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ABSTRACT

Large language models (LLMs) have saturated standard medical benchmarks, yet
their ability to synthesize conclusions from multiple sources remains critically
underexplored. To address this gap, we introduce MedMeta, the first benchmark
for evaluating conclusion synthesis from medical meta-analyses. MedMeta com-
prises 81 meta-analyses and evaluates models under both Retrieval-Augmented
Generation (RAG) and parametric-only workflows. Our findings underscore the
critical importance of information grounding: RAG consistently and significantly
outperforms Parametric-CoT across models. In contrast, the benefits of domain-
specific fine-tuning are marginal and largely neutralized when external material
is provided. We also uncover a critical, universal vulnerability: all tested mod-
els fail to identify and reject factually incorrect evidence, instead synthesizing it
into coherent but false conclusions. Notably, even under ideal RAG conditions
with oracle retrieval, the performance of current LLMs remains moderate, with
the top-performing model scoring 3.17 out of 5.0. Our evaluation is grounded
in an LLM-as-a-judge protocol. We validate this approach against human med-
ical experts, showing a high Pearson’s r (0.81) and negligible systematic bias in
Bland–Altman analysis, establishing it as a reliable proxy for experts and a scal-
able assessment method. MedMeta establishes a challenging new benchmark and
demonstrates that developing more robust and critical RAG systems is a more
promising direction for clinical applications than model specialization alone.

1 INTRODUCTION

Evidence-Based Medicine (EBM) demands that clinical decisions be grounded in the best available
research evidence. The cornerstone of EBM is the systematic review and meta-analysis, which
synthesize findings from multiple primary studies to establish clinical guidelines and inform practice
(Sackett et al., 1996). However, the volume of medical literature is expanding at an exponential
rate, making it practically impossible for clinicians and researchers to manually survey all relevant
studies Bornmann et al. (2021). Large Language Models (LLMs) present a promising solution to
this information overload, demonstrating an impressive capacity to encode and recall vast amounts
of clinical knowledge Singhal et al. (2023); Nori et al. (2023).

The trajectory of medical LLM evaluation has rapidly progressed from foundational benchmarks
testing static knowledge on licensing exams Jin et al. (2021); Pal et al. (2022) to more complex
assessments of reasoning in simulated clinical environments Kweon et al. (2025); Fan et al. (2025).
As model performance on these fact-based tasks approaches saturation Chen et al. (2025b); Tu et al.
(2024), the research frontier has shifted toward evaluating more nuanced cognitive skills demanded
by real-world clinical practice Arora et al. (2025).

Despite this progress, a critical gap persists. Current benchmarks do not focus on evaluating the core
cognitive skill of multi-source conclusion synthesis: the ability to analyze findings from multiple,
often heterogeneous, primary research articles to construct a coherent, evidence-based conclusion.
This skill is fundamental to creating meta-analyses, requiring a model not just to recall facts but to
weigh evidence, identify consensus, and abstract novel insights.

To address this gap, we introduce MedMeta, the first benchmark designed to evaluate an LLM’s
ability to perform multi-source conclusion synthesis in a medical context. This benchmark contains
81 curated meta-analyses from PubMed (2018—2025), spanning 24 popular medical specialties.
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Figure 1: The MedMeta benchmark pipeline. Starting with large-scale filtering of PubMed, meta-
analysis studies are identified and screened based on specific inclusion criteria. These are then
processed by a set of diverse LLMs under six workflow settings to synthesize conclusions. Final
outputs are evaluated using LLM-as-judges, BERTScore, and human expert assessments.

MedMeta challenges models to generate the conclusion of a meta-analysis using only the abstracts
of its constituent primary studies. We approach this task using abstracts as a practical proxy for
full-text articles, making the task tractable for models with current context window limitations. To
specifically test synthesis capabilities under varying conditions, our design includes both parametric
and Retrieval Augmented Generation (RAG) workflows. This controlled setup provides models with
multiple ground-truth source abstracts and allows us to specifically assess their ability to synthesize
information across studies, minimizing the influence of unrelated factors such as document retrieval
or LLM context window constraints.

In this work, we make the following contributions:

• We introduce MedMeta, a benchmark that evaluates the critical skill of multi-source con-
clusion synthesis, a cornerstone of evidence-based medicine.

• We validate an LLM-as-a-judge (LLM-J) protocol, demonstrating a strong correlation (r
up to 0.81) and negligible systematic bias compared to human experts, establishing LLM
panels as reliable proxies for evaluating generated conclusions.

• We conduct analyses showing that RAG is more impactful for synthesis quality than
domain-specific fine-tuning. Our tests reveal a potentially universal vulnerability in cur-
rent LLMs, as they often fail to identify and reject factually incorrect evidence.

2 RELATED WORK AND BACKGROUND

2.1 RETRIEVAL-AUGMENTED GENERATION AND MEDICAL APPLICATIONS

Retrieval-Augmented Generation (RAG) has become the standard paradigm for grounding LLM
outputs in external knowledge, mitigating hallucination and enabling access to up-to-date informa-
tion Lewis et al. (2020). Benchmarks such as RGB Chen et al. (2024b) and RECALL Liu et al.
(2023) evaluate retrieval and generation quality in open-domain QA, while frameworks like ARES
Saad-Falcon et al. (2024) and CRAG Yan et al. (2024) improve robustness through adaptive retrieval.
However, these efforts largely assess fact-finding and conversational QA rather than the abstractive
synthesis of a formal scientific conclusion from curated technical documents, which is central to
evidence-based medicine (EBM). A further limitation of the RAG paradigm is its susceptibility to
noisy or factually incorrect retrievals Zhang & Gao (2024); Fang et al. (2024). Current models often
uncritically synthesize such context, failing to cross-check against parametric knowledge or detect
internal contradictions Yu et al. (2024); Hong et al. (2024), a vulnerability in medicine implications.
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2.2 CURRENT MEDICAL BENCHMARKS AND GAPS

