8(50%) |
Baseline 52.65 18.16 8.25 70.14 9.06 3.67 3.76
Dolly-15K MoPs 40.34 15.04 7.24 54.97 8.08 3.54 3.59
Gain + | +12.31 (30%) | +3.12 (20%) +1.01 (13%) +15.17 (27%) | +0.98 (12%) | +0.13 (4%) | +0.17 (5%)
Baseline 58.47 16.50 8.54 67.86 10.64 6.01 5.90
Super-Natural MoPs 52.86 14.59 7.80 59.80 10.05 5.79 5.73
Gain+ | +5.61 (11%) | +1.91 (13%) +0.74 (9%) +8.06 13%) | +0.59 (6%) | +0.22 (4%) | +0.17 (3%)

Table 1: Summary of final perplexities reported on unstructured and structured pruning in centralized
scenario on Dolly-15 and Super-Natural datasets.

Gating function analysis on the centralized setup. We further analyze how our gating function
performs the assignment depending on the current task. In Figure[2] we observe that the pretraining
step helps the gating function to roughly distinguish between data domains/tasks, by encouraging
one-to-one relationship between prompt experts and data domains/tasks. After training is done,
instead of one-to-one relationship between prompt experts and data domains/tasks, we can see that
our gating function learns to select the same expert group of prompts for similar tasks. This suggests
that our gating function has learned to adjust the prompt weight distribution, in order to better capture
the domain/task relationship and specialize the expert assignment. Results on more pruning ratios are
included in Appendix B and C.

Before pretraining After pretraining End of training

o
@
o
@
o
@

I
>
=4
>
o
>

o
=

o

=

Prompt Weight

o

S
I
)

Prompt Weight

Prompt Weight

o
=3
o
o
o
=3

1 2 3 4 5 6 0 1 2 3 4 5 6 "o 1 2 3 4 5 6

Expert Group Expert Group Expert Group
B creative writing [l open ga BN information extraction brainstorming ‘
closed qa B summarization B classification

Figure 2: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 85% unstructured pruning Llama-7B in centralized setup.

Federated training results. Our method was tested in a federated learning setup, using the same
structured/unstructured pruned models with the centralized scenario. The results, presented in Table 2]
demonstrate that our approach is still superior to the baselines (here, FedPrompt) for all the pruning

ratios. We included an additional row to highlight the relative gain (PPL decrease) of our method in
both datasets. When we compare these gains with the ones presented in Table[I] it becomes clear
that our method in the federated setup, yields superior gains to the baseline in comparison with the
previous centralized numbers.

\ Unstructured pruning (Ratio) \ Structured pruning (Type & Ratio)
Dataset | Methods | 90% | 85% | 75% | 7:887.5%) | 3:4(75%) | 2:4(50%) | 4:8(50%)

FedPrompt 98.13 28.28 11.99 143.02 17.20 5.09 491

Dolly-15K MoPs 65.25 20.77 9.45 84.10 12.20 4.23 4.06
Gain + +32.88 (50%) | +7.51 (36%) | +2.54 (27%) +58.92(70%) | +5.00 (41%) | +0.86 (20%) | +0.85 (21%)

FedPrompt 76.17 18.64 9.14 91.64 14.42 6.43 6.14

Natural Instruction MoPs 66.51 16.52 7.88 72.04 12.38 5.75 5.65
Gain + +9.66 (15%) | +2.12(13%) | +1.26 (16%) +19.6 27%) | +2.04 (16%) | +0.68 (12%) | +0.49 (9%)

Table 2: Summary of final perplexities reported on unstructured and structured pruning in federated
scenario,using a pool of 100 available clients, sampling 10 per iteration.

Gating function analysis on the federated setup. But, why is MoP performing even better in
FL settings? Figure [3|in Appendix illustrates that the pretraining step in federates provides useful
information to the gating function to accurately capture the domain/task relationships. Table [2]
suggests that the gating function is beneficial in mitigating the model drift problem in the federated
setting. This is because the gating function selectively updates the relevant experts related to
each client, thus ensuring that the model updates are properly aligned and preventing model drift.
Consequently, the gating function plays a critical role in overcoming the heterogeneity of the data.

