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Abstract
We consider the problem of sampling text from
an energy-based model. This arises, for example,
when sampling text from a neural language model
subject to soft constraints. Although the target
distribution is discrete, the internal computations
of the energy function (given by the language
model) are differentiable, so one would like to ex-
ploit gradient information within a method such
as MCMC. Alas, all previous attempts to general-
ize gradient-based MCMC to text sampling fail to
sample correctly from the target distribution. We
propose a solution, along with variants, and study
its theoretical properties. Through experiments on
various forms of text generation, we demonstrate
that our unbiased samplers are able to generate
more fluent text while better adhering to the con-
trol objectives. The same methods could be used
to sample from discrete energy-based models un-
related to text.

1. Introduction
Recent papers have performed controlled text generation
from pretrained language models by formulating energy-
based models over text and applying Markov Chain Monte
Carlo (MCMC) algorithms (Qin et al., 2022; Kumar et al.,
2022; Mireshghallah et al., 2022; Amini et al., 2023).
Energy-based language modeling is versatile, allowing a
generic pretrained language model to be modified by arbi-
trary energy terms that express desired traits for the output
text. The normalization constant is intractable to compute
(Lin et al., 2021), as for other energy-based models (EBMs),
but one can use MCMC algorithms to draw samples.

However, simple approaches to discrete MCMC, such as
Gibbs sampling, tend to scale poorly (Deng et al., 2020),
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for reasons we discuss in §3.1. To address this problem, the
approaches above exploit the fact that the original language
model and the auxiliary energy terms are differentiable with
respect to the continuous embeddings of the input tokens,
even though the tokens themselves are discrete. The result-
ing first-order gradient information can be incorporated into
an MCMC procedure, potentially accelerating convergence.

As one of the most successful gradient-based samplers,
Hamiltonian Monte Carlo (HMC) and its variants (Duane
et al., 1987; Neal, 1993; Hoffman and Gelman, 2014)
have been proven to be highly effective in sampling from
high-dimensional, continuous distributions, making them
the default samplers of many probabilistic programming lan-
guages (Carpenter et al., 2017; Bingham et al., 2018; Phan
et al., 2019). Adapting HMC to a discrete setting, Amini
et al. (2023) recently proposed a promising sampler for
controlled text generation. Alternatively, Langevin dynam-
ics (Grenander and Miller, 1994; Welling and Teh, 2011),
another gradient-based sampler, has been a more popular
candidate to adapt into NLP models due to its simplicity.1

As a result, Qin et al. (2022) and Kumar et al. (2022)
proposed text samplers inspired by Langevin dynamics.

Unfortunately, a closer look reveals that none of these
gradient-based Markov chains for text generation provably
converge to their intended distributions in the limit, as we
theoretically and empirically show in §3.3. While these pre-
vious papers did achieve good results on downstream tasks,
this observation raises the question: What would happen if
we sampled from the target distribution correctly?

In this work, we tackle this question by proposing several
tractable gradient-based samplers that are faithful to the tar-
get energy-based text distribution, meaning that they have
the correct limit distribution. We derive two novel samplers,
based on Langevin dynamics and Gibbs sampling, respec-
tively, and then develop their adaptive and hybrid variants.
When applicable, we also prove convergence and mixing
properties of our proposed samplers.

Faithful samplers are not guaranteed to outperform unfaith-

1In fact, it is well-known that Langevin dynamics can be seen
as HMC where the Hamiltonian dynamics are simulated for a
single step. See, e.g., Neal (1993) or Kennedy (1990).
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ful methods empirically. Even though prior methods ap-
proach a biased version of the target distribution, they might
benefit from approaching it more quickly, or the bias might
actually be a useful adjustment to an imperfect energy func-
tion. Thus, through experiments on various forms of text
generation, we explore whether our proposed faithful sam-
plers can generate more fluent text while adhering to the
control target better. In our experiments, our faithful sam-
plers did outperform previous methods.

2. Energy-based Models of Text
Pretrained language models (Radford et al., 2019; Raffel
et al., 2020; Brown et al., 2020) have demonstrated an im-
pressive ability to generate fluent text. They do so by factor-
izing a locally normalized string-valued distribution pLM(w)
(w ∈ Σ∗) over some vocabulary Σ (Du et al., 2023):

pLM(w) = pLM(EOS | w)

N∏
n=1

pLM(wn | w<n) (1)

They train the local conditionals pLM(· | w<n) on a mas-
sive text corpus. Such a corpus is often heterogeneous
(derived from a mix of newspapers, blog posts, etc.) and
does not focus on any particular topic, style, sentiment, or
communicative intent. Language models are therefore often
prompted with a prefix that influences the generation of sub-
sequent words. For more precise control, it can be useful to
employ controlled generation—sampling a text that satisfies
one or several explicit soft constraints provided at runtime
to the sampler. Such constraints can be lexical, seman-
tic, grammatical, or arbitrary functions that evaluate some
global property over the entire sequence. We decrease the
(log-)probability of each text to the degree that it violates the
soft constraints. This leaves us with the challenging problem
of sampling from a (discrete) unnormalized probability dis-
tribution, which may be presented in the form of an energy-
based model (EBM; Hinton 2002; LeCun et al. 2007):

π(w) =
1

Z
exp(−U(w)) (2)

Here U(w) is called the energy function.2 The flexibility of
this framework lies in the fact that one can refine an existing
model by coupling its energy function with arbitrary soft
constraint functions that assess whether the output text has
desirable attributes. Concretely, we can set

U(w) = ULM(w) +

I∑
i=1

Ui(w) (3)

2The notation U(w) rather than the usual E(x) is drawn from
the HMC literature, which calls it the potential function. Energy-
based models (2) are sometimes trained directly, for example by
noise-contrastive estimation (Deng et al., 2020); our sampler would
work for these models as well as for the model in Eq. (3).

where ULM(w)
def
= − log pLM(w) (from Eq. (1)) and each

of the I constraint functions Ui(w) measures the extent
to which the sequence w violates the ith constraint. This
energy function yields a distribution that is related to
pLM(w) but places more probability mass on the sequences
that better satisfy the constraints.

3. Text Generation as MCMC
3.1. Sampling from EBMs

The flexible formulation in Eqs. (2) and (3) allows us to cast
controlled text generation as the problem of sampling from
an energy-based model. However, EBMs can be challenging
to sample from.

Consider sampling a sequence of N words w =
w1 · · ·wN ∈ ΣN from the EBM defined by Eqs. (2) and (3).
The normalization constant Z from this EBM is an in-
tractable sum of |Σ|N terms.3 The locally normalized con-
ditional probabilities needed for left-to-right autoregressive
sampling are effectively ratios of such normalization con-
stants, and are likewise intractable (Lin et al., 2021).

As for other unnormalized distributions, we may resort to
designing a Markov Chain Monte Carlo (MCMC) sampler.
In our situation, the combinatorially large underlying state
space ΣN means that the basic Random Walk Metropolis
algorithm (Metropolis et al., 1953) would have near-zero
acceptance rate: most uniform samples from ΣN are im-
probable under π. Gibbs sampling (Geman and Geman,
1984), another commonly used MCMC algorithm, requires
one to be able to efficiently sample from the conditional
π(w′

n | w\n).4 This is also impractical since sampling
π(· | w\n) in a locally normalized LM would be slow.5

3.2. Gradient-based Sampling via Continuous
Relaxation

The challenges outlined in the previous section indicates
that we need additional techniques to obtain a sampling pro-
cedure that yields quality samples in a reasonable amount of
time. Observing that ULM defined from a pretrained neural
LM is differentiable, as well as possibly the constraint func-

3It can be tractable in special cases such as a linear-chain
Markov random field, but is not in general.

4We use w\n to denote the set of random variables of all indices
except n, i.e., w\n = w1 · · ·wn−1wn+1 · · ·wN .

5Doing so would involve computing U(w′) for |Σ| − 1 strings
w′ obtained by replacing wn in different ways. When ULM is
autoregressive, each U(w′) takes time Ω(N − (n− 1)) to com-
pute. A more practical alternative is the Metropolis-within-Gibbs
technique of sampling w′

n from some faster proposal distribution,
subject to a Metropolis–Hastings acceptance probability that con-
siders U(w′) for only the single proposed w′. We will apply that
technique ourselves in §4.3, using a novel gradient-based proposal
distribution.
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tions Ui, several prior work have taken inspiration from the
success of gradient-based sampling in other domains (Neal,
2011; Hoffman and Gelman, 2014; Carpenter et al., 2017;
Welling and Teh, 2011; Du and Mordatch, 2019; Song and
Ermon, 2020) and attempted to leverage gradient informa-
tion when sampling from text-based EBMs (Qin et al., 2022;
Kumar et al., 2022; Amini et al., 2023).

However, problems arise because gradient-based sampling
algorithms such as HMC or Langevin dynamics only di-
rectly apply to continuous distributions. To apply such
algorithms to sample from discrete distributions, prior work
that developed gradient-based sampling for energy-based
text generation all focus on continuous relaxations of the
underlying discrete space. In particular, Qin et al. (2022)
runs a sampler entirely in the continuous space Rd and then
finds a discrete word sequence with similar embeddings.
Kumar et al. (2022) similarly take gradient-based random
steps in Rd but project back to a discrete word sequence
after each step. Amini et al. (2023) use Voronoi tessellation
to relax the discrete distribution over word embeddings into
a piecewise continuous distribution with the embeddings as
the centers of the Voronoi cells.

