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ABSTRACT

We investigate the sample complexity of Gaussian mixture models (GMMs). Our
results provide the optimal upper bound, in the context of uniform spherical Gaus-
sian mixtures. Furthermore, we highlight the relationship between the sample
complexity of GMMs and the distribution of spacings among their means.

Gaussian Mixture Models have been extensively studied in the field of machine learning. Let N
represent the Probability Density Function (PDF) of a multidimensional Gaussian distribution char-
acterized by a mean µ and a covariance matrix Σ. A Gaussian Mixture Model is defined as follows:

Γ =

k∑
i=1

ωiN (µi,Σi), (0.1)

where
∑

ωi = 1.

Assume that we are given a sequence of i.i.d. samples, x1, · · · , xn, generated from Γ. An important
area of research on GMM’s is determining the optimal number of samples required to learn the
underlying mixture.

Learning the mixture can be divided into two distinct approaches. The first approach aims to yield
a distribution that closely approximates Γ, in terms of total variation (2). However, this approach
doesn’t inherently offer insights into the specific parameters themselves. The second approach in-
volves the estimation of each individual parameter of Γ, namely ωi, µi, and Σi, with a ”good preci-
sion”. To elaborate, let’s clarify the term ”good precision”.

Definition 1 For a given Γ as in equation 0.1, an algorithm is said to learn the parameters of Γ
with ϵ-precision if, for every µi,Σi, and ωi in equation 0.1, it produces µ̂i, Σ̂i, and ω̂i such that
|µi − µ̂i| < ϵ, |Σi − Σ̂i| < ϵ, and |ωi − ω̂i| < ϵ.

Parameter estimation of a GMM dates back to the 18th century and was initially introduced by
Pearson(12). Subsequently it has been studied in various aspects (9; 4; 3; 6; 7; 8). If the parameters
of the mixture all well separated, it can be shown that around ϵ−2 samples are sufficient to estimate
parameters with ϵ-precision (9; 3). Despite the rich body of work on this problem there are not
many results that link the parameter distribution to sample complexity. This constitutes a central
theme of the present paper.

Our work is inspired by the paper of Hardt and Price (9). They explored the case of k = 2 and
demonstrated that ϵ−12 samples are both necessary and sufficient for determining the parameters of
a 2-mixture with ϵ-precision. If the means are well-separated, merely ϵ−2 samples are enough.

For k = 2, there are 5 parameters to learn. Exponent 12 suggests that we need a factor of ϵ−2

samples to distinguish between each of these parameters. When this is done, with an extra ϵ−2

samples we can reach ϵ-accuracy.
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For arbitrary k, there are 3k − 1 parameters to learn. Hardt and Price (9), considered a k-mixture
with 3k − 2 parameters 1, and showed that at least ϵ−6k+2 samples are necessary for this case. This
leads us to anticipate the optimal lower bound, for the general case, to be ϵ−6k, which raises the
following question: are ϵ−6k i.i.d. samples adequate for determining the parameters of a GMM
with ϵ-precision?

Our Contribution. We answer the above question affirmatively, in the uniform spherical case,
where ωi = 1/k and σi = 1. Further, we establish a connection between pair correlation of the
means of the mixture (µi’s) and the sample complexity of learning its parameters. In essence, we
prove that the distribution of spacing between the µi’s greatly influences the sample complexity.
This connection is a novel part of this paper.

Note that in the uniform spherical case with mean zero, we have k − 1 parameters to re-
cover.Therefore, we expect ϵ−2k samples to suffice.

Corollary 0.1 Let Γ be a uniform spherical mixture of k Gaussians distribution with mean equal
to zero and variance equal to σ2. Assume that ϵ < mini ̸=j(|µi − µj |), and let c(σ, k) =

∣∣k2(1 +

kσ2)k/2(2σ)ke0.5(k/σ)
2∣∣2 . Then

104c(σ, k)ϵ−2k

samples are sufficient to learn parameters of Γ with ϵ/100-accuracy.

Corollary 0.1 shows that in the worst case scenario, we requires ϵ−2k samples to learn parameters
with ϵ-accuracy. However, this is not always the case. There are many instances where we can learn
parameters of a GMM with fewer samples. Next, we demonstrate how the sample complexity is
contingent upon the distribution of spacing between the mixture’s means.

0.1 PAIR CORRELATION OF MEANS AND SAMPLE COMPLEXITY.

Hardt and Price (9) have shown that if |µ1 − µ2| = Ω(σ), roughly ϵ−2 samples are sufficient for
determining the parameters of a 2-mixture with ϵ-precision. In general, without this separation,
ϵ−12 samples would be required. This implies that pair correlations of means can impact the sample
complexity. We expand on this phenomenon for general k.

