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Figure 1: We propose STORYBENCH, a benchmark for continuous story visualization tasks where a model
generates a video given a sequence of text prompts and their duration, as well as a video prompt for two tasks.

Abstract

Generating video stories from text prompts is a complex task. In addition to having
high visual quality, videos need to realistically adhere to a sequence of text prompts
whilst being consistent throughout the frames. Creating a benchmark for video gen-
eration requires data annotated over time, which contrasts with the single caption
used often in video datasets. To fill this gap, we collect comprehensive human an-
notations on three existing datasets, and introduce StoryBench: a new, challenging
multi-task benchmark to reliably evaluate forthcoming text-to-video models. Our
benchmark includes three video generation tasks of increasing difficulty: action
execution, where the next action must be generated starting from a conditioning
video; story continuation, where a sequence of actions must be executed starting
from a conditioning video; and story generation, where a video must be generated
from only text prompts. We evaluate small yet strong text-to-video baselines, and
show the benefits of training on story-like data algorithmically generated from
existing video captions. Finally, we establish guidelines for human evaluation of
video stories, and reaffirm the need of better automatic metrics for video generation.
StoryBench aims at encouraging future research efforts in this exciting new area.
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1 Introduction

There has been an explosion in the capabilities of generative AI models in the last two years. Recent
language models can produce fluent text [e.g., 1–4], audio generation models can synthesize high-
fidelity speech and music [5–7, i.a.], and text-to-image models can create photorealistic images [e.g.,
8–11], paving the way to real-world applications of AI in art, design and content creation.

Generating high-quality videos of arbitrary duration from text is still, however, an arduous task.
Compared to text-to-image synthesis, video generation introduces several distinctive challenges.
First, videos should be coherent over time (e.g., objects should be consistent from frame to frame)
while reflecting the actions described in text prompts. Second, training text-to-video models is
computationally expensive: multiple frames need to be synthesized within the same context to
produce smooth transitions over time. And third, video–text datasets [e.g., 12–14] are orders of
magnitude smaller than corresponding image–text datasets [15, 16, i.a.].

To enable researchers to reliably measure progress in video generation from text prompts that change
over time, we introduce the STORYBENCH benchmark. We create STORYBENCH by collecting dense,
rich annotations for the validation and test sets of three existing, general video datasets: DiDeMo [17],
Oops [18] and UVO [19], for a total of 6K videos. Our human annotators first describe a video
with a sequence of captions, one for each action, forming the story of the video. In this stage, our
annotators also temporally segment the full video accordingly, providing timestamps for each caption.
This results in unique datasets, with rich annotations of a sequence of actions (i.e., a story) that have
clear timestamps. Moreover, we next ask annotators to tag each of the resulting 18K video segments
according to 34 labels that span 6 categories, such as camera movements and foreground interactions,
allowing researchers and practitioners to easily pinpoint the limitations of their text-to-video models.
Finally, given the challenges of obtaining high-quality training data for story visualization, we devise
a pipeline to automatically transform existing, grounded video captions [20] into stories, resulting
in training data that is very rich in structure, with (i) a sequence of action descriptions, (ii) their
timestamps, and even (iii) mouse traces and segmentation masks. We show that this transformation
leads to better models, and encourage future work in data curation strategies to improve performance.

Based on these data, we define three tasks of increasing difficulty (see Figure 1) with the goal of
synthesizing videos that follow a sequence of text prompts (i.e., a story). In the action execution task,
a text-to-video model is simply asked to continue a conditioning video from a single caption (i.e.,
a short sentence describing a single action). This task is extended in story continuation, where the
model must generate a sequence of coherent video segments given a conditioning video and a series of
captions. Finally, the story generation task also asks a model to generate a sequence of coherent video
segments from a series of captions, but without a conditioning video. Instead, the model is first asked
to generate its own conditioning video from a textual description of the expected scene background.
For each of the captions, models are also given the expected duration of the corresponding video
segment (e.g., 1.5s). This requires models to be controllable, resembling real-world applications of
artistic content creation. Overall, we name the overarching challenge continuous story visualization.

We train a small, 345M parameter text-to-video Phenaki [21] model. In STORYBENCH, models
can be evaluated in three different setups: zero-shot, where a model is tested after general-purpose
pretraining, given no STORYBENCH data; single-task, where a model is separately fine-tuned on each
dataset; and multi-task, where a single model is fine-tuned on our three datasets. Due to the challenges
in evaluating videos, we conduct a human study by defining guidelines that capture different desired
qualities of continuous story visualization. We also report performance across five automatic metrics,
but we show they do not align well with human judgment; reasserting the need of better metrics.

Contributions. In this work, we 1) introduce STORYBENCH, the first benchmark for continuous
story visualization, to inspire more work on real-world, text-to-video generation of arbitrary duration
through a reproducible and comprehensive setup. 2) STORYBENCH contains rich human annotations,
consisting of action-by-action descriptions, their timestamps, multimodal grounding via mouse traces,
and labels for each segment to easily determine failure modes. STORYBENCH is a truly multifaceted
benchmark: it spans three tasks of continuous story visualization, across three different datasets, and
three evaluation setups (zero-shot, single- and multi-task). We 3) devise an automatic procedure
to transform video captions into a sequence of captions, each describing a single action, and show
the effectiveness of using such rich data during model fine-tuning. We 4) establish a compact yet
strong baseline, define guidelines for human evaluation, as well as a set of automatic metrics for
reproducible comparisons of the next generation of text-to-video models. 5) Our results show the
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benefit of training text-to-video models to continue videos (rather than generating them from scratch)
on story-like data, but they also suggest discrepancies between human and automated evaluation.
We invite the community to report results on STORYBENCH at https://paperswithcode.com/
dataset/storybench. We provide data, annotation instructions, human evaluation guidelines, and
code for automatic evaluation at https://github.com/google/storybench.

2 Related Work

Text-guided generative models for vision. We are currently witnessing tremendous progress in
the task of text-to-image generation and editing [8–11, 22–27], fueled by sequence-to-sequence
Transformer models [28] and diffusion models [29] trained on massive amounts of image–text
data [15]. Research on text-to-video generation has also received attention recently. GODIVA [30]
autoregressively generates videos from text using a three-dimensional sparse attention mechanism.
NÜWA [31] presents a unified framework for multi-task learning of various generation tasks, including
text-to-video. NUWA-Infinity [32] is a generative model that can synthesize arbitrarily-sized images
or long-duration videos with an autoregressive over autoregressive generation mechanism. In a
similar spirit, NÜWA-XL [33] proposes a diffusion over diffusion approach that allows to generate
long videos in parallel through a coarse-to-fine process. CogVideo [34] adds temporal attention
modules on top of a frozen text-to-image model to reduce the computational requirements for text-
to-video learning. Make-a-Video [35] also starts from a text-to-image model but fine-tunes it while
adding pseudo-3D convolution and temporal attention layers. Concurrently, Video Latent Diffusion
Models [36] turn pretrained image diffusion models into video generators by fine-tuning them with
temporal alignment layers, and Imagen Video [37] generates high definition videos using a cascade
of video diffusion models. Ho et al. [38] train space-time factorized U-Net models [39] on images
and videos, and propose a sampling method to improve longer video generations. Our baselines are
based on Phenaki [21], which can generate arbitrary long videos from a sequence of text prompts.

Story visualization. In this paper, we propose STORYBENCH, a benchmark for the task of generating
a video from a sequence of text prompts (i.e., a story), which we refer to as continuous story
visualization. In the literature, story visualization [40] is the task of generating a sequence of
images to narrate a multi-sentence story (one image per sentence) with a global visual consistency
across dynamic scenes and entities. The authors created two artificial datasets from CLEVR [41]
and Pororo [42], and proposed a model based on sequential conditional GANs. To improve story
visualization, Maharana et al. propose a dual learning framework and a copy mechanism in [43], and
leverage grammatical and visual structure as well as commonsense information in [44]. In [45], the
authors introduce the DiDeMoSV dataset, and propose to ‘retro-fit’ a pretrained text-to-image model
with task-specific modules to improve on the task of story continuation, resulting in StoryDALL-E.
Finally, Rahman et al. [46] extend the synthetic MUGEN dataset [47] for multi-sentence storylines,
and propose an autoregressive diffusion-based framework with a visual memory module to capture the
entities and background context across the generated frames. Unlike previous work, in STORYBENCH,
we focus on generating continuous videos (rather than key-frames) on natural (rather than cartoon or
synthetic) data. Moreover, we also use DiDeMo to visualize stories but rather than using the existing
temporal queries and automatically matching them to key-frames [45], we ask human annotators to
thoroughly describe the story of the videos while manually annotating timestamps for each sentence.

3 StoryBench

Aiming for a comprehensive resource to assess the ability of generative models to visualize stories,
we propose STORYBENCH, the first real-world benchmark for text-to-video story generation. Unlike
previous work which frames story visualization as the task of generating a single key-frame per text
prompt, STORYBENCH evaluates the ability of generative models to synthesize continuous, natural
videos from a sequence of text prompts. To do so, we collect rich annotations that provide insights
and nuances of any model’s capabilities, and easily discover failure modes. STORYBENCH consists
of three different datasets, three tasks of increasing difficulty, and three evaluation setups.

