Published as a conference paper at ICLR 2023

(QQ-PENSIEVE: BOOSTING SAMPLE EFFICIENCY OF
MULTI-OBJECTIVE RL THROUGH MEMORY SHARING
OF (Q-SNAPSHOTS

Wei Hung'?* Bo-Kai Huang!* Ping-Chun Hsieh!, Xi Liu®

'Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
2Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
3Applied Machine Learning, Meta Al, Menlo Park, CA, USA
{hweil048576.cs08,pinghsieh}@nycu.edu.tw, xiliu.tamu@gmail.com

ABSTRACT

Many real-world continuous control problems are in the dilemma of weighing the
pros and cons, multi-objective reinforcement learning (MORL) serves as a generic
framework of learning control policies for different preferences over objectives.
However, the existing MORL methods either rely on multiple passes of explicit
search for finding the Pareto front and therefore are not sample-efficient, or utilizes
a shared policy network for coarse knowledge sharing among policies. To boost
the sample efficiency of MORL, we propose Q-Pensieve, a policy improvement
scheme that stores a collection of @Q-snapshots to jointly determine the policy
update direction and thereby enables data sharing at the policy level. We show that
Q-Pensieve can be naturally integrated with soft policy iteration with convergence
guarantee. To substantiate this concept, we propose the technique of Q replay
buffer, which stores the learned QQ-networks from the past iterations, and arrive
at a practical actor-critic implementation. Through extensive experiments and
an ablation study, we demonstrate that with much fewer samples, the proposed
algorithm can outperform the benchmark MORL methods on a variety of MORL
benchmark tasks.

1 INTRODUCTION

Many real-world sequential decision-making problems involve the joint optimization of multiple
objectives, while some of them may be in conflict. For example, in robot control, it is expected that
the robot can run fast while consuming as little energy as possible; nevertheless, we inevitably need
to use more energy to make the robot run fast, regardless of how energy-efficient the robot motion
is. Moreover, various other real-world continuous control problems are also multi-objective tasks
by nature, such as congestion control in communication networks (Ma et al.| 2022) and diversified
portfolios (Abdolmaleki et al.,[2020). Moreover, the relative importance of these objectives could vary
over time (Roijers and Whiteson, [2017). For example, the preference over energy and speed in robot
locomotion could change with the energy budget; network service providers need to continuously
switch service among various networking applications (e.g., on-demand video streaming versus
real-time conferencing), each of which could have preferences over latency and throughput.

To address the above practical challenges, multi-objective reinforcement learning (MORL) serves
as one classic and popular formulation for learning optimal control strategies from vector-valued
reward signal and achieve favorable trade-off among the objectives. In the MORL framework, the
goal is to learn a collection of policies, under which the attained return vectors recover as much of
the Pareto front as possible. One popular approach to addressing MORL is to explicitly search for
the Pareto front with an aim to maximize the hypervolume associated with the reward vectors, such
as evolutionary search (Xu et al., |2020) and search by first-order stationarity (Kyriakis et al., 2022).
While being effective, explicit search algorithms are known to be rather sample-inefficient as the
data sharing among different passes of explicit search is rather limited. As a result, it is typically

*Equal contribution.

Published as a conference paper at ICLR 2023

difficult to maintain a sufficiently diverse set of optimal policies for different preferences within a
reasonable number of training samples. Another way to address MORL is to implicitly search for
non-dominated policies through linear scalarization, i.e., convert the vector-valued reward signal to a
single scalar with the help of a linear preference and thereafter apply a conventional single-objective
RL algorithm for iteratively improving the policies (e.g., (Abels et al., 2019; Yang et al., [2019)).
To enable implicit search for diverse preferences simultaneously, a single network is typically used
to express a whole collection of policies. As a result, some level of data sharing among policies
of different preferences is done implicitly through the shared network parameters. However, such
sharing is clearly not guaranteed to achieve policy improvement for all preferences. Therefore, there
remains one critical open research question to be answered: How fo boost the sample efficiency of
MORL through better policy-level knowledge sharing?

To answer this question, we revisit MORL from the perspective of memory sharing among the policies
learned across different training iterations and propose Q-Pensieve, where a “Pensieve”, as illustrated
in the novel Harry Potter, is a magical device used to store pieces of personal memories, which can
later be shared with someone else. By drawing an analogy between the memory sharing among
humans and the knowledge sharing among policies, we propose to construct a Q-Pensieve, which
stores snapshots of the Q-functions of the policies learned in the past iterations. Upon improving the
policy for a specific preference, we expect that these Q-snapshots could help jointly determine the
policy update direction. In this way, we explicitly enforce knowledge sharing on the policy level and
thereby enhance the sample use in learning optimal policies for various preferences. To substantiate
this idea, we start by considering ()-Pensieve memory sharing in the tabular planning setting and
integrate ()-Pensieve with the soft policy iteration for entropy-regularized MDPs. Inspired by (Yang
et al.l 2019), we leverage the envelope operation and propose the QQ-Pensieve policy iteration for
MORL, which we show would preserve the similar convergence guarantee as the standard single-
objective soft policy iteration. Based on this result, we propose a practical implementation that
consists of two major components: (i) We introduce the technique of @ replay buffer. Similar to the
standard replay buffer of state transitions, a @ replay buffer is meant to achieve sample reuse and
improve sample efficiency, but notably at the policy level. Through the use of @ replay buffer, we
can directly obtain a large collection of @ functions, each of which corresponds to a policy in a prior
training iteration, without any additional efforts or computation in forming the Q-Pensieve. (ii) We
convert the Q-Pensieve policy iteration into an actor-critic off-policy MORL algorithm by adapting
the soft actor critic to the multi-objective setting and using it as the base of our implementation.

The main contributions of this paper can be summarized as:

* We identify the critical sample inefficiency issue in MORL and address this issue by proposing
Q-Pensieve, which is a policy improvement scheme for enhancing knowledge sharing on the policy
level. We then present Q-Pensieve policy iteration and establish its convergence property.

» We substantiate the concept of Q-Pensieve policy iteration by proposing the technique of Q replay
buffer and arrive at a practical actor-critic type practical implementation.

* We evaluate the proposed algorithm in various benchmark MORL environments, including Deep
Sea Treasure and MuJoCo. Through extensive experiments and an ablation study, we demonstrate
the the proposed @-Pensieve can indeed achieve significantly better empirical sample efficiency
than the popular benchmark MORL algorithms, in terms of multiple common MORL performance
metrics, including hypervolume and utility.

2 PRELIMINARIES

Multi-Objective Markov Decision Processes (MOMDPs). We consider the formulation of MOMDP
defined by the tuple (S, A, P, r,v,D,Sx, A), where S denotes the state space, A is the action space,
P:SxAxS — [0,1] is the transition kernel of the environment, 7 : S X A — [~ max, Tmax)®
is the vector-valued reward function with d as the number of objectives, v € (0, 1) is the discount
factor, D is the initial state distribution, Sy, : R? — R is the scalarization function (under some
preference vector A € R%), and A denotes the set of all preference vectors. In this paper, we focus on
the linear reward scalarization setting, i.e., Sx(r) = A7 (s, a), as commonly adopted in the MORL
literature (Abels et al.l |2019; [Yang et al., 2019; Kyriakis et al., [2022). Without loss of generality,
we let A be the unit simplex. If d = 1, an MOMDP would degenerate to a standard MDP, and we
simply use (s, a) to denote the scalar reward. At each time step ¢t € NU{0}, the learner receives the

Published as a conference paper at ICLR 2023

observation s;, takes an action a;, and receives a reward vector ;. We use 7 : S — A(A) to denote
a stationary randomized policy, where A(.A) denotes the set of all probability distributions over the
action space. Let II be the set of all such policies.

