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ABSTRACT

State-space modeling is a powerful technique for the analysis of spatiotemporal structures
of time series. However, when assumptions about linearity or Gaussianity are violated, sta-
tistical inference about the latent process is challenging. While variational inference can be
used to approximate the posterior in these nonlinear or non-Gaussian settings, it is desirable
to preserve the temporal structure of the true posterior in the variational approximation,
while ensuring inference scales linearly in sequence length. We propose a new structured
variational approximation that satisfies these desiderata. Furthermore, by generalizing to
exponential family dynamical systems, we are able to develop decoupled second order
inference algorithms that have simple updates, without increased computational complexity.
Then, we extend our insights and develop the auto-encoding backward factorized smoother,
making it easy to leverage modern deep learning tools. We compare against various infer-
ence algorithms for state-space models, and validate the theory presented through numerical
experiments.

1 INTRODUCTION

Principled estimation of the unknown internal state evolution from noisy time series, known as smoothing, is
fundamental to scientific discovery and engineering (Jazwinskil 2007} [Pei et al., [2021; Koyama et al., 2010;
Anderson & Moore, |[1979; [Douc et al.,[2014; Durbin & Koopman, [2012). State-space modeling is a class
of latent variable models that describe the generative process of internal states and observations, providing
a spatiotemporal prior distribution as a scaffold for inference. Decades of research dedicated to solve the
smoothing problem for non-Gaussian, nonlinear state-space models resulted in various approximate solutions
including sampling based and variational approaches (Kitagawa, 1996; Douc et al.| |2014; [Turner & Sahani,
20115 |Archer et al., 2015 Zhao et al.,2022). However, ensuring the meaningful temporal structure of the
intractable but optimal posterior and ensuring inference scale linearly in sequence length is challenging.

We develop a myriad of novel variational smoothing algorithms that consider exponential family dynamical
systems with arbitrary nonlinearity and arbitrary observation likelihood. While many works consider
smoothing and filtering algorithms at the abstraction level of arbitrary probability distributions, usually, when
the focus is narrowed, it is directly to models with additive Gaussian noise and Gaussian approximations.
Using the duality of natural and mean parameter forms of exponential family distributions and analytical
forms of optimal Kullback-Leibler divergences, we can leverage advantages of natural gradient descent for
variational inference, and develop simplified algorithms.

We highlight our main contributions: i) We introduce a prior-parameterized backward factorization to the
smoothing posterior, leading to a new evidence lower bound (ELBO). We make the new ELBO tractable
by replacing the intractable distributions with their closest exponential-family approximations. ii) Using a
Lagrange multiplier argument, we develop a smoothing algorithm capable of processing sequential data in
parallel rather than in order; moreover, the induced stationary conditions for optimality reveals the dynamics
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of natural parameters. iii) Drawing inspiration from the stationary conditions, we develop the auto-encoding
backward factorized smoother (aBFS), allowing us to combine our insights with the modern deep learning
toolbox.

2 BACKGROUND

2.1 BAYESIAN FILTERING AND SMOOTHING

Recursive Bayesian filtering and smoothing (Sarkkal [2013) provides a principled and algorithmically conve-
nient way of computing the posterior distribution in state-space models,

T
p(yrr,zar) = ply1 | 21)pe(z) [ [, p(ye | 2e)pe(2: | 2e-1) M

where z; € R” is the latent state that evolves according to the Markovian dynamics pg(z; | z;—1) parameter-
ized by 6, and y; € RM are observations.

Filtering The goal of filtering is to recursively compute (z; | y1.:) — the posterior distribution over latent
state at time ¢ given all data up to the presen(ﬁ Given the current filtering posterior p(z; | y1.¢), we can
forecast the future state via the predictive distribution

P(ze11 | Y1:0) = Ejarlyra) Po(zet1 | 2¢)] (-1
where ~ is a decorator used to denote a predictive distribution or parameter. After observing y,; 1, we update
our prediction through Bayes’ rule,

P(zt+1 | Y1a+1) X p(Yet1 | Ze41)D(Ze41 | yi:t) (p-2)
These recursive updates beginning with, p(z1), produce a series of predictive and filtering distributions.

Smoothing Smoothing is to update the belief of latent states given all the observations. After the filtering
pass has produced necessary intermediary quantities (Kitagawal [1996)), the smoothing distribution p(z; | y1.7)
can be recursively computed backwards in time, starting with p(zr | y1.7). The procedure also comprises
two steps,
po(Ziv1 | 2e)p(Ze | y1:4)
(2t | Ze1,y1.7) = (p-3)
Ep(zilyr.) [Po(Zes1 | 2t)]
p(ze | Y11) = Epgay o lyrr) [P(Ze | Zes1,y1:7)] (-4
The Kalman filter and smoother recover the exact posterior (Jazwinskil 2007; |Sarkka, [2013) for a linear
Gaussian state-space model (LGSSM) (App. [B). However, for more general cases, the filtering and smoothing
distributions are often intractable.

