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Text-based RL Agents with Commonsense Knowledge:
New Challenges, Environments and Baselines

Anonymous EMNLP submission

Abstract

Text-based games have emerged as an im-
portant test-bed for Reinforcement Learning
(RL) research, requiring RL agents to com-
bine grounded language understanding with
sequential decision making. In this paper, we
examine the problem of infusing RL agents
with commonsense knowledge. Common-
sense would allow agents to efficiently act in
the world by pruning out implausible actions,
and to perform look-ahead planning to de-
termine how current actions might affect fu-
ture world states. We design new text-based
gaming environments called TextWorld
Commonsense (TWC) for training and eval-
uating RL agents with a specific kind of com-
monsense knowledge about objects, their at-
tributes, and affordances. We also introduce
several baseline RL agents which track the
sequential context and dynamically retrieve
the relevant commonsense knowledge from
ConceptNet. We show that our agents act
efficiently (fewer moves) and achieve better
scores when we incorporate commonsense,
and that the learned policies can be transferred
to other instances in TWC.

1 Introduction

Over the years, simulation environments have
been used extensively to drive advances in rein-
forcement learning (RL). A recent environment
that has received much attention is TextWorld
(TW) (Côté et al., 2018), where an agent must
interact with an external environment to achieve
goals while maximizing reward - all of this using
only the modality of text. TextWorld and similar
text-based environments seek to bring advances in
grounded language understanding in a sequential
decision making setup.

While existing text-based games are valuable
for RL research, they fail to test a key aspect
of human intelligence: commonsense. Humans

Observation
You've entered a kitchen. You
see a dishwasher  and a fridge.
Here's a dining table. You see a
dirty plate and a red red apple on
the table. 

Goal
Clean up the kitchen

ConceptNet

Agent

Best action trajectory
1. Take the red apple from the table
2. Take the dirty plate from the table
3. Open the fridge
4. Put the red apple in the fridge
5. Open the dishwasher
6. Put the dirty plate in the

dishwasher

Plausible Actions
1. Open the dishwasher
2. Put the dirty plate in the fridge
3. Put the red apple in the dishwasher
4. ...

Fridge
AtLocation

Plate Dishwasher
AtLocation

Apple

Figure 1: An illustration of a TWC game. The agent is given
an initial observation (top left) and has to produce the list
of actions (bottom right) that are necessary to achieve this
goal (bottom center) using relevant commonsense knowledge
from ConceptNet (bottom left).

capitalize on commonsense (background) knowl-
edge about entities – properties, spatial relations,
events, causes and effects, and other social con-
ventions – while interacting with the world (Mc-
carthy, 1960; Winograd, 1972; Davis and Marcus,
2015).

Motivated by this, we propose novel text-based
environments, TextWorld Commonsense (or
TWC), where the agent is expected to use common-
sense knowledge stored in knowledge bases such
as ConceptNet (Liu and Singh, 2004; Speer et al.,
2017) to act efficiently. TWC is a sandbox environ-
ment similar to TextWorld, where the agent has
to clean up a house. Efficiently achieving goals
in this environment requires commonsense knowl-
edge about objects, their properties, locations, and
affordances. Efficient use of commonsense would
allow the agent to select correct and applicable ac-
tions at each step: i.e., improve sample efficiency
by reducing exploration; as well as to perform
look-ahead planning to determine how current ac-
tions might affect future world states (Juba, 2016).
Figure 1 presents a running example from TWC
that illustrates this: in the figure, the additional
knowledge that must be utilized effectively by the
agent is shown in the bottom left corner.

Building commonsense-based RL agents for
text-based games is hard. The agent is required to
accurately model the sequential context and track
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the state of the game. At the same time, the
agent must also be able to dynamically retrieve
the relevant commonsense knowledge with high
precision, and use it appropriately. In this paper,
we present an agent that combines the game state
with relevant commonsense knowledge. The agent
tracks the state of the game using a high-level re-
current architecture over observation representa-
tions. Then, it dynamically retrieves the relevant
commonsense based on the sequential context us-
ing a number of simple graph linking and neigh-
borhood exploration techniques. Finally, it com-
bines the game state with the retrieved common-
sense subgraph using a co-attention mechanism.