Single-Objective Entropy-Regularized RL. In the standard framework of single-objective entropy-
regularized RL (Haarnoja et al., [2017; 2018} |Geist et al., 2019), the goal is to learn an optimal
policy for an entropy-regularized MDP, where an entropy regularization term is augmented to the
original reward function. For a policy = € II, the regularized value functions V™ : & — R and
Q™ : S x A — R can be characterized through the regularized Bellman equations as

Qﬂ(saa) = T(S,U,) +7Es’~79(v|s,a)[v7r(5/)]a (1)

V7(5) = Equn(|s)[Q (5,a) — alogm(als)],)

where « is a temperature parameter that specifies the relative importance of the entropy regularization
term. In this setting, the goal is to learn an optimal policy 7* such that Q™ (s,a) > Q™ (s, a), for all
(s,a), forall m € TI. An optimal policy can be obtained through soft policy iteration, which alternates
between soft policy evaluation and soft policy improvement: (i) Soft policy evaluation: For a policy

m, the soft @-function of 7 can be obtained by iteratively applying the corresponding soft Bellman
backup operator 7™ defined as

TWQ (87 a) =r (S? a) + ’yESlNP(-‘S,(l) [V (S/)]) (3)
where V (s') = Eq/or(s) [Q (8", a") — alog (m (a’ | s"))]. (ii) Soft policy improvement: In each
iteration k, the policy is updated towards an energy-based policy induced by the soft Q-function, i.e.,

exp (2Q™ (s,-))
Z™k (s) ’

Tk+1 = arg min Dxkp, <7T/ (-1s) H “4)
7' ell

where I is the set of parameterized policies of interest and Z™* is the normalization term.

Multi-Objective Entropy-Regularized RL. We extend the standard single-objective RL with entropy
regularization to the multi-objective setting. For each policy 7 € II, we define the multi-objective
regularized value functions via the following multi-objective version of entropy-regularized Bellman
equations as follows:

Q" (s,a) =1(s,a) + VEyup(|s,a) [V (5],)
V7 (5) = Equn(|s) Q7 (5,a) — alog m(als)14], (6)
where 1, denotes a d-dimensional vector of all ones.

In this paper, our goal is to learn a preference-dependent policy 7 (-|-; A) such that for any preference
Ae A ATQ 1N (5,a; X) > ATQ™ (s,a), for all (s,a), for all 7’ € I1. For ease of notation, we
let V™52 (5: X)) = V™ (s;) and Q71N (s,a; X) = Q™ (s, a; A) in the sequel.

3 ALGORITHMS

In this section, we propose our Q-Pensieve learning algorithm for boosting the sample efficiency
of multi-objective RL. We first describe the idea of (Q-Pensieve in the tabular planning setting by
introducing Q-Pensieve soft policy iteration. We then extend the idea to develop a practical deep
reinforcement learning algorithm.

3.1 NAIVE MULTI-OBJECTIVE SOFT POLICY ITERATION

To solve MORL in the entropy-regularized setting, one straightforward approach is to leverage the
single-objective soft policy improvement with the help of linear scalarization. That is, in each iteration
k, the policy can be updated by

WENET)

Z3" (s)

Try1(s, 3 A) = arg nEleiII}IDKL <7T/ (-]s)

Published as a conference paper at ICLR 2023

While (7)) serves as a reasonable approach, designing a learning algorithm based on the update scheme
in (7) could suffer from sample inefficiency due to the lack of policy-level knowledge sharing: In (7)),
the policy for each preference A is updated completely separately based solely on the Q-function
under A. Moreover, as the update relies on an accurate estimate of the Q-function, the critic
learning for the policy of each individual preference would typically require at least a moderate
number of samples. These issues could be particularly critical for a large preference set in practice.
While the use of a conditioned policy network (e.g., (Abels et al.| 2019)), a commonly-used network
architecture in the MORL literature, could somewhat mitigate this issue, it remains unclear whether
the knowledge sharing induced by the conditioned network can indeed achieve policy improvement
across various preferences. As a result, a systematic approach is needed for boosting the sample
efficiency in MORL.

3.2 (Q-PENSIEVE SOFT POLICY ITERATION

To boost the sample efficiency of MORL, we propose to enhance the policy-level knowledge sharing
by constructing a Q-Pensieve for memory sharing across iterations. Specifically, a Q-Pensieve is
a collection of @-snapshots obtained from the past iterations, and it is formed to boost the policy
improvement update with respect to the Q-function in the current iteration as these (Q-snapshots
could offer potentially better policy improvement directions under linear scalarization. Moreover,
one major computational benefit of Q-Pensieve is that these QQ-snapshots are obtained without the
need for any updates or additional samples from the environment (and hence are for free) as they
already exist during training. We substantiate this idea by first introducing the QQ-Pensieve soft policy
iteration in the tabular setting (i.e., |S| and |.A| are finite) as follows:

Q-Pensieve Policy Improvement. In the policy improvement step of the k-th iteration, for each
specific A, we update the policy as

exp (supXeW,c()\)’Q,er é)\TQ/(S, - X))) ®
ZQk (S) 7

where Zg, is again the normalization term, Wj,(A) C A is a set of preference vectors, and Q, is a
set of @Q-snapshots. The two sets Wy (A) and Qy, are to be selected as follows:

Trt1([5 A) = arg min Dy, (77/ (-[sA)
w'ell

* For Wy, (), the only requirement is that A € Wy (), for all k. The preference sets can be different
in different iterations.

* Similarly, for Q, the only requirement is that Q™ € Qy, for all k. The set of Q-snapshots can
also be different in different iterations. Hence, the choice of Qy, is rather flexible.

When choosing W,(A) = {A} and Q;, = {Q™" }, one would recover the update in (7).

Policy Evaluation. In the policy evaluation step, we evaluate the policy that corresponds to each
preference A by iteratively applying the multi-objective softmax Bellman backup operator 7Ty, as

(T Q)(s,a;X) = 7(s,a) + VEg p(|s,0),a7~r (|2 [Q(s', @' X) — alog m(a’[s"; XN)1g]. (9)

Remark 1 The Q-Pensieve update in (8)) is inspired by the envelope Q-learning (EQL) technique
(Yang et al., 2019), where in each iteration k, the Q-learning update takes into account the envelope
formed by the Q-functions of the current policy 7, for different preferences. The fundamental
difference between Q-Pensieve and EQL is that QQ-Pensieve further achieves memory sharing across
training iterations through the use of (Q-snapshots from the past iterations, and EQL focuses mainly
on the use of the Q-function of the current iteration.

Convergence of QQ-Pensieve Soft Policy Iteration. Another nice feature of the Q-Pensieve policy
improvement step is that it preserves the similar convergence result as the standard single-objective
soft policy iteration, as stated below. The proof of Theorem [3.1]is provided in Appendix [A]

Theorem 3.1 Under the Q-Pensieve soft policy iteration given by and (9), the sequence
of preference-dependent policies {m}} converges to a policy © such that X' Q™ (s,a; \) >
AX'Q™(s,a) forall m €11, for all (s,a) € S x A and for all X € A.

Published as a conference paper at ICLR 2023

3.3 PRACTICAL IMPLEMENTATION OF (Q-PENSIEVE

In this section, we present the implementation of proposed Q-Pensieve algorithm for learning policies
with function approximation for the general state and action spaces.