2.2 VARIATIONAL INFERENCE FOR STATE-SPACE MODELS

Variational inference is one way to deal with the intractable posterior by finding an approximation g(z1.7) ~
p(z1.7 | y1.7) (Blei et al., 2017). Usually, ¢ is chosen to be a member of a parametric family of distributions,
Q, whose parameters are found by maximizing the evidence lower bound (ELBO),
T
L(q) = Eqa,) logp(y: | z:)] — Dxi(q(z1:7)|| pe(z1:7)) < logp(y1.7)- 2

t=1

Exponential family dynamics Many existing works on variational inference for state-space models narrow
their focus to dynamical systems driven by additive Gaussian noise, and that naturally guides the focus to
Gaussian variational approximations (Karl et al., [2016} Krishnan et al.,|2016} [Fraccaro et al.l 2017} |Archer]

!~"is a decorator to remind us this distribution is conditioned on past and present data, see App.for nomenclature
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et al.| 2014} |(Campbell et al, 2021} [Klushyn et al.l [2021)). However, by keeping our level of abstraction
to exponential family distributions, it becomes easier to understand the structure of an optimal variational
posterior. This also allows for a variety of stochasticity to which many well-known dynamics are special cases,
simplifies the analysis, and makes it possible to exploit the information geometry of exponential families by
using natural gradient descent (Amari, | 1998)). We consider exponential family dynamical systems (Dowling
et al.| [2023) defined by,

exponential family dynamics
P(ze11 | 2¢) = h(zeg1) exp (H(zes1) " Ao (2e) — A (No(21))) 3) \

where t(z:1) are the sufficient statistics, A(-) is the log-partition function, h(-) the base measure, and g (z)
captures the dynamics by describing how z; is transformed into the natural parameters of z; 1. In App.
show how a LGSSM can be written in this form. Without loss of generality, we consider only minimal
exponential family distributions (Wainwright & Jordan, 2008) for which there exists a one-to-one mapping
between the natural and mean parameters s.t. g = K, ) [t(z)] = VA(X). This choice (1) eliminates
the ambiguity in notation, and lets us write pg(z¢) = Va, A(Ao(z:)), (2) allows the Fisher information to
be written as the Hessian of the log-partition function s.t. Z(A) = V2A(X), and (3) lets us use the duality
connecting mean and natural parameters through the relation Z(A) 'V g(A) = V,,g(X\) (Khan & Nielsen,
2018).

Forward and reverse KL divergences If ¢(z) and p(z) are in the same exponential family, de-
noted Q, and have natural parameters A and Ay respectively, then at a stationary point (optima) of
Dki(q(z)|| p(y | z)p(z)/p(y)) with respect to A, the parameters of variational approximation satisfy the
implicit equation (Khan & Nielsen, 2018])

A= Ao + V;L*Eq(z;)\*) [logp(y | Z)] = Ao + 5‘(y7 A*) (4)

where we have defined A(y, A) = V,Eq(;:x) [log p(y | z)]. This lends itself to the interpretation that at a
stationary point of the ELBO, the natural parameters of the variational approximation resemble a conjugate
Bayesian update (Khan & Lin| [2017); if the solution is not implicit so that we can write A(y, A) = A(y) —
which happens if the prior is conjugate to the likelihood — then, one natural gradient step on the ELBO is
equivalent to the exact Bayesian conjugate update.

It is also well known that a stationary point of Dgy.(p(z)|| ¢(z)) with respect to A the moment matching
condition is satisfied so that, pu = [E,(, [t(z)] where t(z) are the sufficient statistics of ¢ € Q (Minkal 2001).
However, a lesser known fact is that at a stationary point of

Dk (Ep(ay) [p(22 | 21)]|| a(22)) ®)
when p(zz | z1) € Q and has natural parameters, Agj;(21), the mean parameters, p3, satisfy ps =
Epz) [ugu(zl)] which we show in App. @ Said in words — the best variational approximation to the
marginalized (mixture) distribution is the one whose mean parameters are the expected mean parameters of
the conditional mean mapping under the prior. These observations suggest that in order to approximate a
posterior, the forward KL may be a favorable objective. On the other hand, if we are trying to approximate an
intractable marginalization, then the reverse KL is more convenient.

3 A FRESH LOOK AT THE STATE-SPACE MODEL ELBO

An interesting fact is that, while the states a priori form a first order Markov chain, they a posteriori form
a first order Markov chain time-reversely. With the freedom of choosing the structure of the variational
approximation, we are allowed to exploit this duality by factoring the variational approximation in accordance
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with the true posterior as a time-reversed Markov chain (Pfrommer & Matni, [2022; |Campbell et al., 2021,

T—1
g(zi.r) = q(zr) || a(ze | 2i11) (©)

t=1

Plugging the backward factorization into Eq. (2) leads to a simpliﬁed ELBO
T
q(Z¢ | Ze11)

L = E, 2, [l —Eyz 7
5(@) = 3 _Eyta) (023 | 20)] = Eygar) |log- 05 H e @

t=1 t=1
This bound would be sufficient to directly amortize inference, e.g., like Campbell et al.|(2021) and learn an
amortized backward transition distribution, ¢ (2, | 41 ), parameterized by a neural network with weights
¢. However, this would require learning an entire separate amortization network which relies on a good
learning of the SSM (with unknown parameters), and usually come with two drawbacks: underutilized a
priori dynamics (a blackbox amortization network does not use explicitly the structure of dynamics.) and
inefficient training of dynamics model.

