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Abstract Monumental advances in deep learning have led to unprecedented achievements across

various domains. While the performance of deep neural networks is indubitable, the ar-

chitectural design and interpretability of such models are nontrivial. Research has been

introduced to automate the design of neural network architectures through neural architec-
ture search (NAS). Recent progress has made these methods more pragmatic by exploiting

distributed computation and novel optimization algorithms. However, there is little work

in optimizing architectures for interpretability. To this end, we propose a multi-objective

distributed NAS framework that optimizes for both task performance and “introspectability,”

a surrogate metric for the debuggability of a model. We leverage the non-dominated sorting

genetic algorithm (NSGA-II) and explainable AI (XAI) techniques to reward architectures

that can be better comprehended by domain experts. The framework is evaluated on several

image classification datasets. We demonstrate that jointly optimizing for task error and

introspectability leads to more disentangled and debuggable architectures that perform

within tolerable error.

1 Introduction

The success of deep learning is seemingly ubiquitous in a multitude of domains. A core component

of its effectiveness is its ability to automate the feature engineering process. Under this perspective,

a natural next step is the automation of the architecture design. To this end, neural architecture
search (NAS) (Elsken et al., 2019b) has been proposed. Progress in NAS has led to results that

supersede the state-of-the-art in several applications, such as image classification (Real et al., 2019)

and object detection (Zoph et al., 2018).

While NAS has been effective in automating architecture discovery and topping leaderboards,

little attention has been paid to the discovery of interpretable architectures. The automation of

interpretability would further minimize the need for “human-in-the-loop” pipelines. Not only

does this reduce the manual design needed to meet the constraints of an application, but it also

enhances the comprehensibility of the discovered models. Increased comprehensibility aids in

model debugging, decreases time to deployment, and instills greater trust.

To this end, we introduce a framework for the joint optimization of task performance and a

surrogate for the debuggability of a model. In this work, we put forth the following contributions:

• We develop a new metric to quantify debuggability as the disentanglement between latent

representations for different data classes: introspectability. We further extend this metric by

exploiting hierarchical semantic information from the WordNet database.

• We formalize the discovery of interpretable architectures as a multi-objective optimization

problem and adopt an evolutionary approach to NAS that maximizes both accuracy and in-

trospectability by directly optimizing the Pareto frontier. We name our pipeline eXplainable

NAS (XNAS).
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• We conduct analyses of the accuracy-introspectability trade-off, explore phylogenetic trees

to understand the inheritability of objectives, visualize disentangled representations, analyze

architectural motifs along the Pareto front, and demonstrate introspectability as a surrogate for

trustworthiness and debuggability.

2 Background & Related Work
Our work is at the intersection of neural architecture search, explainable AI (XAI), evolutionary

algorithms, and multi-objective optimization. We present a brief overview of these topics and

discuss related work to put our contributions in context.

Neural Architecture Search (NAS). Akin to how deep learning is used to automate feature engi-

neering, NAS algorithms automate architectural engineering (Elsken et al., 2019b). NAS algorithms

can generally be understood as the composition of three elements: (i) a search space that defines
the possible neural architectures, (ii) a search strategy that explores a search space for candidate

solutions, and (iii) a performance estimation strategy that determines the fitness of a solution. Of

the many approaches to NAS, Bayesian optimization (BO), reinforcement learning (RL), and evo-

lutionary algorithms are the most common. While BO is typically applied to low-dimensional

problems, several works have applied it to NAS (Bergstra et al., 2013; Domhan et al., 2015) and it

has even surpassed human experts on competition datasets (Mendoza et al., 2016). However, BO

has mostly been overshadowed by RL ever since Zoph and Le achieved unprecedented results on

NAS benchmarks (Zoph and Le, 2017). The RL problem can be formulated with the evolutionary

search space as the agent’s action space and the test set error as the reward (Zoph and Le, 2017;

Zoph et al., 2018). Alternatively, the RL problem can be posed as a sequential control task (Cai

et al., 2018; Wei et al., 2021): given the state of the architecture, what network modification should

be applied to improve performance?

While RL-based NAS has achieved state-of-the-art across many benchmarks, it tends to be

compute-inefficient and can take thousands of GPU hours to converge (Real et al., 2017; Zoph

et al., 2018; Baymurzina et al., 2022). Neuro-evolutionary approaches are generally lightweight in

comparison, and they notably perform the same as RL approaches on NAS benchmarks (Real et al.,

2019; Lopes et al., 2022). The use of evolutionary algorithms for NAS can be traced back decades,

e.g. (Miller et al., 1989) uses genetic algorithms to propose architectures that are then trained using

backpropagation. While evolutionary algorithms have been used to search for both weights and

network architectures (Angeline et al., 1994; Stanley and Miikkulainen, 2002), it is more common

to only apply evolution to the architecture and to train the weights with gradient descent (Real

et al., 2019, 2017; Elsken et al., 2019a; Baymurzina et al., 2022). Evolutionary algorithms evolve a

population of candidate solutions to an optimization problem and each generation is derived from

the last by applying mating operations to a set of selected parents. In NAS, an offspring may differ

from its parents by an added layer, a changed connection, etc. The quality of solutions is judged by

a fitness function and evolution is terminated when a resource or time budget is exceeded.

Multi-Objective Optimization & NAS. In a multi-objective optimization problem, there are𝑚 objec-

tives {𝑓1, . . . , 𝑓𝑚}, which in the context of NAS may be accuracy, floating point operations (FLOPs),

energy, etc. When𝑚 > 1, it becomes nontrivial to select the optimal solution among the set of all

objective vectors 𝑌 = {y ∈ R𝑚 | y = {𝑓1(x), . . . , 𝑓𝑚 (x)}} where x is a candidate solution. There

exists a variety of strategies to select solutions, such as optimizing for a weighted sum of the

(normalized) objectives, lexicographic sorting, or maintaining Pareto-optimal solutions (Marler

and Arora, 2004). We are most interested in the latter approach since it captures the trade-offs

between objectives and allows the practitioner to choose the optimal compromise for their use

case. The set of Pareto-optimal solutions, also called the Pareto frontier or Pareto front, is the set

of non-dominated solutions {y′ ∈ 𝑌 | {y ∈ 𝑌 | y ≻ y′} = ∅}, where a ≻ b indicates that a strictly

dominates b, i.e. |{𝑓𝑖 (a) | 1 ≤ 𝑖 ≤ 𝑚, 𝑓𝑖 (a) > 𝑓𝑖 (b)}| =𝑚.
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The non-dominated sorting genetic algorithm-II (NSGA-II) (Deb et al., 2002) is an elitist evolu-

tionary approach to multi-objective optimization. Notably, the authors improve the non-dominated

sorting algorithm from cubic to quadratic time complexity. The surviving members of a generation

are selected in a binary tournament with preference given to members of the Pareto front. Addi-

tional offspring are generated from members in the ranked fronts, i.e. the Pareto fronts computed

iteratively after removing the members of the previous front. When a ranked front needs to be

subsampled, the crowding distance within the front is used to ensure the full front is represented.

Related to our work, NSGA-Net (Lu et al., 2019) is an evolutionary framework for NAS that

employs NSGA-II for multi-objective optimization. Like most evolutionary NAS algorithms, NSGA-

Net explores and exploits the search space with a fixed-size population of candidate architectures.

The authors demonstrate the effectiveness of population-based NAS and the superiority of NSGA-II

over a weighted sum of objectives on the CIFAR-10 and CIFAR-100 datasets. While similar to our

framework, our focus is on the design of objectives conducive to interpretability. Furthermore, we

scale our method to a distributed cluster and evaluate on more datasets.