Q Replay Buffer. Based on (8), we know that the policy update of Q-Pensieve would involve both
the current QQ-function and the Q-snapshots from the past iterations. To implement this, we introduce
Q replay buffer, which could store multiple Q-networks in a predetermined manner (e.g., first-in
first-out). Notably, unlike the conventional experience replay buffer (Mnih et al., 2013) of state
transitions, @ replay buffer stores the learned (Q-networks in past iterations as candidates for forming
the Q-Pensieve. On the other hand, while each Q-network would require a moderate amount of
memory usage, we found that in practice a rather small @ replay buffer is already effective enough
for boosting the sample efficiency. We further illustrate this observation through the experimental
results in Section

Next, we convert the Q-Pensieve soft policy iteration into an actor-critic off-policy MORL algorithm.
Specifically, we adapt the idea of soft actor critic to QQ-Pensieve by minimizing the residual of the
multi-objective soft Q-function: Let 6 and ¢ be the parameters of the policy network and the critic
network, respectively. Then, the critic network is updated by minimizing the following loss

‘CQ(¢;)‘) =]E(s,a)wu {AT <Q¢ (57 a; A) - (T (87 CL) + 7E5/~P(-|s,a) [ng (Sl)]))2]) (10)

where ¢ is the parameter of the target network and y is the sampling distribution of the state-action
pairs (e.g., a distribution induced by a replay buffer of state transitions). On the other hand, based on
(8). the policy network is updated by minimizing the following objective

Lo(B:N) = Euny [Eanry | swp {adog(m(a|5:0) - ATQ (s,a:X) }| | ()
a AN eEW(X),Q'eQ

The overall architecture of Q-Pensieve is provided in Figure[I} The pseudo code of the Q-Pensieve
algorithm is described in Algorithm (1| in Appendix. The code of our experiments is available
Notably, in Section 4| we show that empirically a relatively small Q buffer size (e.g., 4 in our
experiments) can already offer a significant performance improvement.

Preference
set(containing
N

l

Q Replay Buffer
Pick

~ _Updart; ;;\olvcy_, preference Policies
Critic A from A
Snapshot
Interact with environment
using preference A
Added into Q Replay Buffer
to form Q-Pensieve

Replay <«——Get samples
Buffer

Environment

Update Q for A

— Critic

Figure 1: The architecture of QQ-Pensieve.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of Q-Pensieve on various benchmark RL tasks and
discuss how Q-Pensieve boosts the sample efficiency through an extensive ablation study.

"https://github.com/N'YCU-RL-Bandits-Lab/Q-Pensieve

Published as a conference paper at ICLR 2023

4.1 EXPERIMENTAL CONFIGURATION

Popular Benchmark Methods. We compare the proposed algorithm against various popular
benchmark methods, including the Conditioned Network with Diverse Experience Replay (CN-DER)
in (Abels et al}|2019), the Prediction-Guided Multi-Objective RL (PGMORL) in (Xu et al.| [2020),
the Pareto Following Algorithm (PFA) in (Parisi et al., [2014), and SAC (Haarnoja et al., 2018). For
CN-DER, as the original CN-DER is built on deep Q-networks (DQN) for discrete actions, we modify
the source code of |Abels et al.|(2019) for continuous control by implementing CN-DER on top of
DDPG. Moreover, we follow the same DER technique, which uses a diverse replay buffer and gives
priority according to how much the samples increase the overall diversity of the buffer. For PGMORL
and PFA, we use the open-source implementation of (Xu et al., [2020)) for the experiments. As these
explicit search methods typically require more samples before reaching a comparable performance
level, we evaluate the performance PGMORL and PFA under both 1 times and /3 times (5 > 1) of
the number of samples used by Q-Pensieve to demonstrate the sample efficiency of Q-Pensieve.
For SAC, as the MORL problem reduces a single-objective one under a fixed preference, we train
multiple models using single-objective SAC (one model for each fixed preference) as a performance
reference for other MORL methods.

Performance Metrics. In the evaluation, we consider the following three commonly-used perfor-
mance metrics for MORL.:

* HyperVolume (HV): Let R be a set of return vectors attained and rg € R be a reference
point. Then, we define the HyperVolume as HV := | H(R) I{z € H(R)}dz, where H(R) :=

{z ERY:Ir e R, 1m0 < 2 < r}and T is the indicator function.
« Utility (UT): To further evaluate the performance under linear scalarization, we define the utility

metric as UT :=Ey [Z?:o)\Trt] , where the preference A is sampled uniformly from A.

* Episodic Dominance (ED): To compare the performance of a pair of algorithms, we define
Episodic Dominance as ED; 5 := Ex[I{3" 1o ATr! > 272 AT#2}], where 7}, r? are the
return vectors, and 73,75 are the episode lengths of algorithm 1 and 2, respectively. ED serves as a
useful metric for pairwise comparison in those problems where the return vectors under different
preferences can differ by a lot in magnitude (in this case, HV and UT could be dominated by the
return vectors of a few preferences).

Evaluation Domains. We evaluate the algorithms in the following domains: (i) Continuous Deep Sea
Treasure (DST): a two-objective continuous control task modified from the original DST environment.
(i1) Multi-Objective Continuous LunarLander: a four-objective task modified from the classic control
task in the OpenAl gym. (iii) Multi-Objective MuJoCo: modified benchmark locomotion tasks with
either two or three objectives.

Configuration of Q-Pensieve. For (Q-Pensieve, at each policy update, we set the size of the
preference set Wi () to be 5 (including A and another four preferences drawn randomly) and set the
size of the @ replay buffer to be 4, unless stated otherwise.

4.2 EXPERIMENTAL RESULTS

Does Q-Pensieve achieve better sample efficiency than the MORL benchmark methods? Table
shows the performance of Q-Pensieve and the benchmark methods in terms of the three metrics.
For each algorithm, we report the mean and the standard deviation over five random seeds. We
can observe that QQ-Pensieve consistently enjoys higher HV, UT, and ED in almost all the domains.
More importantly, Q-Pensieve indeed exhibits superior sample efficiency as it still outperforms the
explicit search methods (i.e., PFA and PGMORL) even if these methods are given 10 times of the
number of samples used by Q-Pensieve. Moreover, we can observe that the explicit search methods
(i.e., PFA and PGMORL) often have larger HV than the implicit search method (such as CN-DER),
while implicit search methods tend to have larger UT. This manifests the design principles and
the characteristics of the two families of approaches, where explicit search is designed mainly for
achieving large HV and implicit search typically aims for larger scalarized return.

How much improvement in sample efficiency can QQ-Pensieve achieve compared to train-
ing multiple single-objective SAC models separately? To answer this question, we conduct
experiments on 2-objective MuJoCo tasks and consider a whole range of 19 preference vectors

Published as a conference paper at ICLR 2023

Table 1: Comparison of Q-Pensieve and other benchmark algorithms in terms of the three metrics
across ten domains. We report the mean and standard deviation over five random seeds. The ED
is calculated through comparing each algorithm to a multi-objective version of SAC (equivalent to
Q-Pensieve with the size of the preference set equal to 1 and without @ replay buffer). We set 5 = 10
for HalfCheetah2d, Ant2d, Ant3d, and Hopper3d, set 5 = 5 for LunarLander4d, LunarLander5d, and
Hopper5d, and set 5 = 3 for DST2d, Hopper2d, and Walker2d.

Environments Metrics PFA PFA PGMORL PGMORL CN-DER Q-Pensieve

(1.5M steps) (1.5X BM steps) (1.5M steps) (1.5 3M steps) (1.5M steps) (1.5M steps)

HV(x 102) 7.4343.68 8.67+1.49 8.10+1.57 8.13+1.61 5.36+4.71 10.214-1.40

DST2d UT(x 107) -9.27+6.03 -6.86+6.06 4.90+0.44 5.024+0.35 -5.10+15.73 7.31+£0.91

ED 0.1340.11 0.104-0.08 0.2540.18 0.2840.18 0.21 4+0.17 0.5440.11

HV(x10%) - - 0.32 £0.11 0.38+0.11 1.500.60 2.10-£0.10

LunarLander4d UT(x107) - - -0.26 +0.27 1.1040.50 3.6042.90 5.10+0.30

ED - - 0.02 £0.01 0.04 £0.04 0.21 £0.12 0.49 £0.05

HV(x101T) - - 1.8140.20 1.8740.42 8.64+0.15 9.48+1.84

LunarLander5d UT(x10%) - - -2.7740.68 -4.38+1.02 0.5640.42 1.07+0.24

ED - - 0.0540.02 0.054-0.02 0.49 40.01 0.524-0.02

HV(x 107) 0.734+0.19 1.3140.26 0.534+0.17 0.2840.29 2.0840.54 3.82+0.27

HalfCheetah2d UT(x 10%) 0.31+£0.20 1.02+0.40 -0.28+0.94 0.09+0.17 5.09+3.57 5.61£0.31