Prior-parameterized backward factorization Our key insight, is to elect to factor the variational ap-
proximation by incorporating the model of the dynamics, pg(z:+1 | z¢), so that it factors similar to the true
posterior backward distribution, p(z; | z;+1,y1.7), in Eq. (p.3). With this design choice,

prior-parameterized variational approximation
Po(Ze+1 | 2)q(2)
By, [Po(Ze41 | zt)]

®)

q(zt | 2e41) =

This factorization leads to a variational posterior with O(T') (we omit the other dimensions for simplicity)
parameters to specify the marginals of the variational approximation, g(z;) for ¢t € [1 : T1; it scales like a
mean-field approximation but without the assumption of independence (Turner & Sahani, [2011; |Opper &
Archambeau, 2009). Plugging this factorization into Eq. (/) results in convenient cancellations so that,

T T
Lp(q) = Zeq log p(y: | z¢)] — ZDKL(QtHEqFl [Peje—1]) — Drula| p1) )
t=1 t=2
Remark For a forward factorization, ¢(z1.7) = q(2z1) [ [ ¢(2t+1 | 2¢), the corresponding ELBO is,
T T
Lr(q) = Zeq logp(y: | z¢)] — ZEqkl [Dke (qte—1]| peje—1)] — Dre(al| p1) (10)
t=1 t=2

This reveals an interesting dichotomy between £(q) and Lp(g) — the forward factorization leads to £r(q)
having terms that are expected KLs of conditional distributions, but the backward factorization leads to
L (q) having terms that are KLs of expected conditional distributions. The advantage of Lr(q) is that, if the
computation of ¢(z; | z;—1) is amortized, sampling trajectories from the posterior is straightforward (Krishnan
et al.L|2016; Karl et al., [2016).

The computation of KL terms of £5(g) tend to be not as easy since E,, , [pm_l] does not necessarily
belong to the same exponential family and thus the KL term will require a stochastic estimate. Inspired by this
observation, we will proceed by considering an approximation to this term for the sake of analytic tractability.
The proceeding approximation will have two favorable properties: i) we choose the best approximation in the
same exponential family under the forward KL (See 2.2), and ii) in linear and Gaussian cases, it attains the
exact term.
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3.1 TRACTABLE Lp(q)

Now, to facilitate further mathematical tractability, we restrict ¢(z;) to be in the same exponential family that
po(2z+11 | z+) belongs to, i.e.,

q(z¢) = h(z:) exp (t(zt)T)\t - A(/\t)) (11)
As a result of the factorization chosen in Eq. (8), this choice does not confine the joint variational posterior
q(z1.7) to be a member of the same exponential family.

Plug-in predictive distribution The predictive distribution, Ey(,, ,) [pe(2: | z:—1)]. is generally intractable,
and so evaluating the KL terms in Eq. (8)) cannot be done in closed form. Though it is possible to employ
Monte-Carlo estimates, the resulting stochastic gradient will be costly or have prohibitively large variance.

Fortunately, we can circumvent this problem by replacing the predictive distribution with an approximation
that allows the KL term and its gradients to be calculated in closed form. Following this mindset, we find the
closest projection of E,(,, ) [pe(2: | z:—1)] onto the family Q through the forward KL,

plug-in predictive distribution
lj*(Zt) = argrgin DKL(EQ(thﬂ [pe(zt | Zt—l)]H (j(Zt)) ) ﬂ: = Eq(zt—1) [“H(Zt—l)] (12)
g€ \

so that, q(z;) ~ Eq(, ,)[pe(z: | 2:—1)] with mean parameters 1, = Eq(,, ) [po(2z:—1)] is a ‘plug-in®
approximation to the predictive distribution. One nice feature of this approximation can be seen when we
consider the most common state-space model, the LGGSM. To be exact, consider when the dynamics are
given by

po(zi | 2e-1) = N(z: | Az—1,Q) 13)
In this case, the mean parameter mapping of the dynamics is affine in the sufficient statistics, so we can write
T
po(zi—1) = Gt(zi—1) + g where t(z,—1) = (z,_; —3 vec(z—1z,_;)") and,
/A0 /0
G—(o A®A> g——z(Q)- (14)
Then, if we had that q(z;—1) = N(z—1 | m;—_1,P;_1), we can perform the exact marginalization
Eqze_y) [Po(z | 2e-1)] = N(z; | Amy_1, AP, 1 AT + Q) = q(z) 15)
in which case the mean parameters of §(z;) would be

Amt_l > (16)

e <_§(A ® A)vee(Py_y + my_ym/ ;) — %vec(Q)
which is the same result had we directly set fi; = Ey(5,_,) [Gt(z¢_1) + g].