Within the medical domain, early evaluations of LLMs have focused on Question Answering.
MedQA Jin et al. (2021) and MedMCQA Pal et al. (2022) demonstrated expert-level accuracy on
licensing exam questions, while PubMedQA Jin et al. (2019) required binary judgments from sin-
gle abstracts. These benchmarks confirmed factual recall but did not address the more demanding
challenge of synthesizing novel conclusions from multiple heterogeneous studies. Related work has
also explored reasoning in clinical settings: EHRNoteQA Kweon et al. (2025) evaluates responses to
clinician queries over discharge summaries Johnson et al. (2023), and MedAgentBench Jiang et al.
(2025) introduces a virtual EHR environment for task completion. These tasks assess reasoning over
a single, coherent clinical document, which differs fundamentally from integrating evidence across
multiple, and potentially contradictory, research studies. Other benchmarks emphasize explainabil-
ity and robustness, such as MedExQA Kim et al. (2024) and related datasets Chen et al. (2025b) that
use expert-written rationales, or Med-HALT Pal et al. (2023) and MedXpertQA Zuo et al. (2025)
that focus on hallucinations and difficult exam-style questions. While important for reliability, these
evaluations do not directly measure generative synthesis.

Despite progressive advances, existing benchmarks share a common limitation. They focus on rea-
soning over self-contained information (e.g., EHRs), or already-synthesized knowledge (e.g., text-
book) rather than on the generative synthesis of new conclusions from primary evidence. The cor-
nerstone of EBM is precisely this cognitive skill, integrating findings from multiple, heterogeneous
research articles into a coherent conclusion, yet it remains largely unevaluated. MedMeta addresses
this gap by directly benchmarking multi-source conclusion synthesis in the medical domain.

3 MEDMETA BENCHMARK

Figure 1 shows the benchmark’s design, including three main stages: (1) systematic collection and
preprocessing of medical meta-analyses; (2) generation of conclusions using LLM workflows; and
(3) an evaluation framework combining automated metrics and human expert assessment.

3.1 META-ANALYSIS COLLECTION AND PREPROCESSING

We built a challenging dataset by curating representative meta-analyses from PubMed using a multi-
stage filtering pipeline. This ensures each selected study is methodologically sound, not overly
well-known, and presents a tractable synthesis task based on abstracts.

Data Collection. We initiated the process with a large-scale crawl of 14.2 million papers from
the PubMed using E-utilities Sayers (2009). We applied filtering to keep only articles published be-
tween 2018 and 2025 to mitigate potential data contamination from the models’ pre-training corpora,
thereby encouraging evaluation of synthesis rather than retrieval of memorized information.

Publication Type Filtering. From this subset, we applied PubMed’s built-in publication type fil-
ters to identify studies explicitly designated as “meta-analysis” or “systematic review” in their Medi-
cal Subject Headings (MeSH) publication type. From the corpus of 2.2 million articles (2018–2025),
we identified 82,233 meta-analyses and systematic reviews with full-text availability in PubMed.

Inclusion Criteria. To ensure rigor and suitability, a meta-analysis was retained only if it satisfied
these conditions: (1) presence of a “Characteristics Studies” table or equivalent structured summary
of primary research, (2) all cited primary studies must be retrievable in PubMed with available
abstracts and (3) a main conclusion that is sufficiently explicit to be parsed programmatically. This
filtering pipeline reduced the candidate pool to 4,740 papers spanning 330 distinct raw topics.

Specialties Filtering. Due to the nature of PubMed, authors can freely assign paper categories,
making it extremely challenging to maintain consistent topic labels. To address this, we used Gemini
Flash 2.5 to process each paper’s abstract and title, automatically categorizing them into 64 medical
specialties defined by MeSH terms (see Appendix A) and one additional “Other” topic. We then
filtered out the “Other” topic, resulting in a diverse and representative set of 1,463 papers covering
64 distinct medical specialties.
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Figure 2: MedMeta workflow architecture. The benchmark includes six distinct synthesis workflows
varying in input type (parametric vs. retrieved), reasoning strategy (zero-shot vs. chain-of-thought),
and retrieval fidelity (oracle, noisy, or negated), enabling fine-grained evaluation of LLM’s perfor-
mance under different conditions.

Feasibility Filtering. As a final filtering step, we conducted a feasibility check to verify that each
meta-analysis’s conclusion could be reproduced using only primary study abstracts. This safeguards
against missing context, given that full texts are not used, and confirms that LLMs have enough
information to synthesize a valid conclusion. Each sample was processed through Gemini Flash
2.5 in three independent runs (temperature 0.5). For each run, we provided the model with the title
and conclusion of the meta-analysis, along with the abstracts of all corresponding primary studies.
We then asked the model whether the stated conclusion could be reasonably inferred from those
abstracts, and averaged its ratings across runs (see Appendix F). Only papers with an average score
over 4 were retained. This step was essential to mitigate the inherent information loss from not
using full-text articles and to ensure that each task in the benchmark was tractable. This reduced the
set to 187 papers. We acknowledge that using an LLM to filter for feasibility could pose a risk of
bias. However, the sustained robustness of our results across diverse model families (see Figure 2)
suggests that this step did not meaningfully skew outcomes.

Stratified Sampling. To ensure a balanced benchmark, we performed stratified sampling across
publication years. This stratification ensures sufficient post-cutoff inputs to mitigate memorization
bias in LLMs Carlini et al. (2022). The resulting MedMeta dataset consists of 81 meta-analyses
covering 24 medical specialties, with a total of 2,250 primary studies. The complete benchmark is
available in our public repository. See benchmark characteristics in Appendix G.

3.2 LLM WORKFLOWS FOR CONCLUSION GENERATION

To isolate synthesis and retrieval capabilities, we evaluate models across five settings (Figure 2).

Zero-Shot Baseline (P-ZS). This is the simplest workflow, designed to test a model’s internal
knowledge. The model receives only the title of the meta-analysis and is prompted to directly
generate a conclusion (Appendix B). This setting involves no Chain-of-Thought (CoT) prompting
Wei et al. (2022), no feedback, and no retrieved context.