6 Conclusions

Our proposed gating function is able to identify relevant skills for the current task and dynamically
select and combine prompts accordingly. This overcomes prompt training interference from multi-
tasks across centralized and federated learning scenarios. Additionally, the results suggest that the
gating function helps to overcome model drift problems resulting from heterogeneous data distribution
in multi-source (federated) learning scenarios. This is achieved by locally selecting and updating
only the relevant prompts for local data, which avoids training interference between clients. With
no additional cost, the MoP method provides a powerful tool for overcoming interference from
recovery of different skills from model compression, by embedding such skills in separated prompts.
Overall, the MoP method is a promising approach for improving the efficiency and effectiveness of
prompt-based learning systems.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Akari Asai, Mohammadreza Salehi, Matthew E Peters, and Hannaneh Hajishirzi. Attentional
mixtures of soft prompt tuning for parameter-efficient multi-task knowledge sharing. arXiv
preprint arXiv:2205.11961, 3, 2022.

Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H Ezzeldin, Qingfeng Liu, Kee-Bong Song,
Mostafa El-Khamy, and Salman Avestimehr. SLoRA: Federated parameter efficient fine-tuning
of language models. arXiv preprint arXiv:2308.06522, 2023.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On
the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, FAccT *21, page 610-623,
New York, NY, USA, 2021. Association for Computing Machinery.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Chaochao Chen, Xiaohua Feng, Jun Zhou, Jianwei Yin, and Xiaolin Zheng. Federated large
language model: A position paper. arXiv preprint arXiv:2307.08925, 2023.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
instruction-tuned 1lm, 2023.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu,
Yulin Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale
pre-trained language models. Nature Machine Intelligence, 5(3):220-235, 2023.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned
in one-shot. arXiv preprint arXiv:2301.00774, 2023.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. News summarization and evaluation in the era
of GPT-3. arXiv preprint arXiv:2209.12356, 2022.

Suchin Gururangan, Ana Marasovi¢, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, and Luke Zettlemoyer. Surface
form competition: Why the highest probability answer isn’t always right. arXiv preprint
arXiv:2104.08315, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In International Conference on Machine Learning, pages 2790-2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. LoRA: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2021.

Zhigiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei Lee, Lidong Bing,
and Soujanya Poria. LLM-Adapters: An adapter family for parameter-efficient fine-tuning of
large language models. arXiv preprint arXiv:2304.01933, 2023.

[17] Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, Tengchao
Lv, Lei Cui, Owais Khan Mohammed, Qiang Liu, et al. Language is not all you need: Aligning
perception with language models. arXiv preprint arXiv:2302.14045, 2023.

[18] Lekang Jiang, Filip Svoboda, and Nicholas D Lane. FDAPT: Federated domain-adaptive
pre-training for language models. arXiv preprint arXiv:2307.06933, 2023.

[19] Zachary Kenton, Tom Everitt, Laura Weidinger, lason Gabriel, Vladimir Mikulik, and Geoffrey
Irving. Alignment of language agents, 2021.

[20] Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

[21] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 3045-3059, 2021.

[22] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 45824597, 2021.

[23] Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. arXiv preprint
arXiv:1908.08345, 2019.

[24] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273—1282. PMLR, 2017.

[25] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task general-
ization via natural language crowdsourcing instructions. In ACL, 2022.

[26] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730-27744, 2022.

[27] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 27730-27744. Curran
Associates, Inc., 2022.

[28] Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft
mixtures of experts. arXiv preprint arXiv:2308.00951, 2023.

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748-8763. PMLR, 2021.

[30] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gémez Colmenarejo, Alexander Novikov,
Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. Transactions on Machine Learning Research, 2022.

[31] Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? arXiv preprint arXiv:2304.15004, 2023.

[32] Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are
multilingual chain-of-thought reasoners. arXiv preprint arXiv:2210.03057, 2022.

[33] Chenglei Si, Weijia Shi, Chen Zhao, Luke Zettlemoyer, and Jordan Boyd-Graber. Mixture
of prompt experts for generalizable and interpretable question answering. arXiv preprint
arXiv:2305.14628, 2023.

[34] Alex Tamkin, Miles Brundage, Jack Clark, and Deep Ganguli. Understanding the capabilities,
limitations, and societal impact of large language models, 2021.