We showcase improvements in the performance
of our commonsense RL agents on TWC as they
complete the house cleanup tasks and achieve a
higher score (discounted reward from the environ-
ment) in fewer steps in comparison to a purely
text-based model. Moreover, the RL agent with
commonsense knowledge also achieves the best
generalization to other game instances in TWC.
Contributions: (1) We propose the use of com-
monsense knowledge from external knowledge
bases to make text-based RL agents more effi-
cient; (2) To support more research in this area,
we generate a new environment (TWC) that re-
quires commonsense knowledge; (3) We propose a
model that tracks sequential context, dynamically
retrieves relevant commonsense knowledge and
combines the context information with the com-
monsense knowledge for decision making; and (4)
We show empirically that agents thus constituted
are more efficient than purely text-based agents.

2 TextWorld Commonsense (TWC)

Commonsense can be defined very broadly and
in various ways. However, in this paper, we
mainly focus on commonsense knowledge that
pertains to objects, their attributes, and affor-
dances1. Several existing text-based games de-
signed with TextWorld (Adhikari et al., 2020;
Côté et al., 2018) severely restrict the amount
and variety of external commonsense knowledge
that an agent needs to know and exploit. Thus,
in this paper, we create and present a new do-
main – TextWorld Commonsense (TWC) –
by reusing the TextWorld engine as described be-
low in order to generate text-based environments

1Gibson in his seminal work (Gibson, 1978) refers to af-
fordance as “properties of an object [...] that determine what
actions a human can perform on them”.

where RL agents need to effectively retrieve and
use commonsense knowledge.

2.1 Constructing TWC

We built the TWC domain as a house clean-up en-
vironment where the agent is required to obtain
and use knowledge about typical objects in the
house, their properties, and expected location from
a commonsense knowledge base. The house is
initialized with random placement of objects in
various locations. The agent’s high level goal is
to tidy up the house by putting objects in their
commonsense locations. This high level goal
may consist of multiple sub-goals. For exam-
ple, for the sub-goal: put the apple inside the re-
frigerator, commonsense knowledge from Con-
ceptNet such as (Apple → AtLocation →
Refrigerator) can assist the agent.

Goal Sources: While our main objective was
to create environments that require common-
sense, we did not want to bias the environments
towards any one of the existing commonsense
knowledge bases. We additionally wanted to
rule out the possibility of data leaks in situa-
tions where both the environment as well as
the external knowledge came from the same
part of a specific commonsense knowledge base
(KB) like ConceptNet. For the construction of
the TWC goal instances, we picked sources of
information that were orthogonal to existing
commonsense KBs. Specifically, we used: (1)
the picture dictionary from 7ESL2;
(2) the British Council’s vocabulary
learning page3; (3) the English At
Home vocabulary learning page4; and
(4) ESOL courses5. We collected vocabulary
terms from these sources and manually aggregated
this content in order to build a dataset that lists
several kinds of objects that are typically found in
a house environment. For each object, the dataset
specifies a list of coherent plausible locations
within the house.

Instance Construction: A TWC instance is sam-
pled from this dataset, which includes a configu-
ration of 8 room types and a total of more than
900 entities (Table 1). The environment includes
three main kinds of entities: objects, supporters,

2https://7esl.com/picture-dictionary/
3https://learnenglish.britishcouncil.org/vocabulary/beginner-

to-pre-intermediate
4https://www.english-at-home.com/vocabulary
5www.esolcourses.com/topics/household-home.html
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Count Examples
Rooms 8 kitchen, backyard

Supporters/Containers 56 dining table, wardrobe
Unique Objects 190 plate, dress
Total Objects 872 dirty plate, clean red dress
Total Entities 928 dirty plate, dining table

Table 1: Statistics on the number of entities, support-
ers/containers, and rooms in the TWC domain.