Parametric-CoT (P-CoT). This workflow assesses a model’s ability to reason with its parametric
knowledge through CoT prompting (Appendix C). First, LLM decomposes the meta-analysis title
into sub-questions. It answers these questions and aggregates them into a draft conclusion. A feed-
back loop allows for revision based on new sub-questions if the initial draft is deemed inadequate
by an LLM evaluator. This workflow tests structured reasoning without external knowledge.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Standard-RAG (S-RAG). This workflow evaluates RAG performance under realistic noise con-
ditions. Models attempt to synthesize meta-analytic conclusions from document collections contain-
ing both relevant and irrelevant content. Following the P-CoT sub-question generation approach, the
system retrieves K={5,10} documents per query using hybrid search (BM25 Robertson et al. (1995)
and BGE-m3 Chen et al. (2024a)) with BGE-m3-Reranker. We construct a proxy evaluation cor-
pus of 25,000 PubMed abstracts: 2,250 ground-truth abstracts from our 81 meta-analyses alongside
22,750 random noise abstracts (2018–2025). This setup allows examination of retrieval noise effects
on synthesis quality.

Golden-RAG (G-RAG). This is an oracle retrieval workflow designed to isolate a model’s synthe-
sis capability by eliminating retrieval errors. The model is supplied with the meta-analysis title and
the complete set of ground-truth abstracts from all primary studies included in the original meta-
analysis (Appendix E; median: 11 abstracts). This oracle configuration provides an upper-bound
estimate of synthesis performance under a perfect retrieval condition.

Negated-RAG (N-RAG). To assess model robustness against misinformation, this workflow fol-
lows the G-RAG setup but with an adversarial attack: the factual claims within all ground-truth
abstracts are systematically negated before being passed to the model (Appendix D). This tests
whether models can identify and reject clearly faulty evidence.

Implementation. Workflow orchestration was implemented with LangGraph LangChain (2024),
and inference of open-weights models was optimized using vLLM Kwon et al. (2023) (Appendix I).
Closed-weights models were accessed via APIs.

3.3 EVALUATION FRAMEWORK

Hypotheses. We aim to investigate the following hypotheses on the MedMeta task:

• H1 (Human vs. LLM-J Alignment): For the task of evaluating conclusion quality in
MedMeta, scores assigned by a panel of LLM-as-a-Judge will show a strong, positive cor-
relation with scores from medical experts.

• H2 (Information Grounding): Across all tested models, performance in the RAG work-
flow will be significantly higher than in the Parametric workflow.

• H3 (Domain Adaptation): For our selected model pair (Gemma and MedGemma), the
domain-specialized model will outperform its general-purpose counterpart, with this effect
being most pronounced in knowledge-intensive, non-RAG settings.

Automated Evaluation Metrics. Evaluating abstractive summaries at scale requires robust auto-
mated metrics. Recent studies show that large LLMs can approximate human judgment with both
scalability and consistency Zheng et al. (2023); Chiang & Lee (2023). Following this paradigm, we
employ an LLM-J panel composed of three frontier models (Gemini 2.5 Pro, O4 mini, and Qwen3
235B). Each model scores generated conclusions against reference conclusions using a detailed
rubric (Appendix E.2), with temperature fixed at 0.0 and reasoning mode enabled. Final scores are
averaged across judges, reducing individual bias and improving robustness. As a complementary
metric, we also compute semantic similarity using BERTScore Zhang et al. (2020).

Human Expert Validation. To validate our automated metrics (H1), we recruited nine annotators
with medical backgrounds (see Table 1). We randomly subsampled 20 meta-analyses, and used a
Latin Square design to minimize bias Fisher (1935). Each generated conclusion was independently
scored by three annotators on the same rubric used by the LLM panel. All annotators had to complete
a training session before beginning the evaluation tasks (Appendix H).

Statistical Analysis. We assess alignment between human and automated judges (H1) using Pear-
son correlation Pearson (1895) for linear relationships and Bland-Altman analysis Bland & Altman
(1986) to examine absolute agreement and systematic bias. To test hypotheses (H2) and (H3), we
apply paired t-tests Student (1908) to evaluate the statistical significance of performance differences.
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Background Count Years of Experience
Pharmacists 3 1.6 ± 0.36
Biologists 2 1.8 ± 0.71
Biohealth (Master’s) 4 2 ± 0

Table 1: Human Expert Annotator Profiles

Model Selection. We evaluate a diverse set of leading open and closed-weights models across
model size. This includes Gemini Flash 2.5, O4 Mini, several 8B models from the Qwen family
with and without native CoT reasoning OpenAI et al. (2024), and the 27B Gemma/MedGemma
pair, allowing for a broad overview of current model capabilities on the synthesis task.

For our targeted hypothesis testing, we focus on Gemma and its medical derivative, MedGemma.
This choice is twofold. First, their shared architecture provides a controlled setting to isolate the
effects of domain-specific fine-tuning. Second, given the resource-intensive nature of recruiting and
training annotators with medical expertise, concentrating our human validation study on this single,
controlled pair allowed for a rigorous yet feasible validation of our evaluation framework.

4 RESULTS

Our comprehensive evaluation, summarized in Table 2, yields three primary conclusions. First,
information grounding is essential. RAG-based workflows consistently outperform parametric ap-
proaches across all models, establishing access to evidence as the most critical factor for high-quality
synthesis. Second, the benefits of domain adaptation are modest and depend on context. The advan-
tage of the specialized MedGemma model becomes negligible once external evidence is provided
through RAG. Third, we uncover a universal vulnerability across current architectures. All models,
regardless of size or specialization, fail our adversarial test by uncritically incorporating misinfor-
mation into outputs that are coherent but factually false.

The Value of Structured Reasoning. A consistent observation across all models is the perfor-
mance gain achieved through simple prompting techniques. The P-CoT workflow, which introduces
a CoT structure with a feedback loop, consistently outperforms the P-ZS baseline (∼30-33%). This
suggests that, even without external evidence, prompting the model to decompose the problem into
smaller steps gives it more room to reason Chen et al. (2025a). This process helps the model bet-
ter utilize its internal knowledge, expanding its effective search space and improving its ability to
generate coherent and relevant conclusions.

The Impact of Retrieval. Introducing external evidence via RAG yields a significant improve-
ment in synthesis quality. Across all models, RAG workflows consistently score higher than P-CoT
methods. This performance uplift is substantial and varied, ranging from a ∼9% increase for Gemini
Flash 2.5 to over 40% for the Gemma models, underscoring the critical benefit of grounding over
relying on a model’s internal knowledge alone.