[35] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. arXiv preprint arXiv:2206.07682, 2022.

[36] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824-24837, 2022.

[37] Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue Wang, Kaixiong Zhou, Xia Hu, and
Anshumali Shrivastava. Compress, then prompt: Improving accuracy-efficiency trade-off of llm
inference with transferable prompt. arXiv preprint arXiv:2305.11186, 2023.

[38] Xuechen Zhang, Mingchen Li, Xiangyu Chang, Jiasi Chen, Amit K Roy-Chowdhury,
Ananda Theertha Suresh, and Samet Oymak. FedYolo: Augmenting federated learning with
pretrained transformers. arXiv preprint arXiv:2307.04905, 2023.

[39] Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and Gongshen Liu. Fedprompt: Communication-
efficient and privacy preserving prompt tuning in federated learning, 2023.

[40] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:
Improving few-shot performance of language models. In International Conference on Machine
Learning, pages 12697-12706. PMLR, 2021.

10

Algorithm 1 Mixture of Prompts (MoPs) with a smart gating function

Parameters: ® denotes row-wise element and we replace old prompts with new prompts Prmid in layer
l= Lmia

& Before middle layer &
for 0 </ < Lyq do
A" = softmax (M'(Wg(Concat(P[, X)) T (Whconcat(P?, X[))) € R x(nt+K),
Vh = A" (WﬁConcat(Pé,Xz)) € R x(n+5K),
O = W,Concat ({\70, \71, ey ‘AfH) € RIx(n+K).
Concat(P“™!, X**1) = Wi (Relu(Wi O))
end for

& Middle layer &
if ¢ = L4, where ¢ € @ + C means only tokens in guestion and context then
G = SoftmaX(Wgﬂz (Relu(ng (MeanieQ+c (Xl))))) c RE
end if

& After middle layer &
for L,iq </ <L do

A" = Softmax (M'(VVZ(Concat(l?’e7 Xz))T(WQConcat(ls[,XZ))) c R("‘FK)X(M—K);
AM:0: K] = A", 0: K] © G € ROVHOX(+K)

Vh = A" (Wf}Concat(f’é,XE» € RInx(ntK),

O = W,Concat (’\707 \717 . \A[H) € RU*(n+5),

Concat(f’”l, X2+1) = Wip (Relu(WfﬂO))
end for

Dataset | Dolly-15K Instructions | Super-Natural Instructions
creative writing quoref-question-generation
closed QA drop-question-generation
open QA essential-terms-identifying-essential-words
Subtasks summarization add-integer-to-list
information extraction | evaluation-semantic-relation-classification
classification ljspeech-textmodification
brainstorming mmmlu-answer-generation-global-facts
Total | 5000 samples | 5000 samples

Table 3: Task categories used per dataset

A Quantization results

FL is often limited by communication and computation constraints, so model compression methods
such pruning and quantization are often used in combination. To test MoP, we combined Int8
quantization with different pruning ratios in FL. As seen in Table] and Table 5} MoPs outperformed
the baseline in all cases but two case. MoP achieved the best results with medium pruning ratio. This
result suggests that the effectiveness of a gating network can be significantly impacted by the pruning
ratio. If the pruning ratio is too aggressive, the gating network will be rendered ineffective due to the
poor embedding network. On the other hand, if the pruning ratio is too low, there may not be enough
room for improvement compared to the baseline.

B Federated skew distribution

To simulate a highly skewed data distribution in the across the clients for the federated learning
experiments, we randomly selected total 5000 samples from all task categories. To simulate task
and data heterogeneity, for data from each task category, we further split them into N partitions with
different number of data samples (where N is the number of clients). To simulate the extreme data
heterogeneity in real life scenario, we make one of the partition to have most of the data (it contains

11

Before pretraining After pretraining End of training

08 08 08

- - -

£ £ £

g) 06 g) 06 g) 06

B.04 B.04 B.04

g g g

<} <} <}

= = =

& 02 & 02 & 02

o 1 2 3 4 5 6 o 1 2 3 4 5 6 o 1 2 3 4 5 6
Expert Group Expert Group Expert Group
B creative writing [l open qa I information extraction brainstorming

closed_qa B summarization B classification

Figure 3: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 3:4 (75%) structured pruning Llama-7B

| Unstructured pruning (ratio)
Dataset | Methods | Int8+90% | Int8+85% | Int8+75%