Now that ¢; and g; belong in the same exponential family, the natural gradients of the KL are conveniently
given by the difference of natural parameters (Khan & Lin, 2017), so that V,,, Dky.(¢(2¢)|| (z¢)) = Ae — A
As a result, natural gradient ascent on Lp(q) is convenient since the Fisher information does not have to be
computed. Replacing the intractable marginalization with ¢(z;) results in an approximate ELBO,
T
LpAir) = By, llogp(ye | )] — Dia(q(2)]| a(z)) (17)
t=1
where G(z1) = p(z1), so that f1; are the mean parameters of p(z;), and iy = E,, , [pe(z;)] are the mean
parameters of §(z;) for t € [2 : T; and although we call it an ELBO, it is important to keep in mind it is not
necessarily a lower bound on the evidence because of the plug-in predictive approximation. At a stationary
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point of L B, the natural parameters of the approximate marginal, A}, satisfy the implicit relationship,
Ar = A7+ VB an) log p(ye | 2e)] + [V Eqeaoar) [0 (2e)] T ) (1 — B741)
= 3( t_l) + A(yt, AD) A MM IEA)) ™ (i1 = DLTHAY) (18)

N . ... . et D _ £ 5 .
where § : A\¢ — A¢41, is a composition of transformations Ay =—— gy — fiz11 — A¢41, which push the
mean parameters through the dynamics. For convenience, we write § = £ 0D o £~ where

LN =VAN) =p  D(p) =Equam) [Ho(2)] L) = VA () = . (19)
and we define the Jacobian M;(A;) =V, E,, [pe(z:)].

Constrained plug-in predictive ELBO The intricate dependence of A; on its neighbors, A and A¢11,
complicate optimizing £ 5. To ameliorate the difﬁculty, we first convert it to a constrained problem

maximize LB co(Avnr, o) Z ]Eq(z,) log p(y: | z¢)] — Dxr(q(z:)|| 4(2z¢)) (20)
t=1
subjectto  fi; = Eqs,_,) [Ho(Zi-1)], t=2,...,T 21

where we have made fio.7 free variables that must equal the plug-in predictive mean parameters of Eq. (12).
The stationary points (optima) of the constrained problem coincide with those of £z.

3.2 OPTIMIZING L, c

We propose two approaches to optimize the constrained plug-in ELBO. One uses Lagrangian multipliers,
and the other uses the variational autoencoding (VAE) framework (Kingma & Welling}|2014) to amortize
inference.

Lagrangian of the ELBO For the constrained optimization, we employ a Lagrange multiplier argument.
Letting v».7 be the Lagrange multipliers for the constraint, the Lagrangian is

T

Lpu(Avrr, o1, Var) = Z]eq log p(yt | z¢)] — Dxe(@:]| @) — vy (e —Eq,_, [mo(ze-1)])  (22)
t=1

At a stationary point of this objective, the natural parameters and Lagrange multipliers are related as,

decoupled backward factorized smoother (dBFS) stationary conditions

AF =T + Xe(ye, AD) + Me(A) Ty (23)
=ZI(N) ™ (ki — A7) (24)

From the stationary conditions, the optimal variational parameters evolve forward in time according to
dynamics given byJ(-), and the future information flows backwards through the Lagrange multipliers.
Though an analytical solution is often intractable, a numerical solution satisfying the stationarity conditions
is achievable via a dual ascent method Nocedal & Wright| (1999) — we present an example implementation
in App. [H.1] -Flg l For the inner loop, both A; and A; are updated through natural gradient descent. By
decoupling neighboring parameters, the Lagrange multipliers make it possible to optimize the variational
parameters in parallel.

Natural parameter amortization The stationary condition, Eq. (23)), shows how the variational posterior
integrates information from the past, present, and future. In the spirit of VAEs, this suggests the interesting
possibility of amortizing posterior computation by learning inference networks that approximate the posterior
as,

auto-encoding backward factorized smoother (aBFS) ——

At = F(Ai1) + Ag(ye) + ug(yisrr), (25)
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Figure 1: dBFS convergence on a) linear and b) nonlinear (Van der Pol) latent dynamics. In each of a) and
b), we show (left) the ELBO as a function of the number of dual variable updates; (middle) histogram of
the difference between current natural parameters and the optimal point (Eq. (23)) at dual step 1, |0 and

; (right) histogram of the difference between inferred predictive mean parameters and the expected mean
parameters under the posterior (Eq. (24))

where Ay (), and ug(-) are neural networks with weights, ¢, to be trained by stochastic back-propagation
through Eq. (T7) (Rezende et al.l 2014). Importantly, Eq. (23)) isn’t the only way we could amortize inference
— we could also consider variants like Ay = F(A¢—1) + Ay (¥¢, A¢) + ugp(yi+1.7) Which may be better able
to capture an implicit relationship like Eq. (23)), and narrow the amortization gap that arises from the inability
of the inference network to capture dependencies in the graphical model (Cremer et al.l 2018)).