Generating videos is a very complex task for state-of-the-art models. Some of the key challenges
involve generating videos that (i) have a coherent storyline, (ii) are visually realistic, and (iii) can be
controlled according to user intent. STORYBENCH aims at benchmarking these three challenges by (i)
defining three tasks with increased difficulty in storyline; (ii) focusing on real-world, natural videos;
and (iii) enabling control over the generated content through text descriptions and video duration.
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Dataset #Videos #Stories (per video) #Segments (per story) #Words (per story) #Labels (per story) #Actors (per video)

DiDeMo-CSV 1,399 1,399 (1.00) 4,926 (3.52) 80,405 (57.47) 14,463 (10.34) 3,228 (2.31)
Oops-CSV 1,888 3,243 (1.72) 7,198 (2.22) 131,485 (40.54) 30,027 (9.26) 6,556 (3.47)
UVO-CSV 2,917 4,258 (1.46) 6,227 (1.46) 122,542 (28.78) 36,751 (8.63) 7,743 (2.65)

Table 1: Statistics of our collected evaluation datasets. Actors refer to entities with a key role a video.

Category Labels

Camera Movements static shot, pan, tilt, zoom, tracking shot, aerial shot, point-of-view shot
Foreground Entities people, animals, vehicles, food/drinks, containers, tools
Foreground Actions humans moving, animals moving, objects moving, humans using objects, animals using objects, static actions
Background Actions animate entities moving, objects moving, animate entities using objects, static actions, dynamic background
Foreground Interactions dialogues, direct, indirect, object-based
Foreground Transitions new entities, new objects, entities vanish, objects vanish, entities re-enter, objects re-enter

Table 2: Overview of categories and labels for each video segment to easily detect failure modes.

3.1 Datasets

We annotate three different, real-world, open domain video datasets for continuous story visualization.
Table 1 lists high-level statistics of our evaluation data. See App. D for more details and data samples.

DiDeMo-CSV. DiDeMo [17] is a dataset collected for the task of temporal localization, where a
model is tasked to identify the video segment corresponding to a given text query (e.g., ‘the cat jumps
on the mat’). The authors define segments with a resolution of 5 seconds. Due to the nature of the
temporal localization task, the original text descriptions are often short and lack essential context
information to be used for story visualization. We hence ask human annotators to collect descriptions
of the actions happening in a video in order to create a coherent story.2 The annotators are also tasked
to (i) add timestamps for each action, (ii) add a description of the background (to be used for the story
generation task), and (iii) specify the number of important actors throughout the video.3

Oops-CSV. Oops [18] is a dataset covering unintentional human actions (i.e., fail videos), originally
filmed by nonprofessionals, that are diverse in actions, environments, and intentions. This kind of fail
videos are extremely interesting for video generation, as they are unpredictable. A failure is typically
a surprising, unexpected action, and one that an ordinary video model would not likely generate. To
use these videos for the task of continuous story visualization, we start from the rich annotations in
VidLN [20], which consist of descriptive captions that are grounded to the videos through mouse
traces. First, we design a pipeline to automatically split the original captions into a sequence of
actions that keep most of the original words (see Section 4). Second, we ask human annotators to
refine these preprocessed captions by (i) fixing any errors in sentence splitting whilst keeping most of
the original words (in order to preserve the rich annotations from VidLN), (ii) adding timestamps
for each action, and (iii) adding a concise context description. In fact, the VidLN captions describe
the actions of a single entity (i.e., actor) throughout the video. Upon inspection, we found that such
captions were unsuitable for our task, as they often lacked information that was crucial to synthesize
a video similar to the ground-truth. The VidLN data already specified the number of important actors
throughout the video, which we update based on stories that were kept after a quality insurance phase.

UVO-CSV. UVO [19] is a dataset originally collected for open-world, class-agnostic object segmen-
tation in videos. Videos in UVO are sourced from Kinetics-400 [48], which contains 10-second 30fps
videos labeled with human actions. UVO includes many videos with crowded scenes and complex
background motions, taken by both professionals and amateurs. As UVO videos have also been
annotated with VidLN data, we follow the same steps as for Oops-CSV to create UVO-CSV.

Segment-level labels for easy diagnostics. In addition to data for visual generation of stories, we
collect rich annotations to promptly detect failure modes of text-to-video models in STORYBENCH.
Specifically, together with artists and designers that work with generative AI, we defined 34 labels
across 6 categories, shown in Table 2. These include: camera movements, to determine the type of
shot; foreground entities, to know which entities are shown in the video; foreground and background
actions, to know which actions happen in the video; foreground interactions, to know how different
entities interact with each other; and foreground transitions, to know how entities evolve throughout

2We only annotated videos from the dev and test sets that were still available online as of February 22, 2023.
3Important actors are entities (e.g., people, animals) that perform actions central to the story of the video.
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the video. For each video segment and label, annotators were asked to check two boxes indicating
whether a given label was shown in the video and/or in the caption. By doing so, we can study
whether models can capture specific aspects of video generation while also knowing if those aspects
were mentioned in the text prompt. We provide further details on each category and label in App. D.1.

Human annotation framework. We rely on an in-house platform to annotate our data. For any
kind of annotations, human annotators first undergo a training phase. In this phase, they raise any
doubts and present corner cases to the first author, who revisits the guidelines with further details and
examples. After training, the first author and last author meet with the annotators’ managers to ensure
the task is clearly understood. The managers then assess which annotators have a high performance
for the task, before collecting the final annotations. The annotators’ managers, the first author and
the last author communicate regularly throughout the annotation process, validating samples and
discussing any potential issues (e.g., removing videos with problematic and offensive content).

3.2 Tasks

We define three tasks for continuous story visualization of increasing complexity (shown in Figure 1).
We call context the history of all text and/or video prompts available to a model at any generation step.
The input, instead, includes a text prompt describing the next video to be generated, and its duration.

Action execution. The task of action execution simply requires a model to generate the next action
specified in the input. The context is given by the ground-truth video preceding the generation step.
Whenever the first action of a video must be generated, models are conditioned on the first 0.5s of
ground-truth video, in order to provide visual context whilst being robust to camera movements.

Story continuation. The task of story continuation requires a model to generate a video from a
sequence of inputs and a conditioning video. Analogous to action execution, whenever the first action
of a video must be generated, models are conditioned on the first 0.5s of ground-truth video. The
context for the following steps also includes all the previous text prompts and synthesized videos.

Story generation. The task of story generation also requires a model to generate a video from a
sequence of inputs, but without any ground-truth visual conditioning. Instead, the context for the first
generation is a video synthesized by the model from a text description of the background, to guide the
space of possible outputs. The following steps are generated analogously to story continuation steps.

3.3 Human Evaluation

Evaluation of generative models for perceptual data, such as images and videos, is critical to validate
their performance. In fact, humans possess complex cognitive abilities to interpret visual content,
which automatic metrics often fail to capture. Further, we are ultimately interested in the impact and
utility of generative models on users, and human evaluation provides such user-centric perspective.

We follow previous work [10, 21, 22, 35] in doing side-by-side evaluations, where human raters are
asked to choose the best (or none) of two outputs for the same prompt. We extend the common
metrics of visual quality and text adherence to capture crucial aspects of story visualization as follows.

Visual quality: Which video looks better?

Text adherence: Which video better reflects the caption?

Entity consistency: Throughout which video are entities more consistent (e.g., clothes do not change
without a change described in the caption)?

Background consistency: In which video is the background more consistent (e.g., the room does not
change without a change described in the caption)?

Action realism: In which video do actions look more realistic (e.g., according to physics)?

An example of our interface is shown in App. D.3. For each evaluation, humans are provided with the
full text story; and each text prompt is rendered as a video below each generated video to facilitate
mappings of sentences to their corresponding outputs. For the tasks of action execution and story
continuation, we also provide the conditioning video but add a red border around it to easily identify
its end. The models are anonymized and the output pairs are randomly ordered (left vs. right) for
each presentation to a rater. We randomly sample 100 stories, and ask three raters to judge each pair.
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3.4 Automatic Metrics

Human evaluation will always be the gold standard of generative models’ evaluation. However, it
is both time-consuming and expensive to conduct. To help researchers and practitioners quickly
deploy and evaluate new systems, different automatic metrics that correlate fairly well with human
evaluations have been proposed over the years, such as FID [49] and FVD [50], as well as CLIP [51]
for the recent text-guided models. We consider the following automatic metrics for STORYBENCH.

Fréchet Image Distance (FID): The FID score evaluates the quality of generated images (i.e., frames
here) by comparing how similar their features are to features of real images. We consider both the
standard features given by InceptionV3 [52], as well as features from a stronger CLIP (ViT-L/14).

Fréchet Video Distance (FVD): FVD extends the idea behind FID to videos: a generative model
must capture the underlying distribution of real-world videos. We consider both the standard features
from I3D [53], and features from InternVideo-MM-L-14 [54], a state-of-the-art, video–text model.

Video–Text Matching (VTM): We estimate the alignment between generated videos and their text
descriptions with the similarity of the visual and textual features given by a multimodal model. We
consider both the average cosine similarity of each frame with the corresponding caption given by
CLIP (ViT-L/14), and the cosine similarity of a video with its caption given by InternVideo-MM-L-14.

Perceptual Quality Assessment (PQA): We also measure perceptual quality, which aims at pre-
dicting the average human subjective perception of a video. For this, we use DOVER [55], a
state-of-the-art model trained to predict the mean opinion score of user-generated videos.