Unfortunately—as we show below—none of these continu-
ous relaxation techniques resulted in a sampler that correctly
samples from the target energy-based distribution over text.
Moreover, correcting these samplers with the Metropolis-
Hastings technique (App. C.3) is not possible in practice
because the required acceptance probability is intractable.
This is because while Kumar et al. (2022) or Amini et al.
(2023) can sample from their transition kernel q(w′ | w),
the probability of this discrete transition (and of the reverse
transition) cannot be computed in closed form, as it involves
an integral over an intermediate continuous draw (App. B.1).

3.3. Unfaithfulness of Gradient-based Text Samplers

In this section, we explain and illustrate in detail why ex-
isting methods fail to converge to their intended distri-
butions and thus are unfaithful samplers. To do so, we
consider the setting of sampling a sequence of N words
w = w1 · · ·wN ∈ ΣN from an energy-based sequence
model. With a slight abuse of notation, we assume that
U(w) takes the form U(x) where x = (x1, . . . ,xN ) ∈
X def

= VN ⊂ RNd is the sequence of word embeddings from
the finite set V ⊂ Rd.

COLD (Qin et al., 2022). COLD observes that, while the
EBM induced from a language model is defined as

πLM(x) =
exp(−ULM(x))∑

y∈X exp(−ULM(y))
, x ∈ X (4)

the implementation of the energy function U(x) can also
take vectors other than word embeddings as its input. COLD

proceeds to use Langevin dynamics that include U(x) as
an energy function over the continuously relaxed space. In
effect, COLD samples from a density similar to6

π̃COLD-LIKE(x) =
exp(−ULM(x))∫

RNd

exp(−ULM(y)) dy

, x ∈ RNd

(5)

which has the same numerator as Eq. (4). It then generates
a discrete sentence w from left to right, using a rounding
heuristic that tries to remain plausible under pLM(w) while
using word embeddings similar to the sampled x ∈ RNd.

When COLD performs Langevin dynamics over Eq. (5), its
samples are not distributed according to Eq. (4). We will
illustrate this formally in Example 3.1 below.

As a simple illustration of the problem, suppose that N =
1 and that the words water and beer have equal energies
and thus have equal probabilities under the target discrete
EBM. COLD is about equally likely to draw x1 from an
ϵ-ball around each word. However, suppose there are more
words in the vicinity of beer: the ϵ-ball around beer also
includes several slang synonyms (hooch, booze, etc.). Then
drawing x1 in that ϵ-ball may result in rounding to one of
these near neighbors instead of beer. So the probability
that COLD specifically samples beer may—incorrectly—be
several times less than the probability that it samples water.

MUCOLA (Kumar et al., 2022). Similar to COLD, MU-
COLA also takes Langevin steps in the underlying continu-
ous space RNd, but after each step, it projects back to the
nearest point in the discrete embedding space X :

x′ = ProjX
(
x− α

2
∇U(x) +

√
αξ
)

(6)

where ξ ∼ N (0, I), α is the stepsize, and ProjX uses the
Euclidean metric.

Troublingly, the update equation (6) and hence the stationary
distribution of MUCOLA depends only on the gradients
∇U(x) for x ∈ X , and not on the actual values U(x). Thus,
given an energy function U , it is easy to construct infinitely
many other energy functions U ′ on which MUCOLA would
have the same behavior, but which all give rise to different
EBMs. Clearly, MUCOLA samples correctly from at most
one of these EBMs.

This shows that MUCOLA is unfaithful. In Example 3.1
below, we give a concrete example where Eq. (6) fails to
converge to the target distribution.

SVS (Amini et al., 2023). SVS resembles COLD in that it
correctly samples x from some continuous energy-based

6In practice, COLD operates in logit space and uses a weighted
average of word embeddings, which keeps it in the convex hull of
VN and ensures a finite denominator. However, this detail does
not affect our following point.
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Figure 1. Total variation distance between πmcmc, the limiting dis-
tribution of MCMC algorithms from previous work, and πtoy,
the toy language model distribution from Example 3.1. πmcmc

is computed with spectral decomposition when possible. We can
observe that the limiting distribution of COLD is far from the target
distribution, and MUCOLA, depending on its step size α, may be
close to the target distribution. Nevertheless, it does not have the
correct distribution for any α.

model over RNd (though it uses HMC to do so) and then
rounds to obtain w. The main difference is that it attempts
to construct this continuous EBM so that the full procedure
actually samples from the target distribution. Specifically, it
constructs a “relaxation” of the original EBM: a piecewise
Gaussian energy function in which the Voronoi cell around
each x ∈ X has a truncated Gaussian, centered at x and
scaled to have the correct integral. Unfortunately, finding
the correct scaling factors would require actually computing
high-dimensional Gaussian integrals, which is infeasible
App. B. Thus, the SVS implementation drops the scaling
factors, which is only correct for simple symmetric models
such as Ising models.

Example 3.1 (A Toy Energy-based LM). To further illus-
trate the previous claims, we consider a toy energy-based
LM over a sequence of N tokens, with a binary vocabulary
and a one-dimensional embedding V = Σ = {−1,+1}.
The energy function we use has the form

U(x) = −β( 12x
⊤Ax+ b⊤x) (7)

with x ∈ VN and πtoy(x) ∝ exp(−U(x)). Concretely,
we set A to be the adjacency matrix of an N -cycle and
b = 0. This energy-based LM is a so-called linear-chain
Ising model with zero magnetic field.

We choose this model for the following reasons:

1. The energy function is differentiable, and hence all
previous algorithms apply;

2. When N is not too large, we can compute the exact
distribution;

3. The binary vocabulary allows us to compute the transi-
tion matrix of MUCOLA exactly as well as its station-

ary distribution.7

We set N = 5 and use spectral decomposition of the transi-
tion matrix to calculate the exact stationary distribution of
MUCOLA. For COLD, we estimate the multi-dimensional
Gaussian’s quadrant probabilities with 1 million samples.

From Fig. 1, we can see that the limiting distribution of
COLD fails to match the target language model distribution
πtoy, as we remarked earlier. On the other hand, we interest-
ingly observe that, for a certain range of α, MUCOLA can
in fact approximate the true distribution fairly well. This
may explain the fact that MUCOLA performs better than
COLD in actual language generation tasks. Nevertheless,
MUCOLA is not able to sample from the true distribution
regardless of the value of α.8 //

4. Faithful Gradient-based Text Generation
In this section, we develop faithful samplers. We first de-
velop a Langevin-based sampler in §4.1, which we term
p-NCG. We discuss its theoretical properties in §4.2. We
then develop a Gibbs-based sampler in §4.3. We conclude
with a discussion on hybrid samplers in §4.4.

We accomplish this by returning to the standard Metropolis–
Hastings scheme (reviewed in App. C.3). While we again
use a gradient-informed transition kernel, we construct it
such that the discrete transition probabilities p(x′ | x) and
p(x | x′) can be computed in closed form. This allows us to
compute the acceptance probability of a proposed transition.

4.1. A Langevin-based Sampler

Given the Langevin update in continuous space,

x′ = x− α

2
∇U(x) +

√
α ξ (8)

where ξ ∼ N (0, I), a natural way to adapt it to our discrete
setting is to project the updated coordinates in the relaxed
continuous space back to the discrete space X of word
sequence embeddings:

x′ = ProjX
(
x− α

2
∇U(x)︸ ︷︷ ︸

µx

+
√
α ξ
)

(9)

This strategy is used by MUCOLA (Kumar et al., 2022). It
works reasonably well9 but is biased as discussed in §3.3.
Moreover, it cannot be corrected by Metropolis–Hastings

7The transition probability of MUCOLA is in general infeasible
to compute. See App. B.1.

8We also note that, in this specific model, SVS is able to sample
from the correct distribution because the Voronoi cells induced by
the embeddings have equal measure due to symmetry. However,
this is not true in general language models.

9In our preliminary experiments, we found MUCOLA to be the
best-performing previous method.
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because the acceptance probability involves computing the
same high-dimensional integral that made the HMC-based
sampler in SVS (Amini et al., 2023) infeasible.10

The key property of Eq. (9) is that it is likely to sample x′ ∈
X that is close to µx. After all, if we omitted the projection
operator, then we would have x′ = µx +

√
α ξ. That

is, the probability of drawing a specific x′ ∈ RNd would
simply be the probability of drawing x′ from N (µx, α).
This probability decreases as x′ moves farther away from
µx, which also tends to be true after projection.

We can preserve this property of MUCOLA without using
the projection operator. Instead, we directly define a discrete
proposal distribution q(x′ | x), by choosing x′ ∈ X with
probability proportional to its density under N (µx, α):

q(x′ |x) ∝ exp

(
−
∥x′ − µx∥22

2α

)
(10a)

= exp

(
− 1

2α

∥∥∥x′ −
(
x− α

2
∇U(x)

)∥∥∥2
2

)
(10b)

The Metropolis–Hastings acceptance probability associated
with this proposal distribution is simple to compute. Be-
cause there is no projection operator, we avoid the infeasible
integral that would be needed to correct MUCOLA with
Metropolis–Hastings.

