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Abstract
Energy-based models (EBMs) are versatile den-
sity estimation models that directly parameterize
an unnormalized log density. Although very flex-
ible, EBMs lack a specified normalization con-
stant of the model, making the likelihood of the
model computationally intractable. Several ap-
proximate samplers and variational inference tech-
niques have been proposed to estimate the like-
lihood gradients for training. These techniques
have shown promising results in generating sam-
ples, but little attention has been paid to the sta-
tistical accuracy of the estimated density, such as
determining the relative importance of different
classes in a dataset. In this work, we propose
a new maximum likelihood training algorithm
for EBMs that uses a different type of generative
model, normalizing flows (NF), which have re-
cently been proposed to facilitate sampling. Our
method fits an NF to an EBM during training so
that an NF-assisted sampling scheme provides an
accurate gradient for the EBMs at all times, ul-
timately leading to a fast sampler for generating
new data.

1. Introduction
An Energy based model (EBM) defines a probability dis-
tribution over x ∈ X ⊂ Rd by a parameterized energy
function Eθ : Rd → R with parameters θ ∈ Θ as

pθ(x) =
1

Zθ
exp (−Eθ(x)) . (1)

These conceptually simple models are very flexible, since
the functional class of Eθ is unrestricted, provided that it
must ensure that exp(−Eθ(x)) is integrable. However, this
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flexibility comes at the price of an unknown normaliza-
tion constant Zθ =

∫
exp(−Eθ(x))dx, which is difficult

to calculate in practice, and the lack of a simple sampling
procedure for the model. As a result, it is difficult to train
EBMs by maximum likelihood methods and to use them as
generative models. To overcome these difficulties, various
Monte Carlo Markov chains (MCMC) algorithms, from the
simplest (e.g., (Hinton, 2012)) to the most complicated (e.g.,
(Béreux et al., 2023)), as well as various variational infer-
ence methods (VI) (Welling & Hinton, 2002; Gabrié et al.,
2015; Dai et al., 2019; Grathwohl et al., 2021) were consid-
ered to approximate the likelihood gradients. Alternatively,
weaker learning objectives have been proposed to avoid sam-
pling pθ(x), including Score Matching (Hyvärinen, 2005;
Song & Ermon, 2019), Noise Constrative Estimation (Gut-
mann & Hyvärinen, 2010), and Minimum Stein Discrepancy
(Grathwohl et al., 2020) - see (Song & Kingma, 2021) for a
recent methodological review of EBMs.

One of the main challenges common to all these training
approaches is the correct estimation of the density of multi-
modal distributions, that is, datasets with several different
clusters in the data. This is due to the difficulty for MCMCs
and VIs to accurately represent multimodal distributions,
or the difficulty for weaker learning objectives that rely on
scores ∇x log pθ(x) to capture this information (see, e.g.,
(Song & Ermon, 2019), Section 3.2.1). Meanwhile, the
highly flexible parameterization of EBMs makes them par-
ticularly well suited to the multimodal setting, compared to
the competing class of generative models parameterized as
push-forward distributions, such as generative adversarial
networks (GANs) or normalizing flows (NFs), whose ability
to partition mass into multiple modes is inherently limited
(Cornish et al., 2020; Salmona et al., 2022).

However, a number of recent works have shown that some
generative push-forward models, namely NFs, facilitate the
sampling of multimodal distributions (see references in Sec-
tion 2). Building on these results, we propose joint learning
of an EBM with a companion NF, which allows efficient
sampling of the EBM at any point in the training and, as a
result, accurate maximum likelihood training of the EBM.
As described in the Related Work section, several proposals
have already been made to combine EBMs with NFs. Our
works goes a step further in this direction by employing a
calibrated NF-assisted MCMC (Gabrie et al., 2022; Sam-
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sonov et al., 2022) recently shown to be particularly robust
in the multimodal setting (Grenioux et al., 2023).

2. Background
EBM maximum likelihood training Given a training
data distribution p⋆, the EBM log-likelihood can be written
as ℓEBM(θ) = Ep⋆ [log pθ(X)]. This quantity is intractable
due to the unknown Zθ of Equation (1), which translates
into an expectation over pθ in its gradient:

∇θℓEBM(θ) = Ep⋆ [∇θEθ(X)]− Epθ
[∇θEθ(X)]. (2)

A Monte-Carlo estimation of ∇θℓEBM(θ) requires training
samples x

(+)
i ∼ p⋆(x), commonly referred to as positive

samples in the EBM context, and samples from the current
model x(−)

i ∼ pθ(x), respectively called negative samples.
Collecting n samples of these two kinds yields the approxi-
mation for gradient (2) ∇̂θℓEBM(θ, {x(−)

i , x
(+)
i }ni=1) =

− 1

n

(
n∑

i=1

∇θEθk(x
(−)
i )−

n∑
i=1

∇θEθk(x
(+)
i )