Similarity of Images (SIM): For the tasks of action execution and story continuation, a model is
conditioned on a ground-truth video, and asked to continue it for the exact same number of frames as
the original one. We can hence directly compare each generated frame with its ground-truth match.
We compute frame cosine similarity from the normalized features extracted to compute FID.

We only compute automatic metrics on the generated videos, disregarding the conditioning ground-
truth video (action execution and story continuation tasks). For story generation, the frames generated
from the ‘background’ descriptions are omitted, and we do not report SIM as it is ill-defined here.
We release our evaluation code to promote reproducible and comparable research on STORYBENCH.

4 Training Data Challenge

In addition to the challenges of video generation discussed in Section 3, the lack of large amounts
of high-quality data is a major bottleneck to train strong text-to-video models. Manually collecting
annotations for videos is both expensive and time-consuming, especially in story-like format.

Given the major role that data plays in training state-of-the-art generative models, and the impact that
careful pre-processing and synthetic data can have, we explicitly define the challenge of training data
curation to improve performance in STORYBENCH.

We provide a first approach in this work, which we will show to be beneficial in Section 6. Specifically,
we define an automatic pipeline to transform the original VidLN captions for Oops and UVO into
multiple sentences, each approximately describing a single action, and determine their timestamps.

To create an original VidLN annotation [20], the annotator first watched the video and selected
important actors (e.g., man or dog). For each actor they would then select a few key-frames that are
representative of the actions performed by this actor throughout the video. They then described the
actions of that entity with their voice, while at the same time moving their mouse over the key-frames
to provide a spatio-temporal localization for each word. Finally, they transcribed their audio for a
high-quality caption. For each actor, VidLN provides a long caption that often describes multiple
actions. For the purpose of story visualization, we want to split the long caption into individual
actions. Furthermore, we need timestamps for each action. The VidLN captions do not provide
explicit timestamps for actions, but several words are localized in space–time on one or multiple
key-frames. We use this indirect temporal information to derive an approximate timestamp.

Our pipeline consists of five steps (see Figure 2). 1) We prompt Flan-U-PaLM 540B [3, 56] – an
instruction-tuned large language model (LLM) – to split a given description into multiple sentences,
each (approximately) describing a single action, whilst making minimal (ideally, no) changes to the
original words. 2) We can then map every word in each sentence to all (if any) of its associated
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“An ostrich is looking at the piece of food held by the man”

“The ostrich suddenly grabs the cup of food. It starts eating.”

1 2 3
“An ostrich is looking at the piece of food held by the man 
and suddenly grabs the cup of food and starts eating.”

1 2 3
“An ostrich is looking at the piece of food held by the man”
“The ostrich suddenly grabs the cup of food”
“It starts eating.”

1 2 3
“An ostrich               is      looking      at the piece of food           held      by the man               ”
“The ostrich               suddenly grabs      the cup      of food     ”
“It starts      eating     .”

1 2 3
“An ostrich is looking at the piece of food held by the man”
“The ostrich suddenly grabs the cup of food”
“It starts eating.”

1 2 3
“An ostrich is looking at the piece of food held by the man”
“The ostrich suddenly grabs the cup of food. It starts eating.”

1

2 3

1) LLM splitting 2) Key-frame
     mapping

3) Key-frame pooling

4) Key-frame
     merging

5) Video splitting

Figure 2: Automatic pipeline to transform VidLN annotations into stories. Starting from a video, its
caption and annotated key-frames, we use an LLM to split the caption into multiple sentences. We
then transfer the key-frames of the original caption into the new ones. We select a single key-frame
per caption, merge captions with the same key-frame and finally split the video accordingly.

key-frames. As the LLM sometimes modifies words for better grammaticality, we rely on lemmas
instead. 3) We associate a single key-frame to each caption, determined by the frame most commonly
referenced by the verbs (if available), or across all words in the sentence. 4) If a continuous sub-
sequence of sentences maps to the same key-frame, we concatenate those sentences into a single one.
5) Finally, we map each sentence to a time interval using the timestamp of its associated key-frame.

Our code to transform VidLN descriptions into stories is online. See App. D.5 for robustness statistics.

5 Experimental Setup

We train a compact (345M parameters) yet strong Phenaki [21] baseline for STORYBENCH, which we
refer to as PHENAKI-GEN. It consists of a C-ViViT encoder, a text encoder, and a MaskGiT model.

The goal of the C-ViViT encoder is to learn a codebook of visual features to compress the videos in
both temporal and spatial dimensions, while staying autoregressive in time. We train a 52M C-ViViT
model on 27M Web-scraped video samples. Rather than a square resolution [21], we opt for a more
natural, rectangular resolution of 160×96 pixels. After being trained, the C-ViViT is kept frozen.

MaskGiT [57] is a bidirectional Transformer trained to predict multiple masked video tokens simulta-
neously conditioned on the caption features computed by the text encoder. Compared to the MaskGiT
model used in the original Phenaki model (1.8B), ours is much smaller at 345M (24 layers). In
contrast to the original Phenaki, which used a pretrained text encoder, we train the text encoder jointly
with the video generation model on our collection of Web-collected 27M video captions. Our text
encoder is a 12-layer Transformer that uses a T5 tokenizer [58]. Both models use 16 attention heads,
MLP size of 3072, and default embedding size of 768. The maximum sequence length for the video
component is 1440 tokens (11 compressed frames), and 64 tokens for the text component. The model
is trained for 3M steps with a batch size of 256 using a fixed learning rate of 4.5e-5 after a linear
warm-up for the first 10K steps using the Adam [59] optimizer. After pretraining, PHENAKI-GEN
can generate arbitrarily long videos using the last 5 frames to condition the generation of the next 6.

We fine-tune PHENAKI-GEN on the training data of STORYBENCH for 500K steps with a much
smaller batch size of 64 samples, using the same learning rate and optimizer of the pretraining stage.

Furthermore, we explore a novel variant of our model that is fine-tuned for continuation, PHENAKI-
CONT, using the same hyperparameters as PHENAKI-GEN. Rather than training to predict all the input
tokens, we only mask and generate the tokens of the last 6 frames, conditioning on 5 ground-truth
frames. We hypothesize that this training would result in better transitions and consistency.

6 Results

In this section, we discuss the performance of our baselines on STORYBENCH evaluated by humans
and automatically. We append -ZS for results obtained in the zero-shot setting, -ST for single-task
fine-tuning, and -MT for multi-task fine-tuning. In particular, we start by discussing performance
on Oops-CSV (shown in Table 4) due to space limitations. We then also comment on the overall
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PROMPT: The llama is putting his mouth in a white bowl in the car.

PHENAKI-GEN-ZS

PHENAKI-CONT-ST

Figure 3: Comparison of PHENAKI-GEN-ZS to PHENAKI-CONT-ST on a prompt for action execution.
While PHENAKI-GEN-ZS animates the animal, it adheres less to the text prompt, and the llama
changes over time, PHENAKI-CONT-ST successfully shows two entities from the context (person and
bowl), while keeping the animal and the surroundings consistent. Video subsampled by a factor 4.

PROMPTS:
A girl wearing a green-black bikini is walking on a diving board others are swimming
The girl slips on it and others get scared
The girl falls in the sea while the other man is wearing glass and swimming

Figure 4: Applying PHENAKI-CONT-ST to a longer sequence with multiple prompts for story
continuation. The model can generate the right action, including the water splash from the girl falling
in the water. The background is kept relatively consistent within a short time frame, but it starts
changing at longer time scales. The video was subsampled by a factor 4 to be shown here.

findings, reported in Figure 17 (App. E.1) for human evaluation, Tables 5 to 7 when using a set of
neural metrics, and in Tables 8 to 10 (App. E.2) when using the others. Moreover, we also benchmark
a variant of PHENAKI-CONT fine-tuned on the original Oops dataset, rather than after our automatic
story-like transformation, which we refer to as PHENAKI-CONT-ST-orig. For every story, each model
generates 4 output videos. We randomly sample one of them for human evaluation, but report mean
and standard deviation across all 4 generated videos for automatic metrics. Due to our setup, all
the results are at 8fps and using a 160×96 pixel resolution for the generated videos, but note that
ground-truth videos were processed at their original resolution for automatic evaluation.4

6.1 Human Evaluation

Table 3 shows our human evaluation (c.f . Section 3.3) results for story continuation on Oops-CSV.
Our model fine-tuned in continuation mode is vastly preferred over the zero-shot PHENAKI-GEN-
ZS in all metrics. Figure 3 illustrates an example of why raters prefer PHENAKI-CONT-ST over
PHENAKI-GEN-ZS. The improvement in long-term text adherence and consistency, however, has its
limitations. We illustrate this in Figure 4: while the key actions are executed correctly, the background
tends to drift over time, showing that our modest sized model has still large margins for improvement.
We also see that human raters consistently prefer PHENAKI-CONT-ST over PHENAKI-GEN-ST (both
fine-tuned on the same data), proving the effectiveness of the novel fine-tuning in continuation mode.