Robustness of Frontier Models to Noisy Retrieval. Our results indicate that the optimal amount
of retrieved context is not universal but depends on model capability. As shown in Table 2, there is no
consistent winner between the Standard-RAG (K=5) and (K=10) workflows. More capable models
like Gemini Flash 2.5 and O4 Mini appear to benefit from a larger context (K=10), suggesting they
can effectively sift through more documents to find relevant evidence. Conversely, other models
show comparable or slightly better performance with a more focused context (K=5). This suggests
a practical trade-off for these models, where the risk of introducing distracting information with a
larger context may outweigh the benefit of potentially higher recall.

Trade-Offs Between Context Size and Model Capability. Another finding is that the perfor-
mance penalty for imperfect retrieval is minimal for larger models. For Gemini Flash 2.5 and O4
Mini, the performance of Standard-RAG is statistically indistinguishable from the oracle G-RAG
setting. This result suggests that these advanced models, when paired with a strong reranker, are

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model P-ZS P-CoT G-RAG K5-RAG K10-RAG N-RAG
Gemini Flash 2.5 2.10 2.90 ± 0.21 3.16 ± 0.18 3.03 ± 0.16 3.17 ± 0.18 1.01 ± 0.19
O4 Mini 2.00 2.70 ± 0.22 2.79 ± 0.20 2.90 ± 0.18 2.94 ± 0.21 1.19 ± 0.24
MedGemma 27B 1.80 2.17 ± 0.21 2.72 ± 0.17 2.68 ± 0.19 2.46 ± 0.20 1.00 ± 0.18
Gemma 27B 1.60 1.77 ± 0.22 2.58 ± 0.20 2.37 ± 0.22 2.31 ± 0.22 0.98 ± 0.19
Qwen3 8B 1.70 2.27 ± 0.24 2.72 ± 0.16 2.53 ± 0.24 2.63 ± 0.22 1.03 ± 0.20
Qwen3 8B (reasoning) 1.50 2.00 ± 0.22 2.56 ± 0.19 2.46 ± 0.22 2.30 ± 0.25 1.00 ± 0.19
Qwen3 8B-DeepSeek 1.30 1.94 ± 0.24 2.55 ± 0.16 2.10 ± 0.24 2.13 ± 0.25 1.17 ± 0.23

Table 2: Mean LLM-Judge scores (±95% CI) across models and retrieval settings. Scores are on a
0–5 scale with 5 is the highest. Bold values indicate the best-performing workflow for each model.

capable of identifying the most salient evidence from a noisy retrieval set, effectively matching the
performance of a system with perfect recall. For the other models, however, a performance gap re-
mains between Standard-RAG and G-RAG, indicating their synthesis quality is more fundamentally
constrained by the precision of the retrieval step.

Vulnerability to Misinformation. The N-RAG performance reveals a critical common failure
to all tested models. Despite being provided with factually inverted and contradictory information,
every model proceeded to synthesize these incorrect claims into a coherent but false conclusion. The
resulting scores are significantly lower than even the “P-ZS” baseline. Particularly, this is striking
for more capable models like Gemini Flash 2.5 and O4 Mini, which might be expected to leverage
their extensive parametric knowledge to detect such contradictions but fail to do so. This finding
empirically confirms the vulnerability of RAG systems to faulty evidence and demonstrates that
current models act as obedient synthesizers rather than critical reasoners, lacking the capability to
identify and reject misinformation based on internal knowledge or logical inconsistency.

Task-Dependent Efficacy of Reasoning Modes. Analysis of the Qwen models, which offer an
explicit “reasoning” mode, indicates that the utility of such features may be task-dependent. We
did not find a consistent performance gain from this mode compared to the standard instruction-
tuned variant; for the P-CoT workflow, scores were slightly lower (Table 2). This result contrasts
with the well-documented benefits of general CoT prompting for complex reasoning problems Wei
et al. (2022). A plausible explanation for this discrepancy is the nature of our constrained synthesis
task. For tasks that primarily require abstracting and rephrasing provided information, a direct
instruction-following approach may be more robust. The addition of deliberative reasoning steps
could introduce processing artifacts or cause deviations from the core synthesis objective.

5 MANUAL ANALYSIS

5.1 VALIDATION OF THE LLM-J PROTOCOL (H1)

A prerequisite for the large-scale analysis in this study is a reliable automated evaluation metric. To
this end, we validated our LLM-J protocol against human medical experts. We computed correlation
and reliability metrics between mean LLM judge scores (n=3) and human annotator scores (n=3) on
20 samples per condition. Strong Pearson correlations emerged across all models and workflows (r
= 0.65-0.81, p < 0.01; Table 3), demonstrating a positive relationship human experts and LLMs.

Although a high correlation (Pearson’s r) indicates association, it does not imply interchangeability
Novikova et al. (2017); Sellam et al. (2020). We therefore applied Bland–Altman analysis, a standard
method in clinical research for comparing two measurement techniques. For each generated conclu-
sion i, scored by humans (SH,i) and LLMs (SL,i), we computed the difference di = SH,i − SL,i.
The analysis focuses on two key values: the mean bias (d̄), representing systematic difference, and
the 95% limits of agreement (LoA).

Mean Bias = d̄ LoA = d̄± 1.96× SD(d) (1)

where SD(d) is the standard deviation of the differences.
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Model & Workflow Pearson’s r Mean Bias 95% LoA
MedGemma 27B (Golden-RAG) 0.74 +0.14 [-1.18, 1.46]
Gemma 27B (Golden-RAG) 0.65 +0.31 [-1.42, 2.04]
MedGemma 27B (Parametric-CoT) 0.81 +0.27 [-1.08, 1.62]
Gemma 27B (Parametric-CoT) 0.70 +0.10 [-1.58, 1.78]

Table 3: Human–LLM-J alignment (H1). Correlation and bias with human expert scores.