To explain the pair correlation’s role, assume that we have gaps of length ϵ between consecutive
means in our mixture. However, these gaps are isolated, meaning that if µn+1 − µn = ϵ, then the
adjacent gaps are significantly larger: µn+2 −µn+1 ≫ 1, and µn −µn−1 ≫ 1. Further assume that
we are aiming to learn µi’s with ϵ/100-accuracy. In this situation our result shows having roughly
c(k, σ)ϵ−4 samples will suffice.

Now let us alter the situation by allowing two consecutive gaps of length ϵ in our mixture .i.e.
µn+1 − µn = ϵ, and µn − µn−1 = ϵ. As before, we assume that other surrounding gaps remain
significantly larger: µn+2 − µn+1 ≫ 1, and µn−1 − µn−2 ≫ 1. Under this modified scenario, our
required sample complexity swells to c(k, σ)ϵ−6.

Let us define a function that captures the essence of the pair correlation for our purpose. Let

P(µm) =

k∏
n=1
n ̸=m

|µm − µn|. (0.2)

When an ϵ-vicinity of µm contains l means, then P(µm) ≈ ϵl. Our next corollary shows the
maximum number of means that are located in an interval of length about ϵ determines the sample
complexity.

1They assume that at least two of the parameters cannot be very close to each other, which saves a factor of
ϵ−2 samples. See (9) the paragraph before Theorem 2.10.
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Corollary 0.2 Let Γ be a uniform spherical mixture of k Gaussians distribution with mean equal to
zero and variance equal to σ2. Then, given

log
(1
δ

) c(σ, k)∣∣minm P(µm)
∣∣2 ϵ−2, (0.3)

samples from Γ, where c(σ, k) =
∣∣k2(1+ kσ2)k/2(2σ)ke0.5(k/σ)

2∣∣2, with probability 1− δ, we can
approximate Γ’s parameters with ϵ-precision.

Next we state our main theorem.

Theorem 0.3 Let Γ = 1
k

∑k
m=1 N (µm, 1), where its mean is zero and variance is σ2. Assume that

we are given log
(
1
δ

)
ϵ−2 samples from Γ with

ϵ <
P(µm)

k2(1 + |µm|2)(k−1)/2(2σ)ke0.5(k/σ)2
.

Then our algorithm returns µ̂m such that

|µ̂m − µm| < k2(1 + |µm|2)k/2(2σ)ke0.5(k/σ)2

P(µm)
ϵ. (0.4)

0.2 RELATED WORK.

We have already mentioned the work of Hardt and Price (9). Parallels to our approach, they too
employ the method of moments. Their scope, however, is constrained to mixtures of two Gaussians.
Similarly to our work, a main aspect of their work revolves around the correlation between the
separation of parameters and sample complexity.

A substantial separation between parameters intuitively simplifies the task of clustering samples.
In this genre, for the Spherical GMM, Liu and Li (3) proposed an algorithm that operates within a
poly(d, k) time frame. Their result is contingent on the condition:

|µi − µj | > (log k)1/2+ε

where d signifies the dimension. It’s noteworthy that when the separation between parameters
exceeds 1, our algorithm attains ϵ-accuracy with approximately ϵ−2 samples.

For scenarios where d < log k, Qiao et al. (4) further refined the results of Liu and Li. Their sample
complexity though, with respect to ϵ-precision, is quasi-polynomial i.e., ϵ−c log(1/ϵ).

What sets our method apart is the absence of assumptions regarding parameter separation, and the
optimal bound on sample complexity subject to accuracy. Additionally, we clearly describe the
circumstances under which more than ϵ−2 samples—a theoretical minimum—are required.

0.3 PROOF OVERVIEW

Let P be a polynomial of degree k with roots corresponding to the parameters of our mixture; we’ll
refer to P as our “parameter polynomial”. We aim to approximate coefficients of P with a good
precision and relate this approximation to the number of samples we use.

We employ the method of moments combined with Newton’s identity to derive a polynomial whose
coefficients are close to the coefficients of P . In practice, since we are using samples to calculate
the moments of our mixture, we need to consider the empirical error. Therefore, we need to have a
sense of how much of this error would spill into our approximation of the parameter polynomial.
Following this process we end up with a polynomial whose coefficients are within a certain distance
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to P. This distance is proportional to the number of samples we use to calculate empirical moments.

Lastly, we must establish an argument that connects the similarity between the coefficients of two
polynomials to the difference between their roots. Here we use a theorem from real analysis.