However, fine-tuning on all datasets jointly (PHENAKI-CONT-MT) results in videos of comparable
quality as the zero-shot model. This is a common limitation of multi-task systems, and both a
larger model and longer training could lead to better performance. Finally, we compare PHENAKI-

4For instance, the most common resolutions are 1280×720 for Oops-CSV Dev set, 854×480 for UVO-CSV
Dev set, and 360×640 for DiDeMo-CSV Dev set. We release our extracted features of the ground-truth videos
for all the automatic evaluation metrics online at https://github.com/google/storybench.
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Human Eval | Oops-CSV | Story Continuation Visual quality Text adherence Entities consistency BG consistency Actions realism
L vs R L Tie R L Tie R L Tie R L Tie R L Tie R

PHENAKI-GEN-ZS vs PHENAKI-CONT-ST 37 14 49 34 8 58 29 15 56 16 19 65 29 13 58
PHENAKI-GEN-ST vs PHENAKI-CONT-ST 25 4 71 21 3 76 19 18 63 7 28 65 20 8 72
PHENAKI-GEN-ZS vs PHENAKI-CONT-MT 51 4 45 46 8 46 33 23 44 24 36 40 45 7 48
PHENAKI-GEN-ZS vs PHENAKI-CONT-ST-orig 53 4 43 41 10 49 33 28 39 29 35 36 38 7 55

Table 3: Human evaluation results for story continuation on Oops-CSV. For 100 randomly selected
stories, we show the generated videos to 3 raters and report their majority vote. For each compared
pair of models, L refers to the left model and R to the right model.

Oops-CSV Action Execution Story Continuation Story Generation
Model (@8 fps) FID↓ FVD↓ SIM↑ PQA↑ VTM↑ FID↓ FVD↓ SIM↑ PQA↑ VTM↑ FID↓ FVD↓ SIM↑ PQA↑ VTM↑

Zero-shot
PHENAKI-GEN-ZS 167 416 72.8 5.8 22.1 277 623 70.3 7.2 21.7 310 933 N/A 8.1 21.0

Single-Task (fine-tuned on Oops-CSV)
PHENAKI-GEN-ST 177 446 72.3 4.0 21.5 250 589 70.0 4.3 21.3 246 614 N/A 4.3 21.1
PHENAKI-CONT-ST 114 350 73.2 4.9 21.5 155 488 71.1 5.3 21.2 171 711 N/A 5.4 19.4

Multi-Task (fine-tuned jointly on Oops-CSV, DiDeMo-CSV, and UVO-CSV)
PHENAKI-CONT-MT 140 353 72.8 4.7 21.7 198 511 70.6 5.1 21.4 201 860 N/A 5.0 19.4

Table 4: Results from automatic evaluation metrics on Oops-CSV tasks. Best results are in bold.
FID and SIM use InceptionV3, FVD uses I3D, PQA uses DOVER, and VTM uses CLIP.

CONT-ST-orig, fine-tuned on the original Oops VidLN annotations, against the zero-shot model.
PHENAKI-CONT-ST-orig still outperforms the zero-shot model in all criteria except for visual quality.
Compared to PHENAKI-CONT-ST, however, its margins over the zero-shot model are much smaller,
clearly demonstrating the benefit of our training data transformation pipeline (c.f . Section 4).

In App. E.1, we report human ratings between PHENAKI-GEN-ZS and PHENAKI-CONT-ST on
action recognition and story generation. For action recognition, we find consistent results with
story continuation. In contrast, the zero-shot model is generally preferred for story generation. We
hypothesize that fine-tuning for continuation leads to a less capable model for the task of generation
from scratch. Unifying both approaches in a single model is an interesting direction for future work.

6.2 Automatic Evaluation

While the results from human raters were very clear, they are expensive to obtain. We hence also
report typical automatic metrics on Oops-CSV in Table 4, and on all datasets in Tables 5 to 7.5

In Table 4, our model fine-tuned on Oops-CSV in continuation mode (PHENAKI-CONT-ST) performs
the best on action execution and story continuation according to FID, FVD, and SIM, again demon-
strating the effectiveness of the novel continuation mode. On the other hand, for story generation, the
continuation mode yields an improvement in FID but not in FVD. This contrasts with the human raters,
who preferred PHENAKI-GEN-ZS in all metrics for story generation (see Figure 17 in App. E.1).

Across all datasets and tasks, PHENAKI-CONT-MT achieves overall strong results, showcasing the
effectiveness of training a single text-to-video model in continuation mode on all datasets. On the
other hand, PHENAKI-GEN-ZS achieves higher PQA scores, while human raters typically found
all the models to have similar visual quality. This, however, is partially reflected in our SIM score,
which only varies by a small amount between different models (all within 1pp). Nevertheless, while
human raters vastly preferred PHENAKI-CONT-ST over PHENAKI-GEN-ZS, the SIM, PQA and VTM
metrics do not reflect this, showing low correlation of automatic metrics with human judgments.

7 Limitations

STORYBENCH is the first effort towards a multifaceted benchmark for text-to-video generation. It
aims at fostering progress on real-world video generation, with dynamic text prompts and controllable
duration provided by the users. Yet, it has a few notable limitations. First, while our benchmark
tests for multi-sentence generation, the annotated videos are not very long. Second, they are mostly
single-shot (i.e., without changes of scene) and user-generated (rather than professional), which

5We find similar results with newer neural metrics for automatic evaluation in Tables 8 to 10 in App. E.2.
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Action Execution Oops-CSV UVO-CSV DiDeMo-CSV
Model (@8 fps) FIDIv3↓ FVDI3D↓ SIMIv3↑ PQA↑ VTMC↑ FIDIv3↓ FVDI3D↓ SIMIv3↑ PQA↑ VTMC↑ FIDIv3↓ FVDI3D↓ SIMIv3↑ PQA↑ VTMC↑

Zero-Shot
PHENAKI-GEN-ZS 167±3.53 416±8.78 72.8±0.04 5.8±0.03 22.1±0.05 110±0.97 472±8.03 73.0±0.02 8.5±0.1 22.4±0.03 195±1.57 454±3.21 70.7±0.03 6.7±0.02 22.1±0.02

Single-Task
PHENAKI-GEN-ST 177±0.60 446±3.47 72.3±0.01 4.0±0.02 21.5±0.00 165±0.68 1004±8.55 72.0±0.01 4.8±0.05 20.1±0.02 159±1.73 510±7.09 70.8±0.02 4.5±0.02 22.3±0.01

PHENAKI-CONT-ST 114±1.10 350±2.93 73.2±0.01 4.8±0.02 21.5±0.02 178±1.74 828±5.98 72.0±0.01 5.6±0.02 20.5±0.04 136±0.80 365±2.56 71.2±0.01 5.6±0.01 22.1±0.02

Multi-Task
PHENAKI-GEN-MT 270±3.11 502±4.65 71.5±0.02 3.8±0.04 21.4±0.03 235±2.09 916±4.47 71.4±0.02 5.1±0.05 20.6±0.02 219±1.65 510±1.86 70.2±0.02 4.7±0.06 21.9±0.02

PHENAKI-CONT-MT 140±1.21 353±2.83 72.8±0.02 4.7±0.01 21.7±0.03 111±2.01 435±4.89 72.8±0.03 6.8±0.01 21.6±0.03 166±3.00 381±2.96 70.9±0.02 5.8±0.03 21.9±0.02

Table 5: Results from automatic evaluation metrics on action execution tasks. Best results are in bold.
FID and SIM use InceptionV3, FVD uses I3D, PQA uses DOVER, and VTM uses CLIP.

Story Continuation Oops-CSV UVO-CSV DiDeMo-CSV
Model (@8 fps) FIDIv3↓ FVDI3D↓ SIMIv3↑ PQA↑ VTMC↑ FIDIv3↓ FVDI3D↓ SIMIv3↑ PQA↑ VTMC↑ FIDIv3↓ FVDI3D↓ SIMIv3↑ PQA↑ VTMC↑

Zero-Shot
PHENAKI-GEN-ZS 277±4.04 623±9.93 70.3±0.02 7.2±0.06 21.7±0.02 138±1.79 660±8.20 72.0±0.02 9.4±0.09 22.2±0.04 341±1.89 817±7.76 68.0±0.01 7.3±0.07 21.6±0.02

Single-Task
PHENAKI-GEN-ST 250±2.05 589±6.08 70.0±0.02 4.3±0.02 21.3±0.01 193±1.20 1267±9.36 71.0±0.01 5.0±0.03 19.9±0.01 238±1.24 690±1.90 68.2±0.02 4.0±0.02 22.0±0.01

PHENAKI-CONT-ST 155±1.07 488±2.12 71.1±0.03 5.3±0.04 21.2±0.04 197±1.22 1125±9.84 71.1±0.02 5.7±0.03 20.2±0.03 206±1.95 580±4.30 68.7±0.01 5.4±0.03 21.6±0.04

Multi-Task
PHENAKI-GEN-MT 364±2.37 708±7.29 69.0±0.01 4.2±0.02 21.1±0.02 268±2.76 1188±8.76 70.3±0.02 5.2±0.03 20.5±0.02 330±2.09 717±9.12 67.5±0.01 4.3±0.04 21.5±0.02

PHENAKI-CONT-MT 198±1.97 511±5.46 70.6±0.04 5.1±0.02 21.4±0.02 124±2.56 618±6.59 71.9±0.03 7.0±0.02 21.3±0.03 256±3.27 684±3.15 68.3±0.03 5.5±0.09 21.2±0.01

Table 6: Results from automatic evaluation metrics on story continuation tasks. Best results are in
bold. FID and SIM use InceptionV3, FVD uses I3D, PQA uses DOVER, and VTM uses CLIP.