Correctness Completeness
Rated Commonsense 669 47

Rated NOT Commonsense 31 253

Table 2: Statistics from the human annotations to verify TWC

and containers. Objects are entities that can be
carried by the agent, whereas supporters and con-
tainers are furniture where those objects can be
placed. Let o represent the object or entity in
the house; r represent the room that the entity
is typically found in; and l represent the loca-
tion inside that room where the entity is typically
placed. In our running example, o:apple is an
entity, l:refrigerator is the container, and
r:kitchen is the room. Via a manual verifi-
cation process (which we elucidate next in Sec-
tion 2.2) we ensure that the associations between
entities, supporters/containers, and rooms reflect
commonsense. As shown in Table 1, we collected
a total of 190 objects from the aforementioned re-
sources. We further expanded this list by manu-
ally annotating the objects with qualifying prop-
erties, which are usually adjectives from a pre-
defined set (e.g., a shirt may have a color and a
specific texture). This allows increasing the total
pool of objects for generating TWC environments
to more than 800.

2.2 Verifying TWC
In order to ensure that TWC indeed reflects com-
monsense knowledge, we set up two annotation
tasks to verify the environment goals (i.e., goal
triples of the form 〈o, r, l〉, where o stands for an
object, r denotes a room, and l a location within
that room, as defined in Section 2.1). The first task
is meant to verify the correctness of the goals and
evaluate whether the goal 〈o, r, l〉 triples make
sense to humans. The second task is aimed at ver-
ifying completeness, i.e. that other triples in the
environment do not make sense to humans.
Verifying Correctness: To test the correctness of
our environments, we asked our human annotators
to determine whether they would consider a given
room-location combination in the goal 〈o, r, l〉
to be a reasonable place for the object o; if so, the
instance was labeled positive, and negative other-

wise. We collected annotations from M = 10 an-
notators, across a total of N = 205 unique 〈o, r,
l〉 triples. Each annotator annotated 70 of these
triples, and each triple was annotated by at least 3
distinct annotators. The annotators were not given
any other biasing information, and all annotators
worked independently. We found a heavy label
bias in the annotations: more than 95% of all re-
sponses fall into the ‘positive’ nominal category
leading to asymmetrically imbalanced marginals.
In this case, standard inter-annotator agreement
statistics like Cohen’s kappa, Fleiss’ kappa and
Krippendorff’s alpha are not reliable (Feinstein
and Cicchetti, 1990). Thus, we simply show over-
all agreement of the annotators with TWC’s goals
in Table 2. The high agreement from the anno-
tators demonstrates that the goal 〈o, r, l〉 triples
reflect human commonsense knowledge.

Verifying Completeness: Similar to the above an-
notation exercise, we also asked human annotators
to determine if a non-goal 〈o, r, l〉 triple made
sense to them. In addition to the 70 triples men-
tioned above, each of the M = 10 annotators were
asked to label as either positive or negative a set
of 30 non-goal triples. In order to provide annota-
tors with an informative set of non-goal 〈o, r, l〉
triples, we used GloVe (Pennington et al., 2014)
to compute location embeddings for each location
in TWC. For a given object o, a non-goal location
l’ was then selected among those most similar to
the goal location l, according to the cosine simi-
larity between the embeddings of l and l’. As be-
fore, each non-goal triple was assigned to at least
3 annotators from a set that comprises a total of 97
triples. As we see in Table 2, the annotators sel-
dom find a hypothesized non-goal 〈o, r, l〉 triple
as commonsensical.

Annotator Reliability: For our overall annotation
exercise, we can report inter-annotator agreement
statistics, as the overall annotation is no longer
imbalanced in terms of label marginals. We re-
port a Krippendorff’s alpha (Krippendorff, 2018)
ακ = 0.74. This number is over the accepted range
for agreement and shows that our annotators have
a strong agreement when rating the triples.

2.3 TWC Games

We used the TextWorld engine to build a set of
text-based games where the goal is to tidy up a
house by putting objects in the goal locations spec-
ified in the TWC dataset. The games are grouped
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#objects #Objects to find #Rooms
Easy 1 1 1
Medium 2, 3 1, 2, 3 1
Hard 6, 7 5, 6, 7 1, 2

Table 3: Specification of TWC games

into three difficulty levels (easy, medium, and
hard) depending on the total number of objects
in the game, the number of objects that the agent
needs to find (the remaining ones are already car-
ried by the agent at the beginning of the game)
and the number of rooms to explore. The values
of these properties are randomly sampled from the
ones listed in Table 3. For each difficulty level, we
provide a training set and two test sets. The train-
ing sets were built out of 2/3 of the unique objects
reported in Table 1. For the first test set, we used
the same set of objects as the training games to
generate evaluation games. We call this set the in
distribution test set. For the second test set, we
employed the remaining 1/3 objects to create test
games. We call this set out of distribution test set.
This allows us to investigate not only the capabil-
ity of the agents to generalize within the same dis-
tribution of the training data, but also their ability
to achieve generalization to unseen entities.