)
. (3)

Yet, obtaining exact samples from pθk requires converging
an MCMC, which is a costly procedure to repeat. As a re-
sult, approximate sampling procedures have been proposed:
in contrastive divergence (CD) (Hinton, 2002), a fixed small
number of MCMC steps is ran starting from training samples
at each gradient computation. In persistent CD (PCD), this
simple idea was further refined by propagating the MCMC
chains the negative samples across gradient updates (Tiele-
man, 2008). For real valued-valued EBMs, CD and PCD
most commonly employ Uncalibrated Langevin Algorithm
(ULA) (Roberts & Tweedie, 1996), a local gradient-based
sampler, which at step k updates x(k) as

x(t+1) = x(t) − η∇ logEθ(x
(t)) +

√
2ηz(t) (4)

where η is the step size of the algorithm and z(t) ∼ N (0, I).

If ULA samples the target distribution pθ asymptotically in
time, it typically cannot converge in a manageable number
of iterations for distribution that are multimodal. While
recent research suggests that using a non-convergent MCMC
for drawing negative samples does not compromise sample
quality if a consistent sampling scheme is employed during
and after training (Nijkamp et al., 2019; 2020b;a; An et al.,
2021; Xie et al., 2022), it is not guaranteed that an EBM
trained in this fashion captures the overall mass distribution
between different modes (see the motivating example of 4).

NF-Assisted sampling Normalizing flows (NF) combine a
base distribution ρ on Rd and a bijective transport map Tα :
Rd → Rd with parameters α ∈ A to define a generative
model with density:

λρ
Tα

(x) = ρ(T−1
α (x))

∣∣∣JT−1
α

(x)
∣∣∣ , (5)

from which samples are straightforwardly obtained as X =
Tα(Z) with Z ∼ ρ. NFs can be trained on training data to
maximize the explicit likelihood. We point the reader to the
reviews (Papamakarios et al., 2021; Kobyzev et al., 2021).

Thanks to their tractable densities and direct sampling pro-
cedure, NFs have found applications in statistical infer-
ence either as a variational family (Rezende & Mohamed,
2015; Wu et al., 2019) or as helpers in sampling algorithms
(Parno & Marzouk, 2018; Albergo et al., 2019; Noé et al.,
2019; Müller et al., 2019; McNaughton et al., 2020; Hack-
ett et al., 2021) (among others). Given a target distribu-
tion π, known up to a normalization constant, the gen-
eral idea of NF-assisted inference is to train the map Tα

such that λρ
Tα

approaches π. In this context, since no train-
ing sample is available a priori, the flow is trained either
by minimizing the reverse Kulleback-Leibler (KL) diver-
gence KL(λρ

Tα
||π) = Eλρ

Tα
[log λρ

Tα
(x)/π(x)] (Rezende &

Mohamed, 2015) or through an adaptive MCMC proce-
dure maximizing a proxy of the likelihood (Parno & Mar-
zouk, 2018; McNaughton et al., 2020; Naesseth et al., 2021;
Gabrie et al., 2022). When π is multimodal, the reverse
KL is prone to mode collapse (Jerfel et al., 2021; Hack-
ett et al., 2021), while the adaptive MCMC training can
leverage prior knowledge of the different modes’ basins
to seed the learning of a model covering all the regions
of interest. Once trained, samples from the flow λρ

Tα
ap-

proximating the target π can be debiased via importance
sampling or various MCMC schemes. A recent comparative
study (Grenioux et al., 2023) shows that methods based on
independent proposals from the flow, such as independent
Metropolis-Hastings (e.g., (Nicoli et al., 2020)), are more
robust to sample multimodal distributions compared to re-
parametrization schemes such as neutra-MCMC (Hoffman
et al., 2019). In the context of EBM training, these obser-
vations suggest the use a of flow-based adaptive MCMC
using independent proposals, FlowMC (Algorithm 5 in Ap-
pendix A), to provide accurate negative samples.