The natural parameters required to evaluate £ (¢, ) can be computed recursively through Eq. (23). Once
computed, stochastic backpropagation can be used to learn the parameters of the inference networks, without
sacrificing tight control over the structure of the variational approximation. For example, a simple, but
expressive inference network could be constructed by parameterizing ug(-) as an RNN running backward in
time and A, (-) as a convolutional neural network (CNN) or multilayer perceptron (MLP). We summarize the
algorithm in Fig. [Bp.

For aBFS, another unique advantage is that the backward encoder can be made to depend on the observations,
Yit+1.7, through their natural parameter encodings (given by passing them through A4 (-)); for many problems,
the dimensionality of the latent space is lower than the observation space, so it is advantageous that the
backward encoder can depend on the low dimensional natural parameter encodings instead of the high-
dimensional raw data.

Learning the SSM parameters As noted in various works, learning a model of the dynamics that facilitates
accurate long term prediction is difficult since the parameters of the dynamics are only backpropagated
through one time step when evaluating the ELBO (Karl et al) 2016} [Hafner et al.| 2019). For standard
variational inference, this can be mitigated by considering k-step objectives that force samples to traverse
the dynamics for multiple time-steps. For aBFS, time points can effectively be masked by setting A(-) to 0,
so that the natural parameters for the posterior of a latent state, z;, associated with a masked observation
would be calculated as Ay = F(Ai—1) + ud,(yt“:T). While this is like the masking mechanism in [Zhao &
Linderman| (2023)), in that work it only applies to linear dynamical systems. In our case, by paying the price
of a backward encoder, we are able to realize the same masking mechanism applied to learning nonlinear
dynamics. Other parameters, such as those of the likelihood, can be learned either end-to-end or by using
variational expectation maximization (EM) (Turner & Sahanil 2011).

4 RELATED WORKS

Contemporary works like Fraccaro et al.| (2017); Krishnan et al.|(2016)); Klushyn et al.|(2021); Chung et al.
(2015); [Kaiser et al.[(2019); Karl et al.|(2016) adopt VAEs for state estimation and system identification of
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Figure 2: Inference and prediction on sequential images of a pendulum. a) R? for decoding of the pendulum
angular velocity; the architectures achieve similar scores on inference, but aBFS outperforms the others on
prediction (forecast). b) forecasted pendulum images.

nonlinear state-space models; the temporal structure of the posterior is imposed through structured inference
networks, whereas we do so by parameterizing backward transitions using the prior. The structured variational
autoencoder Johnson et al.|(2016); Zhao & Linderman| (2023) incorporates the prior by combining learned
conjugate potentials with the prior, which is similar to the amortized mean parameter gradients of the expected
log-likelihood that we consider; however, we don’t restrict ourselves to priors (e.g. LDS) that make it easy to
calculate the approximate posterior. In Karl et al.|(2016) the inference model is forced to propagate samples
through the prior so that gradients from the dynamics propagate through the expected log-likelihood term of
the ELBO; aBFS allows this problem to be solved through masking similar to the semi-supervised mechanism
in Zhao & Linderman| (2023). In contrast to expectation propagation (EP) (Minka, 2001; Opper, |1999)), our
approach optimizes a global cost function. Those methods target probabilistic graphical models in a broad
sense, while our work focuses on SSMs. |[Kamthe et al.|(2022)) also focus on structure preserving inference,
but do so using EP and focus on Gaussian approximations.

5 EXPERIMENTS

dBFS: examining convergence We examine convergence of the dBFS described in Fig.|5| First, we consider
a two dimensional linear dynamical system so that we can compare the variational posterior inferred to the
true posterior; as an additional baseline we also consider a mean-field variational approximation given by
q(z1.7) = [[ N (my, P). In Fig. , we can see that dBFS recovers the true posterior in relatively few dual
variable steps. We also consider a nonlinear dynamical system so that the true posterior cannot be found in
closed form and approximate inference is necessary; as a baseline, we use the particle filter drawing 25k
samples since this is low-dimensional (Douc et al.,|[2014])). For this example, we draw trajectories from the
Van der Pol oscillator project them to observation space and add Gaussian noise. In Fig. [T, we see that dBFS
approaches the solution inferred by the particle filter. From this experiment, we see that the ELBO achieved
converges much more rapidly than the conditions for optimality of Eq. (24) and (23).

aBFS: learning a pendulum We consider a pendulum governed by Hamiltonian dynamics as in |Botev
et al.| (2021). This Hamiltonian system is a good test bed for exploring the predictive capabilities of the
learned dynamics; it is also particularly challenging — observations can be decoded with only angular position,
however, predictions are only feasible if the model is able to learn the dynamics underlying the angular
velocity. We compare aBFS to sequential VAE models of varying complexity. For these models, we factor the
approximate posterior forward in time as ¢(z1.7 | y1.7) = [[ ¢(2¢ | Z¢—1, ¥+.7). Furthermore, for the forward
factorization we consider diffusing (D-VAE), linear(L-VAE) and nonlinear(N-VAE) parameterizations of the
amortization network to model the distribution of z,; | z;, i.e. we define the conditional means as,