This variant also avoids the water/beer problem that plagued
all the methods of §3.3. Our proposal distribution q(x′ | x)
does not care whether x′ has many near neighbors in the
discrete space X . Since our target distribution π(x′) in
Eq. (2) does not care either, our proposal distribution is
well-matched to the target distribution and should enjoy a
high acceptance rate. For example, in a symmetric situation
where U(water) = U(beer) (so π(water) = π(beer)) and
||beer − µwater|| = ||water − µbeer|| (so q(beer | water) =
q(water | beer)), the Metropolis–Hastings acceptance prob-
ability (28) is 1, even if beer has more near neighbors.
In contrast, MUCOLA would have q(beer | water) <
q(water | beer) if beer has more near neighbors, since
then there is a low probability of choosing a step

√
α ξ that

comes closer to beer than to any of its neighbors.

With a few steps of derivation (detailed in App. D), we can
rewrite the proposal in Eq. (10b) as

q(x′ | x) ∝ (11)

exp

(
− 1

2
∇U(x)⊤(x′ − x)︸ ︷︷ ︸

Term (A1)

− 1

2α
∥x′ − x∥22︸ ︷︷ ︸
Term (A2)

)

Let us examine Eq. (11) more closely. We notice that Term
(A1) is in effect performing a first-order Taylor expansion,

10For details of why this integral shows up in metropolizing
MUCOLA, see App. B.1 for details.

i.e., U(x′) − U(x) ≈ ∇U(x)⊤(x′ − x), in an attempt
to move to a state with lower energy. On the other hand,
first-order approximation is only accurate locally, and hence
Term (A2) acts as a regularizer that decreases the probability
of moving to x′ that is too far from x. The regularizer is
stronger for small stepsize α.

Finally, when applying Eq. (11) to realistic language models
such as GPT-2, we found that the ℓ2-norm penalty often
runs into pathological situations where a few indices’ large
deviation disrupts the proposal distribution and results in
low acceptance rate. We hypothesize that this is due to
the unusual geometry of the underlying embedding space
(Mimno and Thompson, 2017) and found that using alter-
native norms is an effective remedy. This leads to our final
form of proposal distribution:

q(x′ | x) ∝ (12)

exp

(
− 1

2
∇U(x)⊤(x′ − x)︸ ︷︷ ︸

Term (B1)

− 1

2α
∥x′ − x∥pp︸ ︷︷ ︸
Term (B2)

)

We call this method ℓp-Norm Constrained Gradient sampler
(p-NCG), due to its connection to the Norm Constrained
Gradient sampler proposed in Rhodes and Gutmann (2022),
which is the special case of p = 2 as in Eq. (11). The NCG
sampler is also referred to as R-MALA in Grathwohl et al.
(2021, Eq. 24) and D-MALA in Zhang et al. (2022); see
App. A for more details. Specifically, Zhang et al. (2022)
extensively studied many of the interesting properties of
D-MALA, which we build on in the next section.

4.2. Properties of p-NCG

Independence of Positions. Suppose we are sampling a
sequence of length N using the word embeddings: x =
[x1 · · · xN ] ∈ RNh where each xn ∈ X ⊂ Rh is a word
embedding. The proposal distribution in Eq. (12) factorizes
as a product over the N positions:

q(x′ | x) =
N∏

n=1

q(x′
n | x) (conditional independence)

q(x′
n | x) ∝ (13)

exp

(
−1

2
∇nU(x)⊤(x′

n − xn)−
1

2α
∥x′

n − xn∥pp
)

This means that we can sample all of the word positions in
parallel, with a separate softmax over the vocabulary |Σ|
at each position. It is not necessary to normalize by brute
force over all |Σ|N word sequences in X .

Convergence Analysis. Another interesting property of
the p-NCG proposal is that when used unadjusted11 on dis-

11As is standard in MCMC literature, we say that a proposal
is used unadjusted if we omit the Metropolis-Hastings correction
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crete log-quadratic distributions, such as the Ising models,
its stationary distribution converges to the target distribution
as the step size α tends to zero.

Definition 4.1. Let π(x) be a discrete distribution over
X ⊂ Rd where |X | < ∞. π is log-quadratic if it can be
expressed as

π(x) ∝ exp
(
x⊤Ax+ b⊤x

)
(14)

for some A ∈ Rd×d and b ∈ Rd.

Theorem 4.2. Let π(x) be a discrete log-quadratic distri-
bution as defined in Def. 4.1. For any α > 0, there exists
a unique distribution πα(x) such that the Markov chain
defined by q in Eq. (12) is reversible with respect to πα

and thus πα is its stationary distribution. Further, πα → π
weakly as α → 0.

Proof Idea. The key insight of the proof is that first-order
approximation of a quadratic energy function will leave a
symmetric second-order error term. One can exploit this
symmetry to explicitly construct a reversing distribution
πα. One can then show that for this specific distribution,
πα → π as claimed. See App. E for the full proof.

More generally, Theorem 4.2 shows that the p-NCG is
locally-balanced with respect to discrete log-quadratic dis-
tributions. Introduced in Zanella (2020, §2.2), a proposal
is said to be locally-balanced with respect to the target dis-
tribution if its unadjusted limiting distribution converges
weakly to the target distribution. Many recent works have
found that being locally-balanced is a favorable property
of a proposal distribution (Zanella, 2020; Grathwohl et al.,
2021; Sun et al., 2022, inter alia).

Mixing-time Analysis. When unadjusted proposals ex-
hibit limiting behaviors as in Theorem 4.2, it is tempting
to use the proposal without using Metropolis–Hastings cor-
rection, as argued in Zhang et al. (2022). However, as
Theorem 4.3 shows, the mixing time (defined in App. C.4)
increases exponentially as the step size decreases towards 0.
This means that, in practice, using the unadjusted proposal
with a small step size is infeasible.

Theorem 4.3. Let π(x) be a discrete log-quadratic dis-
tribution as defined in Def. 4.1. There exist constants
c1, c2, Z > 0 that depends only on π(x) such that the mix-
ing time of q in Eq. (12) satisfies

tmix(ε) ≥
(c1
Z

exp
( c2
2α

)
− 1
)
log

(
1

2ε

)
(15)

Proof Idea. We use the Geršgorin disc theorem (Theo-
rem F.1) to bound the location of the eigenvalues and then

and accept every sample.

relate it to mixing time through a well-known inequality
(Theorem F.2). See App. F for the full proof.

4.3. A Gibbs-based Sampler

In this section, we adapt the Gibbs sampler (Geman and
Geman, 1984). Again, consider sampling a sequence of
length N with word embeddings x = [x1 · · ·xN ] ∈ RNh

where each xn ∈ X ⊂ Rh is a word embedding. To be
able to use Gibbs sampling, we need to be able to efficiently
compute the conditional probabilities π(xn | x\n), which
is uncomfortably expensive as we argued in §3.1.

However, we recall the fact that Gibbs sampling is a special
case of Metropolis–Hastings, where the use of exact condi-
tional π(xn | x\n) results in an acceptance probability of
1. We may instead use an approximation to π(xn | x\n)
and correct for the approximation error with Metropolis–
Hastings. This is a instance of the method sometimes called

“Metropolis-within-Gibbs”, which is well-known in the liter-
ature (Robert and Casella, 2004, §10.3.3, inter alia).

Specifically, taking advantage of gradient information as in
§4.1, we approximate π(xn | x\n) by estimating the energy
difference with Taylor expansion:

U(· · · , x̂n, · · · )− U(· · · ,xn, · · · ) (16)

≈ ∇nU(x)⊤(x̂n − xn)
and then sample from

exp(−∇nU(x)⊤(x′
n − xn)) (17)

However, using the first-order approximation directly will
lead to a near-zero acceptance rate due to the fact that local
approximations have extremely high errors when used over
the entire word embedding space. We therefore need to
restrict the proposal move locally, which we again achieve
by adding a p-norm penalty to our proposal. This yields a
Gibbs-based proposal

q(x′
n | x\n) ∝ (18)

exp

(
−∇nU(x)⊤(x′

n − xn)−
1

α
∥x′

n − xn∥pp
)

An important caveat is that, since we are already using the
Metropolis–Hastings correction, it is a waste of computation
to have self-transition probabilities in the proposal distribu-
tion.12 This leads us to remove the self-transition probability
and arrive at our final form of the Gibbs-based proposal:

q(x′
n | x\n) ∝

{
0 when xn = x′

n

Eq. (18) otherwise
(19)

12For example, the Metropolis sampler never proposes self-
transitions, which is part of the reason for why it is known to
mix faster than the standard Gibbs sampler (Glauber dynamics)
on Ising models (MacKay, 2003, §31.1, p. 403) or other binary
distributions (Newman and Barkema, 1999).
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Figure 2. Total variation distance between the empirical distribu-
tion of different samplers (at different steps) and πtoy, the true
distribution of the toy language model from Example 3.1.

Notice that Eq. (18) resembles Eq. (12) except for the factor
1/2 and the single word update. For this reason, we call this
sampler Gibbs with Langevin (GwL).

Scan Ordering. As with other Gibbs samplers, the scan
ordering (the order in which each index is sampled) can
greatly impact the sampler’s efficiency (He et al., 2016).13

In light of this, we will experiment with both systematic
scan as well as random scan when using GwL.

4.4. Hybrid Samplers

Why would one use GwL when p-NCG can update multiple
words at a time? We observed that when the sequence is
randomly initialized, p-NCG indeed proposes to change mul-
tiple indices at once and can have a reasonably high accep-
tance rate. However, once the chain is close to convergence
and the sentence structure starts to emerge, p-NCG only
proposes to change at most 1 index at a time and proposes
self-transitions roughly 15% of the time.14 For this reason,
GwL, which never proposes self-transitions, can have higher
statistical efficiency in the later stages of the sampling pro-
cess. In practice, we implement a hybrid sampler, where
we use p-NCG during the initial phase of the sampler and
switch to GwL once the chain starts to converge.