ED 0.08£0.10 0.1040.06 0.01£0.00 0.11£0.05 0.02 £0.01 0.54+0.08

HV(x10%) 0.4940.46 1.0140.62 0.6340.48 1.314+0.48 0.5640.16 1.33+0.20

Hopper2d UT(x 10%) 2.8941.93 3.5041.85 1.944-2.46 3.7041.78 1.424-1.00 4.08+1.10

ED 0.31£0.17 0.41£0.10 0.31£0.25 0.31F0.11 0.04 £0.03 0.43£0.09

HV(x 109) - - 0.2940.37 0.9141.39 3.7040.81 9.56+0.60

Hopper3d UT(x10°) s - 0.19+0.16 0.3140.26 0.72%0.16 1.39+0.15

ED - - 0.0240.03 0.0340.03 0.0740.03 0.5540.08

HV(x10'3) - - 0.6320.11 0.4340.09 3.4240.93 7.24+0.31

Hopper5d UT(x10%) - - 1.48+0.28 1.63+0.21 1.76£0.43 3.37+0.65

ED - - 0.18£0.07 0.14£0.05 0.21 £0.05 0.52£0.05

HV(x 106) 0.1740.05 0.7740.53 0.144-0.03 0.134-0.04 5.0343.60 10.01+-1.86

Ant2d UT(x 10%) -0.06+0.01 0.144-0.14 -0.2140.15 -0.18+0.38 3.68+2.34 14.04+3.03

ED 0.224-0.03 0.2240.02 0.2140.02 0.2140.03 0.214:0.08 0.604-0.07

HV(x10°%) - - 0.4140.48 0.6840.62 13.0044.11 21.87+1.07

Ant3d UT(x 107%) - - 0.1840.05 0.2540.05 0.49+0.23 1.144-0.22

ED B B 0.0240.02 0.03£0.03 0.28%0.14 0.5610.07

HV(x 106) 0.52 +0.20 1.054-0.44 0.8340.42 1.28+0.66 0.424-0.09 1.1240.36

Walker2d UT(x 10%) 0.2340.13 0.9540.55 0.3840.24 1.204-0.67 3.1740.53 6.37+1.42

ED 0.32£0.06 0.37£0.09 0.30£0.10 0.34%0.12 0.2T £0.11 0.48%0.10
([0.05,0.95],[0.1,0.9],[0.15,0.85], - - - ,[0.95,0.05]). We train 19 models by using single-objective

SAC, one model for each individual preference. Each model is trained for 1.5M steps (and hence
the total number of steps under SAC is 28.5M steps). By contrast, QQ-Pensieve only uses 1.5M steps
in total in learning policies for all the preferences. Figure 2] shows the return vectors attained by
QQ-Pensieve and the collection of 19 SAC models. Q-Pensieve can achieve comparable or better
returns than the collection of SAC models with only 1/19 of the samples. This further demonstrate
the sample efficiency of QQ-Pensieve.

1500 15000 28
B 1200 © 12000 o2
5]] @ 20
& 900 8 9000 8 1
B ° o
©
g 600 g 6000 §12
o o o 8
H- 300 Q-Pensieve L 3000 - Q-Pensieve = ;
SAC 4 Q-Pensieve
SAC SAC
0 0 S o 0
A0 AR P AP g ® O A 00 (o o T EEEREE
Control cost Control cost Time penalty
(a) Hopper2d (b) HalfCheetah2d (c) DST2d

Figure 2: Return vectors attained by Q-Pensieve and the collection of single-objective SAC models
under 19 preferences.

Total return

Published as a conference paper at ICLR 2023

Why can Q-Pensieve outperform single-objective SAC in some cases? From Figures [2(a) and
(c), we see that @-Pensieve can attain some return vectors that are strictly better than those of the
single-objective SAC models. The reasons behind this phenomenon are minaly two-fold: (i) Under
single-objective SAC, despite that we train one model for each individual preference, it could still
occur that single-objective SAC gets stuck at a sub-optimal policy under some preferences. (ii) By
contrast, QQ-Pensieve has a better chance of escaping from these sub-optimal policies with the help of
the @@-snapshots in the @ replay buffer.

To verify the above argument, we design a hybrid SAC algorithm as follows: (a) For the first 10°
time steps, this algorithm simply follows the single-objective SAC. (b) At time step 10°, it switches
to the update rule of QQ-Pensieve based on the Q-snapshots stored in the @ replay buffer of another
model trained under Q-Pensieve algorithm in parallel. Figure [3] shows the performance of this hybrid
algorithm in DST and HalfCheetah. Clearly, the QQ-Pensieve update could help the SAC model escape
from the sub-optimal policies, under various preferences.

25 20 | 6000 | 6000
20 ' '
15 § 0 § 4000 § 4000
10 2 2 2000 2 2000

5 i i i
10 : A0k : -2000 ! ‘ -2000 ! ‘

0 1 2 3 0 1 2 3 0 5 10 0 5 10

Time Steps %«10° Time Steps «10° Time Steps 10° Time Steps 10°
(a) DST2d (b) DST2d (c) HalfCheetah2d (d) HalfCheetah2d
A =1[0.9,0.1] A =10.8,0.2] A =[0.5,0.5] A = [0.6,0.4]

Figure 3: Comparison of standard single-objective SAC and the hybrid SAC assisted by another
(Q-Pensieve model trained in parallel.

An ablation study on @ replay buffer. To verify the effectiveness of the technique of @ replay
buffer, we compare the performance of Q-Pensieve with buffer size equal to 4 and that without using
Q replay buffer (termed “Vanilla” in Figuresfand 3). Figure] and[5]show the attained return vectors
and HV of both methods. We can see that @ replay buffer indeed leads to a better policy improvement
behavior, in terms of both HV and the scalarized returns. However, these figures may sometimes
oscillate a lot in the end period. It is because our algorithm finds solutions from another ()-vector,
and their inner product of) and preference may be quite close. We can check the points are in the
same contour.

1500 4000 12 2500
15
™ o 2000 i
D 10002 3000 ° - o
: x : % R ———
o [—— 8 o T 14 S #
o 50— %% 92000x 1000
e ——— — L — —
g \ g N\ £ 500 &
€ of—————————w— $1000 \5’4\\ i o
Vanilla Vanilla L 4\5; 0 Vanilla —
Q-Pensieve Q-Pensieve 2\2\ Q-Pensieve
500 0 R -500
-250 -200 -150 -100 -50 0 -1200 -1000 -800 -600 -400 -200 -800 -600 -400 -200 0
Control cost Control cost Control cost
(a) Hopper2d (b) Ant2d (c) Walker2d

Figure 4: Return vectors attained under preference A = [0.5, 0.5] at different training stages (We also
plot return vectors under others preference in Figure [7]and Figure[8]in Appendix). A number x on the
red or blue marker indicates that the model is obtained at 100 - x thousand steps.

Published as a conference paper at ICLR 2023

%108 x10°
Vanilla 10+ Vanilla
Q-Pensieve Q-Pensieve

10

HyperVolume
)]
HyperVolume

0! OL
1 2 3 4 5 1 2 3 4 5
Time Steps «10° Time Steps «10°

(a) Ant2d (b) Walker2d

Figure 5: A comparison in HV between Q-Pensieve with buffer size equal to 4 and that without using
Q replay buffer at different training stages.