My, (z¢,yer) =z +hy my (2, yer) = Az +hy mg (24, yur) = £(z¢) + hy (26)

D-VAE L-VAE N-VAE

where h; is the output of some neural network (e.g. an RNN running backward in time) that encapsulates
statistical information pertaining to y.7. In Fig.Zb, we plot trajectories predicted from the learned dynamics
for each model, showing that aBFS is able to perform long term forecasting. For D-VAE, there are a total
of 107k parameters, 108k for L-VAE, and 113k for N-VAE, while for aBFS there are 117k parameters. In
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Figure 3: Modeling monkey’s reaching. a) Actual reaches. Reaches linearly decoded from the inferred
b) smoothed latent trajectories (R? = 0.89), ¢) causally filtered latent trajectories (R? = 0.88), d) latent
trajectories predicted starting from an initial condition causally inferred before movement onset (R? = 0.74).
Velocity decoding scores of similar methods include 0.891 for iLQR-VAE (Schimel et al.| [2021), 0.886 for
NDT (Ye & Pandarinathl, 2021)), 0.910 for Auto-LFADS (Keshtkaran et al.,[2022)) (results taken from [Schimel
et al.|(2021)). €) The R? value of the velocity decoded using predicted trajectories as a function of how far
into the trial the latent state was filtered until it was only sampled from the autonomous dynamics; by the
time of the movement onset, behavioral predictions using latent trajectories sampled through the dynamics
are nearly on par with behavior decoded from the smoothed posterior statistics. f) (top) single-trial spike-train
(bottom) sample trajectories of the top 3 latent dimensions.

Fig. , we show the R? value for linear decoding of the angular velocity; aBFS is able to learn a dynamics
model that retains information about angular velocity during prediction.

Neurophysiological dataset: predicting neural population dynamics To evaluate the capability of
extracting meaningful insights from real data, we apply aBFS to a neurophysiological dataset|Churchland
et al.| (2012)) that contains recordings from monkey motor cortex during a reaching task. This dataset has been
used as a benchmark for the efficacy of latent variable models to neural data in previous studies (Pei et al.,
2021). To accurately capture the variability of neural spike train observation, we choose the SSM such as a
log-linear Poisson likelihood driven by a latent nonlinear dynamical system, i.e.,

p(y+ | z:) = Poisson(y; | exp(Cz; + b)) po(z: | 2t—1) = N(z; | mg(z:1),Q) 27
We learned the underlying dynamical system and inferred the latent trajectories from neural spike trains. The
aBFS faithfully captured the latent trajectories and dynamical system, which is reflected by the state of the
art results of decoding and forecasting (Fig. [3). In Fig. [3] we also show what the decoded behavior could
look in an online application if the aBFS learned local encoder were used without the backward encoder
to approximate the filtering distribution. During training to disentangle the role of the local and backward
encoder, we train on a convex combination of £p evaluated with the smoothing distribution, and the filtering
distribution that can be inferred only with the local encoder.

6 CONCLUSION

In this work, we developed novel smoothing algorithms, dBFS and aBFS, for nonlinear SSMs with exponential
family dynamics and arbitrary likelihoods. dBFS and aBFS take advantage of the proposed backward
factorization and tractability afforded by the plug-in predictive and make it possible to use standard variational
inference in a decoupled fashion or embrace the VAE framework and offload posterior computation onto
learned inference networks. dBFS employs Lagrange multiplier that allows for parallelizable implementations
well suited for modern computing architecture. aBFS allows for modern deep learning tools and learns
expressive generative models in an end-to-end data driven fashion. In the future, we will be working on
faster convergence of dBFS, and designing more sophisticated inference networks mentioned in Sec. 3.1}
Future investigations will also attempt to rigorously quantify how detrimental use of plug-in approximations
to simplify evaluation of the ELBO may be to the quality of the inferred posterior.
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A NOMENCLATURE

Symbol Description

q(z¢) smoothed variational approximation (with parameters \; / ft;)
G(z¢) filtered variational approximation (with parameters A; / fi;)
q(z¢) predictive variational approximation (with parameters A; / ft;)

po(z¢ | 24—1) prior dynamics
. log-partition function

A*(Y) log-partition function convex conjugate

A natural parameters

m mean parameters, p = E, [t(z)]

M () the Jacobian of the expected mean parameters, V ,,Eq, [1to(2:)]
£(7) function mapping p; — A equivalent to VA*(p)

D(-) function mapping g, — fiz+1 equivalent to Ey, [pe(2:)]

10 function mapping Ay — A¢y1

Z(A) Fisher information matrix

Sometimes, we abbreviate distributions by dropping z; as an argument, and just use the subscript ¢ with the
appropriate decorator, e.g. py|—1 for pe(z; | z:—1), or g; for q(z¢).