3. EBMs with Flow Sampling
We suggest to train a NF to maintain a good overlap between
the flow’s λρ

Tα
and EBM’s pθ throughout training so as to

implement an NF-assisted sampler to draw negative samples
(Algorithm 1). For this symbiosis to work in practice, that
is λρ

Tαt
≈ pρθt at all times, we slightly modify the EBM

definition Equation (1) using the flow base distribution ρ as
a tilt1:

pρθ(x) =
1

Zθ
exp (−Eθ(x)) ρ(x) . (6)

Choosing initially θ0 such that Eθ0(·) = 0 and α0 such that
Tα0

(·) = Id(·) leads to a perfect equality at initialization

1Note that this change does not modify the gradient of ℓEBM(θ)
(see Equation (2)) see proof in Appendix B.
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Figure 1: Comparison of PCD and flowMC EBM training on toy 2d mixture with 2:1 weight ratio. The EBM learned
with flowMC (f) captured correctly the relative weights, unlike the EBM trained with ULA (b), as is also clear from the
conditional densities along the axis going trough the centroids (d,h). This statistical accuracy is promoted by the fast mixing
NF-assisted sampling (g). (Right) Estimated weight of the top right mode during the training of ULA-EBM and
flowMC-EBM (Details in Appendix C.2)

pρθ0 = ρ = λρ
Tα0

. Then, the learning rates γEBM and γflow
in Algorithm 1 need to be co-adjusted for the matching to
be approximately maintained all along.

Unlike strategies using ULA to obtain negative samples,
our proposition is statistically reliable as it uses a calibrated
MCMC sampler which handles multimodality. Thanks to
the good agreement between λρ

Tαt
and pρθt , non-local moves

proposed by the NF in the flowMC sampler allow rapid-
mixing between modes. This coupled learning of two gen-
erative models takes the best of both: the constrained but
tractable NF approximates an unconstrained but intractable
EBM. Additionally, it provides a natural and efficient way
to sample the resulting EBM through FlowMC.

Related works Several directions have already been
explored combining energy based models with push-
forward generative models to leverage their complemen-
tary strenghts. (Xie et al., 2018; 2021) suggested to use a
Variational Autoencoder (VAE) and (Xie et al., 2022) a NF
(CoopFlow algorithm) to provide initial negative samples
before running short chains during maximum likelihood
training, reporting good sample quality but no guarantee of
statistical accuracy.

Closer to this work in their concern to resort to a calibrated
and converged sampler (NT-EBM algorithm) (Xiao et al.,
2020; Nijkamp et al., 2022) leverage an alternative type of
NF-assisted sampler using the flow bijective mapping as a
preconditionner (Parno & Marzouk, 2018; Hoffman et al.,
2019). Yet recent work suggest that a multimodal problem
remains so when re-parametrized by a flow and therefore
that chains mixing is not guaranteed (Grenioux et al., 2023).
This approach was also performed using VAE in (Xiao et al.,
2021). Another occurrence of a tilted EBM with a pushfor-
ward model was also explored with Generative Adversarial

Algorithm 1 flowMC-EBM training step on data distribu-
tion ρ⋆ with persistent initialization

Input: EBM parameter θk, flow parameters αk, learning
rates γEBM and γflow, batch size n, local step size η,
number of MCMC steps N , persistent state {x̃i}ni=1

Output: θk+1, αk+1, updated {x̃i}ni=1

1. Draw positive samples {x(+)
i }ni=1 ∼ ρ⋆

2. Draw negative samples from pθk using flow Tαk

x
(−)
i = flowMC(pρθk , x̃i, Tαk

, ρ, η,N) for all i

3. Update the persistent state {x̃i}ni=1 = {x(−)
i }ni=1

4. Perform EBM gradient descent step

θk+1 = θk − γEBM∇̂θℓEBM(θk, {x(−)
i , x

(+)
i }ni=1)

5. Perform EBM gradient ascent on NF likelihood

αk+1 = αk + γflow

(
1

n

n∑
i=1

∇α lnλρ
Tαk

(x
(−)
i )

)

Networks (Arbel et al., 2021) using a Langevin sampler in la-
tent space without assessment of the statistical performance
on multimodal datasets.

Lastly, a set of works considered the simulatenous learning
of an auxiliary model for sampling along with the EBM
using the Fenchel dual description of the intractable partition
function (Dai et al., 2019; Grathwohl et al., 2021).Yet this
strategy amounts to minimizing the reverse KL objective,
prone to mode-collapse, and the statistical robustness of the
methods to multimodal targets was untested.
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Figure 2: Estimated energies using different algorithms on
toy 2D experiments - (Top) 8 Gaussians (Bottom) Rings

Table 1: Median squared error on log-density
(med

x
(log ρθ(x) − log ρ⋆(x))2). Best metrics in bold.