Baseline 146.24 78.62 28.95
Dolly-15K MoP 140.05 71.25 28.26
Gain + | +6.19 4%) | +7.37 (10%) | +0.69 (2%)

Table 4: Int8 quantization with unstructured pruning results on Dolly-15 dataset in the federated
learning scenario with 10 clients.

| Structured pruning (ratio)
Dataset | Methods | Int8+7:8 (87.5%) | Int8+3:4 (15%) | Int8+2:4 (50%) | Int8+4:8 (50%)

Baseline 192.10 50.30 14.24 13.13
Dolly-15K | MoP 166.48 47.37 14.51 13.10
Gain + +25.62(15%) +2.93 (6%) -0.69 (2%) +0.03 (0%)

Table 5: Int8 quantization with structured pruning results on Dolly-15 dataset in the federated
learning scenario with 10 clients.

15 times more samples than the rest partitions). We then randomly assigned one partition from each
category to each client, resulting in different proportions and sizes of mixed tasks across the clients.

C Centralized Training - Gating function Analysis

Below, we present the complete results of the averaged prompt weights assigned to each prompt
group by the gating function before, during, and after training steps for the Dolly-15k dataset in the
centralized setup. Different pruning ratios are displayed to demonstrate that more aggressive pruning
ratios provide greater potential for improvement using the MoP method.

D Federated Training - Gating function Analysis

Similarly to the previous section, we show additional advantages provided by our method in the

federated scenario. The alignment of the updates on the different experts helps minimize the effect of
task interference.

12

Before pretraining After pretraining End of training

Prompt Weight

o 1 o o

5 R a5 &
Prompt Weight
o 1 o 1S3
5 R a5 &

0.0

Prompt Weight
o o o I3
S = Y %

0.0

0.0
5

o

5

o

2 3 4 2 3 4 2 3 4 5
Expert Group Expert Group Expert Group

B creative writing M open ga

B information extraction FE brainstorming
W closed qa

B summarization M classification

Figure 4: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 75% unstructured pruning Llama-7B

Before pretraining

Prompt Weight

S
]

S o 4
IS > @

=4
=}

After pretraining

End of training

o

-
)

3 4
Expert Group

5

Prompt Weight

S
]

o
@

o
>

Prompt Weight

I
=

=4
=}
o

2 3 4
Expert Group

5

o o
> @

I
=

:

=4
=}
o

2 3 4
Expert Group

5

BN creative writing W open qga

B information extraction @ brainstorming
0 closed ga

B summarization M classification

Figure 5: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 90% unstructured pruning Llama-7B
Before pretraining

After pretraining End of training

Prompt Weight
2 = = = 4
S 5 X g &
Prompt Weight
o o I o
=] - o @

=4
=}

o é
Prompt Weight

o o o I3 o

(=] N L [=2 fe2]

o
-

2 3 4
Expert Group

5 2 3 4

Expert Group

5 2 3 4

Expert Group

5

B creative writing [l open qa

BN information extraction S brainstorming
I closed qa

B summarization M classification

Figure 6: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 7:8 (50%) structured pruning Llama-7B
Before pretraining

After pretraining End of training

Prompt Weight
=4 = 2 = 2
S 5 R 3 &
Prompt Weight
o 1 o o
5 R 5 &

0.0

o
-
N}

3 4
Expert Group

o

Prompt Weight
o o = I o
= N = o> %

5 2 3 4

Expert Group

5

-

2 3 4
Expert Group

5

B creative writing [open qa

BN information extraction S brainstorming
I closed qa

B summarization M classification

Figure 7: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 3:4 (75%) structured pruning Llama-7B

13

Prompt Weight

B creative writing M open ga

W closed qa

B summarization M classification

B information extraction FE brainstorming

Before pretraining After pretraining End of training
08 08 08
0.6 %o 0.6 %o 0.6
k3] 3
= =
0.4 k- 04 k9 04
g g
<} <}
02 & 02 | | I | I & 02
0.0 0.0- 0.0 -
0 1 2 3 4 5 6 0 1 6 6
Expert Group Expert Group Expert Group