Story Generation Oops-CSV UVO-CSV DiDeMo-CSV
Model (@8 fps) FIDIv3↓ FVDI3D↓ SIMIv3↑ PQA↑ VTMC↑ FIDIv3↓ FVDI3D↓ SIMIv3↑ PQA↑ VTMC↑ FIDIv3↓ FVDI3D↓ SIMIv3↑ PQA↑ VTMC↑

Zero-Shot
PHENAKI-GEN-ZS 310±3.13 933±4.50 N/A 8.1±0.03 21.0±0.05 181±3.87 1118±6.13 N/A 10.0±0.06 20.8±0.09 357±2.79 930±8.71 N/A 7.6±0.08 21.5±0.04

Single-Task
PHENAKI-GEN-ST 246±1.07 614±6.86 N/A 4.2±0.02 21.1±0.03 188±1.45 1371±6.06 N/A 4.9±0.01 19.8±0.01 241±0.90 710±3.54 N/A 4.0±0.01 22.1±0.01

PHENAKI-CONT-ST 171±5.32 711±9.55 N/A 5.4±0.03 19.4±0.02 207±2.75 1600±9.97 N/A 5.4±0.02 19.1±0.04 232±3.11 689±5.69 N/A 5.4±0.05 21.1±0.04

Multi-Task
PHENAKI-GEN-MT 356±4.36 760±4.60 N/A 4.1±0.02 21.1±0.04 268±2.50 1311±7.41 N/A 5.1±0.03 20.3±0.02 334±1.16 739±4.49 N/A 4.3±0.06 21.6±0.01

PHENAKI-CONT-MT 201±5.56 860±9.86 N/A 5.0±0.11 19.4±0.05 148±5.50 1150±9.98 N/A 6.3±0.08 18.8±0.06 269±2.80 863±9.94 N/A 5.2±0.03 20.4±0.03

Table 7: Results from automatic evaluation metrics on story generation tasks. Best results are in bold.
FID and SIM use InceptionV3, FVD uses I3D, PQA uses DOVER, and VTM uses CLIP.

differ from realistic filmmaking applications. Moreover, we highlight that STORYBENCH focuses on
real-world videos, and does not include artistic content never seen in the real world. Yet, we expect
it can drive general progress in text-to-video generation thanks to its complexity. Our annotation
framework would not scale to long videos, and we encourage future work to investigate more efficient
protocols. We also note that our baseline models are small (345M) compared to current text-to-image
models (20B). Effectively training large text-to-video models is an open question. Finally, we also
found that automatic metrics do not fully align with human ratings. This might indicate that the
metrics are suboptimal, but we cannot exclude that they would perform better on higher resolution
videos. This highlights the need for a future in-depth study on human versus automated evaluation.

8 Conclusion

In this work, we collected annotations for the task of video generation from a sequence of text
prompts narrating the video evolution (i.e., continuous story visualization). Our data is very rich,
with timestamps for each text prompt, as well as diagnostic labels for each video segment. On top of
such unique data, we propose STORYBENCH: a new benchmark to measure progress of forthcoming
text-to-video models on different tasks, three datasets and in three evaluation setups. STORYBENCH
allows to evaluate key challenges of arbitrarily long video generation, such as consistency over time
and realistic action synthesis. We benchmarked small yet strong baselines, and showed that fine-
tuning a Phenaki model for continuation improves such aspects. Our results highlight a discrepancy
between human and automatic ratings. While human evaluation remains the most reliable method, we
encourage future work to also report automatic metrics in an effort to better understand and develop
effective automatic evaluation. Our benchmark enables a systematic comparison of text-to-video
models that can perform story generation with prompts that vary over time and specified duration.
Beyond modeling, opportunities for future work include expanding the benchmark with datasets of
longer videos and richer variety (e.g., camera jumps, scene changes, etc.) to enhance its applicability
to industrial-level videos, and devising efficient data annotations protocols to facilitate the collection.
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A Author Statement

We bear all responsibilities for the content, licensing, distribution, and maintenance of our datasets
in STORYBENCH. Our datasets are released under a CC-BY-4.0 license, and our code under an
Apache license. Data, code and annotation guidelines are hosted on GitHub at the following URL:
https://github.com/google/storybench.

B Ethics Statement

The aim of STORYBENCH is to enable reliable measurements of progress in generative text-to-video
models. While this kind of models have great potential to assist and augment human creativity [60],
there are broader societal issues that need to be considered when developing these models.

First, while we annotate an evaluation set, training current, strong text-to-video models is computa-
tionally expensive. This affects not only their financial cost (e.g., hardware and electricity), but also
their environmental cost due to the carbon footprint of modern tensor processing hardware [61].

Second, massive amounts of data are required to train state-of-the-art generative models. Such datasets
are harvested from the Web, which tend to reflect social stereotypes, oppressive viewpoints, and
harmful associations to marginalized identity groups [62–64]. Other biases include those introduced
by the use of examples that primarily have English texts and may reflect North American and
Western European cultures [65]. We expect models trained on them to reflect these biases, and hence
caution developers to assess the limitations of their models before integrating them into user-facing
applications. To facilitate positive and safe integration of text-to-video models, we encourage future
work to create benchmark evaluations to assess social and cultural biases of these technologies.

While multimodal models can unlock creative applications that can benefit humanity, they can also
enable harmful applications. These include surveillance, especially when people are recorded and the
recordings are used without their consent, or generation of harmful content, such as pornographic
material. A particularly sensitive topic in this space is disinformation. When model outputs achieve
realistic quality, they can be used to create convincing fake content (i.e., deepfakes). These can be
exploited to spread fake news, defame individuals or portray false situations. To mitigate these harms,
watermarks can be applied to every generated video [66] such that it is possible to to identify whether
any given video is generated by a particular model.

Due to the impacts and limitations described above, we remark that STORYBENCH aims to measure
progress in text-to-video research. For the same reasons, we do not release our baselines to the public.
By no means should our data be extended for use in sensitive domains, but rather for creative goals.
We believe that generative technologies like the type of text-to-video models that can be evaluated in
STORYBENCH can become useful tools to enhance human productivity and creativity.

The collection of our datasets has been enabled by the careful work of several participants. Due to
privacy concerns, we did not include the estimated hourly wage paid to them or the total amount
spent on participant compensation. We feel that individuals’ hourly wage or compensation is personal
information and we cannot disclose this under privacy law. However, this work was carried out by
paid contractors, and we can confirm that they received their standard contracted wage, which is
above the living wage in their country of employment.

C Datasheet

Motivation

Q1 For what purpose was the dataset created? Was there a specific task in mind? Was there a
specific gap that needed to be filled? Please provide a description.
STORYBENCH was created to encourage reproducible progress in text-to-video modeling. Existing
video captioning datasets consist of a single sentence describing the salient events that happen
throughout the entire video. Existing dense video captioning datasets, instead, are either domain-
specific (e.g., instructional video) or contain captions that lack enough information to generate a
video. With our annotation protocol, we describe each action separately and also map it to a precise
timestamp interval, allowing us to evaluate the ability of text-to-video models to generate arbitrarily
long stories. Our task of continuous story visualization is closely related to the existing one of story
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visualization, which was, however, limited to generate a single key-frame per caption, rather than a
continuous video. With the release of STORYBENCH, we aim to establish a framework for reliable
evaluation of forthcoming generative video technologies.

Q2 Who created the dataset (e.g., which team, research group) and on behalf of which entity
(e.g., company, institution, organization)?
STORYBENCH was collected by Google Research.

Q3 Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.
Google Research funded the creation of STORYBENCH.

Q4 Any other comments?
No.

Composition

Q5 What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions between them; nodes and edges)? Please provide a description.
We provide 8,900 annotations of stories across six splits. Each story contains an object se-
rialized in JSON with the following fields: sentence_parts, start_times, end_times,
original_combined_sentence, clip_start_time, clip_end_time, story_number,
background_description, dataset_name, video_name, vidln_id, question_info,
num_actors_in_video, segment_categories. We provide a description of each field in the
README file of our code online. In addition to our annotations, an instance of the dataset requires
the corresponding video file from existing datasets.

Q6 How many instances are there in total (of each type, if appropriate)?
The DiDeMo-CSV dev split has 744/744 videos/stories, and the test split has 655/655 videos/stories.
The Oops-CSV dev split has 979/1578 videos/stories, and the test split has 979/1578 videos/stories.
The UVO-CSV dev split has 1019/1665 videos/stories, and the test split has 1565/2613 videos/stories.

Q7 Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were withheld
or unavailable).
STORYBENCH consists of annotations from a subset of dev and test videos from DiDeMo, Oops, and
UVO. The annotated videos were selected based on a few criteria: (i) public availability as of February
22, 2023; (ii) lack of inappropriate content; (iii) annotation quality insurance; (iv) preprocessing
criteria (e.g., by removing videos whose first action last less than 1.5s).

Q8 What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description.
We provide raw annotations and corresponding video filenames (text). In addition, we also release
the features used to compute our set of automatic metrics for the ground-truth videos.

Q9 Is there a label or target associated with each instance? If so, please provide a description.
The goal of the dataset is not to classify any given instance. However, we enrich the annotation
of each action to easily analyze failure modes by collecting 35 labels across 6 categories (camera
movements, foreground entities, foreground actions, background actions, foreground interactions,
foreground transitions). We provide the full list of labels in the main body of the paper.

Q10 Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text.
No.

Q11 Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.
No.
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Q12 Are there recommended data splits (e.g., training, development/validation, testing)? If so,
please provide a description of these splits, explaining the rationale behind them.
Yes. We collect annotations for the existing dev and test splits. We thus recommend using the original
training/dev/test splits to avoid any leakage.