Multi-objective optimization of a weighted sum of objectives has been employed by many

NAS works (Tan et al., 2019; Hsu et al., 2018). The approach is attractive when the objectives are

differentiable since it is amenable to gradient descent by backpropagation. For instance, Multi-

Objective NAS (MONAS) (Hsu et al., 2018) uses RL with a weighted combination of accuracy,

power, and multiply-accumulate operations (MACs) as the reward. However, there are limitations

to optimizing for an aggregate of multiple objectives: it relies on manually tuned coefficients,

struggles to accommodate objectives that range over multiple orders of magnitude, and tends to

cluster in a small region of the Pareto front.

Explainable AI (XAI) & NAS. Some of the intersection between interpretability and NAS has been

covered in prior work. In Ru et al. (2021), a NAS framework using the Bayesian optimization search

strategy is proposed. For efficiency and interpretability, a Weisfeiler-Lehman graph kernel is used

to define a Gaussian process surrogate on the search space, and the gradients are used to identify

key motifs that lead to well-performing architectures. Similarly, Adam and Lorraine (2019); Zheng

et al. (2022) use alternative techniques to identify key motifs used in the search process. However,

their notions of interpretability and disentanglement focus on the search process rather than on

the learned models themselves. In this work, we extend NAS to disentangle the latent space of

learned models.

3 Proposed Framework: XNAS

Following the taxonomy in Elsken et al. (2019b), we break up our method into a search space, search

strategy, and performance estimation strategy. We further discuss how we scale the search up to

an arbitrary number of compute nodes in Appendix O.

3.1 Search Space and Search Strategy

We are interested in exploring complex search spaces beyond simple chains, i.e. multi-branch

networks such as ResNet (He et al., 2016) or DenseNet (Huang et al., 2017). To this end, we elect

to use the popular NAS-Bench-201 search space (Dong and Yang, 2020), which is comprised of a

macro skeleton and a searched cell. A full overview is given in Appendix A.

As we are interested in discovering neural architectures that are both accurate and debuggable,

we propose to use multi-objective optimization. We explore and exploit the search space using

the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), as introduced in Section 2, with

two objectives: accuracy and introspectability (introduced in Section 3.2). Because we search for

architectures that are both accurate and interpretable, we refer to our approach as eXplainable

NAS (XNAS). We generate the initial set of solutions by uniformly sampling the layers of the

searched cell (see Appendix A for details). These candidates comprise the first generation of the
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population. Thereafter, the offspring of the proceeding generation are produced by mating the

parents comprising the prior generation. Parents are selected based on the ranked Pareto fronts of

the population as described in Section 3.2 and Deb et al. (2002). Because of this selection, there is

no notion of a single best solution, but rather a set of non-dominated solutions that characterize

the optimal trade-off between all objectives. The details of crossover and mutation are provided in

Appendix J.

3.2 Performance Evaluation Strategy

We evaluate the performance of an architecture using two objectives: task performance and

interpretability (debuggability). The former is simple to define quantitatively as the classification

accuracy on the held-out validation split of a dataset. However, interpretability is often treated

far more qualitatively and an objective definition eludes community consensus. Furthermore,

explaining a model is dependent on the audience, data modality, modeling task, and questions being

asked. To disambiguate interpretability in the context of the framework, we state our assumptions:

that the user has some technical understanding (e.g. a data scientist or domain expert), that we

are interested in understanding the model in classification tasks (e.g. as opposed to the data or the

NAS evolution process), and that models that maximize the metric lead to qualitatively discernible

trends. To this end, we propose to quantify the interpretability of models as the introspectability

of disentangled elements, which we describe in the subsequent subsections. We measure this

for supervised classification tasks using the pairwise distances between latent representations of

individual classes.

Introspectability. Here we formalize the score that we denote as introspectability: the degree

to which the representations of disparate classes within a neural network M are disentangled.

Let us denote the subset of validation data belonging to class 𝑐 as X(𝑐) ∈ R𝑁 (𝑐 )×𝐻×𝑊 ×𝐶
. Given

X(𝑐)
as input to M, denote the activations of layer 𝑙 as Φ(𝑐,𝑙) ∈ R𝑁 (𝑐 )×𝑑 (𝑙 )

1
×···×𝑑 (𝑙 )

𝑛 . We reshape the

activations to have a single dimension of size 𝑑 (𝑙) =
∏𝑛

𝑖=1
𝑑
(𝑙)
𝑖

such that Φ(𝑐,𝑙) ∈ R𝑁 (𝑐 )×𝑑 (𝑙 )
. We

denote all activations for class 𝑐 within M as Φ(𝑐) =


𝐿
𝑙=1

Φ(𝑐,𝑙)
where




is the matrix concatenation

operator along the columns and 𝐿 is the number of layers inM. The mean activations for class 𝑐

are then Φ̄(𝑐) = 1

𝑁 (𝑐 )
∑𝑁 (𝑐 )

𝑖=1
Φ(𝑐)
𝑖

where |Φ̄(𝑐) | = ∑𝐿
𝑙=1

𝑑 (𝑙)
. With these definitions, we then formulate

introspectability as (1)

Introspectability(M,X) = 1(
𝑁𝐶

2

) 𝑁𝐶∑︁
𝑐=1

𝑁𝐶∑︁
𝑘=𝑐+1

𝐷 (Φ̄(𝑐) , Φ̄(𝑘) ) (1)

where 𝐷 (·, ·) gives the cosine distance between its two vector arguments and 𝑁𝐶 is the number of

classes in the classification task.

The motivation for introspectability is to produce trustworthy architectures that have a pre-

diction process that reflects the uncertainty of an instantiated model, a means of probing why

decisions were made, and a means of identifying or correcting mispredictions. Architectures that

maximize introspectability are easier to debug as the latent representations of each sample are

better-calibrated to the confidence of the model. The mean activations per class can be thought of

as the centroids that live in latent space, and the distance from each centroid can be thought of as

the likelihood that a prediction is correct (with lower values being more likely). This enables us to

identify mispredictions and mislabeled data, to identify why mispredictions happen (e.g., due to

similar latent representations between classes), and to correct models under-performing on certain

classes (e.g., by explicitly emphasizing latent separation between two confounded classes). With its

definition, introspectability provides a means for debugging a model and gaining a lens into its

prediction process. We run experiments that test these capabilities in Section 4.
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Figure 1: (a) The WordNet hyponym-hypernym graph where leaf nodes (green) are the labels of the

ImageNet dataset. (b) An inset of the full graph containing the synset “home appliance” and

its hyponyms.

When real-values are predicted instead of a class, such as in the regression setting, the target

value must be binned into classes and the behavior of models can be interpreted in different regions

of the target. For example, these can be “cold,” “neutral,” and “hot” for weather forecasting, or “low,”

“medium,” and “high” for recidivism risk prediction. These bins can be specified in many ways:

uniform splits between the extreme values, based on domain knowledge, clustering (e.g., k-means),

around higher-risk outcomes, etc. However, we only run experiments on classification tasks in this

work.