1 THE METHOD OF MOMENTS

One way of approaching the problem of parameters estimation of GMM’s, is through the method of
moments, see (6; 7; 9). For a one dimensional Gaussian we have the r-th moment equals

Mr(µ, σ) :=
1

σ
√
2π

∫
xre−

1
2

(
x−µ
σ

)2

, (1.1)

which is a polynomial in terms of µ, σ and easily calculable.

For a k-mixture, to simplify the problem, assume that ωi = 1/k, and Σi = σi ∈ R. Therefore,
moments of the k-mixture are

Mm =
1

k

k∑
i=1

Md(µi, σi) =
1

k

k∑
i=1

⌊m/2⌋∑
j=0

cm,jµ
m−2j
i σ2j

i . (1.2)

Here we have 2k variables µ1 · · · , µk and σ1 · · · , σk, and as many equations as we desire. There
are various ways to solve a system of equations, however the first barrier here is that we can only
approximate Mi, using samples.

Given n i.i.d. samples x1 · · ·xn from our mixture, the m-th empirical moment is

M̂m = 1
n

n∑
j=1

xm
j . (1.3)

Note that M̂m is random variable with mean Mi and variance σ2m/n, where σ2 is the variance of
the k-mixture. By Chebyshev’s inequality we have

P
[
|M̂m −Mm| > r

σm

√
n

]
<

1

r2
. (1.4)

Let us take n ≥ ϵ−2, then the portion of samples for which we have |M̂m − Mm| > rϵσm, is
bounded by r−2. This would suffice for our purposes, take for example r = 10, then we know that
for 99% of samples we have

|M̂m −Mm| < 10ϵσm.

This can be improved by taking samples in groups, calculate M̂m for each group and look at the
median of these estimates. In (5)[Lemma 3.2] Hardt and Price proved that given n ≫ log(1/δ)ϵ−2,
samples from the mixture, with probability 1− δ we have:

|M̂i −Mi| < ϵσi. (1.5)

Going forward we will use equation 1.5.

2 THE UNIFORM SPHERICAL CASE

In this section we prove some necessary lemmas that will help us recover parameters of the mixture.
We assume that all variances are equal to 1. Our final goal is to estimate coefficients of the following
polynomial:

P (x) :=

k∏
i=1

(x− µi),
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using information we obtain from equation 1.2. Define

Pm(µ1, · · · , µk) = µm
1 + · · ·+ µm

k .

We can write each moments in equation 1.2, in terms of Pm and vice versa.

Let us first, precisely calculate coefficients cm,j in equation 1.2, then we move to approximate Pm

using imperial moments we obtain in equation 1.3.

Lemma 2.1 For m ≥ 1 we have that

Mm(µ, 1) = µm +

m/2∑
i=1

(
m

2i

)
µm−2i(2i− 1)!!, (2.1)

where (2i− 1)!! is the product of odd numbers less than 2i− 1.

Remark 1 Using the lemma we find the expansion of Mm in terms of Pi :

kMm = Pm +

m/2∑
i=1

(
m

2i

)
(2i− 1)!!Pm−2i. (2.2)

In the next lemma we show that

Pm = kMm + k

m/2∑
i=1

(−1)i
(
m

2i

)
(2i− 1)!!Mm−2i. (2.3)

Proof. 1 (Proof of Lemma 2.1) We have

Mm(µ, 1) =
1√
2π

∫
xre−

1
2

(
x−µ

)2

=
1√
2π

∫
(x+ µ)me−

1
2x

2

=
∑
i

(
m

i

)
µm−iE(xi),

where x ∼ N (0, 1). We use E(zf(z)) = E(f ′(z)), therefore we have

E(xm) = E(xxm−1) = (m− 1)E(xm−2).

Also note that E(xm) is zero if m is odd. This will give the lemma.

We now define a new object that is a empirical approximation of Pm.

Definition 2 Let M̂m be as equation 1.3, following equation 2.3, we define

P̂m = kM̂m + k

m/2∑
i=1

(−1)i
(
m

2i

)
(2i− 1)!!M̂m−2i. (2.4)

Lemma 2.2 We have that Pm satisfy:

Pm = kMm + k

m/2∑
i=1

(−1)i
(
m

2i

)
(2i− 1)!!Mm−2i. (2.5)

Moreover, Let εm = P̂m − Pm and ∆m = M̂m −Mm. We have that

εm = k∆m + k

m/2∑
i=1

(−1)i
(
m

2i

)
(2i− 1)!!∆m−2i. (2.6)

Proof. 2 We proceed with using induction, we have that kM1 = P1(µ1, · · · , µk) and
kM2 = 1 + P2(µ1, · · · , µk). This gives us equation 2.5 and equation 2.6 for the base
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cases. We assume equation 2.6 for m− 2,m− 4, · · · and we prove it for m.