5. Unconditional Sampling Experiments
We first empirically assess the performance of our pro-
posed samplers on unconditional sampling from EBMs. See
App. G for full details of the experimental setup.

13This is despite the fact that systematic scan and random scan
have long been conjectured to have similar mixing times up to
logarithmic factors (Levin and Peres, 2017, §26, Open Question 3).

14That said, self-transitions are actually fast in wall-clock time
beacause the energy and gradient can be reused on the next step.
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Figure 3. Energy of the Markov chain’s state x over time as the
Markov chain mixes (§5.2). Each color is a different sampler. The
shaded region shows the middle 95% of energies at time t over
100 runs, while the solid line shows the mean. The dashed line
is the mean energy of a random sample from the actual EBM π,
namely GPT-2, estimated with 2000 samples.

5.1. Toy Example

We first apply different sampling methods to the toy
language model discussed in Example 3.1. Since we can
exactly compute πtoy for small N , we can measure the total
variation distance between the target distribution πtoy and
the empirical distribution of the Markov chain at a given
time step.

We compare our proposed samplers, p-NCG and GwL, to
baselines in prior work, SVS and MUCOLA. As discussed
in App. G.2, we set p = 1 for p-NCG, and tuned the step
size α via grid search to minimize the average energy of
our samples. We also included the standard Metropolis sam-
pler (MacKay, 2003, §31) for comparison. Since SVS uses
Gaussian augmentation, the resulting Hamiltonian yields
a set of differential equations that can be solved in closed
form. We therefore integrate the Hamiltonian dynamics
exactly instead of using leapfrog steps, similar to the setup
in Pakman and Paninski (2013).15

The results are shown in Fig. 2. We observe that the HMC-
based sampler SVS has the best overall performance, due to
its ability to traverse a long distance in the underlying space
in a single step while preserving a perfect acceptance rate
since its Hamiltonian is integrated exactly. It is important
to note that SVS is only exact for simple symmetric distribu-
tions like the Ising model, as discussed in §3.3. It is biased
in all realistic models (including all our subsequent experi-
ments). On the other hand, p-NCG, GwL and Metropolis all

15This exact integration is possible but can be difficult to imple-
ment when using SVS on actual language models. However, this is
only an implementation speed up and does not alter the limiting
distribution of SVS, which is incorrect for actual language models.
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Topic Control Sentiment Control

Success(↑) PPL(↓) Dist-1(↑) Dist-2(↑) Dist-3(↑) Success(↑) PPL(↓) Dist-1(↑) Dist-2(↑) Dist-3(↑)
GPT2 0.12± 0.10 5.10± 2.06 0.40 0.56 0.67 0.55± 0.08 21.33± 5.21 0.40 0.60 0.71
FUDGE 0.30± 0.12 5.59± 0.60 0.39 0.55 0.65 0.57± 0.08 24.27± 3.53 0.40 0.60 0.70
MUCOLA 0.58± 0.23 33.09± 36.32 0.26 0.4 0.51 0.66± 0.08 85.74± 12.33 0.28 0.42 0.53
SVS-LANGEVIN 0.91± 0.12 14.26± 2.55 0.24 0.39 0.51 0.82± 0.06 26.76± 3.80 0.16 0.30 0.41
SVS 0.92± 0.05 13.9± 2.04 0.22 0.37 0.49 0.84± 0.06 32.73± 4.09 0.14 0.28 0.41

p-NCG 0.96± 0.03 6.82± 0.47 0.23 0.52 0.78 0.92± 0.05 39.03± 5.67 0.37 0.86 0.98
p-NCG + GwL 0.99± 0.02 5.17± 0.38 0.20 0.44 0.68 0.96± 0.04 23.61± 2.09 0.35 0.83 0.97

Table 1. Evaluation of different sampling methods on topic and sentiment controlled generation, using three criteria: Success at following
the control target given by an external classifier (main metric), fluency (measured by perplexity), and diversity (measured by Distinct-n).

have similar performance, perhaps because the toy language
model is too small to distinguish these samplers. Still, we
can observe that all samplers except for MUCOLA are able
to converge to the correct limiting distribution πtoy, albeit
at different rates. Finally, we note that MUCOLA displays
the systematic bias that we saw in Example 3.1, where we
calculated its stationary distribution exactly through spectral
decomposition. We see that MUCOLA’s empirical distri-
bution plateaus at a certain distance away from the true
distribution.

5.2. Sampling from Language Models

Next, we test our methods on sampling from an uncon-
strained language model π, namely the GPT-2 checkpoint
from the Huggingface library. We fix N = 20 and initialize
the Markov chain with a random draw from ΣN .

If P t is an MCMC sampler’s distribution at time step t, then
the expected energy of its samples gives the cross-entropy
H(P t, π) (in nats), plus a constant that depends only on π.
Fig. 3 plots estimates of this expected energy for different
samplers with N = 20—as well as for exact sampling from
π, which gives the minimum possible value, achieved only
when Pt = π. We observe that for the faithful samplers,
p-NCG and GwL, P t quickly converges to π. On the other
hand, with the unfaithful MUCOLA sampler, P t does not
reach π, although its cross-entropy still decreases initially.

6. Conditional Sampling Experiments
We now try our methods on 3 controlled generation tasks in
English. See App. G for full experimental setup details.

6.1. Tasks

Topic-Controlled Generation. Here our language model
pLM(x) is a version of GPT-2-small that has been fine-tuned
on the restaurant reviews in the E2E dataset (Novikova et al.,
2017). We also use E2E’s supervised annotations to train a
stochastic classifier pCLS(t | x) that predicts the food type
t ∈ {Italian,Fast food, Japanese, . . .} given review text x.

PPL(↓) Distinct-1(↑) Distinct-2(↑) Distinct-3(↑)
πEnglish 57.42± 13.04 0.43 0.91 0.99

MUCOLA 95.38± 23.64 0.40 0.87 0.99
SVS-LANGEVIN 79.13± 19.08 0.44 0.92 1.00
SVS 77.16± 18.78 0.42 0.91 0.99

p-NCG 71.46± 17.41 0.39 0.85 0.99
p-NCG + GwL 55.06± 9.53 0.40 0.90 0.99

Table 2. Results on position-constrained generation using the fil-
tered COLLIE dataset (Yao et al., 2024). The metrics are as in
Table 1. Success for this task is always 1 (every sampler always
preserves the specified tokens).

We then ask the model to generate a review of a specific food
type t by sampling from p(x | t) ∝ pLM(x) · pCLS(t | x).

Sentiment-Controlled Generation. Here we use GPT-2-
large without fine-tuning as our pLM. Similar to the topic
control task, we train a sentiment classifier on the SST2
dataset of movie reviews (Socher et al., 2013) and ask the
model to generate text with positive or negative sentiment.

Position-Constrained Generation. This is an text infill-
ing task again using GPT-2-large. We use the setup from
COLLIE (Yao et al., 2024), a challenging constrained gener-
ation benchmark that contains multiple types of constraints.
We use the positional constraint subset of the dataset and
filter for tokenizer differences (see App. G.1 for an example
and further details). Here, the model is asked to generate
a fixed-length sequence where 3 positions are constrained
to specified tokens, which naturally yields an energy-based
model. Each example is obtained by masking all but 3 to-
kens in a human-authored English sentence (from Project
Gutenberg). The original unmasked sentence may be re-
garded as a draw from πEnglish (the conditional distribution
of actual English), which should be similar to the target
distribution π (the conditional distribution given by GPT-2-
large), so we compare with that “sampler” in Table 2.

6.2. Baselines

We compare as applicable against the following baselines.
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FUDGE. Introduced by Yang and Klein (2021), FUDGE
samples tokens from the language model autoregressively,
but weights the token probabilities at each position accord-
ing to a classifier that determines whether the next token is
likely to satisfy the constraint. In effect, by training classi-
fiers to re-weight the per-step token probabilities under some
global constraint, FUDGE is distilling a globally-normalized
EBM into a locally normalized one, which Yang and Klein
(2021) aptly referred to as “Future Discriminators”.

Note that, since FUDGE requires a training dataset and COL-
LIE does not supply one, FUDGE is absent from Table 2.

MUCOLA. Introduced by Kumar et al. (2022), MUCOLA
forms a Markov chain using the update equation in Eq. (9)
and defines the energy function as

U(x) = − log pLM(x)− β log pCLS(t | x) (20)

where β is a hyperparameter intended to balance the classi-
fier energy and the language model.

SVS and SVS-LANGEVIN. Introduced by Amini et al.
(2023), both methods define a piecewise continuous distri-
bution based on the Voronoi cells generated from the word
embeddings. SVS-LANGEVIN samples from this distribution
using Langevin Dynamics, and SVS applies the appropriate
form of HMC (Mohasel Afshar and Domke, 2015).

6.3. Evaluation

We sample multiple generations for each task (details in
App. G) and evaluate them based on the following three
downstream task metrics (when applicable):

1. Success is defined as the proportion of generations that
were classified as having the desired topic or sentiment.
To compare with previous papers, we evaluate this
using a separately trained high-quality classifier.16

2. Fluency is measured by the perplexity under the lan-
guage model.

3. Distinct-n is an indicator of diversity, which measures
the type/token ratio of n-grams in a set of generated
samples.