We observe 2 key results that strongly support (H1). First, the mean bias is consistently close to
zero across all settings and is not statistically significant (Paired t-tests, all p > 0.10), indicating
no systematic tendency for the LLM-J to score higher or lower than human experts. Second, the
95% LoA provide a clinically interpretable range of expected error. For instance, in MedGemma
G-RAG, the LoA of [-1.18, 1.46] means that for any given conclusion, the LLM score is expected to
be within approximately 1.5 points of the human score 95% of the time on 0–5 scale. A qualitative
review of the Bland-Altman distribution showed that the differences between human and LLM-J
scores were scattered evenly around the mean bias across the range of scores, indicating that the
level of agreement does not systematically vary with the quality of the conclusion being evaluated.
The strong correlation, negligible systematic bias, and well-defined LoA provide robust evidence
that our LLM-J protocol can serve as a valid and reliable proxy for human experts in evaluating
conclusions within MedMeta.

5.2 THE ROLE OF INFORMATION GROUNDING (H2)

Hypothesis Comparison Judge N Mean Diff. t-stat p-value Cohen’s d Sig.
H2: Information Grounding (G-RAG vs. P-CoT)

MedGemma 27B Human 20 0.742 2.314 0.032 0.517 Yes
MedGemma 27B LLM 81 0.543 4.347 0.001 0.483 Yes
Gemma 27B Human 20 1.025 3.289 0.004 0.735 Yes
Gemma 27B LLM 81 0.807 5.745 0.001 0.638 Yes

H3: Domain Adaptation (MedGemma vs. Gemma)
Golden-RAG Human 20 0.150 1.084 0.292 0.242 No
Golden-RAG LLM 81 0.140 1.952 0.054 0.217 No
Parametric-CoT Human 20 0.433 1.317 0.203 0.295 No
Parametric-CoT LLM 81 0.403 2.935 0.004 0.326 Yes

Table 4: Paired t-test results for H2 (Information Grounding: G-RAG vs. P-CoT) and H3 (Domain
Adaptation: MedGemma-27B vs. Gemma-27B). “Yes” indicates significance at α = 0.05.

Consistent with prior work on RAG Lewis et al. (2020); Gao et al. (2023), we established the baseline
effect of providing evidence, hypothesizing that grounding models in abstracts would yield higher-
quality conclusions. We therefore hypothesized that this principle would hold true in our challenging
MedMeta setting, which requires long-context synthesis: that grounding models in large amounts
of ground-truth abstracts would still lead to significantly higher-quality conclusions than relying on
parametric knowledge alone.

Our results provide clear evidence for H2 (Table 4), demonstrating the critical role of information
grounding in medical conclusion synthesis. In all tested conditions, conclusions generated via the
G-RAG workflow were rated as significantly superior to those from the P-CoT approach (Table 4).
This finding was robust across both human and LLM judges, with all comparisons yielding statis-
tical significance (p < 0.04) and medium-to-large effect sizes (Cohen’s d = 0.48 to 0.74). The
magnitude of this improvement was notable; for the general-purpose Gemma model, human judges
rated RAG-based conclusions over a full point higher on a five-point scale (Mean Diff = 1.025).
This consistent and substantial performance gain confirms that providing access to ground-truth ev-
idence is a primary determinant of synthesis quality, establishing a clear baseline for the subsequent
analysis of domain adaptation.
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5.3 THE BENEFITS OF DOMAIN ADAPTATION (H3)

Our analysis for H3 reveals that the benefits of domain-specific fine-tuning are likely modest and
context-dependent. The advantage of the specialized MedGemma model is largely neutralized when
RAG provides external material. In the G-RAG setting, we observed no statistically significant
performance difference between MedGemma and Gemma, as evaluated by either experts or LLM
judges (p > 0.05 for both). Small effect sizes (Cohen’s d ≤ 0.25) indicate that general-purpose
models can perform on par with specialized fine-tuned ones when sufficiently grounded.

In contrast, an advantage for MedGemma emerges in the P-CoT setting, where it relies solely on
internal knowledge. Here, LLM judges rated MedGemma’s conclusions as significantly higher qual-
ity than Gemma’s (Mean Diff = 0.403, p = 0.004). This pattern suggests that domain adaptation
primarily enhances the recall and structuring of parametric knowledge. For complex synthesis tasks
like MedMeta, these findings indicate that investing in high-quality retrieval systems may offer a
greater return than specializing models through fine-tuning.

6 INSUFFICIENCY OF BERTSCORE SIMILARITY METRICS

We further investigated whether a standard automated metric (BERTScore) could serve as a reliable
proxy for evaluating conclusion quality. Our hypothesis was that semantic similarity alone would
be insufficient to capture the factual and logical nuances of synthesis. The results, shown in Ta-
ble 5, confirm this hypothesis. BERTScore fails to differentiate workflows, giving nearly identical
high F1 scores across them. Most critically, it rates false conclusions from the N-RAG semantic
equivalent to G-RAG. High token-level semantic overlap provides a poor proxy for factual accuracy,
since a generated conclusion can appear highly similar to a reference text while remaining factually
incorrect or critically flawed. These findings support our use of rubric-based LLM-J protocol.

Model Parametric-CoT Golden-RAG Negated-RAG
Gemini Flash 2.5 0.850 ± 0.010 0.855 ± 0.011 0.845 ± 0.012
O4 Mini 0.830 ± 0.011 0.835 ± 0.010 0.840 ± 0.011
Gemma 0.845 ± 0.012 0.840 ± 0.012 0.840 ± 0.013
MedGemma 0.840 ± 0.010 0.840 ± 0.011 0.843 ± 0.010
Qwen3 8B 0.835 ± 0.011 0.840 ± 0.010 0.845 ± 0.012
Qwen3 8B (reasoning) 0.840 ± 0.012 0.840 ± 0.011 0.845 ± 0.011
Qwen3 8B DeepSeek 0.835 ± 0.013 0.840 ± 0.012 0.842 ± 0.013

Table 5: Mean BERTScore F1 (± standard error) across models and evaluation approaches.