Using equation 2.2, we have the following recursive identity relating εm to ∆m and
εm−2, εm−4, · · · .

εm = k∆m −
m/2∑
i=1

(
m

2i

)
(2i− 1)!!εm−2i. (2.7)

We use our induction hypothesis in equation 2.7 and we get everything in terms of ∆m,∆m−2, · · · .
Only thing remaining is to calculate the coefficients of ∆m−2i for 0 < i ≤ m/2.

The term ∆m−2i appears in equation 2.7 expansion of εm, εm−2, · · · , εm−2i. Therefore its coeffi-
cients equal to

−
(
m

2i

)
(2i− 1)!! +

i−1∑
n=1

(−1)n−1

(
m

2n

)(
m− 2n

2i− 2n

)
(2n− 1)!!(2i− 2n− 1)!! (2.8)

If i is odd, then all terms cancel each other except n = i, which gives

(−1)i
(
m

2i

)
(2i− 1)!!.

When i is even we have equation 2.8 equals to m(m− 1) · · · (m− 2i+ 1) times

− (2i− 1)!!

2i!
−

i−1∑
n=1

(−1)n
(2n− 1)!!(2i− 2n− 1)!!

2n!(2i− 2n)!

= −
i∑

n=1

(−1)n

2nn!2i−n(i− n)!
= − 1

2ii!

i∑
n=1

(−1)ni!

n!(i− n)!

= − 1

2ii!

(
(1− 1)i − 1

)
=

1

2ii!
.

Therefore the coefficient of ∆m−2i equals to

1

2ii!
m(m− 1) · · · (m− 2i+ 1) =

(
m

2i

)
(2i− 1)!!.

Now if we have ≫ log(1/δ)ϵ−2 samples, using equation 1.5 we have ∆m ≪ ϵσm. Therefore,
applying the above lemma we get

εm = P̂m − Pm ≪ ϵkσme0.5(
m
σ )2 . (2.9)

We obtain equation 2.9 by considering the Taylor expansion of e0.5(
m
σ )2 .

3 NEWTON’S IDENTITIES AND ROOTS OF POLYNOMIALS

So far we established that in the case of spherical Gaussian using the moments we can easily calcu-
late Pm. Now consider our parameter polynomial:

P (x) :=

k∏
i=1

(x− µi) = xk − e1x
k−1 + · · ·+ (−1)kek (3.1)

By using Newton’s identities we can write coefficients en, in terms of Pm, with m ≤ n. In general
we have

en =

n∑
j=1

(−1)jen−jPj . (3.2)

Similar to the definition 2.4 we define
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Definition 3 Let ê0 = 1 and ê1 = P̂1. Recursively we define

ên =

n∑
j=1

(−1)j ên−jP̂j . (3.3)

Next we estimate how close ên is to en.

Lemma 3.1 Assuming we have ≍ log(1/δ)ϵ−2 samples from our mixture, and P1 = 0, and we have
that

|êm − em| ≪ ϵK(2σ)me0.5
(
m
σ

)2

(3.4)

Proof. 3 Let En = ên − en. Using equation 3.3 and equation 3.2, we have that

En ≪
n∑

i=1

(
en−iεi + En−iPi + En−iεi

)
(3.5)

We use following bounds on each of the terms: For i ≥ we have Pm < σm. Using equa-
tion 2.9 we have εm ≪ ϵkσme0.5(m/σ)2 . Using the induction hypothesis for i < n, En−i ≪
ϵk(2σ)n−ie0.5(n−i/σ)2 . From (11) we have en ≪

(
6e
n

)n/2
σn. Applying these bound to the first term

inside the summation in equation 3.5 we get
n∑

i=1

en−iεi ≪ ϵ

n∑
i=1

( 6e

n− i

)(n−i)/2
σn−iσie0.5(i/σ)

2

ϵkσn
n∑

i=1

( 6e

n− i

)(n−i)/2
e0.5(i/σ)

2

≪ ϵkσne0.5(n/σ)
2

.

As for the term
∑n

i=1 En−iPi, using mentioned bounds gives equation 3.4. The third error term is
obviously smaller than the other two.

We prove that in the spherical case having first k-moment is enough to uniquely determine parame-
ters of the mixture.

Lemma 3.2 Let G be a k-mixture of spherical Gaussian (KGMM):

G = 1
k

k∑
i=1

N (µi, 1).