The results are in Tables 1 and 2. We also display generated
samples for each sampler in Table 3 in App. H.

In tasks with control targets (i.e., topic- and sentiment-
controlled generation), we can see that both p-NCG and
its hybrid variant with GwL succeed in following the target
at a much higher rate than baselines while maintaining a
high level of fluency. Notably, the hybrid sampler p-NCG
+ GwL maintains a level of fluency comparable to the un-
conditional language model while adhering to the control

16Since the EBM has no direct knowledge of that classifier, this
metric evaluates text quality, not sampler quality.

target. In this respect, its sampling distribution resembles
the true EBM distribution. In contrast, FUDGE obtains high
fluency but often ignores the control target, while SVS and
SVS-LANGEVIN sacrifice fluency in exchange for better
compliance with the control.

In position-constrained generation, we first note that the
high πEnglish perplexity is due to domain shift: the source
sentences are from the Gutenberg subset of COLLIE whereas
GPT-2(-large) is trained on WebText (Radford et al., 2019).
The inherent diversity of constraints likely results in the
higher diversity scores on Distinct-n. Of all samplers, our p-
NCG + GwL produces the most fluent generations as it has
the lowest perplexity. We note the overall higher perplexity
compared to the sentiment control results. As both tasks use
GPT-2-large as pLM, this suggests that positional constraints
are harder for language models to satisfy. Indeed, for our
specific constraints, Yao et al. (2024) reported a near 0
constraint satisfaction rate from few-shot prompting GPT-4.

7. Conclusions and Future Work
In this work, we proposed two novel gradient-based sam-
plers for generating text from energy-based models. We
analyzed and compared against previous work that we il-
lustrated and proved to be unfaithful samplers, meaning
that their limiting distribution is different from the text dis-
tribution they want to sample from. We investigated the
theoretical properties of our proposed samplers and then
demonstrated with experiments that they have better perfor-
mance in realistic tasks on text generation in terms of both
controllability as well as fluency.

Our methods are not really specific to text: fundamentally
they sample from a fixed-dimensional discrete space X def

=
VN ⊂ RNd. Thus, they could also be used on the deep
energy-based models of Ngiam et al. (2011), which (like
Markov random fields) are joint distributions over any N
random variables.

When applied to text, a limitation of our samplers is that
N is fixed in advance, leading to a finite sample space
ΣN rather than Σ∗. In fact, the gradient-based proposal
distribution only aims to replace individual words in their
current positions. To sample variable-length sentences and
to increase the mobility of the sampler, we could extend
our proposal distribution to propose additional moves such
as insertions and deletions (Miao et al., 2019), or even full
rewrites of w using an prompted language model (Forristal
et al., 2023).

Other ways to extend our algorithms exist. For example,
while we manually tune the step size α for each model, we
may adapt automatic tuning methods as in Hoffman and
Gelman (2014) that preserve detailed balance. We could
also use proposal merging algorithms in Horowitz (1991).
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A. Related Work
Controlled Generation. Since the introduction of large pretrained language models, controlled generation, the ability
to enforce controls during the text generation process has become an important research direction (Keskar et al., 2019;
Dathathri et al., 2020; Krause et al., 2021, inter alia). Earlier approaches in this direction include weighted decoding
(Ghazvininejad et al., 2017; Holtzman et al., 2018; Yang and Klein, 2021), which adjusts the language model score of
each sequence with a function that measures how well it adheres to its control objectives and then try to decode the high
scoring sequences. More recently, several papers formulated energy-based models using pretrained language models (Deng
et al., 2020; Goyal et al., 2022) to express the control objective (Kumar et al., 2022; Qin et al., 2022; Amini et al., 2023;
Mireshghallah et al., 2022) and attempted to apply MCMC algorithms to sample from such sequence distribution. When the
underlying pretrained language model is a masked language model (Mireshghallah et al., 2022), the masked distributions
are highly effective as approximations to the true conditionals, and hence the Metropolis–Hastings corrected Gibbs-like
scheme may work well without the need of gradient (Goyal et al., 2022). However, when the underlying is causal (Kumar
et al., 2022; Qin et al., 2022; Amini et al., 2023), which is the subject of this paper, there is no obvious choice of proposal
distributions as discussed in §3.1, and hence gradient information becomes valuable for deriving a proposal distribution
without additional training.

Gradient-based Sampling Our work is also related to the line of research that makes use of gradient information to
sample from complex distributions (Duane et al., 1987; Neal, 1993; Grenander and Miller, 1994). In Bayesian inference,
gradient-based samplers (Neal, 2011; Hoffman and Gelman, 2014) are known to be highly effective when sampling from
high-dimensional continuous distributions (Carpenter et al., 2017; Bingham et al., 2018; Phan et al., 2019). But it has
been shown to be a difficult problem to adapt these algorithms in the discrete setting (Roberts and Tweedie, 1996; Roberts
and Rosenthal, 1998), with previous approaches including continuous relaxation within the discrete spaces (Pakman and
Paninski, 2013) using discontinuous Hamiltonian Monte Carlo (Pakman and Paninski, 2014; Mohasel Afshar and Domke,
2015; Nishimura et al., 2020), continuous relaxation via the “Gaussian Integral Trick” (Martens and Sutskever, 2010; Zhang
et al., 2012). Specifically, the p-NCG proposed in our work is a generalization of NCG proposed in Rhodes and Gutmann
(2022) and the D-MALA proposed in Zhang et al. (2022), with the difference being using the p-norm constraint instead of
the standard ℓ2 norm. The Gibbs-with-Langevin algorithm has its continuous analogue called MALA-within-Gibbs (Bédard,
2017; Tong et al., 2020) and is more generally an instance of within-Gibbs sampler (Robert and Casella, 2004, §10.3.3;
Ascolani et al., 2024; inter alia). GwL is also loosely related to the Gibbs-with-Gradient method proposed in Grathwohl
et al. (2021), which we found to have a near zero acceptance rate when applied to our setting. We note that a range of
recently proposed gradient-based samplers (Grathwohl et al., 2021; Zhang et al., 2022; Rhodes and Gutmann, 2022) are all
connected to the locally balanced proposal from (Zanella, 2020).

B. On High-Dimensional Integration in Embedding Spaces
B.1. The Problem of Continuous Relaxation and High-Dimensional Integration

A common strategy for continuous relaxation of discrete spaces is to map the discrete points into a continuous space and
apply continuous gradient-based sampling algorithms (Pakman and Paninski, 2013; Amini et al., 2023). This strategy gives
rise to the problem of converting samples from continuous algorithms into discrete ones. This problem is easier when the
underlying discrete space is regularly shaped as in Ising model (Pakman and Paninski, 2013) where the projection function is
as simple as the sign function sgn(·). When the underlying discrete space is irregularly shaped such as the word embedding
space, one can use the Euclidean projection to convert a continuous sample y ∈ Rd into a discrete one x ∈ X , as in

x = ProjXy. (21)

This projection is used in both Amini et al. (2023) and Kumar et al. (2022) and it creates a number of problems.

SVS. In the case of SVS, Amini et al. (2023) realized that the projection created a piecewise continuous relaxation, with
each continuous region corresponding to a Voronoi cell

Vi = {y : ∥y − xi∥2 ≤ ∥y − xi′∥2,∀ i′ ̸= i} (22)

centering at a word embedding xi. Amini et al. (2023) then uses Gaussian augmentation within the Voronoi cells to apply
gradient-based samplers. To ensure that the continuously relaxed measure matches original the discrete measure, the
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underlying measure needs to be adjusted by the integral of the Gaussian truncated by the high-dimensional Voronoi polytope,
otherwise known as the Gaussian volume of a polytope, defined as∫

Vi

γd(y;x, σ2)dy. (23)

where γd( · ;x, σ2) denotes the d-dimensional Gaussian density centered at x with variance σ2.

MUCOLA. By using the Euclidean projection operator in its update equation:

x′ = ProjX
(
x− α

2
∇U(x)︸ ︷︷ ︸

µx

+
√
α ξ
)

(9)

MUCOLA similarly identifies each Voronoi region in Rd with the word embedding at its center. As we demonstrated in §3.3,
MUCOLA doesn’t sample from its intended language distribution. An obvious idea is then to apply Metropolis-Hasting
correction to MUCOLA, which requires one to compute qMUCOLA(xj | xi) in the Metropolis-Hasting acceptance probability
Eq. (28). Observing that

ProjX
(
xi −

α

2
∇U(xi) +

√
αξ
)
= xj ⇔ xi −

α

2
∇U(xi) +

√
αξ ∈ Vj , (24)

we realize that computing qMUCOLA(xj | xi) is equivalent to computing the following integral∫
Vj

γd
(
y;xi −

α

2
∇U(xi), 1

)
dy (25)

which is again the same high dimensional integral we encountered in SVS.