8 GAUSSIANS RINGS

ULA-EBM 1.86 5.39
NT-EBM 0.97 0.62
COOPFLOW 58.75 7.78
FLOWMC-EBM 0.94 0.40

4. Numerical experiments
Motivating example We first illustrate the difficulty of
learning relative weights with persistent ULA-EBM training
on a 2D mixture of Gaussians (Figure 1). The incapacity of
ULA to mix between the modes ((c) versus (g)), introduces
a biais in the estimation of the gradient (2), which leads to
an over-correction of mismatched weights: ULA-EBM en-
tirely entirely erases a mode multiple times during training,
before recreating it and the final weight at which the EBM
training stops is not a robust estimation of the target weights
(Figure 1 Right). In flowMC-EBM training on the other
hand, calibrated negative samples lead to a stable estimation
of the weights during learning and a final accurate density
estimation ((f) and (h)). The companion flow (e), more
constrained in its parametrization, does not achieve a fit as
accurate as the EBM, yet its match with the EBM remains
good enough to facilitate the fast-mixing MCMC key to
success. A detailed comparison including more algorithms
from Related Works is also presented in Appendix C.3.

2D distributions with more modes and complicated ge-
ometries. We benchmark approaches combining EBMs
and NFs on the 2D distributions 8-Gaussians and rings. The
different models shared the same EBM/flow architecture
and were trained for the same number of iterations. The
final densities displayed in Figure 2 highlight that our al-
gorithm outperforms competitors in weighting the different
modes. This is quantitatively confirmed by the energy errors
computed in Table 1. See Appendix C.4 for more details.

High dimensional mixture We now consider an equally-
weighted mixture of 4 Gaussians in dimensions 16, 32 and

Table 2: Maximum R̂ across dimension of negative sam-
ples on Gaussian mixture computed on 128 independent
chains started from the persistent state (or from the flow for
CoopFlow). Figure 6 in Appendix C.5 )

DIM. 16 DIM. 32 DIM. 64

COOPFLOW 20.52 44.12 51.66
NT-EBM 2.02 2.50 3.10
ULA-EBM 7.30 9.29 90.90
FLOWMC-EBM 1.01 1.01 1.05

64. We compare here again flowMC-EBM with NT-EBM
and CoopFlow, yet focusing this time on characterizing the
mixing of the chains throughout learning. Using identical
EBM/flow architectures trained for the same number of
iterations, we report the R̂ metric of the negative chains for
each model at the end of training in Table 2 for the end of
training and in Appendix C.5 throughout training. Meant
to compare the intra-chain variance and the inter-chains
variance, reaching a R̂ close to 1 is a necessary criteria of
convergence of an MCMC (Vehtari et al., 2021). flowMC-
EBM is the only algorithm allowing proper mixing. See
Appendix C.5 for more details.

CIFAR 10 Given our computational budget, we were able
to train a flowMC-EBM producing samples of medium qual-
ity (see Figure 8 of Appendix C.6 along with training de-
tails). Nonetheless, negative chains mix between modes as
the companion NF proposal’s are accepted around 5-10%
of the time. Given the number of parameters reported in
related work, we expect that a more expressive flow and
energy parametrization would improve the outcome.

5. Conclusion
By combining an EBM and NF, we manage to tackle the
generative models trilemma described in (Xiao et al., 2022).
The trilemma states that among the desirable properties of
(i) fast sampling, (ii) high-quality samples and (iii) mode-
coverage/diversity of the produced samples, a generative
model typically only features two out of three. Our numeri-
cal experiments show that the cost of training two models is
compensated by obtaining a strategy without compromises
with respect to the three aspects. Going even further than
mode-coverage, we show that our algorithm enables a pre-
cise evaluation of the mode relative weights, a topic rarely
discussed in the literature.
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Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
2bc8ae25856bc2a6a1333d1331a3b7a6-Paper.
pdf.

Nijkamp, E., Hill, M., Han, T., Zhu, S.-C., and Wu,
Y. N. On the anatomy of mcmc-based maximum
likelihood learning of energy-based models. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 34(04):5272–5280, Apr. 2020a. doi: 10.1609/
aaai.v34i04.5973. URL https://ojs.aaai.org/
index.php/AAAI/article/view/5973.

Nijkamp, E., Pang, B., Han, T., Zhou, L., Zhu, S.-C., and
Wu, Y. N. Learning multi-layer latent variable model
via variational optimization of short run mcmc for ap-
proximate inference. In Vedaldi, A., Bischof, H., Brox,
T., and Frahm, J.-M. (eds.), Computer Vision – ECCV
2020, pp. 361–378, Cham, 2020b. Springer International
Publishing. ISBN 978-3-030-58539-6.