Introspectability and WordNet. We derive a second definition of introspectability based on

WordNet (Miller, 1995), a lexical database of the English language. WordNet comprises sets of

synonyms (synsets) and arises into a hierarchical representation by embedding the transitive

relations hyponyms (more specific sub-names) and hypernyms (more abstract super-names). In

computer vision, the labels of the ImageNet database (Deng et al., 2009) are notably derived from

WordNet synsets. We visualize all of the labels covered by ImageNet in the hyponym-hypernym

graph shown in Figure 1a and 1b. The shortest path distances between two labels in the hyponym-

hypernym graph can be used to compute semantic similarity as shown in (2)

path_sim(𝑤𝑎,𝑤𝑏 ) =
1

shortest_path(𝑤𝑎,𝑤𝑏 ) + 1

(2)

where𝑤𝑎 and𝑤𝑏 are label names. We then weigh the pairwise distances between classes by this

similarity as (3)

Introspectability
WordNet

(M,X) = 1(
𝑁𝐶

2

) 𝑁𝐶∑︁
𝑐=1

𝑁𝐶∑︁
𝑘=𝑐+1

𝐷 (Φ̄(𝑐) , Φ̄(𝑘) ) × 𝑆 (𝑐, 𝑘). (3)

The similarity between labels 𝑆 is given by 𝑆 (𝑐, 𝑘) = path_sim(name(𝑐), name(𝑘)) where name(·) maps

the label index to the corresponding label name. Intuitively, the score penalizes models with

relatively small distances between dissimilar labels and compensates for small distances between

similar labels. To ensure the range of WordNet introspectability is comparable to that of the baseline

definition, we normalize the score by dividing by the mean path_sim value among all pairs of labels

in the dataset.

4 Experiments & Results
We evaluate XNAS on three image classification datasets: MNIST LeCun et al. (2010), CIFAR-

10 Krizhevsky (2009), and ImageNet-16-120 (Dong and Yang, 2020). Thereafter, we conduct analyses
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Figure 2: The Pareto fronts and Pareto-optimal solutions are shown for each task. The shaded region

visualizes the hypervolume achieved by XNAS. In the first row, the front is visualized for

multi-objective XNAS and for single-objective (accuracy only) in the second row. Normalized

Introspectability
WordNet

is shown for ImageNet-16-120.

to understand the evolution process of XNAS, characterize the Pareto front of each task, and demon-

strate the debuggability of higher-introspectability architectures.

4.1 Setup and Implementation

The experimental setup and all hyperparameters are detailed in Appendix B. We implement XNAS
in Python with code built on the pymoo (Blank and Deb, 2020), DeepHyper (Balaprakash et al., 2018),

and Ray (Moritz et al., 2018) libraries. The source code is publicly available at <redacted>.

4.2 Metrics

To quantitatively assess the quality of the solutions from a multi-objective search algorithm, we

look to hypervolume as introduced in Zitzler and Thiele (1998) and improved in Fonseca et al. (2006).

Hypervolume is the area of the union of rectangles where each rectangle is formed by a point

on the Pareto front and a reference point (such as (0, 0)). This notion can easily be extended to

higher dimensions, i.e. rectangular cuboids are formed with three objectives and hyperrectangles

are formed with four or more objectives. In this work, we set the reference point to (0, 1/𝑁𝐶 ) where
1/𝑁𝐶 is the classification rate of random guessing with balanced data. Note that this reduces the

hypervolume range from [0, 1] to [0, (1−1/𝑁𝐶 )]. We are interested in setting the reference point

here to avoid rewarding models that have not learned the task in any significant capacity.

4.3 Results

Table 1 contains the aggregate results for each task and demonstrates the efficacy of using the

proposed multi-objective approach. XNAS is compared with the single-objective NAS baseline.

While the median population-level accuracy falls slightly compared to single-objective NAS, the

maximum accuracy is still comparatively high and there is a substantial increase in hypervolume

across experiments. Note that the best accuracy of XNAS on ImageNet-16-120 is on par with the

best-performing methods as evaluated in Dong and Yang (2020). We plot the Pareto front of every

NAS search result and shade in the hypervolume in Figure 2. The visualizations make clear where

the multi-objective approach makes up hypervolume over single-objective (accuracy). Across

all tasks, multi-objective covers a larger range of introspectability values. As one would expect,

focusing on accuracy tends to cluster the majority of non-dominated solutions in the upper left of

the front. The hypervolume of random guessing illustrates why we set the hypervolume reference

point to (0, 1/𝑁𝐶 ): some solutions manage to achieve high introspectability but are effectively

useless since their predictions are no better than random.

As another baseline, introspectability is employed as a regularization term. Introspectability is

differentiable and in turn, can be used to train models as an auxiliary loss. However, this drastically

increases the training computational complexity and memory utilization due to the calculation of

pairwise distances and the accumulation of activations. In experiments, this slows down training by
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Dataset

Multi-

Objective

Gen.

Population-Level Statistics

Hypervolume

Max Acc. Median Acc. Maximum Intros. Median Intros.

MNIST

reg – 98.9% 98.6% 0.384 0.291 0.341

✗ 18 99.1% 98.8% 0.353 0.255 0.314

✓ 18 99.1% 98.6% 0.390 0.258 0.347

✓+reg 18 99.0% 98.6% 0.503 0.303 0.424

CIFAR-10

reg – 85.9% 72.8% 0.331 0.178 0.229

✗ 34 87.7% 84.3% 0.328 0.077 0.237

✓ 34 87.9% 74.6% 0.552 0.196 0.293

✓+reg 34 87.7% 74.2% 0.654 0.249 0.361

ImageNet-16-120

reg – 44.8% 36.2% 0.318 0.087 0.099

✗ 11 47.8% 44.9% 0.301 0.053 0.099

✓ 11 47.3% 39.1% 0.317 0.104 0.111

✓+reg 11 47.4% 39.0% 0.380 0.109 0.117

Table 1: XNAS experimental results on image classification datasets listing the population-level accuracy

and introspectability (Intros.) scores, and hypervolume. Introspectability can be used as a

regularizer (“reg”), as described in Section 4.3. We compare to this and single-objective NAS

as baselines, as well as to using the multi-objective approach followed by fine-tuning with

the regularizer (“✓+reg”). Normalized Introspectability
WordNet

is shown for ImageNet-16-120.

Multi-objective XNAS with regularization yields the greatest hypervolume across all tasks.
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Figure 3: Phylogenetic trees showing the evolution of the population in XNAS on the ImageNet-16-120

task up to the eighth generation. The mating path from the initial population to a solution

in the final Pareto front of the search is emphasized. Along the path, parents that were

Pareto-optimal within their own generation are marked with an ×. The evolution of accuracy

(top) and introspectability (bottom) within the population are shown.

several orders of magnitude. Accordingly, the number of search space evaluations is limited. Regu-

larization achieves introspectability scores competitive with the multi-objective approach onMNIST

and ImageNet-16-120, but not CIFAR-10. In addition, the achieved accuracy and hypervolume are

hindered due to the reduced evaluations. Synergistically, we also evaluate regularization applied to

the Pareto front of the multi-objective approach – XNAS is capable of discovering high-accuracy

solutions that are predisposed to higher introspectability via the regularization approach. This

combination performs best but demands the additional computation.

To understand the evolution process of XNAS, consider the phylogenetic trees shown in Figure 3.

It shows the ancestry for a Pareto-optimal solution from the eighth generation with the ImageNet-

16-120 task. While most solutions on a given generation’s Pareto front are not directly descended
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Figure 5: Mean activations heatmap of the model with highest (top) and lowest (bottom) introspectabil-

ity on the CIFAR-10 task.

from the previous generation’s Pareto front, they typically have many Pareto-optimal ancestors.

This suggests that Pareto optimality is mildly heritable, although not enough to ensure direct

transmission between generations. In addition, the final Pareto-optimal solution had the second-

highest cumulative accuracy at its generation. It is not surprising that its ancestors tended to have

above-average accuracy and below-average introspectability.