B.2. The Difficulty of High-Dimensional Integration

In general, computing the volume of an explicit polytope is #P-hard (Dyer and Frieze, 1988), which makes exact computation
infeasible for dimensions as high as that of GPT-2 or BERT. Recent research on approximated high-dimensional integration
shows great promise (Cousins and Vempala, 2014; Emiris and Fisikopoulos, 2013), and such algorithms (Cousins and
Vempala, 2016; Emiris and Fisikopoulos, 2018) have improved to the extent that they can be employed in various applied
sciences (Chalkis et al., 2021). Unfortunately, in our experimentation with these algorithms, we found that they can barely
scale to dimensions beyond 100, not to mention the dimensions in GPT-2 or BERT, which are at the scale of 103. We,
therefore, conclude that, at the current moment, the state of research in high-dimensional integration doesn’t yet allow us to
feasibly compute the relevant quantities so that SVS and MUCOLA can sample from the correct distribution.

C. Background: MCMC
C.1. Overview

Markov Chain Monte Carlo (MCMC; Metropolis et al. 1953) is based on the idea that to produce samples from a target
distribution π(x), one can design a transition kernel p(x′ | x) such that the resulting Markov chain converges to the
target distribution. Intuitively, to guarantee that the target distribution is the limiting distribution of the Markov chain,
one requires that the chain to be able to explore the entire state space and that the target distribution is invariant under
the transition kernel.17 The invariance condition is often algorithmically achieved by the Metropolis-Hastings acceptance
procedure (App. C.3), which can adapt any Markov kernel into one that has the target distribution as a stationary distribution.
Specifically, the Metropolis-Hastings procedure guarantees reversibility (or detailed balance), which is a stronger condition
than invariance. Unless otherwise stated, all our proposed MCMC algorithms are corrected by Metropolis-Hastings
acceptance. Finally, we often wish to design MCMC procedures that converge to the stationary distribution faster. This is
measured by the mixing time (App. C.4), defined in Eq. (29).

17We provide an informal proof in App. C.2 of why these two criteria are sufficient.

15



Principled Gradient-Based MCMC for Conditional Sampling of Text

C.2. Criteria for Convergence

Markov Chain Monte Carlo (MCMC; Metropolis et al. 1953) is based on the idea that to produce samples from a target
distribution π(x), one can design a transition kernel p(x′ | x) such that the resulting Markov chain has the target distribution
as its limiting distribution. In finite discrete spaces, such as sampling sentences up to a fixed length, one designs the MCMC
transition kernel to satisfy the following two criteria to guarantee convergence to then intended distribution π(x) (such as
the EBM of Eq. (2)):

(C1) The chain is ergodic. This means that, regardless of the starting state, the chain has a nonzero probability of being at
every state after a sufficient number of steps. Ergodicity is equivalent to being irreducible and aperiodic.

(C2) The target distribution is invariant under the transition kernel. This means that, if the chain starts with the target
distribution, it will stay in the target distribution, i.e.

π(x) =
∑
y

p(x | y)π(y). (26)

The reason that the above two criteria guarantee convergence to the target distribution is very simple. First of all, all finite
state Markov chains have at least one stationary distribution. Adding the ergodicity requirement (C1) guarantees that the
chain has a unique stationary distribution and the chain converges to that distribution, and (C2) ensures that the target
distribution π(x) is this unique stationary distribution. Therefore, (C1) and (C2) combined imply that the chain will always
converge to the target distribution regardless of its starting state.

In practice, (C2) is often proved by establishing the detailed balance equation

π(x)p(x′ | x) = π(x′)p(x | x′) (27)

which implies that π(x) is a stationary distribution of p(· | ·). When Eq. (27) holds for a given Markov chain p(· | ·), we
also say that the chain is reversible with respect to distribution π(·) and π(·) is called a reversing distribution for p(· | ·).

Algorithmically, detailed balance (Eq. (27)) is often achieved by using the Metropolis–Hastings acceptance procedure
(Metropolis et al., 1953; Hastings, 1970).

C.3. Metropolis–Hastings Acceptance

Metropolis–Hastings acceptance is a procedure to convert any Markov kernel q(· | ·) over X , called a proposal distribution,
into one that has the target distribution as its stationary. In each iteration, it draws a sample x′ from q(· | x) and then accepts
x′ with the acceptance probability

α(x′ | x) = min

{
1,

π(x′)q(x | x′)
π(x)q(x′ | x)

}
. (28)

In the case x′ is rejected, the chain remains at x. One easily checks that the chain derived from the acceptance procedure
p(x′ | x) = α(x′ | x)q(x′ | x) is a reversible chain with π(·) as its reversing distribution.

In this work, unless otherwise stated, all our algorithms are corrected with Metropolis–Hastings and hence we only need
to specify the proposal distribution q(· | ·). However, it is important to point out that Metropolis–Hastings isn’t always
necessary. For example, by sampling from the true conditional, Gibbs sampling has a constant acceptance probability of
1, and hence the Metropolis–Hastings step can be omitted. One may alternatively design an irreversible Markov kernel
that directly satisfies (C2) without satisfying Eq. (27) (see, e.g., Sohl-Dickstein et al., 2014; Diaconis et al., 2000).

C.4. Mixing Time

We wish to design MCMC algorithms that converge to the target distribution in a reasonable amount of time, and hence
another important property of a given Markov chain is how fast it converges to the stationary distribution. This quantity
is measured by the mixing time, tmix. Denoting P t

x as the tth step distribution of a Markov chain started at state x, the
ε-mixing time is defined as

tmix(ε) = inf

{
t : sup

x∈X
dTV(P

t
x, π) ≤ ε

}
(29)
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where dTV(·, ·) is the total variation distance18 and π is the stationary distribution of the Markov chain. In words, tmix(ε) is
the minimum number of steps necessary to achieve ≤ ε distance to the stationary distribution regardless of the starting state
x.

D. Derivation of p-NCG
We start with Eq. (10b)

q(x′ | x) = exp

(
− 1

2α

∥∥∥x′ −
(
x− α

2
∇U(x)

)∥∥∥2
2

)
(30a)

= exp

(
− 1

2α

∥∥∥(x′ − x) +
α

2
∇U(x)

∥∥∥2
2

)
(30b)

where

1

2α

∥∥∥(x′ − x) +
α

2
∇U(x)

∥∥∥2
2

(31a)

=
1

2α
∥x′ − x∥22 + 2 · 1

2�α

〈
x′ − x,

�α

2
∇U(x)

〉
+

1

2α
· α

2

4
∥∇U(x)∥22 (31b)

= ∇U(x)⊤(x′ − x) +
1

2α
∥x′ − x∥22 +

α

8
∥∇U(x)∥22 (31c)

Substituting Eq. (31c) into Eq. (30b), we get

q(x′ | x) ∝ exp

(
−∇U(x)⊤(x′ − x)− 1

2α
∥x′ − x∥22 −

α

8
∥∇U(x)∥22

)
(32)

Notice that the last term α
8 ∥∇U(x)∥22 only contains x and does not involve x′, so it will cancel with the same term in the

normalizing constant. This means that we can omit this term from the proposal distribution. Taking this into account, we get
the alternate form of the proposal as given in Eq. (11):

q(x′ | x) ∝ exp

(
−∇U(x)⊤(x′ − x)− 1

2α
∥x′ − x∥22

)
. (33)

E. Proof of Theorem 4.2
Theorem 4.2. Let π(x) be a discrete log-quadratic distribution as defined in Def. 4.1. For any α > 0, there exists a unique
distribution πα(x) such that the Markov chain defined by q in Eq. (12) is reversible with respect to πα and thus πα is its
stationary distribution. Further, πα → π weakly as α → 0.

We adapt the proof strategy from the proof of Theorem 1 in Zanella (2020) and from Zhang et al. (2022).

Proof. To avoid confusion, we use qα(· | x) to denote the proposal in Eq. (12) with step size α, i.e.,

qα(x
′ | x) ∝ exp

(
−1

2
∇U(x)⊤(x′ − x)− 1

2α
∥x′ − x∥pp

)
. (34)

We first note that, for α > 0, the proposal qα is dense in the sense that qα(x′ | x) > 0 for all x,x′ ∈ X . This implies that
the chain is irreducible and aperiodic, which guarantees that there must be a unique stationary distribution.

Let π(x) ∝ exp
(
x⊤Ax+ b⊤x

)
be a discrete log-quadratic distribution. In this case, the energy function is U(x) =

−x⊤Ax− b⊤x. Since U(x) is a quadratic function, the second-order Taylor expansion is exact, which means

U(x′) = U(x) +∇U(x)⊤(x′ − x) +
1

2
(x′ − x)⊤∇2U(x)(x′ − x). (35)

18Recall that the total variation distance is defined as dTV(µ, ν)
def
= supE |µ(E)− ν(E)|.
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Rearranging Eq. (35), we get

∇U(x)⊤(x′ − x) = U(x′)− U(x)− 1

2
(x′ − x)⊤∇2U(x)(x′ − x) (36)

which is equivalent to

1

2
∇U(x)⊤(x′ − x) =

1

2
(U(x′)− U(x))− 1

4
(x′ − x)⊤∇2U(x)(x′ − x) (37)

=
1

2
(U(x′)− U(x)) +

1

2
(x′ − x)⊤A(x′ − x). (∇2U(x) = −2A) (38)

Using Eq. (38), we can rewrite the proposal Eq. (34) as

qα(x
′ | x) = 1

Zα(x)
exp

(
−1

2
(U(x′)− U(x))− 1

2
(x′ − x)⊤A(x′ − x)− 1

2α
∥x′ − x∥pp

)
(39)

where

Zα(x) =
∑
y∈X

exp

(
−1

2
(U(y)− U(x))− 1

2
(y − x)⊤A(y − x)− 1

2α
∥y − x∥pp

)
. (40)