Nijkamp, E., Gao, R., Sountsov, P., Vasudevan, S., Pang,
B., Zhu, S.-C., and Wu, Y. N. MCMC should mix:
Learning energy-based model with neural transport latent
space MCMC. In International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=4C93Qvn-tz.
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Algorithm 2 Unadjusted Langevin algorithm (ULA) with target distribution π

Input: x(0) initial sample, η step-size, L number of MCMC steps
Output: (x(k))Lk=1 samples according to π
while k < L; k = 1 do

x(k) ∼ N (x(k−1) + η∇ log π(x(k−1)), 2ηId)
end while

Algorithm 3 ULA-EBM training step with persistent initialization (Du & Mordatch, 2019; Nijkamp et al., 2020a)

Input: Data distribution p⋆, EBM parameter θk, learning rate γ, batch size n, ULA step size η, number of ULA steps L,
persistent state {x̃i}ni=1

Output: New EBM parameter θk+1

1. Draw positive samples {x(+)
i }ni=1 ∼ p⋆

2. Draw negative samples

x
(−)
i = ULA(−Eθk , x̃i, η, L) for i = 1 . . . n

3. Update persistent state

{x̃i}ni=1 = {x(−)
i }ni=1

4. Perform a GD step on −ℓEBM(θ) (cf Equation (2))

A. Algorithms
We recall useful algorithms: the Unagjusted Langevin (ULA) in Algorithm 2, the persistent ULA-EBM training in
Algorithm 3, the Metropolis Adjusted Langevin Algorithm (MALA) in Algorithm 4 and finally the flowMC sampler in
Algorithm 5. We also recall the Iterated Sampling Importance Resampling (i-SIR) in Algorithm 6 which can be used as a
drop-in replacement of steps 1.a-1.b of the flowMC algorithm (Algorithm 5) as suggested by (Samsonov et al., 2022).

B. Gradients of tilted distribution
This section provides the proof of the remark at the beginning of Section 3. Let’s consider a tilted EBM as in Equation (6)
with Eθ : Rd → R a parametrized energy function, Zθ the associated normalizing constant of pρθ and ρ the base distribution.

Algorithm 4 Metropolis-adjusted Langevin algorithm (MALA) with target distribution π

Input: x(0) initial sample, η step-size, L number of MCMC steps
Output: (x(k))Lk=1 samples according to π
while k < L; k = 1 do

1. Sample the local proposal x(k) ∼ N (x(k−1) + η∇ log π(x(k−1)), 2ηId)

2. Metropolis-Hastings accept-reject x(k) = x(k−1) with prob. 1−min
[
1, π(x(k))q(x(k−1)|x(k))

π(x(k−1))q(x(k)|x(k−1))

]
where q(x′|x) = exp(−∥x′ − x− η∇ log π(x)∥2 /(4η))

end while
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Algorithm 5 FlowMC adaptive sampling of target distribution π (Gabrie et al., 2022)

Input: x(0) initial sample, Tα initial flow, ρ base distribution, η MALA step-size, γ flow learning rate, nMALA number of
MALA steps, L number of MCMC steps
Output: (x(k))Lk=1 samples according to π
while k < N ; k = 1 do

1.a Sample the flow x(k) ∼ λρ
Tα

(x)

1.b Metropolis-Hastings accept-reject x(k) = x(k−1) with prob. 1−min

[
1,

π(x(k))λρ
Tα

(x(k−1))

π(x(k−1))λρ
Tα

(x(k))

]
2. Sample with MALA from x(k) x(k+1:k+nMALA+1) = MALA(log π, x(k), η, nMALA) k = k + 1 + nMALA

3. Likelihood ascent step on the flow α = α+ γ
∑

k′<k lnλ
ρ
Tα

(x(k′))
end while

Algorithm 6 Iterated Sampling Importance Resampling (i-SIR) (Rubin, 1987)

Input: x(0) initial sample, λ proposal distribution, N number of particles, L number of MCMC steps
Output: (x(k))Lk=1 samples according to π
while k < L; k = 1 do

1. Draw a pool of proposals y(k+1)
2:N ∼ λ

2. Set the x(k) as the first element of the pool y(k+1
1 = x(k)

3. Compute the importance weights w(k+1)
i = w(y

(k+1)
i )/

∑N
j=1 w(y

(k+1)
j ) for all i = 1, . . . , N where w = π/λ

4. Select the next state i(k+1) ∼ M(w
(k+1)
1 , . . . , w

(k+1)
N )

5. Update the next state x(k+1) = y
(k+1)

i(k+1)

end while

We have that ∇θ log p
ρ
θ(x) = −∇θEθ(x)−∇θ logZθ. The second term can be expressed as an expectation over pρθ