We conduct an analysis of emerging patterns in the architectures discovered across the Pareto

front for each task. The methodology for selecting motifs of interest is described in the supplemental

material and is accompanied by the corresponding visualizations. In Figure 4, we elect to visualize

a pattern that holds for all tasks but is shown for CIFAR-10. Therein, we observe that more accurate

models have fewer pooling layers and more convolutional layers, whereas models with greater

introspectability exhibit the opposite tendency. These layer types can be seen as one knob that

controls the accuracy-introspectability trade-off. Furthermore, a study of the impact of accuracy

and introspectability of the generalization error, convergence speed, and the number of parameters

is presented in Appendix J. High-introspectability models have lower generalization error, fewer

parameters, and faster training times, whereas high-accuracy models exhibit the inverse trend.

To gain a better qualitative understanding of the introspectability metric, we visualize the

activations of the Pareto-optimal solutions of each task. In Figure 5, the solutions of the highest and

lowest introspectability are shown for CIFAR-10. The MNIST and ImageNet-16-120 activations are

shown in the supplemental material. Within each layer, the activations are normalized using z-score

normalization. The activations within each block per class are then averaged for the purpose of

visualization. The differences between the highest- and lowest-scoring models are quite apparent;

the activation patterns for each class in higher-scoring models have notable variance, whereas they

are quite constant in lower-scoring models.
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Figure 6: (a) Calibration quality of Pareto-optimal models discovered by XNAS. Calibration using

activations improves on softmax for introspectability>0.18. (b) (Top) The change in accuracy

due to identified mispredictions as a function of the percentile of sample-wise activation

calibration scores. (b) (Bottom) The detection rate of corrupted labels as a function of the

percentile of sample-wise activation calibration scores. All results are on CIFAR-10.

Introspectability, trustworthiness, and debuggability. Figure 5 demonstrates that increased

class-wise disentanglement is a result of optimizing for introspectability. Here, we exploit this

to show that introspectability is a surrogate for improved trustworthiness and debuggability of

discovered architectures. Typically, softmax calibration is employed to assess the confidence and

trustworthiness of predictions. This approach interprets the softmax-activated readout layer outputs

of DNN classifiers as probabilities. We propose to use an activations-based calibration that XNAS
indirectly optimizes for. In activations-based calibration, we 1) collect the mean activations per

class from training data, 2) collect the activations of the held-out data, 3) compute the cosine

distances between the activations of held-out data and the mean activations per class (similar to

Eq. (1)), and 4) interpret the distances of the predicted classes as probabilities. To assess calibration

quality, we use the Pearson and Spearman rank correlation coefficients of the calibrated probabilities

and the corresponding actual accuracy scores at each probability range on a held-out test set
1
.

Fig. 6a demonstrates that introspectability estimates calibration quality and outperforms softmax

calibration when introspectability> 0.18. Notably, the calibration quality tapers off rapidly at

this point, indicating that class-wise latent representations are no longer as disentangled. This

is an important observation of this approach – DNN trustworthiness is a function of class-wise
disentanglement. This experiment serves as motivation that higher-introspectability models are

more conducive to trustworthiness and debuggability, as we will demonstrate.

Identifying mispredictions We explore the effect of introspectability on the ability to identify

mispredictions. To do so, low-confidence predictions are isolated according to the distribution

of activation calibration scores. The quality of identified mispredictions is then quantified as the

increase in accuracy due to removing samples. Figure 6b compares misprediction identification

between low- and high-introspectability models on CIFAR-10 – high-introspectability models

demonstrate greater improvement owing to superior calibration and trustworthiness.

Debugging data We further demonstrate the improved model comprehensibility to debug

data. We mislabel samples at a corruption rate of 20% and assess the ability of models to identify

the mislabeled data following the distribution of activation calibration scores. Figure 6b shows

that high-introspectability models are better equipped to identify bugs in the data on CIFAR-10,

achieving a ∼20% higher detection rate at the 20
th
percentile of scored samples.

1
We use 50 linear bins to estimate these quantities.
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Debugging models Further model debugging experiments are included in Appendix K – we

identify and repair bugs in models based on pairwise activation distances.

5 Discussion
As can be observed in Figure 2, there exists a trade-off between accuracy and introspectability,

which is more pronounced as the classification task grows more complex, i.e. in the order of MNIST,

CIFAR-10, and ImageNet-16-120. We discussed how this trade-off is influenced by the selection of

operators within a cell in the previous section. Interestingly, the observation of this phenomenon at

first seems to contradict the argument by Rudin et al. that the accuracy-interpretability trade-off is a

false dichotomy (Rudin and Radin, 2019). However, an important distinction is that our observation

is based on models of the same class and derived from the same search space, rather than on a

comparison between different model classes. Moreover, the trade-off is specific to our definition of

interpretability and how it is intertwined with performance on the selected datasets.

Our proposed introspectability metric is best suited for technical users, as discussed in Sec-

tion 3.2, and should not be confused for an all-telling measure of fairness, trust, or reliability.

However, the introspectability of models discovered by XNAS has the potential to serve as a requisite
criterion before being deployed to users or trusted as a valid model. Furthermore, the metric is

designed with simplicity and generality in mind. It can be gamed by an adversary with model-level

access, e.g. by inserting futile blocks that are zeroed out and bypassed with a skip connection. This

should be addressed in later work, ideally on a per-application basis.

There are several routes for improvement of the XNAS framework. Foremost, the efficiency can

be increased by using weight-sharing techniques (Elsken et al., 2019b; Lu et al., 2019), which reduce

the evaluation time of offspring. Furthermore, there are uninteresting regions of the Pareto front,

depending on the application or end user – NSGA-II can be modified to use reference points of

interest to guide the multi-objective search towards more desirable solutions (Deb and Sundar,

2006).

6 Broader Impact Statement
Our work aims to bridge the gap between neural architecture search (NAS) and explainable AI (XAI)

– by optimizing for both task performance and a surrogate objective for model debuggability, we

discover performant architectures that enable some aspects of interpretability. Our framework is

a proof of concept of how these two subfields can work together. Several new applications stem

naturally. Additional objectives can be utilized from the XAI literature in multi-objective search,

even in combination. Existing NAS techniques can be applied to discovering novel architectures

conducive to the goals in XAI research. While our approach has potential for broad impact, the

limitations of the surrogate metric should be noted. As the text details, the surrogate is not useful

to all types of stakeholders nor all aspects of interpretability. Introspectability is particularly useful

for data scientists and researchers who understand neural networks at a technical level. The nature

of interpretability concerns model trustworthiness, learned generalizations, and understanding the

latent space. The surrogate has utility for these stakeholders seeking this type of interpretability.

However, potential harm can arise from inappropriate use by users or use cases. As we call for in

the text, additional interpretability objectives should be explored in future work for these other

settings.

7 Submission Checklist
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Supplemental Material

A NAS-Bench-201 Overview

The NAS-Bench-201 search space is comprised of a macro skeleton and a searched cell. An overview

is shown in Figure A1.

The first layer of the macro skeleton is a 3 × 3 convolutional layer with 𝐹 = 16 filters followed

by a batch normalization layer. This is followed by a stack of five searched cells (𝐹 = 16). A basic

residual block (𝐹 = 32) with a stride of two proceeds the stacked cell block. The shortcut connection

is a 2 × 2 2D average pooling layer followed by a 1 × 1 convolutional layer. These blocks are

alternated, cutting the image dimensions in half and doubling the filters for each set of blocks.