Now, we suppose πα is a reversing distribution with respect to qα and try to solve it. First, by the definition of reversibility,

πα(x)qα(x
′ | x) = πα(x

′)qα(x | x′) (41)

which, after substituting in Eq. (39), expands to

πα(x)

Zα(x)
exp

(
−1

2
(U(x′)− U(x))−

����������1

2
(x′ − x)⊤A(x′ − x)−������1

2α
∥x′ − x∥pp

)
=
πα(x

′)
Zα(x′)

exp

(
−1

2
(U(x)− U(x′))−

����������1

2
(x− x′)⊤A(x− x′)−������1

2α
∥x− x′∥pp

)
(42)

and simplifies to

πα(x)

Zα(x)
exp

(
−1

2
(U(x′)− U(x))

)
=

πα(x
′)

Zα(x′)
exp

(
−1

2
(U(x)− U(x′))

)
(43)

⇔ πα(x)

Zα(x)
exp(U(x)) =

πα(x
′)

Zα(x′)
exp(U(x′)) (44)

⇔ πα(x)

Zα(x)
· Z

exp(−U(x))
=

πα(x
′)

Zα(x′)
· Z

exp(−U(x′))
(Z def

=
∑

x∈X exp(−U(x))) (45)

⇔ πα(x)

Zα(x)π(x)
=

πα(x
′)

Zα(x′)π(x′)
. (π(x) = exp(−U(x))/Z) (46)

Eq. (46) shows that πα(x)
Zα(x)π(x) = cα for some constant cα for all x ∈ X . Noting that

∑
x∈X πα(x) = 1, we can solve for

cα to be

1 =
∑
x∈X

πα(x) =
∑
x∈X

cαZα(x)π(x) = cα
∑
x∈X

Zα(x)π(x) (47)

which yields

cα =
1∑

x∈X Zα(x)π(x)
(48)

and hence the reversing measure πα should be

πα(x) =
Zα(x)π(x)∑

y∈X Zα(y)π(y)
. (49)
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One can quickly verify that πα as defined in Eq. (49) indeed satisfies the detailed balance equation in Eq. (41) and hence
is indeed a reversing measure for qα. We can now conclude that qα produces a reversible chain and that πα is its unique
stationary (and simultaneously reversing) measure.19

Finally, to show the weak convergence, we observe that

lim
α→0

exp

(
−1

2
(U(y)− U(x))− 1

2
(y − x)⊤A(y − x)− 1

2α
∥y − x∥pp

)
=

{
0 y ̸= x

1 y = x
= δx(y) (50)

where δx(·) is the Dirac delta centered at x. This means that

lim
α→0

Zα(x) (51)

= lim
α→0

∑
y∈X

exp

(
−1

2
(U(y)− U(x))− 1

2
(y − x)⊤A(y − x)− 1

2α
∥y − x∥pp

)
(52)

=
∑
y∈X

δx(y) (by Eq. (50)) (53)

=1. (54)

Hence

lim
α→0

πα(x) = lim
α→0

Zα(x)π(x)∑
y∈X Zα(y)π(y)

=
π(x)∑

y∈X π(y)
= π(x) (55)

which shows that πα converges to π pointwise. It is a well-known result that, in the case of discrete distributions, pointwise
convergence implies weak convergence.20 Hence, πα → π weakly as α → 0.

F. Proof of Theorem 4.3
We state the Geršgorin disc theorem here for reference.
Theorem F.1 (Geršgorin disc theorem; Theorem 6.1.1 in Horn and Johnson, 2012). Given a matrix P and denote its
non-diagonal sum as Ri =

∑
j ̸=i |Pij |. Define the Geršgorin discs as

D(aii, Ri) = {z ∈ C : |z − aii| ≤ Ri}. (56)

Then, all eigenvalues of P are in the union of the Geršgorin discs.
Theorem 4.3. Let π(x) be a discrete log-quadratic distribution as defined in Def. 4.1. There exist constants c1, c2, Z > 0
that depends only on π(x) such that the mixing time of q in Eq. (12) satisfies

tmix(ε) ≥
(c1
Z

exp
( c2
2α

)
− 1
)
log

(
1

2ε

)
(15)

Proof. Let π(x) ∝ exp
(
x⊤Ax+ b⊤x

)
be a discrete log-quadratic distribution. Here, we let the energy function be

U(x) = −x⊤Ax− b⊤x+ const. We additionally assume, without loss of generality, that U(x) ≤ 0 for all x ∈ X , since
we can subtract a constant from the energy function of each state without altering the distribution.

We recall from the proof of Theorem 4.2 that the proposal can be rewritten as

qα(x
′ | x) = 1

Zα(x)
exp

(
−1

2
(U(x′)− U(x))− 1

2
(x′ − x)⊤A(x′ − x)− 1

2α
∥x′ − x∥pp

)
(39)

where

Zα(x) =
∑
y∈X

exp

(
−1

2
(U(y)− U(x))− 1

2
(y − x)⊤A(y − x)− 1

2α
∥y − x∥pp

)
. (40)

19One may notice at Eq. (43) that setting πα(x) ∝ exp(−U(x))/Zα(x) will symmetrize both sides of the equation, resulting in
detailed balance. This observation can avoid the last bit of calculation.

20See, for example, Exercise 3.2.11 in Durrett (2019).
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To apply the Geršgorin disc theorem, we first need to bound the non-diagonal mass in the transition matrix. The non-diagonal
mass, i.e., the probability of non-self-transition, is∑

y ̸=x

qα(y | x) (57)

=

∑
y ̸=x exp

(
− 1

2 (U(y)− U(x))− 1
2 (y − x)⊤A(y − x)− 1

2α∥y − x∥pp
)∑

y∈X exp
(
− 1

2 (U(y)− U(x))− 1
2 (y − x)⊤A(y − x)− 1

2α∥y − x∥pp
) (58)

=

∑
y ̸=x exp

(
− 1

2 (U(y)− U(x))− 1
2 (y − x)⊤A(y − x)− 1

2α∥y − x∥pp
)

1 +
∑

y ̸=x exp
(
− 1

2 (U(y)− U(x))− 1
2 (y − x)⊤A(y − x)− 1

2α∥y − x∥pp
) (59)

≤
∑
y ̸=x

exp

(
−1

2
(U(y)− U(x))− 1

2
(y − x)⊤A(y − x)− 1

2α
∥y − x∥pp

)
(60)

Without loss of generality, we can assume that A is symmetric because we can substitute A with its symmetric part
1
2 (A

⊤ +A) without changing any quantity of interest. Then we can apply the Rayleigh-Ritz inequality,which states that, for
any v ̸= 0,

v⊤Av

v⊤v
≥ λmin(A). (61)

We further define the useful quantity for q ≥ 1,

dq
def
= inf

x̸=x′∈X
∥x− x′∥qq. (62)

Continuing from Eq. (60),∑
y ̸=x

exp

(
−1

2
(U(y)− U(x))− 1

2
(y − x)⊤A(y − x)− 1

2α
∥y − x∥pp

)
(63)

≤
∑
y ̸=x

exp

(
−1

2
(U(y)− U(x))− 1

2
λmin(A)∥y − x∥22 −

1

2α
∥y − x∥pp

)
(Rayleigh-Ritz, Eq. (61)) (64)

≤
∑
y ̸=x

exp

(
−1

2
(U(y)− U(x))− 1

2
λmin(A)d2 −

1

2α
dp

)
(definition of dq , Eq. (62)) (65)

=exp

(
−1

2
λmin(A)d2 −

1

2α
dp

)∑
y ̸=x

exp

(
−1

2
U(y) +

1

2
U(x)

)
(66)

≤ exp

(
−1

2
λmin(A)d2 −

1

2α
dp

)∑
y ̸=x

exp

(
−1

2
U(y)

)
(assumption that U(x) ≤ 0) (67)

≤ exp

(
−1

2
λmin(A)d2 −

1

2α
dp

)∑
y ̸=x

exp (−U(y)) (assumption that U(y) ≤ 0) (68)

≤ exp

(
−1

2
λmin(A)d2 −

1

2α
dp

)∑
y∈X

exp (−U(y)) (69)

=Z exp

(
−1

2
λmin(A)d2 −

1

2α
dp

)
. (Z def

=
∑

x∈X exp(−U(x))) (70)

Combining Eq. (60) and Eq. (70), we obtain a bound for the non-self-transition probability∑
y ̸=x

qα(y | x) ≤ Z exp

(
−1

2
λmin(A)d2 −

1

2α
dp

)
. (71)

We have established in Theorem 4.2 that the Markov chain defined by qα is reversible. It is a well-known fact that the
transition matrix of a reversible Markov chain has only real eigenvalues, and hence, the Geršgorin disc theorem (Theorem F.1)
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in this specific case implies that an eigenvalue λ of the transition matrix of qα satisfies

|λ− qα(x | x)| ≤
∑
y ̸=x

qα(y | x) ≤ Z exp

(
−1

2
λmin(A)d2 −

1

2α
dp

)
(72)

for at least one of x ∈ X . In particular, λ2, the 2nd largest eigenvalue of the transition matrix of qα, satisfies, for at least one
x ∈ X ,

|λ2 − qα(x | x)| ≤ Z exp

(
−1

2
λmin(A)d2 −

1

2α
dp

)
. (73)

In a reversible Markov chain, the spectral gap is defined as γ = 1− λ2 (Levin and Peres, 2017, §12.2). Using Eq. (71) and
Eq. (73), we can bound the spectral gap with

1− λ2 = |1− λ2| (1 = λ1 ≥ λ2 in a reversible transition matrix) (74)
≤ |1− qα(x | x)|+ |qα(x | x)− λ2| (triangle ineq.) (75)

≤ |1− qα(x | x)|+ Z exp

(
−1

2
λmin(A)d2 −

1

2α
dp

)
(Eq. (73)) (76)

=
∑
y ̸=x

qα(y | x) + Z exp

(
−1

2
λmin(A)d2 −

1

2α
dp

)
(qα(· | x) is a distribution) (77)

≤ 2 · Z exp

(
−1

2
λmin(A)d2 −

1

2α
dp

)
. (Eq. (71)) (78)

Finally, the mixing time and the spectral gap are closely related by the following well-known relationship.