B LGSSM

A linear Gaussian state-space model (LGSSM) is defined as

po(zi+1 | zt) = N(ze41 | Az, Q) p(yt | z¢) = N(y: | Czi, R), (28)
The natural parameter mapping induced by the dynamics, in addition to the corresponding mean parameter
mapping, are both affine in the sufficient statistics of the conditioning variable. This lets us transform the
LGSSM dynamics into the representation of Eq. (3) by writing,

Xo(z:) = Ft(z:) + £ po(z:) = Gt(z) + g (29)

T 1 T
0
(Q) : (30)

where t(z,) = (z] —3 vec(zz, )T)T and,

Q'A 0 0 A 0
(Y0t 0) ro(0h) o= (8 ala) e

C USEFUL FACTS

N|—=

If ¢ is a minimal exponential family distribution, then, there exists a one-to-one mapping between its natural
parameters, A, and its mean parameters, p = E, [t(z)] given by p = VA(A) (Wainwright & Jordan| 2008).
We also have the following useful relation between the gradient with respect to mean parameters, u, the
gradient with respect to the natural parameters, A, and the Fisher information matrix, Z(A) = V2A(X), (Khan
& Linl 2017)

- 31
o (D
so that, VH)\ =7 1()\).
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If ¢ and G are both members of an exponential family of distributions, Q, with natural parameters A and by
respectively, then the KL divergence has the following two useful expressions

Dkw(al[@) = ' (A = X) = AX) + A(X) (32)
= A"(p) + AQ) —p" X 33)
from which the gradients of the KL are,
VuDk(al| ) = A = X (34)
ViaDkL(gll @) = Z(N) ™ (& — p) (35)

From facts about the cumulant generating function, (Seeger, [2005)
log {Eq(zm) [eXp (t(Z>T)‘>] }

=log {/h(z) exp [t(z) 'n — A(n)] exp [t(z) " A] dz}
=log {/h(z) exp [t(z) 'n — A(n) + t(z) " A] dz}
—log { / h(z) exp [t(2)T(m + A) — A(n)] dz} (36)

=log /h(z) exp [t(z) M+ A) —Am+A)] dz p + A(p+ ) — A(n)

=1

=A(n+A)—An)
D MINIMIZER OF THE CONDITIONAL FORWARD KL

The optimal mean variational parameters under the forward KL objective satisfy

ﬂ’* = ]Eﬁ(zt+1) [t(zt-i-l)] (37)
where
P(zt+1) = Eq(a,) [Po(Ze+1 | 24)] (38)
which we can try to simplify as
pt = /t(zt+l)Eq(zt) [Po(zi41 | 2¢)| dziqn 39)
= /t(thrl) (40
X /h(zt)h(zt+1) exp (t(ZH_l)T)\g(Zt) +t(z) A= AN) — A(Xo(zr))) dzt] dzsyq
= /h(zt) exp (t(zt)T)\ —AN)) (41)
X /t(zt+1)h(zt+1) exp (t(th)T/\g(zt) — A(/\g(zt))) dZt+1} dz;
= Eq(zt) [VA()\Q(Zt))] 42)
= Eqy(a,) [0 (No(z1))] (43)
= ]Eq(zt) [“’9 (Zt)} (44)
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E STATIONARY CONDITIONS FOR THE UNCONSTRAINED ELBO

The Lagrangian of the ELBO is given by,
T
Lpu(Avr, Bor, var) = Z]eq llogp(ye | z¢)] — Dxe(ael| @) — VtT (ﬁt —Eq_, [ue(th)]) (45)
t=1
with g(z1) = pe(z1). Taking gradients with respect to the mean parameters, p; and fi;, we have that the
stationary conditions are

VME == S\(yt7At> — (At — ;\t) + [Mt(At)]TVt+1 =0 t= 1, N ,T -1 (46)
VHT,C:S\T—)\T—FXT =0 47
Vi £ =T(N) Hpe — 1) — vy =0 (4%)

which mean at a stationary point of the augmented ELBO the dynamics for A, obey the following recursion
forward in time,

At =F (A1) + [Mt(At)]T Vir1 + A(ye, Ar) (49)
and the Lagrange multipliers are the Fisher scaled difference of mean parameters
v =T(Ae) " (1ae — ) (50)
and satisfy a backward recursion given by,
vy = I(Xt)_l <£_1 (Xt + [Mt(At)]T Vt+1 + X(yh)\t)) — ﬂt) (51)

F VARIATIONAL UPDATES (INNER OPTIMIZATION)

F.1 EB7U(q)
One step of natural gradient ascent updates A;.7 and A;.7 according to,
. _ T
AF =P 4 a <A (y62) = (AP =2 + [Me (A7) Vt+1> (52)
_ - T
—1-a)A® 1 a (Ag'@ +A (yt, Aﬁ’“)) n [Mt (A§’“))] qu) (53)
MY = A o (Tl - ) - ) (54)