5 RELATED WORK

The multi-objective RL problems have been extensively studied from two major perspectives:

Explicit Search. A plethora of prior works on MORL updates a policy or a set of policies by explicitly
searching for the Pareto front of the reward space. To learn policies under time-varying preferences,
(Natarajan and Tadepallil [2005) presented to store a set of policies, which are to be used in searching
for a proper policy for a new preference without learning from scratch. (Lizotte et al., 2012) leveraged
linear value function approximation to search for optimal policies. (Van Moffaert and Nowé, 2014)
proposed Pareto Q-learning, which stores the immediate rewards and the non-dominated future return
vectors separately and leverage the Pareto dominance for selecting the actions in Q-learning. (Parisi
et al.| 2014)) presented a policy gradient approach to search for non-dominated policies. (Mossalam
et al.l [2016) solves MORL via scalarized Q-learning along with the concept of prioritizing the
corner weights for selecting the preference of the scalarized problem. (Xu et al.,2020) proposed an
evolutionary approach to search for the Pareto set of policies, with the help of a prediction model
for determining the search direction. (Kyriakis et al.| |2022) presented a policy gradient method by
approximating the Pareto front via a first-order necessary condition. However, the above explicit
search algorithms are known to be rather sample-inefficient as the knowledge sharing among different
passes of search is limited.

Implicit Search. Another class of algorithms are designed to improve policies for multiple pref-
erences through implicit search. For example, (Abels et al.l 2019) presents Conditioned Network,
which extends the standard single-objective DQN to learning preference-dependent multi-objective
Q-functions. To achieve scale-invariant MORL, (Abdolmaleki et al.,[2020) proposed to first learn the
Q-functions for different objectives and encode the preference through constraints. Recently, (Yang
et al} [2019) proposes envelope Q-functions to encourage knowledge sharing among the Q functions
of different the current multi-objective Q-values that any policy can benefit from other preferences’
experiences, that make training more efficiently, and (Zhou et al., |2020) proposed model-based
envelope value iteration base on envelope Q-functions, it provides an efficient way to get optimal
multi-objective Q-functions. Despite that our method is inspired by (Yang et al.,[2019), the main
difference between our work and theirs is that we boost the sample efficiency of MORL via explicit
memory sharing among policies learned during training.

6 CONCLUSION

This paper proposes Q-Pensieve, which significantly enhances the policy-level data sharing through
in order to boost the sample efficiency of MORL problems. We substantiate the idea by presenting Q-
Pensieve soft policy iteration in the tabular setting and show that it preserves the global convergence
property. Then, to implement the Q-Pensieve policy improvement step, we introduce the @ replay
buffer technique, which offers a simple yet effective way to maintain (Q-snapshot. Our experiments
demonstrate that QQ-Pensieve is a promising approach in that it can outperform the state-of-the-art
MORL methods with much fewer samples in a variety of MORL benchmark tasks.

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This material is based upon work partially supported by the National Science and Technology Council
(NSTC), Taiwan under Contract No. 110-2628-E-A49-014 and Contract No. 111-2628-E-A49-019,
and based upon work partially supported by the Higher Education Sprout Project of the National
Yang Ming Chiao Tung University and Ministry of Education (MOE), Taiwan.

REFERENCES

Yiqing Ma, Han Tian, Xudong Liao, Junxue Zhang, Weiyan Wang, Kai Chen, and Xin Jin. Multi-objective
congestion control. In Proceedings of the Seventeenth European Conference on Computer Systems, pages
218-235, 2022.

Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Francis Song, Martina Zambelli,
Murilo Martins, Nicolas Heess, Raia Hadsell, and Martin Riedmiller. A distributional view on multi-objective
policy optimization. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 11—
22. PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.press/v119/abdolmaleki20a.
htmll

Diederik M Roijers and Shimon Whiteson. Multi-objective decision making. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 11(1):1-129, 2017.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik. Prediction-
guided multi-objective reinforcement learning for continuous robot control. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 10607-10616. PMLR, 13-18 Jul 2020. URL https
//proceedings.mlr.press/v119/xu20h.html|

Panagiotis Kyriakis, Jyotirmoy Deshmukh, and Paul Bogdan. Pareto policy adaptation. In International
Conference on Learning Representations, 2022.

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic weights in
multi-objective deep reinforcement learning. In International Conference on Machine Learning, pages 11-20.
PMLR, 2019.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective reinforce-
ment learning and policy adaptation. Advances in Neural Information Processing Systems, 32, 2019.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep energy-
based policies. In International Conference on Machine Learning, pages 1352-1361, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine learning,
pages 1861-1870. PMLR, 2018.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision processes. In
International Conference on Machine Learning, pages 2160-2169, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv:1312.5602, 2013.

Simone Parisi, Matteo Pirotta, Nicola Smacchia, Luca Bascetta, and Marcello Restelli. Policy gradient approaches
for multi-objective sequential decision making. In International Joint Conference on Neural Networks
(IJCNN), pages 2323-2330, 2014.

Sriraam Natarajan and Prasad Tadepalli. Dynamic preferences in multi-criteria reinforcement learning. In
International Conference on Machine Learning, pages 601-608, 2005.

Daniel J Lizotte, Michael Bowling, and Susan A Murphy. Linear fitted-q iteration with multiple reward functions.
Journal of Machine Learning Research, 13(1):3253-3295, 2012.

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto dominating
policies. Journal of Machine Learning Research, 15(1):3483-3512, 2014.

Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, and Shimon Whiteson. Multi-objective deep
reinforcement learning, 2016. URL https://arxiv.org/abs/1610.02707,

10

https://proceedings.mlr.press/v119/abdolmaleki20a.html
https://proceedings.mlr.press/v119/abdolmaleki20a.html
https://proceedings.mlr.press/v119/xu20h.html
https://proceedings.mlr.press/v119/xu20h.html
https://arxiv.org/abs/1610.02707

Published as a conference paper at ICLR 2023

Dongruo Zhou, Jiahao Chen, and Quanquan Gu. Provable multi-objective reinforcement learning with generative
models. arXiv preprint arXiv:2011.10134, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep reinforcement
learning. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Apr. 2018. doi: 10.1609/aaai.
v32i1.11798. URL https://ojs.aaai.org/index.php/AAAT/article/view/11798.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization. Proceedings
of the AAAI Conference on Artificial Intelligence, 34(04):5981-5988, Apr. 2020. doi: 10.1609/aaai.v34i04.
6059. URL https://ojs.aaai.org/index.php/AAAI/article/view/6059.

11

https://ojs.aaai.org/index.php/AAAI/article/view/11798
https://ojs.aaai.org/index.php/AAAI/article/view/6059

Published as a conference paper at ICLR 2023

APPENDIX

A PROOF OF THEOREM

Before proving Theorem 3.1} we first present two supporting lemmas as follows. To begin with, we
establish the policy improvement property of the @Q-Pensieve update. Recall that the Q-Pensieve
policy update is that for each preference A € A,

exp (sup)‘,ewk(,\)’Qlegk é)\TQ’(s, -)\’)))
Zo(s)

Ti+1(+[s; A) = arg min Dgp (77/ ([sA)
LS

=:L(w’;X)
(12)

Lemma 1 (Q-Pensieve Policy Improvement) Under the Q-Pensieve policy improvement update,
we have AXTQ™ (s,a; \) < AT Q™ +1(s,a;N), for all state-action pairs (s,a) € S x A, for all
preference vectors A € A, and for all iteration k € N U {0}.