Theorem F.2 (Theorem 12.4 and 12.5 in Levin and Peres, 2017). In a reversible, irreducible Markov chain, the spectral
gap γ and the mixing time tmix(ε) are related by(

1

γ
− 1

)
log

(
1

2ε

)
≤ tmix(ε) ≤

1

γ
log

(
1

επmin

)
(79)

where πmin = minx∈X π(x).

Using the left inequality in Theorem F.2, we can conclude that

tmix(ε) ≥
(
1

γ
− 1

)
log

(
1

2ε

)
(80)

=

(
1

1− λ2
− 1

)
log

(
1

2ε

)
(81)

≥
[

1

2 · Z
exp

(
1

2
λmin(A)d2 +

1

2α
dp

)
− 1

]
log

(
1

2ε

)
(82)

=

[
exp(λmin(A)d2/2)

2 · Z
exp

(
dp
2α

)
− 1

]
log

(
1

2ε

)
(83)

Setting c1 = 1
2 exp(λmin(A)d2/2) > 0 and c2 = dp > 0, we obtain the desired bound

tmix(ε) ≥
(c1
Z

exp
( c2
2α

)
− 1
)
log

(
1

2ε

)
. (84)

G. Experimental Setup
G.1. Data Setup

• For topic controlled task, for each method, we generate 20 samples of 15 tokens for each control target, resulting in a
total 140 samples (from a total of 7 control targets).

21



Principled Gradient-Based MCMC for Conditional Sampling of Text

• For sentiment controlled task, for each method, we generate 60 samples of 15 tokens for each sentiment, resulting in a
total of 120 samples.

• For position constrained task, we use the arbitrary position constraint examples from Gutenberg sourced subset of the
COLLIE dataset. In this subset, the model is tasked to generate a fixed-length sequence where 3 positions have specified
tokens, e.g., the 4th, 7th and 10th tokens must be “shown”, “could”, and “far”, respectively. The constraints are sourced
from texts in human written materials, e.g., the above constraint is sourced from the sentence “But she had shown her
that one could go too far.”.
To account for tokenization differences between GPT-2 and GPT-4, we further filter the examples such that the target
words exist in GPT-2’s tokenizer. This results in a total of 43 distinct constraint examples. We then use each method to
generate 4 samples for each constraint, resulting in a total of 172 samples per method.

G.2. Hyperparameters

In all our experiments, we found that in GwL, random scan in general performs better than systematic scan. Therefore, all
results reported for GwL uses random scan.

Choice of p. In our early experiments, we experimented with different values of p over a grid between 1.0 and 2.0 at
intervals of 0.1 on unconditional sampling from GPT-2-large, and found that lower p values are better. The performance
differences between p ∈ [1.0, 1.2] are small, and hence for efficiency reasons, we choose to use p = 1, which amounts to a
absolute value operation. All results are reported with p = 1.

Sampler configurations. For topic controlled experiments, which uses the smallest model, we run all samplers for 4,000
steps. For sentiment and position controlled experiments, we run all samplers for 10,000 steps.

All step sizes are tuned with grid search with a grid resolution of 0.1. For the Toy Example, the grid search objective is
average energy. For the controlled generation tasks, the grid search objective is success rate.

• Toy Example. In the toy example, the inverse temperature β = 0.42 and the sequence length (i.e., the number of spins
in the Ising model) is N = 5. The underlying Ising topology is a linear chain with the ends connected. The step size
for MUCOLA is 1.5, the trajectory length of SVS is 2π, and the step size of p-NCG and GwL are both 1.0

• Sampling from Language Models. The step size for MUCOLA is 0.15, and the step size of both p-NCG and GwL is
4.0. Each chain is ran on 100 random seeds to estimate the error bars.

• Topic and Sentiment Controlled Generation. For all samplers, the energy weight used is β = 25.0. The step size
used for MUCOLA is 1.0. For SVS and SVS-LANGEVIN, the step size is 1.5. Finally, for p-NCG and GwL, the step size
is α = 1.0 in topic controlled experiments and α = 3.0 in sentiment controlled experiments.

• Position controlled Generation. The step size used for MUCOLA is 1.0. For SVS and SVS-LANGEVIN, the energy
weight is β = 1.5 and the step size is 1.5. Finally, for p-NCG and GwL, the step size is α = 1.0 and the energy is
β = 1.25.

Classifiers. We train two classifiers independently, called an internal classifier and an external classifier. The internal
classifier is used as the energy function during generation, and the external classifier is used to determine whether the
generated text follows the control objective correctly.

The internal classifier is a probing classifier on top of frozen GPT-2 embeddings. The probing classifier is a 3-layered
BILSTM model with 0.5 dropout. The classifier achieves a 0.84 F1 score on the test set. We then train an evaluator classifier
to evaluate the success rates of the controlled generation algorithms.

The external classifier for topic controlled generation is a fine-tuned ROBERTA model that achieves 0.90 f1-
score on the test set. For sentiment controlled generation, we use an off-the-shelf finetuned Transformer model,
distilbert-base-uncased-finetuned-sst-2-english, from the HuggingFace library.

H. Controlled Generation Samples
We present controlled generation text samples in Table 3.
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Chinese
FUDGE In the city centre near Yippee Noodle Bar Chinese, is Alimentum. It has moderate prices and
MUCOLA and has a 1 out of 5. It has food and high customer rating. The Rice Boat is
SVS-LANGEVIN It serves Chinese food with a low customer rating. The fast food and restaurant The Golden Curry is a
SVS It has a low customer rating and a price. The highly rated Chinese restaurant The Phoenix has a high
p-NCG + GwL The Golden Curry is a Chinese food restaurant with a 5 out 5 rating and is not family-friendly

English
FUDGE It has an average customer Rating. Bibimbap House has English food in the riverside area near
MUCOLA and has a low customer rating. The Golden Curry is a children friendly, serving English food, with
SVS-LANGEVIN It has low rating and is located near the to the city centre. The Phoenix is a English food
SVS Alimentum in the city centre near the a moderate price range. It serves English food, is
p-NCG + GwL Midsummer House serves English food with a moderate price range and a high customer rating. It is

Fast food
FUDGE A fast food, coffee shop, Strada has a low customer rating, has a price range of over £30. It is
MUCOLA and is family friendly and serves fast food. The Wrestlers is a fast food coffee shop in the
SVS-LANGEVIN It is located near the riverside, is a cheap family friendly fast food restaurant, and is called
SVS It is located near the river. The Mill is a cheap, fast food and coffee shop near the
p-NCG + GwL Alimentum is a high-priced, child friendly, average rated fast food restaurant that is in

French
FUDGE It has a low-priced Inn French food. It is near Café Rouge.The Alimentum is a kid friendly fast food
MUCOLA The French restaurant The Waterman is located in the city centre. The price range is less than
SVS-LANGEVIN It is a restaurant located in the riverside, the restaurant, offers French food with a price
SVS It is a family restaurant that serves French food with a price range and has a low customer rating.
p-NCG + GwL The Waterman, located in city centre, has average French food, is inexpensive and is not family

Indian
FUDGE The Phoenix Indian restaurant has moderate prices with a 3 out of 5 rating. Located on the
MUCOLA It is in the city and has a low customer rating. The Waterman is a low priced
SVS-LANGEVIN It is not child friendly and it is near the river. It serves Indian food and a customer rating
SVS It is located in the city centre near The Portland Arms Indian food and has a low customer rating.
p-NCG + GwL The Phoenix is in the city centre that provides Indian food in the cheap price range. Its customer rating

Italian
FUDGE It has family Italian food and has a low a moderate price range. The Rice Boat has an average
MUCOLA is a high priced Italian food restaurant with a customer rating of average. The Phoenix is a high
SVS-LANGEVIN It is located in the city centre, it is not family friendly and is a coffee shop serving Italian
SVS It is located in the the city centre near The Portland Arms.The Eagle is an Italian restaurant.
p-NCG + GwL The Eagle Italian food coffee shop, is a family friendly riverside restaurant with a low customer rating.

Japanese
FUDGE Japanese food. Its customer rating is 3 out of 5.The Phoenix is Japanese in the city centre
MUCOLA for Japanese food is located in the city centre. It has a low customer rating. The Golden
SVS-LANGEVIN It is located in the riverside. It is a Japanese food. It is a pub restaurant
SVS It is located in the riverside. It is a low rated Japanese restaurant, and coffee shop.
p-NCG + GwL It also serves Japanese food. It is located in the city centre and has a high price range.

Table 3. Examples of sampled sentences from different control food targets.
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