7 CONCLUSION

In this work, we introduced MedMeta benchmark to evaluate the critical yet under-explored capabil-
ity of multi-source conclusion synthesis in medicine. We successfully validated an LLM-J protocol,
demonstrating strong alignment with experts and establishing it as a reliable, scalable proxy for
evaluating medical conclusions. Our findings reveal a clear hierarchy of importance. Information
grounding (RAG) provides a larger performance uplift than domain-specific fine-tuning. Our stress
tests demonstrate that surface-level similarity metrics (BERTScore) are inadequate and that current
LLMs universally fail to reject factually incorrect evidence.

While the results are promising, several limitations point to future directions. First, using abstracts as
a proxy for full-texts may miss study nuances. Second, human validation was limited to 9 expert an-
notators and focused on a subset of models and settings. Third, expanding beyond 81 meta-analyses
and 24 specialties would further enhance its comprehensiveness. Finally, as LLMs evolve rapidly,
future work should extend this analysis to novel architectures (MoE) and paradigms (Agents).

The MedMeta benchmark lays a foundation for future inquiry into automated scientific reason-
ing. Our next steps include expanding to full-text synthesis to capture study nuances, performing
multilingual evaluations to assess cross-linguistic synthesis capabilities, and building models with
stronger critical reasoning to resist incorrect factual.

9
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ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
The experiments are conducted exclusively on publicly available benchmark datasets under their
respective licenses. The proposed methods do not present foreseeable risks of harm, misuse, or
unfair discrimination. We adhere to the ICLR Code of Ethics and confirm compliance with standard
practices regarding data handling, reproducibility, and research integrity.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The main paper describes the
architecture of the MedMeta workflow and the evaluation protocols (Section 3). Detailed inference
parameters, prompts, and additional experimental results are provided in the Appendix. To facilitate
reproducibility, we will release the source code and scripts in an anonymous repository during the
review process. The repository will include: (i) a Data folder containing the preprocessed MedMeta
dataset, (ii) a Scripts folder with step-by-step scripts for reproducing experiments, (iii) a Src
directory with LangGraph implementations, and (iv) a Web folder containing the source code of the
annotation platform. A comprehensive README file with setup instructions, dependencies, and
usage examples will also be provided.

LLM USAGE

In this paper, LLMs were used solely as an assistive tool to improve the clarity and readability of
the manuscript text. No part of the research ideation, methodology, experimental design, or analysis
relied on LLMs. The authors take full responsibility for the content of this work.
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Lutz Bornmann, Robin Haunschild, and Rüdiger Mutz. Growth rates of modern science: a latent
piecewise growth curve approach to model publication numbers from established and new litera-
ture databases. Humanities and Social Sciences Communications, 8(1):1–15, 2021.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In The Eleventh International
Conference on Learning Representations, 2022.
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APPENDIX

A MESH TOPIC DISTRIBUTION IN THE MEDMETA

To ensure the breadth and clinical relevance of our MedMeta benchmark, we curated tasks
spanning the major branches of the MeSH taxonomy. This diverse sampling strategy, de-
tailed below, validates our benchmark’s comprehensiveness and tests the generalization ca-
pability of the evaluated models across distinct medical domains. This approach miti-
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gates the risk of our benchmark being biased towards a narrow set of medical fields.
Anatomy [A]: Body Regions [A01], Musculoskeletal [A02], Digestive [A03], Respiratory [A04], Uro-
genital [A05], Endocrine [A06], Cardiovascular [A07], Nervous [A08], Sense Organs [A09], Tissues
[A10], Cells [A11], Fluids and Secretions [A12], Animal Structures [A13], Stomatognathic System
[A14], Hemic/Immune [A15], Embryonic Structures [A16], Integumentary System [A17], Plant Struc-
tures [A18], Fungal Structures [A19], Bacterial Structures [A20], Viral Structures [A21].
Diseases [C]: Infections [C01], Neoplasms [C04], Musculoskeletal Dis. [C05], Digestive Dis. [C06],
Respiratory Dis. [C08], Otorhinolaryngologic [C09], Nervous Dis. [C10], Eye Diseases [C11], Urogen-
ital Diseases [C12], Cardiovascular Dis. [C14], Hemic and Lymphatic [C15], Congenital [C16], Skin
Diseases [C17], Metabolic Dis. [C18], Endocrine Dis. [C19], Immune Dis. [C20], Disorders [C21], An-
imal Diseases [C22], Pathological Conditions [C23], Occupational Diseases [C24], Chemically-Induced
[C25], Wounds and Injuries [C26].
Chemicals & Drugs [D]: Pharmaceutical Prep. [D26], Inorganic Chemicals [D01], Organic Chemi-
cals [D02], Heterocyclic Compounds [D03], Polycyclic Compounds [D04], Macromolecular [D05], Hor-
mones [D06], Enzymes and Coenzymes [D08], Carbohydrates [D09], Lipids [D10], Amino Acids [D12],
Nucleic Acids [D13], Complex Mixtures [D20], Biological Factors [D23], Biomedical Materials [D25],
Pharmaceutical [D26], Chemical Actions [D27].
Techniques [E]: Diagnosis [E01], Therapeutics [E02], Anesthesia and Analgesia [E03], Surgical Proce-
dures [E04], Investigative Techniques [E05], Dentistry [E06], Equipment and Supplies [E07].
Psychology [F]: Behavior [F01], Psychological Phenomena [F02], Mental Disorders [F03], Behavioral
Disciplines [F04].

B PROMPTS FOR LLM ZERO-SHOT

This is the baseline prompt for LLM to use its own knowledge to create meta-analysis conclusion.

You are an expert Clinical Research Scientist specializing in evidence-based medicine and the interpreta-
tion of meta-analyses. Your primary skill is to synthesize complex medical information into clear, concise
conclusions.
Your task is to generate the most likely primary concluding statement for a medical meta-analysis, based
solely on its title (research question).
You will be provided with only the following information: Meta-Analysis Title: [Meta-Analysis
Title]
Core Instructions: 1. You must provide the best possible conclusion based on the title and your existing
knowledge. 2. The conclusion should be a single, concise, and coherent conclusion paragraph.
Provide your response as a single block of text containing only the generated conclusion. Do not include
any preceding or succeeding conversational text, introductions, or apologies.