Figure 8: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 2:4 (50%) structured pruning Llama-7B

Before pretraining

After pretraining

End of training

Prompt Weight

I o o IS o
S S = S %
o

-

o

@

-

<

o

Expert Group

BN creative writing W open qga

0 closed ga

Prompt Weight

S
N

=4
3

o
>

S
=

nm

Expert Group

=4
=}

classification

Prompt Weight

S
N

o
»

o
>

S
=

=4
=}

B information extraction @ brainstorming
BN summarization

.l

Expert Group

Figure 9: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 4:8 (50%) structured pruning Llama-7B

Before pretraining After pretraining End of training

07 07

06 06 06

o5 o5 o5

2 04 2 04 2 04

Eos Eos Eos
£ £ g

202 g 02 2 02
~ ~ ~

01 01 01

00 00 00

o 1 2 3 4 5 6 01 6 01 6
Expert Group Expert Group Expert Group

B creative writing [l open qa

I closed qa

classification

BN information extraction S brainstorming
BN summarization

Figure 10: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 75% unstructured pruning Llama-7B

Before pretraining

Prompt Weight

o

B creative writing [open qa

W closed qa

After pretraining End of training
08 08
0.6 %o 0.6 %o 0.6
k3] k3]
= =
04 ‘E-‘ 04 a 04
g g
o o
02 & 02 & 02
0.0 0.0
1 2 3 4 5 6 0 1 6
Expert Group Expert Group Expert Group

B information extraction B brainstorming
B summarization M classification

Figure 11: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 85% unstructured pruning Llama-7B

14

Before pretraining After pretraining End of training

08 08 08
%o 0.6 %o 0.6 %o 0.6
& 8 k9]
= = =
B, 0.4 k- 0.4 k9 0.4
g g g
o o o
& 02 & 02 & 02

0.0 0.0- 0.0-

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Expert Group Expert Group Expert Group

B creative writing M open ga

B information extraction FE brainstorming
W closed qa

B summarization M classification

Figure 12: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 90% unstructured pruning Llama-7B

Before pretraining After pretraining End of training

0.8 0.8 08
% % %
D 0.6 D 0.6 D 0.6
= = =
.04 B.04 B.04
g g g
¢ ¢ ¢
~ 02 A~ 02 A~ 02

0.0 0.0~ 0.0

0 1 2 3 4 5 6 0 1 2 5 6 0 1 2

Expert Group

3 4
Expert Group

3 4
Expert Group

5

BN creative writing W open qga

B information extraction @ brainstorming
0 closed ga

B summarization M classification

Figure 13: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 7:8 (50%) structured pruning Llama-7B

Before pretraining After pretraining End of training

0.8 0.8 08
= = z
Lo Lo 06
L L <}
= = =
B.04 804 B.04
g g g
g2 2 g2
~ 02 A~ 0.2 A~ 0.2

0.0 0.0 0.0

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Expert Group Expert Group

Expert Group

B creative writing [l open qa

BN information extraction S brainstorming
I closed qa

B summarization M classification

Figure 14: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 2:4 (50%) structured pruning Llama-7B

Before pretraining After pretraining End of training

0.8 08 08
£ £ £
206 P06 P06
= = =
B.04 B.04 B.04
g g g
i3 g g
P~ 0.2 P~ 0.2 P~ 0.2

0.0 0.0- 0.0

o 1 2 3 4 5 6 12 3 4 5 6 o 1 2 3 4 5 6
Expert Group Expert Group Expert Group

B creative writing [open qa

BN information extraction S brainstorming
I closed qa

B summarization M classification

Figure 15: Averaged Prompt weight assigned each prompt group by gating function for test dataset
using 4:8 (50%) structured pruning Llama-7B

15

	Introduction
	Introduction
	Background and Related Work
	Mixture of Prompts (MoPs) with a smart gating function
	Mixture of Experts (MoPs) Design

	Experiments
	Conclusions
	Quantization results
	Federated skew distribution
	Centralized Training - Gating function Analysis
	Federated Training - Gating function Analysis