The end of the network is a 2D global average pooling layer followed by a fully-connected (dense)

classification layer with a softmax activation.

The searched cell can be expressed as a directed acyclic graph where nodes represent data

and edges represent operations. The set of operations consists of 3 × 3 convolutional blocks, 1 × 1

convolutional blocks, 3 × 3 average pooling, “zeroize” (equivalent to dropping the edge), and “skip-

connect” (equivalent to the identity operator). Note that each convolutional block is comprised of

convolution, a rectified linear (ReLU) activation, and batch normalization. All of the convolutions

and pooling layers use SAME padding. To prevent cycles, each node is assigned a rank and can only

connect to higher-rank nodes. Since there are 𝑉 = 4 nodes in a cell and five operation candidates

in the operation set, the total size of the search space is 5
(∑𝑉−1

𝑖=0
𝑖) = 15, 625 architectures. There are

two issues with the search space definition, which the NAS-Bench-201 authors also point out. First,

different architecture encodings can result in the same graph. Like the authors, we do not consider

isomorphism in the evaluation of architectures
2
. Second, architectures can be disconnected due to

the zeroize operation. In this case, the mating operations are reapplied to produce valid offspring.

We represent an architecture in the search space as x𝑖 , a fixed-size list of integers of size∑𝑉−1

𝑖=0
𝑖 = 6 with each element in the range [1..𝑉 ]. Each element of this encoding represents (i) a

specific operator or operators, such as a convolutional or max pooling layer with specific parameters

(e.g. kernel size, strides, etc.), or the lack of an operator (identity) and (ii) how that operator is

connected to additional operators in the computational graph.

B Reproducibility: Experiment Setup and Hyperparameters

Setup. We use a cosine annealing Loshchilov and Hutter (2017) learning rate schedule to decay

the learning rate from 0.1 to 0 at the end of the last epoch. We also take half an epoch to warm

up the learning rate from 0 to 0.1 at midway through the first epoch. Multiple seeds are set for

reproducibility – see the code for the NumPy and TensorFlow seed-setting procedure. The seed for

each run is stored in each raw result.

Data preprocessing. Recall that each raw image X𝑖 has a height of 𝐻 pixels, width of𝑊 pixels,

and 𝐶 color channels. We first scale the image by 255 to map the input domain from [0..255] ⊂ N0

to [0, 1] ⊂ R. Then, z-score normalization is applied, i.e. the channel-wise mean of the full dataset

X is subtracted from each X𝑖 and the result of which is divided by the channel-wise standard

deviation of X. The resulting data has channel-wise means of zero and standard deviations of one.

Data augmentation. We zero-pad the left and right of each image with ⌈𝐻/8⌉ pixels and the top

and bottom of each image with ⌈𝑊 /8⌉ pixels. Then, each image is randomly cropped following

a uniform distribution back to shape 𝐻 ×𝑊 ×𝐶 . Next, the image is flipped horizontally with a

probability of 0.5. The final augmentation applied is cutout Devries and Taylor (2017). Randomly

2
The NAS-Bench-201 authors remark that there are 6,466 architectures with unique topology in the search space due

to isomorphisms brought about by the “skip-connect” and “zeroize” operations.
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Figure A1: Visualization of the architectures generated by the search space. Note that the first con-

volutional layer in the main path and the average pooling layer in the shortcut path of

each residual block has a stride of 2. conv: 2D convolutional layer. bn: batch normalization.

relu: rectified linear (ReLU) activation layer. avg: 2D average pooling layer. 𝐹 : the number

of convolutional filters within each layer of a block.

centered rectangular windows with height 2⌈𝐻/8⌉ and width 2⌈𝑊 /8⌉ are selected to be filled with

zeros within the bounds of each image.

We do not allow offspring that have the same architecture as another offspring or a previously

evaluated architecture. There are 6 integer variables in the optimization problem, so we set the

probability of polynomial mutation per variable to 1/6. Table B1 contains the summary of all

hyperparameters used across the experiments.

ImageNet-16-120. The ImageNet-16-120 dataset, originally introduced in Chrabaszcz et al. (2017)

and adapted by the NAS-Bench-201 benchmark Dong and Yang (2020), is a downsampled version of

the ImageNet dataset. The dataset facilitates substantially faster experimentation while permitting

satisfactory classification results – performance on ImageNet-16-120 has been shown to be indicative
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Hyperparameter Value

M
o
d
e
l
T
r
a
i
n
i
n
g

Loss Cross Entropy

Optimizer SGD

Learning Rate (LR) 0.1

LR Schedule Cosine Decay

Nesterov Yes

Momentum 0.9

Weight Decay 0.0005

Batch Size 512

Epochs 5
∗
, 12

†
, 200

‡

Data Normalization Z-Score (Channel-Wise)

Data Augmentation See Text

N
S
G
A
-
I
I

Population Size 64

Sampling Uniform Random

Crossover Simulated Binary 𝑝 = 0.9, 𝜂 = 3

Mutation Polynomial 𝑝 = 1/6, 𝜂 = 3

Table B1: Summary of hyperparameters used across each experiment.
∗
MNIST;

†
CIFAR-10;

‡
ImageNet-

16-120

of performance across all of ImageNet. Each image in the dataset is resized to 16 × 16 pixels and

only the data for the first 120 classes are retained.

Introspectability Regularizer. Introspectability can be used as a regularization term as it is differ-

entiable. We add this as an auxiliary loss term and naively balance the term with cross entropy

with a regularizer weight of 0.5 – this bounds introspectability to the range [0, 1]. Because we
want to maximize introspectability, we take the cosine similarity instead of the distance. To ac-

cumulate activations grouped by classes in TensorFlow, the tf.scatter_nd operator is used in

implementation. The remaining implementation is straightforward.

C Additional Activation Heat Maps
To gain a better qualitative understanding of the introspectability metric, we visualize the activations

of the Pareto-optimal solutions of each task. In Figure C2, the solutions of the highest and lowest

introspectability are shown for MNIST and ImageNet-16-120 (see main text for CIFAR-10). Within

each layer, the activations are normalized using z-score normalization. The activations within each

block per class are then averaged for the purpose of visualization. The differences between the

highest- and lowest-scoring models are quite apparent; the activation patterns for each class in

higher-scoring models have notable variance, whereas they are quite constant in lower-scoring

models. The heat maps are best viewed digitally.

D Additional PCA Visualizations
The remaining 2D PCA activation visualizations are shown for the MNIST and CIFAR-10 tasks in

Figure D1 and Figure D2, respectively. For MNIST, there is little discernible difference between the

models with highest and lowest introspectability – this is expected as the difference between these

introspectability scores is small (see the main text). For CIFAR-10, an apparent difference between

the two models can be observed; the spread of points about the origin is more Gaussian with the

higher-scoring model, which, empirically, should indicate a greater mean cosine distance between

class representations. It is important to recall that the PCA projection eliminates thousands of

dimensions used to represent activations. Naturally, this causes small changes in introspectability

to be less apparent in visualizations.
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Figure C1: Mean activations heatmap of the models with (a) highest and (b) lowest introspectability

on the MNIST task.
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Figure C2: Mean activations heatmap of the model with highest introspectability on the ImageNet-16-

120 task.

E Analysis of Operator Selection
We show the operator-level normalized frequencies selected in the Pareto-optimal solutions of each

task in Tables E1-E3. The 3x3 convolutions are most popular across all tasks, followed by either 3x3

average pooling or “zeroize” operators. The skip-connect and 1x1 convolutions are least frequent

among these solutions.