Proof (Lemma([T) By the update rule in (12), we know that 71 is a minimizer of L(7’; X) and
hence L(my+1; A) < L(mg; A). This implies that for each state s € S, we have

1
Eonmyis(ls) [ATld log miy1(als; A) — — sup ATQ (s, a; X') +1log Zg, (8)}
QN eWL(N),Q' €O,

1
<Eammy(-]s) [)\Tld log i (als; A) — — sup)\TQ/(S, a; ') +log Zg, (s)} (13)
QN EeWR(N),Q €k

Since Zg, only depends on the state, the inequality reduces to

1
Earrpr(-]s) {)\Tld log w11 (als; X)) — = sup ATQ (s, a; X)}
QXN eWL(N),Q'€Qk

1
<Eqrmy(-]s) [)\Tld log i (als; A) — = sup 2'Q'(s,a; X)]. (14)
XN EWL(N),Q €Qy

Next, we proceed to consider the multi-objective soft Bellman equation as follows:

ATQ™ (s0,a0; A) — AT r(s0, ap) (15)
= ’YAT]Esl~P(»|so,a0),a1~7rk(~|sl;)\) [Qﬂ-k (817 a1; A) -)‘T]-d lOg(ﬂ'k(a1|81; A))] (16)
< 7E51~P(~|so,ao),a1~ﬂ'k(-|51;)\) |: Sup ATQ/(SL ai;)\/) — Q-)‘Tld log(ﬂ-k(allsl; A)):|
ANeWr(X),Q'€Qy
a7
< 7E51~P<4|SO,ao>,a1~m+1(-\sl;x)[sup ATQ (51,013 N) —a - AT 1glog(myy1(ar]s1; A))}
AN EWK(A),Q'€Qy
(18)

IN

7’YE51NP(‘|50,(10),(11N7T]C+1('|51;>\) [a .)‘T]-d IOg(Wk+1((11 |51; A)):|
+ ’YEslNP(-|so,ag),a1~7rk+1(~\51;A) |:)\T'I"(Sl, al) - ’YESQ"\’P("Sl,a1),a2~7\'k('|52) [aATld log(ﬂ-k) (a'2|52;)\))]

+ sup ESQNP(“Sl7(11)7(12N7rk(“52) [ATQ/(SZCLQ;A)]} (19)
AN EWEL(A),Q'€Qk

IN

—VEs,~P(-|50,a0),a1~m0s1 (-]51:0) [Oé AT 14log (1 (ars1;)\))}
+ Y, ~P(s0,a0)sa1~mrr1 (]5132) [)\TT(SI» a1) = YEgy P ([s1,a1) as~mnsa ([s2) (@A Lalog(mir (azs2; X))

+ sup ESQNP(~\31,(11),agwﬂk+1(~|32) [)‘TQ/(S%G'Q;)‘)”
AN EWEL(A),Q'€Q
(20)

12

Published as a conference paper at ICLR 2023

2

< _’Y]Esle('\so,ao),alw'rrk+1(~\sl;)\) |:Ck : AT]-d 1Og(7rk+1(a1|sl; A))j|

+ EP,ﬂ'k+1 |: Z ’ytE |:ATT(St7 at) (22)

t>1
— VB~ PClsear)sarsa i (Jsern) [ON T 1108 (1 (arsr|Ses15 X)) e, at]H (23)

=)\TQ”’““(SO, ag; A) —)\Tr(so, ap), (24)

where (I6) follows from the multi-objective soft Bellman equation, (I7) holds by the sup operation
and the fact that Q™ € Qy, (I8) follows from (T4), (I9) holds by applylng the multl -objective soft
Bellman equation to Q’(s1, a1; A), (20) again follows from the inequality in (is obtained by
unrolling the whole trajectory, and (24) holds by the definition of Q™.

Lemma 2 (Multi-Objective Soft Policy Evaluation) Under the multi-objective soft Bellman
backup operator Ty, with respect to a policy m and some QY :SxA - RY, the sequence
of intermediate Q-functions {QV} during policy evaluation is given by QU+ = T7,,QW, for all
i € NU{0}. Then, Q') converges to the soft Q-function of 7, as i — oc.

Proof (Lemma[2) This can be directly obtained from the standard convergence property of iterative
policy evaluation (Sutton and Bartol 2018) in two steps: (i) Define the entropy-augmented reward
as r(s,a;m) :=1(5,0) + YEgop(|s,a),a’~n(|s) [10g T(als)14], which is a bounded function. (ii)
Then, rewrite the policy evaluation update as

Qﬂ'(s7 a) « ’I"(S, a; 7T) + ’yEs/NP(<|s,a),a’~ﬂ(-\s) [Qﬂ(sl7 al; A)] (25)
This completes the proof. O

Now we are ready to prove Theorem [3.1]

Proof (Theorem[3.1) Note that by Lemma the sequence AT Q™ is monotonically increasing. As
each element in Q™ is bounded above for all 7 € II given the boundedness of both the reward and
the entropy term, the sequence of policies shall converge to some policy 7*. The remaining thing

’
exp (SUPAew(A),Q/eQ Q 71-(Sﬁ)\)))

is to show that 7* is optimal: (i) Define L, (7) := Dk, <7r(| s) 7o

(ii) Upon convergence, we shall have L |)) for all 7 € II. Using the same

|s)
iterative argument as in the proof of Lemmai we get)\T Q’T (s,a;0) > AT Q7 (s,a;\) for all
(s,a) e Sx Aandall XA € A. O

B DETAILED CONFIGURATION OF EXPERIMENTS

B.1 DETAILS ON THE EVALUATION DOMAINS

* Continuous Deep Sea Treasure (DST): DST is a classical multi-objective reinforcement learning
environment. We control the agent to find the treasure, while the further the treasure is, the higher
its value. In other words, the agent needs to spend more resources (-1 penalty for each action) to
get the more precious treasure. To extend DST to continuous space, we modify the simple four
direction movement to the movement in a circle, we set the 5 of DST to 3.

* Multi-Objective Continuous LunarLander: We modify LunarLander to the multi-objective version
by dismantling the reward to main engine cost, side engine cost, shaping reward, and result reward.
Since the past MORL methods were conducted in environments with 2 or 3 objectives, we created
an environment with 4 and 5 objectives to show our method can be used in high dimension
objectives environments, we set the 3 of LunarLander to 5.

¢ MuJoCo: We divide the scalar reward in MuJoCo environments into vector rewards. What’s more,
we amplify the weight of the control cost to make the magnitude of each reward element similar.

— HalfCheetah2d: 2 objectives as forward speed, control cost (S C R!7, A C R), 1000 times
for control cost, and 3 = 10.

13

Published as a conference paper at ICLR 2023

— Hopper2d: 2 objectives: forward speed, control cost (S C R A C R3), 1500 times for
control cost, and 3 = 3.

— Hopper3d: 3 objectives: forward speed, jump reward, control cost (S C R!!, 4 C R?), 1500
times for control cost. The jump reward is 15 times of the difference between current height
and initial height, and 5 = 10.

— Hopper5d: 5 objectives: forward speed, control cost of each of the 3 joints, and healthy
reward (S C R, 4 C R3), 1500 times for control cost, and 8 = 5

— Ant2d: 2 objectives: forward speed, control cost (S C R''!, A C R¥®), 1 times for control
cost, and 8 = 10.

— Ant3d: 3 objectives: forward speed, control cost, healthy reward (S C Rnl, A CR®), 1
times for control cost, 1 times for healthy reward, and 8 = 10.

— Walker2d: 2 objectives: forward speed, control cost (S C R'7, 4 C RS), 1000 times for
control cost, and g = 3.

B.2 HYPERPARAMETERS

B.2.1 HYPERPARAMETERS OF Q-PENSIEVE

We conduct all experiment on baselines with following hyperparameters.

Table 2: Hyperparameters of QQ-Pensieve.

Parameter Value
Optimizer Adam
Learning Rate 0.0003
Discount Factor 0.99
Replay Buffer Size 1000000
Depth of Hidden Layers 2

Number of Hidden Units per Layer 256
Number of Samples per Minibatch 256

Nonlinearity ReLU
Target Smoothing Coefficient 0.005
Target Update Interval 1
Gradient Steps 1

B.2.2 HYPERPARAMETERS OF PGMORL AND PFA
For PGMORL and PFA, we use the hyperparameters as provided in Table 3}

* n: the number of reinforcement learning tasks.

* total_steps: the total number of environment training steps.
* m,,: the number of iterations in warm-up stages.

* my: the number of iterations in evolutionary stages.

e Poum: the number of performance buffers.

* Piz.: the size of each performance buffer.

* Nweight: the number of sampled weights for each policy.

* sparsity: the weight of sparsity metric.

C PseEuDO CODE OF Q-PENSIEVE

We provide the pseudo code in Algorithm [1]as follows.