∇θ logZθ = ∇θ log

∫
exp(−Eθ(x))ρ(x)dx

=

(∫
exp(−Eθ(x))ρ(x)dx

)−1

∇θ

∫
exp(−Eθ(x))ρ(x)dx

=

(∫
exp(−Eθ(x))ρ(x)dx

)−1 ∫
∇θ exp(−Eθ(x))ρ(x)dx

=

(∫
exp(−Eθ(x))ρ(x)dx

)−1 ∫
exp(−Eθ(x))(−∇θEθ(x))ρ(x)dx

=

∫ (∫
exp(−Eθ(y))ρ(y)dy

)−1

exp(−Eθ(x))(−∇θEθ(x))ρ(x)dx

=

∫
(−∇θEθ(x))p

ρ
θ(x)dx

= Epρ
θ
[−∇θEθ(X)] .

The gradient of the maximum likelihood objective can then be formulated as

∇θℓEBM(θ) = Ep⋆ [∇θ log pθ(X)]

= Ep⋆ [−∇θEθ(X)−∇θ logZθ]

= −Ep⋆ [∇θEθ(X)] + Epρ
θ
[∇θEθ(X)] .
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C. Experiments
C.1. Common remarks on implementation of the different EBM training algorithms throughout the numerics

While Hamiltonian Monte Carlo (HMC) can be used instead of Langevin as a local MCMC sampler (Nijkamp et al., 2022),
we stick to MALA in our implementations of CoopFlow, NT-EBM and flowMC-EBM for two reasons : (i) it is much faster
than HMC 2 (ii) it makes the comparison between models easier. Moreover, most of the EBM training algorithms in the
literature originally used only a few MCMC steps at each iteration. In our benchmark of these algorithms, we typically use
more MCMC steps. Finally, we used specific version of CoopFlow and ULA-EBM algorithms.

Coop Flow For CoopFlow (Xie et al., 2022) we used the ”best” version of their algorithm where the flow is pre-trained on
samples from p⋆. During the coupled training of the EBM, the pre-trained flow will be initially frozen for less than 5% of
the total training time. We also disabled the noise in Langevin steps as advised by the authors.

ULA-EBM For the ULA-EBM, the hyper-parameters (custom temperature and learning rate) were selected using the
recommendations from (Nijkamp et al., 2020a).

FlowMC with i-SIR updates In practice, we use the flowMC algorithm (Algorithm 5) with the i-SIR algorithm (Algo-
rithm 6) as a global sampler (i.e. for steps 1.a to 1.b of the flowMC algorithm). As it accepts one flow proposal from a
large pool of samples, this algorithm enables shorter decorelation times provided enough memory and parallel computation
capabilities.

C.2. Motivating example

The first example from Section 4 uses an unequilibrated mixture of two multivariate normal distributions in 2D

p⋆(x) =
1

3
N (−1.512, 0.05I2) +

2

3
N (+1.512, 0.1I2)

where 1d is the vector with only unit coordinates in dimension d. Both models were trained for 75 epochs on a dataset of
length 16384 using a persistent state of size 1024 and a batch size of 64 with a learning rate of 0.01 (same one for the flow
and the EBM). The global steps are i-SIR steps with 32 particles. The Langevin samplers used a step size of 0.01. The
classic EBM used 10 MCMC steps at each step and the flowMC-EBM used the same number of steps decomposed with 2
global steps between two sequence of 4 local steps. We used the same parameterization for the EBM as in (Nijkamp et al.,
2020a) (about 10k parameters). The flow is a RealNVP (Dinh et al., 2017) with 4 layers each one featuring MLPs with 16
neurons on 3 layers (about 1k parameters total).

C.3. Extended motivating example

This additional motivating example aims at building intuition on why other methods are failing at relative weights estimation.
This experiment uses an 2D unequilibrated mixture of four Gaussians p⋆ =

∑4
i=1 wiN (µi, 0.05I2) where the µi are evenly

distributed on a horizontal axis between x = −3 and x = 3 and w = (0.1, 0.2, 0.3, 0.4).

The obtained EBMs are presented in Figure 3. Table 3 provides a quantitative comparison between the different algorithms.
The mean squared error of samples X with respect to distribution p are computed by partitioning the space in as much
regions as the number of modes of p (see Figure 4) and then building an histogram of the samples X depending on which
zone each sample is. The error is computed against the weights of the distribution p. For the distribution Eθ, the weights are
computed by manually summing the mass in each region corresponding to the modes of p⋆.

The second column of Table 3 represents the quality of the initialisation of the negative chains with respect to the current
EBM - this is the error that CoopFlow should minimize by using a flow. The third column represents the error of the negative
samples with respect to the current EBM - this is the error that NT-EBM should minimize by mixing in the latent space.
Table 3 shows that our algorithm is the only one minimizing both errors leading to a better EBM (see the fourth column).
Our algorithm improves the initialization by using calibrated MCMC algorithms and improves negative samples by using
the companion normalizing flow to visit even more modes during the sampling phase.