Q13 Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide
a description.
Some videos have multiple stories, which correspond to different instances in our datasets. For data
collected in VidLN [20], these correspond to descriptions centered around different actors.

Q14 Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are there
guarantees that they will exist, and remain constant, over time; b) are there official archival versions
of the complete dataset (i.e., including the external resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external
resources that might apply to a future user? Please provide descriptions of all external resources and
any restrictions associated with them, as well as links or other access points, as appropriate.
Our benchmark and the datasets we collected rely on existing video datasets (DiDeMo, Oops, and
UVO). We do not provide archival versions of the complete datasets, but the corresponding video
resources are publicly available for download from their official websites.

Q15 Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the content
of individuals’ non-public communications)? If so, please provide a description.
No.

Q16 Does the dataset contain data that, if viewed directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety? If so, please describe why.
Our collected annotations have been verified by humans not to contain inappropriate content. More-
over, our annotators flagged videos that contained sensitive data, which were then all discarded.
While we did make an attempt to remove inappropriate content, we cannot exclude that a small
number of inappropriate samples might have gone unnoticed.

Q17 Does the dataset relate to people? If not, you may skip the remaining questions in this section.
Several of our descriptions and corresponding videos are about people. All of the datasets have been
verified for sensitive content, and several instances do not include people.

Q18 Does the dataset identify any subpopulations (e.g., by age, gender)?
We do not explicitly collect annotations for any subpopulation. However, it may still be possible to
deduce this information from the videos and/or the written descriptions.

Q19 Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.
Yes, it may be possible to identify people from the videos corresponding to our annotations.

Q20 Does the dataset contain data that might be considered sensitive in any way (e.g., data
that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms
of government identification, such as social security numbers; criminal history)? If so, please
provide a description.
Yes, our data might be considered sensitive. For instance, the associated videos reveal racial or ethnic
origins of people shown in them. However, we note that we removed any videos that were found
inappropriate by our annotators.

Q21 Any other comments?
We call for responsible usage of our datasets for research purposes only given the potential of
text-guided video generation technologies to affect users.

Collection Process

Q22 How was the data associated with each instance acquired? Was the data directly observ-
able (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
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inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or lan-
guage)? If data was reported by subjects or indirectly inferred/derived from other data, was the data
validated/verified? If so, please describe how.
We collected human annotations from existing, publicly available video datasets. During the collection
campaign, our annotators directly looked at the raw videos. A random sample of the annotations
were verified by other humans to ensure high-quality standards.
Q23 What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? How were these mechanisms
or procedures validated?
We collected human annotations through web user interfaces that we developed. They were validated
by manual inspection by us and managers from the company we hired to collect human annotations.
Q24 If the dataset is a sample from a larger set, what was the sampling strategy (e.g., determin-
istic, probabilistic with specific sampling probabilities)?
We annotated all the videos from the evaluation sets of existing datasets that were still available
online at the time of our data collection. We also discarded any videos that were found inappropriate.
Q25 Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)?
We hired a third-party company to collect human annotations from contractors, who received their
standard contracted wage, which is above the living wage in their country of employment. The first
and last author were also closely involved during the data collection to ensure that the instructions
were clear and resolve any doubts raised by the crowdworkers.
Q26 Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news articles)? If
not, please describe the timeframe in which the data associated with the instances was created.
Our video annotations were collected between December 2022 and March 2023, but the corresponding
videos were previously collected by other authors.
Q27 Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link or
other access point to any supporting documentation.
No institutional review board conducted any ethical review process since we do not modify the
original videos, and the datasets providing the videos are publicly available and have previously been
published in peer-reviewed journals and conferences.
Q28 Does the dataset relate to people? If not, you may skip the remaining questions in this section.
Yes, people may appear in our annotations as well as in the corresponding videos.
Q29 Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)?
We collected annotations from crowdworkers, not from the individuals shown in the original videos.
Q30 Were the individuals in question notified about the data collection? If so, please describe
(or show with screenshots or other information) how notice was provided, and provide a link or other
access point to, or otherwise reproduce, the exact language of the notification itself.
Individuals were not notified about our data collection, which involved describing their actions in
publicly released videos.
Q31 Did the individuals in question consent to the collection and use of their data? If so, please
describe (or show with screenshots or other information) how consent was requested and provided,
and provide a link or other access point to, or otherwise reproduce, the exact language to which the
individuals consented.
We collect annotations from existing, publicly available video datasets. We do not, however, annotate
videos that were no longer available online at the time our annotation campaign was conducted, to
adhere with the users’ intent to remove their content online.
Q32 If consent was obtained, were the consenting individuals provided with a mechanism to
revoke their consent in the future or for certain uses? If so, please provide a description, as well
as a link or other access point to the mechanism (if appropriate).
Users can check whether any of their videos is used in our datasets from the corresponding URLs.
If users wish to remove their videos after finding them sensitive, they can contact the hosting party
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and request to delete the content from the underlying website. Users can also contact us to request
removal of the instances in our datasets corresponding to their videos.
Q33 Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a
data protection impact analysis) been conducted? If so, please provide a description of this analysis,
including the outcomes, as well as a link or other access point to any supporting documentation.
The goal of our datasets is to encourage research towards generative models that can assist and
boost artists in generating novel content. However, the resulting technologies could be used to create
misinformation online, such as through deepfakes. Yet, we believe that our datasets are the first
of their kind to study the problem of generating videos from captions that vary over time. Hence,
considering both limitations and opportunities offered by our data, we authorize the dataset for purely
academic endeavors.
Q34 Any other comments?
No.

Preprocessing, Cleaning, and/or Labeling

Q35 Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? If so, please provide a description. If not, you may skip the remainder of the
questions in this section.
Yes, we ask human annotators to select which of 34 labels are related to any video segment and
captions. We remove any instances (i) whose first action lasts less than 1.5s, or (ii) have a timestamp
gap longer than 0.5s between any two consecutive actions.
Q36 Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so, please provide a link or other access point to the “raw”
data.
No, we do not save the raw data due to data retention policies in our organization.
Q37 Is the software used to preprocess/clean/label the instances available? If so, please provide
a link or other access point.
Yes, we release our preprocessing scripts on GitHub.
Q38 Any other comments?
No.

Uses

Q39 Has the dataset been used for any tasks already? If so, please provide a description.
Our datasets have not been used for other tasks yet. However, the underlying videos have been used
for their original tasks, such as temporal localization with DiDeMo, studying unintentional human
action with Oops, and dense, open-world segmentation with UVO. Moreover, VidLN annotations
have been used for the tasks of video narrative grounding and video question answering.
Q40 Is there a repository that links to any or all papers or systems that use the dataset? If so,
please provide a link or other access point.
We encourage the community to measure progress in our benchmark and datasets at the URL
https://paperswithcode.com/dataset/storybench.
Q41 What (other) tasks could the dataset be used for?
Our data can be used for the dual task of describing videos over time. In addition, our data could
be used to develop automatic evaluation metrics that better align with human preferences. We also
believe that the richness of our data will encourage future work to create new, exciting tasks.
Q42 Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? For example, is there anything that
a future user might need to know to avoid uses that could result in unfair treatment of individuals or
groups (e.g., stereotyping, quality of service issues) or other undesirable harms (e.g., financial harms,
legal risks) If so, please provide a description. Is there anything a future user could do to mitigate
these undesirable harms?
Our annotations describe existing video datasets that might not contain a fair distribution of individuals
or groups. For our task, this means that models might be able to generate videos that are biased
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towards the populations represented in the training data. We encourage future work to extend our
efforts towards creating training and evaluation datasets that specifically aim to increase fairness and
reduce biases (e.g., correlation between gender, race and jobs) of generative text-to-video models.

Q43 Are there tasks for which the dataset should not be used? If so, please provide a description.
Under no circumstances should any models developed for our benchmark be used to create deepfakes
or any other form of disinformation or harm, including military and surveillance tasks. As it stands,
our datasets should solely be used for research purposes.

Q44 Any other comments?
No.

Distribution

Q45 Will the dataset be distributed to third parties outside of the entity (e.g., company, in-
stitution, organization) on behalf of which the dataset was created? If so, please provide a
description.
Yes, the data will be publicly released.

Q46 How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?
The data will be available on GitHub.

Q47 When will the dataset be distributed?
From September 2023 and onward.

Q48 Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU,
as well as any fees associated with these restrictions.
CC-BY-4.0

Q49 Have any third parties imposed IP-based or other restrictions on the data associated with
the instances? If so, please describe these restrictions, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions.
No, our collected annotations are released under a CC-BY-4.0 license. Third-party data are also
released publicly.

Q50 Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or
otherwise reproduce, any supporting documentation.
No.

Q51 Any other comments?
No.

Maintenance

Q52 Who will be supporting/hosting/maintaining the dataset?
Google Research will support and maintain the STORYBENCH annotations on GitHub. The original
videos are supported by the corresponding dataset creators or services.

Q53 How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
We can be contacted either via email or through ‘pull requests’ on the STORYBENCH GitHub page.

Q54 Is there an erratum? If so, please provide a link or other access point.
There is no erratum for our first release. Errata will be documented as future releases on GitHub.