Operation

Normalized

Frequency

3x3 Conv2D 0.51515

3x3 AvgPool2D 0.16667

Zeroize 0.16667

1x1 Conv2D 0.09091

Skip-Connect 0.06061

Table E1: Frequency of operations of solutions in the Pareto front (normalized by total cell operations

across the Pareto front models) on the MNIST task
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Figure D1: 2D PCA of the mean activations per class from the non-dominated models with highest

and lowest introspectability on MNIST.
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Figure D2: 2D PCA of the mean activations per class from the non-dominated models with highest

and lowest introspectability on CIFAR-10.

F Frequentist Analysis of Motifs

We conduct analysis of the most common motifs across the Pareto-optimal solutions of each task,

as shown in Tables F1-F3. Recall that the integer-coded cells are encoded as follows:

• 0: 3x3 Conv2D

• 1: 1x1 Conv2D

• 2: 3x3 AvgPool2D

• 3: Zeroize

• 4: Skip-Connect

We also use an asterisk (*) to match any operator. Within each table, the encodings of sizes 1

through 5 are shown alongside its normalized frequency of that size. Motifs of size 6 are not

shown as we do not evaluate duplicate architectures (other than isomorphisms). The most common

motifs reflect the operator frequencies discussed in the previous section. Interestingly, >67% of the

Pareto-optimal solutions of each task all have a common motif of size 1, and >45% a common motif

of size 2. This suggests that certain cell topologies exhibit inductive biases specific to the task.

G Comparing Motifs Across the Pareto Front

Motif Discovery.
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Operation

Normalized

Frequency

3x3 Conv2D 0.44444

Zeroize 0.24306

3x3 AvgPool2D 0.19097

Skip-Connect 0.06250

1x1 Conv2D 0.05903

Table E2: Frequency of operations of solutions in the Pareto front (normalized by total cell operations

across the Pareto front models) on the CIFAR-10 task

Operation

Normalized

Frequency

3x3 Conv2D 0.48039

3x3 AvgPool2D 0.21078

Zeroize 0.10784

Skip-Connect 0.10784

1x1 Conv2D 0.09314

Table E3: Frequency of operations of solutions in the Pareto front (normalized by total cell operations

across the Pareto front models) on the ImageNet-16-120 task

1. Assemble the following data into a tabular structure: architecture encoding, accuracy, and

introspectability for the Pareto front of the solutions

2. Sort the data by accuracy and then introspectability which results in data with ascending

accuracy and descending introspectability

3. Record the count of each block for each architecture encoding

4. For each architecture encoding in the sorted data, enumerate all applicable motifs of size 1 to 5

(motifs of size 6 cannot exist as architectures are not evaluatedmultiple times). For example, some

architecture encoding [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ] has ∑5

𝑘=1

(
6

𝑘

)
motifs, e.g. [𝑎, ∗, ∗, ∗, 𝑒, ∗] and [∗, 𝑏, 𝑐, ∗, ∗, 𝑓 ]

but not, say, [∗, 𝑏, 𝑐, ∗, ∗, 𝑒]. This is nearly equivalent to its power set minus ∅ and the original

sequence. An asterisk here implies a match with any other operator, and thus allows for the

comparison of motifs between different architectures

5. For each motif, compute the absolute value of the Spearman rank correlation coefficient between

the ranks of the solutions in the sorted data and whether each solution has the motif. If applicable,

the count of the operator is used instead of a simple indicator flag. The intuition here is that we

discover interesting architectures that demonstrably are favored more in one part of the Pareto

front than another, e.g. the high-accuracy vs. high-introspectability regions

6. In addition to each motif having a correlation score, we also record the support (the number of

solutions with the motif) and the motif size

7. Compute the Pareto front of the scored motifs (the costs being the correlation score, the support

and the motif size) to identify the most salient motifs. We heuristically eliminate motifs that

have support less than 3 or correlation less than 0.2

All figures from this discovery are present at the end of the appendices for the sake of space.
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Size

Normalized

Frequency

Encoding

1 0.81818 [0 * * * * *]

2 0.45455 [0 * * * 3 *]

2 0.45455 [0 * 0 * * *]

2 0.45455 [0 * * * * 0]

2 0.45455 [* * 0 * * 0]

3 0.36364 [0 * 0 * * 0]

4 0.27273 [0 * 0 4 * 0]

5 0.18182 [0 0 0 4 * 0]

5 0.18182 [0 * 0 4 3 0]

Table F1: Frequency of encodings of solutions in the Pareto front (normalized by the number of Pareto-

optimal solutions) on the MNIST task. The top motif (motifs if tied frequency) for each size

is shown only

Size

Normalized

Frequency

Encoding

1 0.70833 [* * * * 3 *]

2 0.50000 [* * * * 3 0]

3 0.29167 [0 * 0 * 3 *]

3 0.29167 [* * 0 * 3 0]

4 0.18750 [0 * 0 * 3 0]

5 0.08333 [0 * 0 1 3 0]

Table F2: Frequency of encodings of solutions in the Pareto front (normalized by the number of Pareto-

optimal solutions) on the CIFAR-10 task. The top motif (motifs if tied frequency) for each

size is shown only

H Comparing Evolution of Single- and Multi-Objective Search

We illustrate the evolution of accuracy and introspectability of the models on the Pareto front over

each generation in Figure H1-Figure H3. Each figure contrasts single-objective with multi-objective

optimization to better understand the benefit of NSGA-II in our framework. Note that we do

not expect a strict increase in each objective at each generation, which would be expected for

population-level statistics, as opposed to statistics within the Pareto front. With single-objective

optimization, we can observe that solutions with higher introspectability tend to lie beyond the

95% confidence interval. This indicates fluke solutions, whereas multi-objective more confidently

produces higher-introspectability solutions.

I Comparing XNAS Accuracy with Related NAS Methods

We compare XNAS to other multi-objective approaches on the CIFAR-10 task. Building on the

collected results and approach from Lu et al. (2019), we take the architecture with the best accuracy

and increase the number of filters by a factor of four. We then perform full training on the CIFAR-10

dataset for 200 epochs. The comparison of results and methods is shown in Table I1. While XNAS
does not achieve the best accuracy (nor was this the objective of this research), the result is still

competitive, especially considering the trade-off between accuracy and introspectability.
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Size

Normalized

Frequency

Encoding

1 0.67647 [* 0 * * * *]

2 0.47059 [* 0 * * * 0]

3 0.23529 [* 0 * 0 * 0]

4 0.11765 [2 0 * 1 * 0]

4 0.11765 [* 0 * 0 0 0]

4 0.11765 [0 0 * * 0 0]

4 0.11765 [0 0 * 0 * 0]

4 0.11765 [0 * * 0 0 0]

5 0.05882 [3 0 2 2 * 3]

5 0.05882 [2 0 1 1 * 0]

5 0.05882 [2 0 * 1 4 0]

5 0.05882 [2 0 4 0 0 *]

5 0.05882 [2 0 * 0 0 0]

Table F3: Frequency of encodings of solutions in the Pareto front (normalized by the number of Pareto-

optimal solutions) on the ImageNet-16-120 task. The top motif (motifs if tied frequency, up

to 5) for each size is shown only
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Figure H1: The mean accuracy (blue) and introspectability (green) of the Pareto front solutions each

generation on the MNIST task. (a) single-objective; (b) multi-objective. The shaded region

indicates the 95% confidence interval of solutions at each generation.