2Only one gradient per generated sample.
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Figure 3: Estimated energies using different algorithms
on the extended motivating example.

Figure 4: Space partitioning for histograms - the level
lines corresponds to p⋆ and the four colors correspond
to each zone.

Table 3: Mean Squared Errors (MSE) after training
different EBMs algorithms on the extended motivating
example.

Algorithm
MSE of the
init. wrt Eθ

MSE of the neg.
samples wrt Eθ

MSE of Eθ

wrt − log p⋆

ULA-EBM 1.19e-03 1.79e-03 1.24e-03
CoopFlow 1.21e-01 1.11e-01 1.24e-01
NT-EBM 9.27e-04 3.85e-04 9.87e-04

flowMC-EBM 5.19e-04 3.12e-05 4.29e-04

Figure 5: Four different negative chains viewed in the latent space of NT-EBM trained on the extended motivating example

The failure of CoopFlow at providing good initialization is likely due to the fact that pre-training the flow on data provide
bad starting samples if the current EBM’s weights are not close to the data weights : at the end of training, the weights of its
flow are (0.11, 0.20, 0.29, 0.40) which is very accurate with respect to data but the MSE with respect to the EBM is of order
10−1. This is worsen by the lack of any MCMC calibration on the initialisation and the negative samples. The failure of
NT-EBM at improving its initialization error is likely due to the fact that the local sampler isn’t mixing in the latent space
(as suggested by (Grenioux et al., 2023)) as shown in Figure 5.

The hyper-parameters of each algorithm are summarized in Table 5. The Use only last step ? column correspond to whether
the negative samples are the last elements of the MCMC chains or not. The learning rates is 10−2 for EBM and NT-EBM
and 10−3 for CoopFlow and our algorithm (flow and EBM). The dataset is 60000 samples large with a batch size of 256
and a persistent size of 8192. The training lasted 100 epochs for each algorithm. The EBM and the flow are the same is
in Appendix C.2. When required, the flows were pretrained for 1024 steps at a 10−2 learning rate with the reverse KL
objective. The global sampler is i-SIR with 64 particles.

C.4. 2D distributions with more modes and complicated geometries.

The 8 Gaussians distribution is a mixture of 8 equally weighted Gaussians N (µi, 0.15
2I2) where µi = (cos(2πti), sin(2πti))

and ti = i/8 with i ∈ {0, . . . , 7}. The rings distributions is the inverse polar reparametrization of a distribution pz which
has itself a decomposition into two univariate marginals pr and pθ. pr is a mixture of 4 Gaussians N (i+ 1, 0.152) with
i ∈ {0, . . . , 3} describing the radial position and pθ is a uniform distribution over [0, 2π] which describe the angular position
of the samples.

The hyper-parameters of each algorithm are summarized in Table 5. The Use only last step ? column correspond to whether
the negative samples are the last elements of the MCMC chain or not. If subsampling by k is mentioned in the this column, it
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Table 4: EBM hyper-parameters for the extended motivating example

Algorithm MCMC Sampler # MCMC steps Use only last step ? Starting strategy

ULA-EBM ula with (1.25× 10−1)2/2 step size 512 yes uniform
NT-EBM mala with target acceptance 75% 128 yes flow
CoopFlow ula with 5× 10−4 step size 256 yes flow

flowMC-EBM flowMC with 1 global step and 24 mala local steps 128 no flow

Table 5: EBM hyper-parameters for 8 Gaussians / Rings experiments

Algorithm MCMC Sampler # MCMC steps Use only last step ? Starting strategy

ULA-EBM ula with (1.25× 10−1)2/2 step size 512 yes uniform
NT-EBM mala with target acceptance 75% 128 yes flow
CoopFlow ula with 5× 10−4 step size 256 yes flow

flowMC-EBM flowMC with 1 global step and 127 mala local steps 128 subsampling by 4 flow

means that we divided the number of parallel MCMC chains by k and subsampled the resulting chains evenly k times. The
learning rates was 10−2 for EBM and NT-EBM and 10−3 for CoopFlow and our algorithm (flow and EBM). The dataset
was 60000 samples large with a batch size of 256 and a persistent size of 8192. The training lasted 100 epochs for each
algorithm. The EBM and the flow are the same is in Appendix C.2. When required, the flows were pretrained for 1024 steps
at a 10−2 learning rate with the reverse KL objective. The global sampler is i-SIR with 64 particles.