14

Published as a conference paper at ICLR 2023

Table 3: Hyperparameters of PGMORL and PFA.

Environments n total_steps M, My Bum Pize Nweight Sparsity
DST2d 5 1.5 x10° 80 20 100 2 7 -1
LunarLanderdd 35 7.5x10° 40 10 400 2 7 —108
LunarLander5d 35 7.5x10 40 10 400 2 7 —106
HalfCheetah2d 5 1.5 x107 80 20 100 2 7 -1
Hopper2d 5 45x10% 200 40 100 2 7 -1
Hopper3d 15 1.5x107 200 40 200 2 7 —108
Hopper5d 35 7.5x10 200 40 400 2 7 —106
Ant2d 5 1.5 x107 200 40 100 2 7 -1
Ant3d 15 1.5x107 200 40 200 2 7 —106
Walker2d 5 45 x108 80 20 100 2 7 -1

Algorithm 1: QQ-Pensieve

Input :¢1, @2, 0, preference sampling distribution Py, number of preference vectors Ny, the
soft update coefficient 7, actor learning rates 7, critic learning rates 7g
Output: ¢y, ¢2, 0

1 Q1 = @1, P2 < P23

2 M+ 0 > Initialize replay buffer;
3 B+ 0;

4 for each iteration do

5 sample weight X from A according Py ;
6 for each environment step do
7 ag~ o(-[s¢3 N);
8 St417 P(-\st,at);
9 | M = MU {(st,a,7(t,at), 5e41))3
10 for each gradient step do
1 sample Ny — 1 preferences and add them to set W,
12 W+ W U{A}
13 rj)l < (,ZSZ — ﬁQV¢7 ,CQ ((,ZSZ,)\) ,B < BU{(,ZSM >\} fori € {17 2},
14 compute NV g with eq. with W,
15 0+ 0—n:VoLr(0;N);
16 *¢i<—7¢i+(1—7)¢if0ri€{1,2};
5000 1500
° 4000 °
g g 1000
% 3000 5
2 B
T 2000 @
g _ : g 500
I o0gl| ~ Without Q-Pensieve i Without Q-Pensieve
Buffer size = 2 Buffer size = 2
Buffer size = 4 Buffer size = 4
0 % 0
-3000 -500 2000 -1000 -500 0 500
Control cost Control cost
(a) Ant2d (b) Hopper2d

Figure 6: Return vectors attained under different) replay buffer sizes of Q-Pensieve

15

Forward reward

Forward reward

Published as a conference paper at ICLR 2023

2000

o a
(=3 o
S o

o
o
o

Vanilla
Q-Pensieve

-600

0
-800 -400

Control cost

(a) Hopper2d

-200

Forward reward

o
o
s)

Vanilla
Q-Pensieve

0
-2500 -2000 -1500

Control cost

(b) Ant2d

-1000

1
-500

-50

0
-2000

Vanilla
Q-Pensieve

-1500

-1000
Control cost

(c) Walker2d

-500

Figure 7: Return vectors attained under preference A = [0.9,0.1] at different training stages. A
number x on the red or blue marker indicates that the model is obtained at 10 - « million steps.

120 400 200
| 14
100 o 300 ® 5 190 A
g g 100
80 % 200 %
° i o 50 11 4
60 S 100 g &
\ 2 F e '%ﬁ
o o it
40 : 5 o0 i * :
Vanilla Vanilla -50 Vanilla
Q-Pensieve Q-Pensieve Q-Pensieve
20 -100 -100 o
-10 -8 -6 -4 -2 0 -400 -300 -200 -100 0 -100 -80 -60 -40 -20 0
Control cost Control cost Control cost
(a) Hopper2d (b) Ant2d (c) Walker2d

Figure 8: Return vectors attained under preference A = [0.1,0.9] at different training stages. A
number x on the red or blue marker indicates that the model is obtained at 10 - « million steps.

D COMPARISON OF LEARNING CURVES

We demonstrate the learning curves of Q-Pensieve and the benchmark methods. In Figures OHT3]
we can find that Q-Pensieve enjoys the fastest learning progress in almost all tasks and preferences.
Notably, as PGMORL is an evolutionary method and does explicit search for policies for only a
small set of preferences vectors in each generation, the typical learning curve (in terms of expected
total reward) under a given preference is not very informative about the overall learning progress.
Therefore, regarding the learning curves, we compare Q-Pensieve with CN-DER and PFA. Moreover,
as PFA cannot handle tasks with more than two objectives (this fact has also been mentioned in (Xu|
2020)), PFA is evaluated only in tasks with two objectives.

N
o
]

-E-Q-Pensieve

~/-PFA
50 ~E-Q-Pensieve |-$-CN-DER
-O-CN-DER 300 J pra

Average return
Average return
Average return

10
Time Steps

© X =1[0.9,0.1]

1‘0
Time Steps
(b) A = [0.5,0.5]

1‘0
Time Steps
(a) A = [0.1,0.9]

15
x10°

15
x10°

15
x10°

Figure 9: Average return in Hopper2d over 5 random seeds (average return is the inner product of the
reward vectors and the corresponding preference).

16

Published as a conference paper at ICLR 2023

Average return

—E-Q-Pensieve
--CN-DER
5 10
Time Steps x10°
(a) A = [0.1,0.9]

Average return

Time Steps

(b) A = [0.5,0.5]

10

15
x10°

Average return

—B-Q-Pensieve

iCN-DER
PFA

10
Time Steps

(©) A =[0.9,0.1]

15
x10°

Figure 10: Average return in Ant2d over 5 random seeds (average return is the inner product of the
reward vectors and the corresponding preference).

500

-500
-1000y,

-1500

Average return

-20001

-2500

-B-Q-Pensieve

-5~ CN-DER
7 PFA

(a) A

5 10
Time Steps

=10.1,0.9]

Average return

6000 —————

N
o
o
=]

2000

R

10
Time Steps

(b) A = [0.5,0.5]

15
x10°

Average return

10
Time Steps

(©) A =[0.9,0.1]

Figure 11: Average return in HalfCheetah2d over 5 random seeds (average return is the inner product

of the reward vectors and the corresponding preference).

1500

15

-E-Q-Pensieve
-6~CN-DER
c £ 1000 -~#—PFA
2 2
S IS
o 2 500
@ @
o [
= = "I VRIS VS
<C -200 |-&-Q-Pensieve < T ARARAR
~FPFA
-$-CN-DER
-300 -500
0 5 10 15 0 5 10
Time Steps «10° Time Steps «10°
(a) A = [0.1,0.9] (b) A = [0.5,0.5]

2500

2000 A

Average return
o o
o (4]
o o
o o

o
o
S

B~ Q-Pensieve

10

15
Time Steps «10°
(©) A =1[0.9,0.1]

Figure 12: Average return in Walker2d over 5 random seed (average return is the inner product of the
reward vectors and the corresponding preference).

E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we compare @Q-Pensieve with the baseline methods, discuss how the performance of
Q-Pensieve can be further improved through hyperparameter tuning, and then demonstrate the model
generalization of QQ-Pensieve.

E.1

COMPARISON WITH THE ENVELOPE Q-LEARNING ALGORITHM

The Envelope Q-Learning algorithm and its neural version Envelope DQN (Yang et al. [2019)
presume that the action space is discrete. To adapt Envelope DQN to the continuous control tasks

17

Published as a conference paper at ICLR 2023

1000 2500
-B-Q-Pensieve ~E-Q-Pensieve

2000 -0~ CN-DER

-5-Q-Pensieve!
1000 -6~ CN-DER

800
600
400

Average return
Avf}rage return
Average return
Average return

-5-Q-Pensieve
- CN-DER

v
0 5 10 15 0 5 10 15 UK 5 10 15 0 5 10 15
Time Steps %10° Time Steps %10° Time Steps %10° Time Steps %10°

(@) A =1[0.33,0.33,0.33] (b)A=[0.1,0.1,0.8] (c)A=[0.1,0.8,0.1] (d) A =[0.1,0.1,0.8]

Figure 13: Average return in Ant3d over 5 random seeds (average return is the inner product of the
reward vectors and the corresponding preference).