F.2 MEAN-FIELD

For a mean-field factorization, the ELBO reduces to

Lar(g) =Y By, [logp(y: | 20)] — Ey,_, [Dxi(a]] peje-1)] (55)
and the natural gradient updates are
A = (1= A+ a (A + By, o(z1)]) (56)

F3 Lp(qg)

For the regular backward factorized ELBO,
Lp(a) =D Eq, logp(y: | 2)] — Dic(ail] ) (57)
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we have that the natural gradient updates are given by

AR — AW L ov, L (58)
= )\gk) +a (;\t — Vi Dxe(qel| @) — V. Dri(ges1]| @Hl)) (59
=AM +a (j\t = A= A) = [V ey ] Zn) ™ (e — Nt+1)> (60)
=(1-a)A" +a (S\t + A+ MiADZ( A1) ™ (s — ﬂt+1)) (61)

G EXPANDING THE SMOOTHING OBJECTIVE

To simplify the smoothing objective, we have to consider the term

which from Eq. (36)), can be rewritten as
10g (Eq(z,41) [0xp (Hze1) T (Mo () = X) = A(Xe () + AX))]) (63)
= AN) = Ao(2)) +108 (Ey(a, 1) [exp (Hze41) " (Na(2e) = X))]) (64)
=A) — A(Xo(ze)) + A(Xo(ze) — A+ X) — A(N) (65)

H EXPERIMENTAL DETAILS

H.1 ABFS/DBFS ALGORITHMS
H.2 LDS AND VAN DER POL

We generate trajectories from an two dimensional LDS with rotational dynamics, p(z; | z¢—1) =
N(Az;_1,Q), where we set Q = 0.252L. The likelihood is set to be p(y: | z;) = N(Cz, R), where
R = 0.5°I. We use a learning rate of 0.05 for the dual variable, 0.01 for the inner natural gradient steps.
dBFS is run for 100 dual variable gradient steps.

For the Van der Pol system, the generative model is

Ziy11 =21 + %Azt,Q + o€ (66)
Ziy12 = Zt2 + %A(’Y(l - Zt,l)QZt,z —241) + 0¢€ (67)
Y ‘ Zy ~ N(yt | CZt, R) (68)

where € is white Gaussian noise. We set v = 1.5, 71 = 79 = 0.1, A = 0.005, ¢ = 0.05, and R = 0.121, and
generate 500 trials of length 200 so that L-VAE can learn a good inference network. For the dual variable
updates we use a learning rate of 0.05 and the inner optimization uses a step size of 0.01 for the natural
gradients.

H.3 PENDULUM

For generating the pendulum dataset, we take advantage of the code available from |Missel (2022). We
generate 500 trajectories of length 75 for the training set and corrupt the observations with Gaussian noise
with ¢ = 0.01. For all of the inference models and dynamics models, we use Adam with a learning rate
of 0.0005 (Kingma & Bal [2014)), and train the models for 150 epochs. In order to focus on the algorithms
capability of learning a good dynamics model, we pre-train the neural network used for the observation model.
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a) dBF_smoothing (y1.7)

elbo_argmax (yi.r, Ai.r, Ao, Vor) I
until convergence: /~ T T T T T ST TS TS oSS oSS oSS smsmsosm-es !
# solve primal until convergence:

’

I

I

3 < # smoothed parameter update

Air, A2:r = elbo_argmax (yLT.,\LT.AQ:T.u@ ) | N N
- e rmE CARD = (1-a)a + aA® £ A+ M vp)
I
I
I
[}

# dual update (for all t, in parallel)

(241) ® # predictive parameter update
vy =V +'Y(p't_]eq,| [l"e(ztfl)})

A =3 o () - ) - ve)

sample_nat_params (yi.7)
until convergence: f__) for t in [1:T1: k

ALTs Ao = sample_nat_params (yi.7) # dynamics # inference networks
Ay =Eq,_, [1o(zi-1)] u; = NN(yit1.75 ¢1)

é=d+BVsLlp A=A+ X + g

return Anz, Aer

 Lo=Y By llogp(ye | %)) - Dclarlla) % — ot) ERE G A
[ | L — t - ’ |

N e e e e e e e =

Figure 4: a) dBFS: we decouple the dependence of neighboring natural parameters so they can be optimized
locally, only exchanging information through the Lagrange multipliers. b) aBFS: in the inner loop, we sample
natural parameters forward using Eq. (23) with the prior to compute predictive parameters and inference
networks for the others; in the outer loop we update the inference networks.

We use the PyTorch (Paszke et all 2019) GRUCell to parameterize the model of the dynamics. For aBFS we
parameterize Ay using a single layer 256 hidden unit MLP with Swish nonlinearity (Ramachandran et al.,
2017). For all of the RNNs running backward in time, we parameterize them as single layer, 128 hidden unit
GRU:s. Like aBFS, for N-VAE, we parameterize the conditional mean mapping with a 256 hidden unit MLP
with Swish nonlinearity. For the traditional VAEs, we mask points by randomly selecting time points while
sampling trajectories to construct their posterior statistics by passing the previous time-step mean parameters
through the dynamics rather than the inference network.
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