J Additional Ablation Studies

We perform additional studies to understand the relationships between the objectives, accuracy

and introspectability, and the generalization error, number of parameters, and training speed

of architectures. Figure J1 demonstrates that introspectability and accuracy have an inverse

relationship on the generalization error – this error increases with high-accuracy models and

decreases with high-introspectability models. Likewise, the trend can be observed with the number

of parameters and training speed as shown in Figures J2 and J3, respectively. These figures follow

a similar trend as the number of parameters correlates with the number of FLOPs and thus the

training time. As discussed in Section 4.4 of the main text, high-introspectability networks tend to

have a more pooling layers whereas high-accuracy networks have more convolutional layers. This

helps to explain the trends observed in the number of parameters. A takeaway from this analysis is

that the trade-off between accuracy and introspectability also implies a trade-off in parameters

(and FLOPs), training time, and generalization error.
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Figure H2: The mean accuracy (blue) and introspectability (green) of the Pareto front solutions each

generation on the CIFAR-10 task. (a) single-objective; (b) multi-objective. The shaded

region indicates the 95% confidence interval of solutions at each generation.
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Figure H3: The mean accuracy (blue) and introspectability (green) of the Pareto front solutions each

generation on the ImageNet-16-120 task. (a) single-objective; (b) multi-objective. The

shaded region indicates the 95% confidence interval of solutions at each generation.

K Model Debugging Experiments

Here, we study the ability of our activations calibration approach to correct bugs in models. We first

demonstrate that there is a strong connection between the pairwise activation distances used in the

formulation of introspectability and the ground truth confusion matrix. To make this comparison,

the pairwise distances are negated as disentanglement (separation) between class representations is

posited to correlate with confounding. Since the distance between the activations of a class and itself

is 0, ideally, the distance between such and the activations of other classes is maximized. There is

no information about ground truth available in computing pairwise distances, i.e. the computation

is symmetrical and unconditioned. In turn, we compare this information to a confusion matrix

folded along the diagonal. This means that element 𝑥𝑖, 𝑗 , 𝑖 ≠ 𝑗 in the folded confusion matrix is

equivalent to the sum 𝑥𝑖, 𝑗 +𝑥 𝑗,𝑖 in the original confusion matrix. On a higher level, each element 𝑥𝑖, 𝑗
is either the number of true positives for a class (when considering the diagonal), or the support of

class 𝑖 being predicted when class 𝑗 were true and the support of the converse. To support this, we

measure the correlation between the negated pairwise activation distances and the folded ground

truth confusion matrix across Pareto optimal models trained on CIFAR-10. High-introspectability

models achieve a correlation of 𝜌 = 0.85 while low-introspectability models achieve a correlation

of 𝜌 = 0.59. With this motivation, we demonstrate how model bugs can be identified and corrected

in the following case study.
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Method Error Other Objective Compute

PPP-Net

Dong et al. (2018)

4.36%

FLOPs, #

parameters, or

inference time

Nvidia Titan X

MONAS

Hsu et al. (2018)

4.34% Power Nvidia 1080 Ti

NSGA-Net

Lu et al. (2019)

3.85% FLOPs

Nvidia 1080 Ti

8 GPU Days

XNAS 4.45% Introspectability

Nvidia Tesla P100

6 GPU Days

Table I1: Multi-objective methods for CIFAR-10 (best accuracy for eachmethod). Table adapted from Lu

et al. (2019)

Case Study: Bug Identification and Correction. Figure K1 demonstrates for a random higher-

introspectability model trained on CIFAR-10 that there is strong correlation between the negated

pairwise activation distances and the ground truth confusion matrix folded along the diagonal

(𝜌 = 0.81). Noticeably, the model confounds the classes 3 and 5, which is reflected in the pairwise

activations as the smallest distance (largest negated distance).

With the bug in the model identified, we formulate a strategy to mitigate the issue. The key

of our approach is to push the representations of classes 3 and 5 apart in order to reduce the

confounding of one another. We accomplish this by using the introspectability regularizer approach

with pairwise coefficients. The generalization of this to arbitrary pairs is formalized in Eq. (4).

Introspectability
reg

(M,X) = −1(
𝑁𝐶

2

) 𝑁𝐶∑︁
𝑐=1

𝑁𝐶∑︁
𝑘=𝑐+1

𝐷 (Φ̄(𝑐) , Φ̄(𝑘) ) × 𝜔𝑖, 𝑗 (4)

where 𝜔𝑖, 𝑗 is a weight for each class pair (𝑖, 𝑗). With every 𝜔𝑖, 𝑗 = 1 this is equivalent to the

untargeted introspectability regularizer. If the aim is to target all confounded predictions, one

can set all 𝜔𝑖, 𝑗 proportionally to the pairwise activation distances (or folded confusion matrix).

However, we target a single pair in this case study. In our experiment, the model is trained with

the regularization term for an additional 5 epochs, a learning rate of 0.001, 𝜔3,5 = 25, and all other

𝜔𝑖, 𝑗 = 1. The results are visualized in Figure K2. The approach is stronger in identifying bugs than

mitigating them, although there is improvement without significant degradation of accuracy (±0.6%

across 10 trials). We leave the tuning of hyperparameters and alternative weighting schemes to

future exploration.

L Extended Background

DNN Inspection within Explainable AI (XAI). The opaque nature of deep neural networks (DNNs)
has ultimately led to the sub-field of explainable AI (XAI) Gunning (2019), which was denominated

in 2016 by DARPA, although relevant work predates this by years. Relevant to the subject matter

of this work are XAI methods of DNN inspection. This suite of methods enables the debugging of

model behavior, the detection of dataset errors, and the development of adversarial attacks. The

authors of Koh and Liang (2017) scale influence functions, a robust statistics method, to DNNs

to understand the effect of training points on a prediction. DNN visualization tools have been

proposed to provide qualitative modes of analysis. Notably, Erhan et al. (2009); Yosinski et al. (2015)

provide tools for visualizations by gradient ascent, deconvolution for highlighting input images,

and discovering preferred input patterns for each class. Probing-based methods aim to qualify

the role of DNN internal elements (neurons, latent representations, etc.). In Kim et al. (2018); Bau
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Figure J1: The effect of introspectability and accuracy on generalization error across the tasks.

et al. (2020), methods are proposed to relate DNN internals to semantic concepts, such as textures,

shapes, colors, or even people. Another approach introduced in Ghorbani and Zou (2020) is to use

Shapley values from game theory to quantify the influence each neuron has on overall DNN error.

More related to our work are those related to disentanglement, i.e. the separation of concept- or

class-relevant information in a network. For instance, Zhang et al. (2018) proposes the learning of

interpretable CNN filters by coercing feature maps to resemble hand-crafted templates. Moreover,

the variational autoencoder (VAE) Kingma and Welling (2014) has been extended to produce a

disentangled latent space by regularizing the bottleneck layer Higgins et al. (2017). In contrast, we

optimize for DNNs with disentangled internal representations of classes without explicit constraints

on the loss, modifications to the architecture, or hand-crafted activation patterns. This also allows

for the use of non-differentiable objectives.

M Extended Crossover and Mutation Details

Mating comprises two core operations: crossover and mutation. The crossover operator produces
offspring by combining the encodings of two parents. The operator combines the building blocks

between successful parents to exploit the implicit parallelism of population-based search (Holland,

1992). Due to the integer-based encoding that we employ in this work, we elect to use simulated

binary crossover (Deb et al., 2007), which uses a probability density function to simulate the single-

point crossover of binary-coded genetic algorithms. The mutation operator produces offspring
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Figure J2: The effect of introspectability and accuracy on the number of parameters across the tasks.

by modulating one or more of the variables of a single parent. We specifically select polynomial

mutation, which follows the same probability distribution as simulated binary crossover. Both

crossover and mutation also have a parameter 𝑝 that controls the probability that the respective

operator is applied to a member of the population.