We have that first k moments of G uniquely determine parameters µ1, · · · , µk.

Proof. 4 By using Lemma 2.2 knowing M1, · · · ,Mk, we can uniquely find p1, · · · , pk. Assume that
M̌1 · · · , M̌k, would also give us p1, · · · , pk. Then, using the first equation in equation 1.2 we have
M1 = M̌1, by the second equation, we have M2 = M̌2, and so on.

Since we have P1, · · · , Pk, using Newton’s identities we can determine coefficients of P (x) in equa-
tion 3.1. This polynomial has at most k-distinct roots, and we know that µ1, · · · , µk are roots of P,
therefore first k moments uniquely determine parameters of the mixture.

4 APPROXIMATING COEFFICIENTS USING SAMPLES

So far we showed that we can construct a polynomial whose roots are close to µ1, · · · , µk. Define

P̂ (x) :=

k∑
n=0

ênx
n,

where we obtained ên as in equation 3.3. By using Lemma 3.1 we have that P̂ (x) is an approxima-
tion of P. Our task is to measure how close are roots of P̂ to the roots of P. We apply the following
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theorem of Beauzamy (10)

Let Q(x) =
∑k

i=0 aix
i be a polynomial with complex coefficients and degree k. The Bombieri’s

norm of Q is defined as

B(Q) =
( k∑

i=0

|ai|2(
k
i

) )1/2

. (4.1)

[Beauzamy] Let P and P̂ be polynomials of degree k. Assume that B(P̂ − P ) < ε. If x is any zero
of P there exist zero y of P̂ with

|x− y| < k(1 + |x|2)k/2

|P̂ ′(x)|
ε. (4.2)

If ε is small enough, namely

ε <
|P ′(x)|

k(1 + |x|2)(k−1)/2
,

then

|x− y| < k(1 + |x|2)k/2

|P ′(x)|
ε. (4.3)

Proof. 5 (Proof of Theorem 0.3) We apply the above theorem to examine how close are roots of P̂
to roots of P. Using Lemma 3.1 we know that if we have ≍ log(1/δ)ε−2 samples from the mixture,
then

B(P̂ − P ) ≪ ε
( k∑

i=0

k2e(i/σ)
2

(2σ)2i(
k
i

) )1/2

≪ εke0.5(k/σ)
2

(2σ)k.

Therefore by Beauzamy’s theorem, if

ε <

∏
j ̸=m(µm − µj)

k2(1 + |µm|2)(k−1)/2(2σ)ke0.5(k/σ)2

there exist a root µ̂m of P̂ such that

|µ̂m − µm| < k2(1 + |µm|2)k/2(2σ)ke0.5(k/σ)2∏
j ̸=m(µm − µj)

ε. (4.4)

This gives us the proof of Theorem 0.3.

Proof. 6 (Proof of corollary 0.2) First note that in the statement of Beauzamy’s theorem and the
proof of Theorem 0.3, we used ε to indicate the distance between coefficients of polynomial. Going
forward we use ϵ to indicate the accuracy we expect the statement of the corollary.

To get Corollary 0.2, LHS of equation 4.4 must be smaller than the accuracy :

|µ̂m − µm| < ϵ,

for all m.

In order to have this, ε in the RHS of equation 4.4, must be smaller than ϵ. Therefore we must have

ε = ϵ

∏
j ̸=m(µm − µj)

k2(1 + |µm|2)k/2(2σ)ke0.5(k/σ)2
.

Number of samples we need to get this accuracy is

≫ log(δ−1)ε−2 = log(δ−1)ϵ−2

∣∣∣∣
∏

j ̸=m(µm − µj)

k2(1 + |µm|2)k/2(2σ)ke0.5(k/σ)2
∣∣∣∣−2

.
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We use
1 + µ2

m ≪ 1 + kσ2,

and we set
c(σ, k) =

∣∣k2(1 + kσ2)k/2(2σ)ke0.5(k/σ)
2∣∣2

Therefore, the sample complexity is

log(δ−1)
c(σ, k)∣∣Pm

∣∣2 ϵ−2. (4.5)

We complete the proof of the corollary by taking the minimum over m.

Proof. 7 (Proof of corollary 0.1) We assumed mini̸=j(µi − µj) > ϵ, therefore applying Corollary
0.2, we have that minm P(µm) > ϵk−1. This indicates that the denominator in equation 4.5 is
bigger than ϵk−1. We would like to learn our parameters with ϵ/100-accuracy. Therefore the number
of samples we need is

104 log
(1
δ

)
ϵ−2k+2c(σ, k) ϵ−2.

This completes the proof.
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