C.5. High-dimensional example

In this experiment, p⋆ is a mixture of 4 equally weighted isotropic Gaussians p⋆i = N (µi, Id) where the µi are defined
as µ1 = a × (1, 1, 1, . . . , 1, 1, 1), µ2 = a × (−1,−1,−1, . . . , 1, 1, 1), µ2 = −µ2 and µ4 = −µ1 and a = 0.5919. This
specific value of a guarantees that if X ∼ p⋆i then ∀j ̸= i,P(∥X − µj∥ < ∥X − µi∥) ≤ 10−10 for any dimension d.

The hyper-parameters of each algorithm are summarized in Table 7. The Use only last step ? column correspond to whether
the negative samples are the last elements of the MCMC chains or not. If stacked is mentionned in the # MCMC steps
column, it means that the kg global steps and kl local steps are considered as a single MCMC step. The learning rates was
10−2 for EBM and NT-EBM and 10−3 for CoopFlow and our algorithm (flow and EBM). The dataset was 50000 samples
large with a batch size of 128 and a persistent size of 8192. The training lasted 150 epochs for each algorithm. The EBM
parametrization is the same as the one described in (Nijkamp et al., 2020a). The global sampler is i-SIR with 128 particles.
The flows used here are RealNVPs. The base of the flow is ρ = N (0, σ2Id) where σ2 is the maximum variance of π along
each dimension. All the coupling layers have 3 hidden layers initialized with very small weights (≃ 10−6). The other
hyper-parameters can be found in table Table 6. When required, the flows were pretrained for 512 steps at a 10−2 learning
rate with the reverse KL objective.

C.6. Image distribution

We tested our algorithm on the CIFAR10 dataset (see training details below). Given our computational budget, the resulting
generative model can produce samples of medium quality (see Figure 8). The global sampler proposals are getting accepted
5-10% of the time. Given number of parameters reported in related work, we expect that a more expressive flow and energy
parametrization would improve the outcome. Following the experiments of (Dai et al., 2019), we compute the energy
distribution of the generated samples and compare it against the data samples (see Figure 7). The EBM produces sample in
the right energy range but not as diverse as the training data.

The flowMC-EBM was trained on the CIFAR10 dataset using a batch size of 128 and for 70 epochs and a persistent
size of 1024. The learning rates of the flow and the EBM was 10−4 with a decay by 0.99 every 50 batches. We used
an L2 regularization with coefficient 10−4 on the EBM loss i.e., we added a ℓreg term where ℓreg(θ, {x(−)

i , x
(+)
i }ni=1) =

λ
∑n

i=1(Eθ(x
(−)
i ))2 + (Eθ(x

(+)
i ))2 with λ = 10−4. The sampler stacked 1 i-SIR global step with 128 particles and 32
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Figure 6: Extended version of figure Table 2 where the R̂ is displaying along training time

Table 6: RealNVP architecture for the high-dimensional Gaussian mixture

Dimension Size of hidden layers # RealNVP blocks

16 32 2
32 39 2
64 51 2

local steps of MALA three times in total to build the negative samples.

The dataset was centered between -1 and 1 and also dequantized (ie. if x is an image with integer pixels in range [0, 255]
then its dequantization is x̃ = (255x+ U)/256 where U ∼ U([0, 1])). The dataset was augmented with random horizontal
flipping.

The EBM used was the one described in (Du & Mordatch, 2019) and used in (Xie et al., 2022) with a smaller last MLP
layer (about 4.5M parameters only). The flow is a RealNVP taken from this Github repository with base dim to 64 and 6
residual blocks (about 4M parameters). The flow was stacked with an affine transformation bringing the images in [0, 1]
and the logisitic transformation described in (Dinh et al., 2017). The base of the flow is a standard centered multivariate
Gaussian N(0, I3×32×32) and the prior of the EBM (see Equation (6)) was pushed through the additional transformations
stacked onto the flow.
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Table 7: EBM hyper-parameters for the high-dimensional mixture experiment

Algorithm MCMC Sampler # MCMC steps Use only last step ? Starting strategy

ULA-EBM ula with 10−3 step size 512 yes gaussian
NT-EBM mala with target acceptance 75% 128 yes flow
CoopFlow ula with 10−4 step size 256 yes flow

flowMC-EBM flowMC with 1 global step and 8 mala local steps 16 (stacked) no flow
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Figure 7: Energy histograms of our algorithm trained on CIFAR10

Figure 8: Samples from our algorithm trained on the CIFAR10 dataset - We display the last state of 64 MCMC chains of
512 steps sampled in parallel. The chains were initialized in the persistent state.
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