C PROMPTS FOR LLM WORKFLOWS

This section details the sequence of prompts used in our proposed workflows. Each prompt is
engineered to elicit a specific cognitive task from the LLM, breaking down the complex process of
meta-analysis conclusion generation into a structured, multi-step reasoning process. Full prompt
details are available in our public repository.

C.1 PROMPT FOR DECOMPOSING THE RESEARCH TOPIC

This initial prompt bootstraps the process by instructing the LLM to struc-
ture the research problem into a coherent plan, including key research questions.
You are a research assistant skilled in formulating structured research plans for systematic reviews or
meta-analyses. Given a research topic, create a concise plan including background context, 5 key research
questions, and a brief summary of the search strategy/concepts.
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C.2 PROMPT FOR INITIAL KNOWLEDGE GENERATION (PARAMETRIC-COT)

This prompt queries the LLM’s internal knowledge base to gener-
ate an initial, comprehensive answer to the primary research question.
You are an expert researcher with broad medical knowledge. For the given research question, provide a
comprehensive answer based on your internal knowledge. If applicable, identify 2-3 critical sub-questions
that arise from this research question and provide detailed answers to those as well within your response.
Structure your entire response as a single coherent text.

C.3 PROMPT FOR FEEDBACK INTEGRATION

This prompt guides the LLM to evaluate its own initial output against the research
plan, identify gaps, and generate new, targeted questions to address shortcomings.
You are an expert research evaluator tasked with assessing whether a generated conclusion adequately
addresses and matches the given research topic. Your evaluation should consider:
1. **Topic Relevance**:
2. **Comprehensiveness**:
3. **Specificity**:
4. **Coherence**:
5. **Completeness**:
Provide your assessment as:
1. A detailed evaluation explaining what works well and what might be missing or inadequate
2. A score from 0-5 where:
- 0 = Completely inadequate
- 1 = Very inadequate
- 2 = Inadequate
- 3 = Moderately adequate
- 4 = Good
- 5 = Excellent
Focus on whether the conclusion is sufficient for someone researching this specific topic.
Research Topic: [Topic]
Current Research Plan: [Context]
Generated Conclusion: [Conclusion]
Please evaluate whether this conclusion adequately matches and addresses the research topic.
Provide both a detailed evaluation and numerical score 0-5.

FEEDBACK-DRIVEN QUESTION REFINEMENT PROMPT

The agent is prompted to formulate a *new set of research questions*. This
crucial step operationalizes the feedback, guiding the agent to explicitly tar-
get the identified knowledge gaps in the next iteration of answer generation.
You are a research assistant expert at formulating targeted research questions. Given a research topic,
original questions that were already asked, and feedback about what was missing from the initial con-
clusion, generate 5 NEW and DIFFERENT sub-questions that will help address the gaps and improve
understanding of the research topic.
Your new questions should:
1. Be completely different from the original questions
2. Address specific gaps mentioned in the evaluation feedback
3. Explore different angles, perspectives, or aspects of the topic
4. Be specific and actionable for research purposes
5. Help fill in missing information to better address the research topic
Research Topic: [Topic]
Original Questions Already Asked: [Previous Research Questions]
Evaluation Feedback (what was missing/inadequate): [Evaluation Feedback]
Generate 5 NEW sub-questions that are different from the original ones and will help address the gaps
identified in the evaluation feedback:
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C.4 PROMPT FOR SYNTHESIZING THE FINAL CONCLUSION

Used in both workflows, this final prompt instructs the LLM to distill all available context (ei-
ther from its internal reasoning or retrieved abstracts) into a single, focused concluding statement.
You are a research analyst tasked with drafting the primary concluding statement for a meta-analysis
or systematic review. Your goal is to distill the provided context into the single most important and
specific takeaway message, as if you were presenting the main result of the study.
Based strictly on the provided context:
1. Identify the central, affirmative findings or key definitive statements made. What is the most crucial
outcome, comparison, or result reported?
2. Capture any critical quantifications, effect sizes, or specific comparisons that are central to this main
finding.
3. Include any essential caveats, limitations, or conditions that are directly tied to and qualify this
primary finding.
4. The conclusion should be highly focused and concise, reflecting the punchline of the research. Avoid
general summaries of the entire field or background information from the context.
5. Do not introduce external knowledge or comment on the completeness of the provided context.
Research Topic: [Topic]
Primary Abstracts:[Context]
Synthesize the primary concluding statement based only on the provided context, focusing on the most
direct and impactful findings:

D PROMPT FOR NEGATING FACTS

This is the prompt using LLM to negate facts in the original meta-analysis conclusion
You are a medical research assistant. Your task is to create a negated/opposite version of the given meta-
analysis text while maintaining scientific credibility and plausibility.
Given the following meta-analysis title and abstract, create a similar text but with conclusions that are
opposite or contradictory to the original. Make sure to: 1. Keep the same title format and structure 2.
Maintain the same study design and methodology description 3. Change only the findings/conclusions to
be opposite or contradictory 4. Ensure the negated conclusion is medically plausible and realistic 5. Use
appropriate medical terminology and maintain scientific rigor
Original text: [Original Conclusion]
Create a negated version with opposite conclusions:

E EVALUATION FRAMEWORK AND RUBRIC

To ensure that our evaluation was rigorous, consistent, and reproducible, we developed an eval-
uation framework. This framework was applied uniformly to both our LLM-J and human expert
evaluations, strengthening the validity of our comparative results.

E.1 LLM-J PROMPT

To standardize our automated evaluation, we designed a detailed prompt that constrains the LLM-J.
This prompt establishes a clear expert persona, defines the evaluation task precisely, and provides
structured instructions to ensure consistent and criteria-driven assessments. The key components of
the prompt are excerpted below. The full prompt is available at our repository,
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Persona & Objective: You are an expert Clinical Research Scientist and Critical Appraiser specializ-
ing in meta-analysis methodology and scientific communication.
Input Data: You will receive:
1. [Generated Conclusion];
2. [Original Conclusion].
Core Task: Evaluate the [Generated Conclusion] based on its semantic alignment and complete-
ness compared to the [Original Conclusion].
Scoring Rubric (0-5 Scale):
[...]
Instructions for Evaluation:
[...]
Evaluation Criteria: Focus on the semantic meaning and core components typically found in meta-
analysis conclusions. [...]
Output Format:
1. Justification: [Your detailed explanation]
2. Score: [Your score from 0-5]

E.2 SEMANTIC EQUIVALENCE EVALUATION RUBRIC

To ensure both human and LLM evaluators applied consistent standards, we developed the following
detailed rubric. This rubric operationalizes the concept of ”conclusion quality” into 5 measurable
dimensions, focusing on semantic equivalence and the preservation of critical components from the
original text. It provided a calibrated scale for all annotations, enhancing the reliability of our results.