Q55 Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? If so, please describe how often, by whom, and how updates will be communicated to
users (e.g., mailing list, GitHub)?
No, we do not plan on updating the data. However, we will update the data should there be any errors
or requests for deleting specific instances. The updated data will be shared as a ‘release’ on GitHub.
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Q56 If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data would be
retained for a fixed period of time and then deleted)? If so, please describe these limits and explain
how they will be enforced.
We do not collect any metadata related to people in creating STORYBENCH. However, we note that
our datasets consist of text annotations of existing video datasets. Should people request for their
videos to be deleted from the original datasets, we invite them and users to contact us to ensure that
the corresponding annotations are removed from STORYBENCH.

Q57 Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to users.
Yes, we will distribute all versions of STORYBENCH as ‘releases’ on GitHub.

Q58 If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so? If so, please provide a description. Will these contributions be validated/verified?
If so, please describe how. If not, why not? Is there a process for communicating/distributing these
contributions to other users? If so, please provide a description.
There is no plan to support and verify third-party contributions that aim at extending the datasets in
STORYBENCH as our annotations correspond to standard evaluation splits of existing video datasets.
However, we will update the data should there be any errors or requests for deleting specific instances.
Dataset versions will be maintained as GitHub releases.

Q59 Any other comments?
No.

D Data Preparation Details

In this section, we provide further details on the preparation pipeline used for the evaluation (dev and
test) data in STORYBENCH. It consists of the following steps: collection, preprocessing, and rating.

D.1 Data Collection

First, we use an online interface (see Figure 5) to collect stories for each video. Stories consist of
multiple sentences, each describing an action, and the corresponding timestamps in the video.

Oops-CSV and UVO-CSV. For VidLN data (UVO and Oops), we provide the original VidLN
caption, as well as reference split captions provided from our automatic pipeline (c.f . Section 4). In
this stage, annotators were instructed to ‘split the long sentence into shorter sentences, each describing
actions that happen one after the other’ and to ‘add time stamps for when (the action of) each sentence
starts and ends.’ Moreover, our annotators are asked to click two checkboxes, whenever applicable:
‘Multiple stories,’ used to indicate whether the video shown in the user interface actually consists of
multiple shorter clips (this is common in Oops, as the data consists of fail video compilations); and
‘Unimportant actor,’ used to indicate whether the original caption describes the events in the video
from the perspective of an entity that does not play a salient role in the video (e.g., a person in the
background). Finally, we perform a second stage of annotations where we provide annotators with
the stories from the first stage, and ask them to ‘continue the sentence that describes the actor’s action
in a natural manner by adding a concise context description of relevant actions of other actors.’ This
second round of annotations was required as VidLN describes the actions of a given entity (actor)
throughout a video, which does not often capture the dynamics of the corresponding video segments.
Our annotators narrate 2,446 and 2,779 videos from the dev sets of Oops and UVO, respectively.

DiDeMo-CSV. For DiDeMo, we do not possess any descriptions of the video. Instead, the dataset
provides detailed text queries (e.g., containing camera movement, temporal transition indicators, and
activities) that are used to localize events in the video. We provide those queries as a reference to our
annotators, and ask them to ‘add a description of the background,’ ’specify the number of important
actors in the video,’ ‘refine the sentences to create a coherent story,’ and ‘add timestamps for when
(the action of) each sentence starts and ends.’ Following the original DiDeMo protocol, each video is
trimmed to a maximum of 30 seconds. While the original dev and test sets contained 1,065 and 1,004
videos, respectively, only 843 and 797 videos were still publicly available as of February 22, 2023.
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Proprietary + Confidential

Figure 5: Example of our video annotation interface.

Example user interface (truncated): 
 

 
 
First video segment on the left, second video segment to its right, and so on. 
 
 
 
 
 
 
 
 
 
We recommend printing the following two pages and have 
them readily available during the annotation process.  

Figure 6: Example of our diagnostic labels collection interface.

In both cases, we provide additional details for both of these tasks to the annotators, as well as
examples and corner cases to clearly communicate the desired annotations (available on GitHub).
During this collection process, any video flagged by the annotators to contain inappropriate content
was removed. Finally, a random sample of our annotations were verified by expert annotators
identified by the third party company responsible for human annotations in this project.
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Figure 7: Distribution of collected labels per category in our dev samples.
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Figure 8: Distribution of collected labels per category in our test samples.
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Diagnostic labels. After collecting story annotations for our videos, we enrich them with labels to
help analyze the performance of forthcoming text-to-video models along different axes. With the help
of artists that have been using generative AI technologies, we define 34 labels across six categories
(c.f . Section 3). For each video segment, we then ask our annotators to tick two checkboxes per label:
‘Text’ if the label is mentioned in the segment caption; and ‘Video’ if the label is shown in the video.
Figure 6 shows an example of the UI used in this process, and we release our full set of instructions
online. Figures 7 and 8 show the distribution of labels in our preprocessed (i.e., final) data.

Human annotation framework. We assess the high quality of our annotations as follows. First,
annotators were only moved to the final data annotation process after having successfully completed
a training stage. Second, we asked annotators’ managers to verify the quality (i.e., descriptions and
timestamps match the content of the videos) of the final data by manually checking 25% of the data
samples. Here, they found 97% of the samples to accurately reflect the narratives of the videos.

D.2 Data Preprocessing

Given the above collected annotations, we perform the following two preprocessing steps. First,
we only keep stories whose first action is at least 1.5s long; as we use a video of 0.5s to condition
text-to-video generation for the task of story continuation. Second, we remove any story in which
two subsequent actions have more than 0.5s gap.

Figures 9 and 10 shows our final data distributions. For DiDeMo-CSV, the dev split has 744/744
videos/stories, while the test split has 655/655 videos/stories. For Oops-CSV, the dev split has
979/1578 videos/stories, while the test split has 979/1578 videos/stories. For UVO-CSV, the dev split
has 1019/1665 videos/stories, while the test split has 1565/2613 videos/stories.

The preprocessed data is then adapted for each of our evaluation tasks detailed in Section 3: action
execution, story continuation, and story generation. Finally, to evaluate our baselines, the original
videos are downsampled to 8 frames per second (fps) using the ‘FFmpeg’ open-source software.

Figures 12 to 14 show examples of the resulting data.

D.3 Human Evaluation

Human evaluation is the preferred way to assess the capabilities of generative models. We perform
side-by-side comparisons between two models, and ask human raters to choose the one (if any) that
performs better according to the five criteria that we defined in Section 3. Figure 15 shows an example
of the user interface developed for human evaluation.

D.4 Automatic Evaluation

Section 3.4 introduces our automatic evaluation metrics. Here, we provide our intuition of how
we expect them to relate to our human evaluation metrics. FID would measure “visual quality”
since it compares the distribution of ground-truth frames with that of generated frames. FVD would
measure “entity consistency” and “action realism” since it compares the distribution of ground-truth
videos with that of generated videos. SIM would measure “visual quality”, “entity consistency”,
“background consistency”, and “text adherence” as it compares ground-truth and generated frames
one-to-one. VTM would measure “text adherence” as it compares generated videos to their prompts.
PQA would measure “visual quality” and “action realism” as it was trained to predict the average
human subjective perception of a video.

D.5 Robustness of Automatic Pipeline

In Section 4, we define an automatic pipeline to transform the original VidLN captions for Oops
and UVO into multiple sentences, each approximately describing a single action, and to estimate
their corresponding timestamps. Here, we compute some statistics to assess the quality of the
stories generated automatically through our algorithmic pipeline by comparing them against human
references for the Oops Dev set (1,578 stories).
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Figure 9: Statistics of our final dev sets.
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Figure 10: Statistics of our final test sets.
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Figure 11: Robustness statistics of automated pipeline for story-like data transformation. Left:
Number of captions per story. Right: Duration of video segments in seconds.
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PROMPT: A man wearing white shorts is jumping on a trampoline.

PROMPT: The man performing a flip.

PROMPT: The man falls when the trampoline falls on the ground.

Figure 12: Example story (subsampled frames) from Oops-CSV.

PROMPT: A baby wearing blue clothes first touches the girl's ice cream while the first girl is eating her ice cream.

PROMPT: The baby turns back.

PROMPT: The baby starts climbing on the back side of the seat.

Figure 13: Example story (subsampled frames) from UVO-CSV.

As shown in Figure 11 (left), the distributions of the number of sentences per story of the two
approaches are very similar. In particular, we notice that our method tends to split captions into two
or three segments more often than the human annotators, who, more often, prefer not to split them.

The words corresponding to each video segment are very similar between human and automatic
stories. To assess this, we consider the subset of captions that have been split into the same number
of sentences, so we can compute one-to-one mappings between the human and the algorithmic
captions. Here, we observe a BLEU4 score of 63.6% (BLEU4 measures the overlap of 4-grams in
the two captions), indicating a relatively high similarity of generated sentences to human references.
We also note that humans were asked to enrich the original Oops and UVO captions with context
information (e.g., what other relevant actors are doing while a specific actor is being narrated), which
our algorithmic pipeline does not explicitly tackle, leaving room for improvement in future work.

Finally, Figure 11 (right) shows that the resulting duration of the algorithmically generated video
segments are slightly longer than human-annotated timestamps.
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PROMPT: A white-brown dog is sitting and starts moving towards the person.

PROMPT: A person whose only hand and leg is visible is holding some food in his hand.

PROMPT: The white-brown dog is take food from the person hand and eats, while the camera focus on the dog face.

PROMPT: The person starts rubbing the dog head with his hand.

Figure 14: Example story (subsampled frames) from DiDeMo-CSV.