N Dataset Information

MNIST. The MNIST LeCun et al. (2010) dataset is available at https://yann.lecun.com/exdb/
mnist/. Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset, which is a derivative

work from the original NIST datasets. MNIST dataset is made available under the terms of the

Creative Commons Attribution-Share Alike 3.0 license. The dataset does not contain personally

identifiable information or offensive content.

CIFAR-10. The CIFAR-10 Krizhevsky (2009) dataset is available at https://www.cs.toronto.edu/
%7Ekriz/cifar.html. There is no license provided for the dataset. The dataset does not contain

personally identifiable information or offensive content.

ImageNet-16-120. The ImageNet-16-120 (Dong and Yang, 2020) dataset is a subset of ImageNet

which is available at https://www.image-net.org/download.php. The terms of using the ImageNet

dataset are also outlined at https://www.image-net.org/download.php. ImageNet does not own

the copyright to the images, rather it compiles a list of web images per synset as described at https:
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Figure J3: The effect of introspectability and accuracy on the training speed across the tasks.

//www.image-net.org/about.php. The dataset is known to contain some personally identifiable

information and potentially offensive content – see Asano et al. (2021) for further details.

O Scaling Up XNAS

We scale XNAS to clusters comprising an arbitrary number of compute nodes using the distributed

framework, Ray (Moritz et al., 2018). Given a set of𝑀 nodes {𝑛𝑖}𝑀𝑖=1
, 𝑛1 is treated as a head node

that is responsible for running the core NSGA-II optimization loop and the core Ray server. The
remaining nodes {𝑛𝑖}𝑀𝑖=2

are configured as workers available to train and evaluate architectures

on a dataset. When a new generation of architectures is created, each offspring is submitted for

fitness evaluation to a queue by the head node. Each job in the queue is offloaded to a free worker

until all workers complete their jobs and the queue is empty. The head node 𝑛1 also is treated as an

additional worker if it has free resources. Each worker node can execute in parallel as many jobs as

it has GPUs.

P FLOPs Analysis

Here, we show the relationship between FLOPs and the two objectives, accuracy and introspectabil-

ity. While fewer convolutional layers are preferred by the introspectability metric, there is not a

direct relationship between either objective and FLOPs. Figure P1 shows the relationship for the
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Figure K1: Heat maps of (left) the negated pairwise activation distances as part of the introspectability

computation, and (right) the ground truth confusion matrix folded along the diagonal. The

heat maps are shown for a random model trained on CIFAR-10. As can be seen, the model

confounds the classes 3 and 5, which is reflected in the distance between activations.
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MNIST, CIFAR-10, and ImageNet-16-120 datasets for the Pareto fronts discovered by multi-objective

XNAS.
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Figure P1: Relationship between FLOPs and the two objectives, accuracy and introspectability, on

the MNIST, CIFAR-10, and ImageNet-16-120 datasets for the Pareto fronts discovered by

multi-objective XNAS.
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Figure Q3: All discovered motifs among the Pareto optimal solutions on the MNIST task. See text for

description of the motif discovery process. Each red solution indicates that its architecture

has the motif shown in the sub-plot title. The remaining solutions are shown in blue. For

the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q4: Discovered motifs of size 2 among the Pareto optimal solutions on the MNIST task. See

text for description of the motif discovery process. Each red solution indicates that its

architecture has the motif shown in the sub-plot title. The remaining solutions are shown

in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q5: Discovered motifs of size 3 among the Pareto optimal solutions on the MNIST task. See

text for description of the motif discovery process. Each red solution indicates that its

architecture has the motif shown in the sub-plot title. The remaining solutions are shown

in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q6: Discovered motifs of size 4 among the Pareto optimal solutions on the MNIST task. See

text for description of the motif discovery process. Each red solution indicates that its

architecture has the motif shown in the sub-plot title. The remaining solutions are shown

in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q7: Discovered motifs of size 5 among the Pareto optimal solutions on the MNIST task. See

text for description of the motif discovery process. Each red solution indicates that its

architecture has the motif shown in the sub-plot title. The remaining solutions are shown

in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q8: All discovered motifs among the Pareto optimal solutions on the CIFAR-10 task. See text for

description of the motif discovery process. Each red solution indicates that its architecture

has the motif shown in the sub-plot title. The remaining solutions are shown in blue. For

the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q9: Discovered motifs of size 2 among the Pareto optimal solutions on the CIFAR-10 task. See

text for description of the motif discovery process. Each red solution indicates that its

architecture has the motif shown in the sub-plot title. The remaining solutions are shown

in blue. For the N/A plot, none of the discovered motifs apply to the architecture.

36



0.7

0.8
Ac

cu
ra

cy

Motif-3 = conv3x3 | * | * | * | zeroize | conv3x3

0.7

0.8

Ac
cu

ra
cy

Motif-3 = conv3x3 | * | * | skip | zeroize | *

0.7

0.8

Ac
cu

ra
cy

Motif-3 = conv3x3 | skip | conv3x3 | * | * | *

0.7

0.8

Ac
cu

ra
cy

Motif-3 = conv3x3 | * | conv3x3 | * | * | conv3x3

0.7

0.8

Ac
cu

ra
cy

Motif-3 = N/A

0.7

0.8

Ac
cu

ra
cy

Motif-3 = * | * | conv3x3 | * | zeroize | conv3x3

0.7

0.8

Ac
cu

ra
cy

Motif-3 = conv3x3 | * | conv3x3 | * | zeroize | *

0.7

0.8

Ac
cu

ra
cy

Motif-3 = * | skip | * | * | zeroize | conv3x3

0.7

0.8

Ac
cu

ra
cy

Motif-3 = * | zeroize | pool3x3 | * | zeroize | *

0.0 0.1 0.2 0.3 0.4
Introspectability

0.7

0.8

Ac
cu

ra
cy

Motif-3 = conv3x3 | * | * | zeroize | * | pool3x3

CIFAR-10

Figure Q10: Discovered motifs of size 3 among the Pareto optimal solutions on the CIFAR-10 task. See

text for description of the motif discovery process. Each red solution indicates that its

architecture has the motif shown in the sub-plot title. The remaining solutions are shown

in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q11: Discovered motifs of size 4 among the Pareto optimal solutions on the CIFAR-10 task. See

text for description of the motif discovery process. Each red solution indicates that its

architecture has the motif shown in the sub-plot title. The remaining solutions are shown

in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q12: All discovered motifs among the Pareto optimal solutions on the ImageNet-16-120 task.

See text for description of the motif discovery process. Each red solution indicates that its

architecture has the motif shown in the sub-plot title. The remaining solutions are shown

in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q13: Discovered motifs of size 2 among the Pareto optimal solutions on the ImageNet-16-120

task. See text for description of the motif discovery process. Each red solution indicates

that its architecture has the motif shown in the sub-plot title. The remaining solutions are

shown in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q14: Discovered motifs of size 3 among the Pareto optimal solutions on the ImageNet-16-120

task. See text for description of the motif discovery process. Each red solution indicates

that its architecture has the motif shown in the sub-plot title. The remaining solutions are

shown in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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Figure Q15: Discovered motifs of size 4 among the Pareto optimal solutions on the ImageNet-16-120

task. See text for description of the motif discovery process. Each red solution indicates

that its architecture has the motif shown in the sub-plot title. The remaining solutions are

shown in blue. For the N/A plot, none of the discovered motifs apply to the architecture.
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