Evaluation Criteria: Focus on semantic meaning and core components across:
(1) Main Finding(s)/Overall Result - primary outcomes;
(2) Key Specifics & Comparisons - quantitative results;
(3) Nuance & Limitations - caveats, research needs;
(4) Implications & Future Directions - clinical significance;
(5) Safety/Tolerability - adverse effects if applicable;
(6) Overall Semantic Equivalence - core message preservation.
Scoring Rubric (0-5):
5 = Excellent Equivalent (all criteria met);
4 = High Equivalent (main findings + most specifics);
3 = Moderate Equivalent (main findings but missing details);
2 = Low Related (some elements, misrepresents core);
1 = Very Low Related (substantially different);
0 = Contradictory.

F PROMPT FOR RAG FEASIBILITY CHECK

A key methodological concern for any RAG system is whether the retrieved context contains suf-
ficient information to complete the task. To address this, we conducted a “feasibility check” to
quantify the information ceiling for our RAG models. The prompt below was used to have an
LLM-evaluator determine if the ground-truth conclusion could be reasonably reconstructed from
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the provided abstracts alone, helping us interpret the performance of our RAG-based systems.
Your task is to assess if someone could reasonably arrive at the same conclusion as the original authors
by reading only the provided abstracts.
Provide your assessment as:
1. A detailed evaluation including:
- What key information from the original conclusion is present in the abstracts
- What important information from the original conclusion might be missing
- Whether the abstracts provide sufficient evidence to support the original conclusion
- Any gaps or limitations that would prevent recreating the original conclusion
2. A score from 0-5 where
- 0 = Completely insufficient
- 1 = Very insufficient
- 2 = Insufficient
- 3 = Moderately sufficient
- 4 = Good sufficiency
- 5 = Excellent sufficiency
Focus specifically on whether the abstracts support the original conclusion’s claims, findings, and recom-
mendations.
Research Topic: [Topic]
Original Conclusion (to be recreated): [Original Conclusion]
Primary Abstracts: [List of Abstracts]
Provide both a detailed evaluation and numerical score (0-5).

G BENCHMARK CHARACTERISTIC

G.1 TOPIC DIVERSITY OF BENCHMARK DATA

To demonstrate the breadth of our benchmark, Figure 3 presents the distribution of the most frequent
research specialties within MedMeta. This diversity ensures that our evaluation is comprehensive
and not limited to a narrow medical domain, thereby testing the generalizability of the models against
varied terminologies and concepts.

Figure 3: Distribution of the top 10 research specialties in the MedMeta benchmark.

G.2 COMPLEXITY OF BENCHMARK SOURCE ARTICLES

To characterize the complexity of the source documents, Figure 4 illustrates the distribution of ref-
erence counts per meta-analysis. The right-skewed distribution, with a notable median, indicates
that our benchmark includes articles with a wide range of scopes—from concise reviews to highly
comprehensive analyses.
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Figure 4: Distribution of reference counts in the source articles of the MedMeta benchmark.

G.3 YEAR DISTRIBUTION OF BENCHMARK DATA

To confirm the temporal robustness of our benchmark, Figure 5 shows the publication year distribu-
tion of the source meta-analyses. The distribution spans over 8 years, ensure evaluating a model’s
ability to synthesize information from studies with varying reporting styles and terminologies over
time.

Figure 5: Publication year distribution of source articles in the MedMeta benchmark.

H HUMAN ANNOTATION PROTOCOL AND PLATFORM

To create a high-quality ground truth, we designed a multi-stage annotation protocol supported by a
custom platform, aimed at maximizing consistency, minimizing bias, and capturing nuanced human
judgments.

H.1 ONBOARDING AND COMMITMENT

Annotators began with an onboarding screen (Figure 6), where they provided email credentials and
formally committed to completing all assigned tasks, establishing accountability and engagement.

H.2 DETAILED SCORING RUBRIC

Each annotator used a detailed 0-5 rubric (Figure 7) with clear qualitative anchors from “No Simi-
larity” to “Excellent Similarity” to assess factual accuracy, main findings, and nuance.
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H.3 ANNOTATOR TRAINING AND CALIBRATION

Before evaluation, annotators completed a calibration phase with gold-standard examples (Figure 8).
Highlighted justifications and correct scores helped align annotator judgments to the rubric.

H.4 LIVE ANNOTATION INTERFACE

During the main task (Figure 9), annotators reviewed two anonymized model-generated conclusions
against a reference and scored each using the rubric. A structured interface with progress tracking
supported consistent and unbiased annotation.

I INFERENCE AND COMPUTATION SETUP

Inference for open-weights models was conducted on a local cluster equipped with NVIDIA
4xA6000 48GB GPUs. We utilized the vLLM library (v0.8.3) for efficient deployment. For the
27B parameter models (MedGemma and Gemma), we employed a configuration of 2-way tensor
parallelism and 2-way data parallelism, with a maximum context length of 64,000 tokens.

For the Qwen 8B model family, we followed the official guidelines for vLLM deployment. The
standard and reasoning variants were configured with 2-way tensor and 2-way data parallelism and
a 64,000 token context length, with the “enable-thinking” flag set to “false” and “true”, respectively.
We deploy DeepSeek Qwen 8B variant with the same parallel and context length configuration.

Figure 6: The initial onboarding screen where annotators commit to the evaluation process.
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Figure 7: The detailed 0-5 scoring rubric provided to all annotators.

Figure 8: The training interface showing a pre-scored example with highlighted justifications to
calibrate annotators.

Figure 9: The live annotation interface where annotators evaluate two anonymized model conclu-
sions against the reference conclusion.
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