E Additional Results

In this section, we report our full set of results from our baselines on STORYBENCH, in terms of both
human evaluations and through automatic metrics. Recall that we append -ZS for results obtained in
the zero-shot setting, -ST for single-task fine-tuning, and -MT for multi-task fine-tuning. Each model
was fine-tuned for 500K steps in less than a day on 4x4x4 TPUv4 chips. For every story, each model
generates 4 output videos at 8fps using a 160×96 pixel resolution. We randomly sample one of them
for human evaluation (e.g., Figure 16), but report mean and standard deviation for automatic metrics.

E.1 Human Evaluation

Figure 17 shows the results of human evaluation, where each bar displays the number of wins of two
given models evaluated side-by-side, as well as the number of ties (in white). For each story, we ask
three human raters to compare two models and report the majority vote in Figure 17.

28



Figure 15: Example of our human rating interface.

PHENAKI-GEN-ZS

PHENAKI-CONT-ST

PROMPT: The swimmers dive into the water and starts swimming from one end to the another.

Figure 16: Example of generated actions by PHENAKI-GEN-ST and PHENAKI-CONT-ST on DiDeMo-
CSV. PHENAKI-GEN-ST quickly changes the background, while PHENAKI-CONT-ST correctly
synthesizes a person swimming left-to-right without distorting the background. Video subsampled by
a factor 4 to be shown here.

Looking at task of action execution on Oops-CSV, we see that our PHENAKI-CONT-ST achieves
competitive performance with our PHENAKI-GEN-ZS baseline, with better text adherence, back-
ground consistency and action realism. This result is not surprising as most of the actions in Oops are
short (less than 5s). It is interesting, however, to see that our annotators find PHENAKI-CONT-ST
largely better than PHENAKI-GEN-ST across all criteria. On the other hand, none of these models
clearly outperforms others for the most challenging task of story generation.

For the task of story continuation, PHENAKI-CONT-ST typically outperforms both PHENAKI-GEN-
ZS and PHENAKI-GEN-ST, especially on Oops-CSV. On UVO-CSV and DiDeMo-CSV, PHENAKI-
CONT-ST consistently outperforms PHENAKI-GEN-ST except for entity and background consistency,
where human raters often have no preference between the two. Comparing multi-task models, we
find that PHENAKI-CONT-MT is always preferred to PHENAKI-GEN-MT; yet PHENAKI-GEN-ZS is
a strong baseline, achieving better visual quality than the fine-tuned models.
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Figure 17: Results from human evaluation across datasets and tasks.

E.2 Automatic Evaluation

For completeness, Tables 8 to 10 report the performance of our baselines on all tasks and datasets
when instead using CLIP to compute FID and SIM, and InternVideo to compute FVD and VTM. We
find similar patterns as with other metrics (c.f . Section 6), but also notice that InternVideo (used for
FVD and VTM) favors the videos generated by the zero-shot PHENAKI-GEN model.
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Action Execution Oops-CSV UVO-CSV DiDeMo-CSV
Model (@8 fps) FIDC↓ FVDIV↓ SIMC↑ PQA↑ VTMIV↑ FIDC↓ FVDIV↓ SIMC↑ PQA↑ VTMIV↑ FIDC↓ FVDIV↓ SIMC↑ PQA↑ VTMIV↑

Zero-shot
PHENAKI-GEN-ZS 94.7±0.52 126.7±0.46 64.9±0.08 5.8±0.03 22.6±0.07 79.2±0.38 85.3±0.41 66.7±0.03 8.5±0.10 23.0±0.03 97.2±0.34 78.0±0.25 64.3±0.08 6.7±0.02 22.9±0.05

Single-Task
PHENAKI-GEN-ST 97.1±0.20 179.4±0.28 64.8±0.04 4.0±0.02 20.0±0.02 97.3±0.18 147.6±0.20 62.5±0.04 4.8±0.05 18.4±0.02 89.3±0.22 120.2±0.59 64.9±0.04 4.5±0.02 20.4±0.03

PHENAKI-CONT-ST 84.5±0.02 171.6±0.58 67.9±0.04 4.8±0.02 19.9±0.01 92.4±0.27 143.2±0.31 64.0±0.09 5.6±0.02 18.7±0.03 82.5±0.22 107.3±0.46 66.8±0.01 5.6±0.01 20.1±0.01

Multi-Task
PHENAKI-GEN-MT 102.8±0.64 179.3±0.63 63.7±0.04 3.8±0.04 20.1±0.04 92.1±0.68 138.9±0.42 63.3±0.03 5.1±0.05 19.2±0.02 88.2±0.44 119.6±0.47 64.3±0.04 4.7±0.06 20.1±0.02

PHENAKI-CONT-MT 86.0±0.52 171.3±0.56 67.4±0.11 4.7±0.01 20.1±0.03 77.9±0.08 126.8±0.24 67.1±0.06 6.8±0.01 19.9±0.02 85.4±0.14 106.5±0.29 66.4±0.07 5.8±0.03 19.9±0.03

Table 8: Results from automatic evaluation metrics on action execution tasks. Best results are in bold.
FID and SIM use CLIP, FVD and VTM use InternVideo, and PQA uses DOVER.

Story Continuation Oops-CSV UVO-CSV DiDeMo-CSV
Model (@8 fps) FIDC↓ FVDIV↓ SIMC↑ PQA↑ VTMIV↑ FIDC↓ FVDIV↓ SIMC↑ PQA↑ VTMIV↑ FIDC↓ FVDIV↓ SIMC↑ PQA↑ VTMIV↑

Zero-shot
PHENAKI-GEN-ZS 103.2±0.87 116.6±0.54 63.1±0.05 7.2±0.06 22.5±0.05 82.2±0.51 83.6±0.44 65.9±0.04 9.4±0.09 22.9±0.03 108.2±0.43 87.9±0.41 61.7±0.04 7.3±0.07 22.5±0.10

Single-Task
PHENAKI-GEN-ST 99.6±0.07 181.5±0.74 64.0±0.05 4.3±0.02 19.7±0.02 97.8±0.26 151.1±0.21 62.5±0.03 5.0±0.03 18.2±0.01 90.9±0.18 127.5±0.48 64.2±0.03 4.0±0.02 19.9±0.02

PHENAKI-CONT-ST 89.2±0.30 169.9±0.67 66.3±0.05 5.3±0.04 19.5±0.02 94.1±0.29 147.3±0.75 63.5±0.07 5.7±0.03 18.3±0.02 89.4±0.29 118.1±0.60 64.5±0.05 5.4±0.03 19.4±0.06

Multi-Task
PHENAKI-GEN-MT 105.2±0.26 182.0±0.17 63.0±0.04 4.2±0.02 19.8±0.02 92.8±0.58 141.9±0.22 63.1±0.03 5.2±0.03 18.9±0.02 90.7±0.24 126.4±0.82 63.4±0.02 4.3±0.04 19.7±0.04

PHENAKI-CONT-MT 92.1±0.44 171.4±0.67 65.7±0.09 5.1±0.02 19.8±0.02 80.4±0.17 129.0±0.65 66.3±0.09 7.0±0.02 19.6±0.05 95.5±0.33 120.2±0.23 63.4±0.07 5.5±0.09 19.0±0.01

Table 9: Results from automatic evaluation metrics on story continuation tasks. Best results are in
bold. FID and SIM use CLIP, FVD and VTM use InternVideo, and PQA uses DOVER.

Story Generation Oops-CSV UVO-CSV DiDeMo-CSV
Model (@8 fps) FIDC↓ FVDIV↓ SIMC↑ PQA↑ VTMIV↑ FIDC↓ FVDIV↓ SIMC↑ PQA↑ VTMIV↑ FIDC↓ FVDIV↓ SIMC↑ PQA↑ VTMIV↑

Zero-shot
PHENAKI-GEN-ZS 117.2±0.90 113.0±0.54 N/A 8.1±0.03 22.9±0.11 97.5±0.89 88.2±0.68 N/A 10.0±0.06 22.6±0.14 115.6±0.38 91.1±0.46 N/A 7.6±0.08 23.0±0.06

Single-Task
PHENAKI-GEN-ST 103.4±0.28 181.4±0.19 N/A 4.2±0.02 19.6±0.03 99.2±0.22 151.7±0.45 N/A 4.9±0.01 18.0±0.01 92.3±0.07 128.6±0.44 N/A 4.0±0.01 20.1±0.04

PHENAKI-CONT-ST 109.1±0.89 167.9±0.95 N/A 5.4±0.03 17.9±0.03 100.6±0.47 149.6±0.24 N/A 5.4±0.02 17.4±0.02 96.1±0.11 124.6±0.86 N/A 5.4±0.05 18.9±0.02

Multi-Task
PHENAKI-GEN-MT 107.4±0.71 180.0±0.52 N/A 4.1±0.02 19.8±0.06 94.8±0.25 143.0±0.28 N/A 5.1±0.03 18.8±0.01 92.0±0.20 127.3±0.46 N/A 4.3±0.06 19.8±0.01

PHENAKI-CONT-MT 114.3±0.12 171.0±0.53 N/A 5.0±0.11 18.0±0.06 99.8±0.28 132.7±0.52 N/A 6.3±0.08 17.5±0.05 105.6±0.26 125.9±1.03 N/A 5.2±0.03 18.3±0.06

Table 10: Results from automatic evaluation metrics on story generation tasks. Best results are in
bold. FID uses CLIP, FVD and VTM use InternVideo, and PQA uses DOVER.
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