2000

2500

3000

-B-Q-Pensieve

-~ CN-DER

-5-Q-Pensieve!
~$-CN-DER

-4~ CN-DER
-5-Q-Pensieve

1500 2000

N
S
5]
5]

1500

=)

s

3
=]
3
3

Average return
Average return

1000

@
=
S

Average return
Average return

a
<)
5]

-5-Q-Pensieve
~$-CN-DER

o p 4
0 5 10 15 0 5 10 15 0 5 10 15
Time Steps %10° Time Steps %10° Time Steps %10° Time Steps %10°

5 10 15
(@A =1[0.33,0.33,0.33] (b)A=[0.1,0.1,0.8] (c)A=[0.1,0.8,0.1] (d) A =[0.8,0.1,0.1]

Figure 14: Average return in Hopper3d over 5 random seeds (average return is the inner product of
the reward vectors and the corresponding preference).

20 5
< e <
2 2 2
® ® | ®
o o FH o
j=2} j=2} j=2}
© o ©
(0] (0] (0]
> > >
< = 20 = 15
-50 -E-Q-Pensieve "% [[-8-Q-Pensieve “19-5-CN-DER
-6-CN-DER -6~ CN-DER -5-Q-Pensieve
: -30 -20
0 5 10 15 0 5 10 15 0 5 10 15
Time Steps %10° Time Steps %10° Time Steps %10°
(a) A =[0.25,0.25,0.25,0.25] (b) A = [0.05,0.05,0.05,0.85] (c) A = [0.05,0.05,0.85,0.05]
150 200
100 N
£ @ €150
2 50 =
o Qo
s @100 -
el jef
g 50 g
< < 50-
-100 -$-CN-DER —5-Q-Pensieve
-E-Q-Pensieve -$-CN-DER
150 y
0 5 10 15 0 5 10 15
Time Steps %10° Time Steps %10°

(d) A =[0.05,0.85,0.05,0.05] (e) A = [0.85,0.05,0.05,0.05]

Figure 15: Average return in LunarLander4d over 5 random seeds (average return is the inner product
of the reward vectors and the corresponding preference).

considered in our paper (including MuJoCo and continuous Deep Sea Treasure), we take the open-
source implementation in 2019) and apply action discretization, which has been shown to
be also quite effective in MuJoCo control tasks (Tavakoli et al} 2018}, [Tang and Agrawall, 2020). We
compare Envelope DQN with @-Pensieve in both Hopper3d and DST2d environments. For Envelope
DQN, we set the number of bins for each action dimension to be 11 and 5 for DST2d (actions are
2-dimensional) and Hopper3d (actions are 3-dimensional) respectively, based on the suggestions

18

Published as a conference paper at ICLR 2023

provided by (Tavakoli et al., 2018). Table] shows the performance of Q-Pensieve and Envelope
DOQN in terms of the two metrics. We can observe that QQ-Pensieve outperforms Envelope DQN by a
large margin in the above two popular multi-objective tasks.

Table 4: Comparison of Q-Pensieve and Envelope DQN in terms of the two metrics across two
domains. We report the mean and standard deviation over five random seeds.

Environments Metrics Envelope DQN @Q-Pensieve

HV(x10?) 7.0240.24 10.21+1.40

DST2d UT(x10Y) 4.61+00s 7.31+091
Hopper3d HV(x10°) 0.431021 13.311203
PP UT(x10%) -0.39z02 4.08110

E.2 EMPIRICAL STUDY OF Q-PENSIEVE

Q Replay Buffer Size: One could expect that a larger @ buffer size could help provide a more
diverse collection of @ snapshots and thereby better boost the policy improvement update in each
iteration. On the other hand, in practice, the required memory usage also scales with the @ buffer
size. We evaluate @Q-Pensieve under buffer sizes = 2, 4, 6 and compare it to that without using a @
replay buffer in Ant2d. Table[5]show that empirically a relatively small Q buffer size already offers a
significant performance improvement.

Q Replay Buffer Update Interval: To ensure that the Q snapshots in the Q) replay buffer are rather
diverse, we would suggest that the update interval shall not be too small (otherwise the Q snapshots
in the buffer would be fairly similar). Moreover, as in general this update interval can be viewed
as a hyperparameter to be tuned (similar to the update interval of the target networks in many RL
algorithms). We further do an empirical study on the performance of Q-Pensieve under different
update intervals. We run Q-Pensieve with different update intervals in Ant2d for 1500k steps. Table
[6] show that the hypervolume is not sensitive to the update interval, and the performance in UT can
potentially be further improved through hyperparameter tuning.

E.3 MODEL GENERALIZATION OF Q-PENSIEVE

To demonstrate that the critic model with the preference vector can generalize well, we define a
metric for the critic as

Leritic = Est,aNAHQ (87 a;)\) - Qtrue (37 a; }\) H27 (26)

where @ is the action-value function learned by our critic network and Q. is the true @ function
calculated by Monte-Carlo method. Table[/|and Table E] show the L. under various preferences A
at different training stages in Hopper2d and HalfCheetah2d respectively. Note that the true @ values
are typically in the range of 1000 to a few thousands. Therefore, we can see that L. under various
preferences is indeed pretty low, which indicates that the critic model can generalize well across
preferences.

Table 5: Comparison of QQ-Pensieve with different @ replay buffer size in terms of the two metrics in
Ant2d over five random seeds.

Metrics Without Q Buffer Size =2 Size = 4 Size = 6

HV(x107) 0.931025 0.991023 1.00+0.18 1.27 +0.14
UT(x10%) 8.17+483 12.45+£275 14.044303 15314347

19

Published as a conference paper at ICLR 2023

Table 6: Comparison of Q-Pensieve with different replay buffer update interval in terms of the two
metrics in Ant2d over five random seeds.

Metrics Interval =500 Interval =1000 Interval =1500 Interval =2000

HV(x10%) 8.30+0.60 9.90+231 8.63+131 8.53+163

UT(x10%) 8.941201 12454275 11.83+1.42 13.33+297

Table 7: L. in Hopper2d over five random seeds.
Preferences 100K steps 500K steps 1000K steps 1500K steps
A=[0.1,0.9] 23.74 43.59 38.96 41.47
A=[0.3,0.7] 22.21 14.82 15.10 14.65
A=[0.5,0.5] 27.59 14.45 2491 11.59
A=[0.7,0.3] 47.54 10.25 15.17 11.52
A=[0.9,0.1] 87.01 46.95 84.76 31.96
Table 8: Lt in HalfCheetah2d over five random seeds.

Preferences 100K steps 500K steps 1000K steps 1500K steps
A=[0.1,0.9] 62.92 139.39 118.135 92.35
A=[0.3,0.7] 134.1 174.81 132.305 131.71
A=[0.5,0.5] 192.47 113.20 98.18 90.07
A=[0.7,0.3] 169.70 87.87 83.21 74.69
A=[0.9,0.1] 146.71 66.92 65.09 63.85

20

	Introduction
	Preliminaries
	Algorithms
	Naive Multi-Objective Soft Policy Iteration
	Q-Pensieve Soft Policy Iteration
	Practical Implementation of Q-Pensieve

	Experiments
	Experimental Configuration
	Experimental Results

	Related Work
	Conclusion
	Proof of Theorem 3.1
	Detailed Configuration of Experiments
	Details on the evaluation domains
	Hyperparameters
	Hyperparameters of Q-Pensieve
	Hyperparameters of PGMORL and PFA

	Pseudo Code of Q-Pensieve
	Comparison of Learning Curves
	Additional experimental results
	Comparison with the Envelope Q-Learning algorithm
	Empirical Study of Q-Pensieve
	Model generalization of Q-Pensieve