3 TWC Agents

Text-based games can be seen as partially observ-
able Markov decision processes (POMDP) (Kael-
bling et al., 1998) where the system dynamics are
determined by an MDP, but the agent cannot di-
rectly observe the underlying state. The agent re-
ceives a reward at every time step and the agent’s
goal is to maximize the expected discounted sum
of rewards. The TWC games allow the agent to per-
ceive and interact with the environment via text.
Thus, the observation at time step t, ot is pre-
sented by the environment as a sequence of tokens
(ot = {o1

t , . . .o
N
t }). Similarly, each action a is also

denoted as a sequence of tokens {a1, . . . ,aM}. The
goal of this project is to test RL agents with com-
monsense. In this case, the agents also have ac-
cess to a commonsense knowledge base, and are
allowed to use it while selecting actions.

In order to model TWC, we design a frame-
work that can (a) learn representations of var-
ious actions, (b) learn from sequential context,
(c) dynamically retrieve the relevant common-
sense knowledge, (d) integrate the retrieved rel-
evant commonsense knowledge with the context,
and (e) predict actions. A block diagram of the
framework is shown in Figure 2. We describe the

Figure 2: Overview of our framework’s decision making at
any given time step. The framework comprises of the fol-
lowing components (visually shown in color): (a) action en-
coder which encodes all admissible actions a ∈A , (b) obser-
vation encoder which encodes the observation ot , (c) context
encoder, which encodes the dynamic context Ct , (d) a dy-
namic common sense subgraph of ConceptNet Gt

C extracted
by the agent, (e) a knowledge integration component, which
combines the information from textual observations and the
extracted common sense subgraph, and (f) an action selection
module. ⊕ denotes the concatenation operator.

various components of our framework below.

3.1 Action and Observation Encoder

We learn representations of observations and ac-
tions by feeding them to a recurrent network.
Given current observation ot , we use pre-trained
GloVe embeddings (Pennington et al., 2014) to
represent ot as a sequence of d-dimensional vec-
tors x1

t , . . . ,xN
t , where each xk

t ∈ Rd is the glove
embedding of the k-th observed token ok

t , k =
1, . . . ,N. Then, a (bidirectional) GRU-based en-
coder (Cho et al., 2014) is used to process the se-
quence x1

t , . . . ,xN
t . This gives us the representa-

tion of the current observation: ot = hN
t , where

hk
t = GRU(hk−1

t ,xk
t ), for k = 1, . . . ,N. In a sim-

ilar way, given the set At of admissible actions at
time step t, we learn representations of each action
a ∈ At .

3.2 Context Encoder

A key challenge for our RL agent is in model-
ing the context, i.e. the entire history of obser-
vations. We model the context using another re-
current encoder over the observation representa-
tions ot . We use a GRU network to encode the
sequence of previous observations up to ot into a
vector st = GRU(st−1,ot). We refer to st as the
state vector, or the context encoding. The context
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encoding will be used in addition to the common-
sense knowledge in the final action prediction.

Recent work (Talmor et al., 2018; Huang et al.,
2019; Fadnis et al., 2019) has shown that while
external knowledge can be useful, it must be bal-
anced by the context-specific relevance of that new
information. If this is not done properly, there
is a high risk of overwhelming the agent with
too much information, leading to poor decisions
and performance. We, therefore, discuss several
mechanisms to retrieve the relevant commonsense
knowledge from an external knowledge source.

The commonsense knowledge retrieved by our
agent is in the form of a graph. This is updated
dynamically at each time step t with the result-
ing graph Gt

C. The graph is constructed by first
mapping the textual observation ot at time t to the
external knowledge source – in our case, Concept-
Net. This mapping is done by extracting and link-
ing concepts mentioned in the observation text to
ConceptNet. We used Spacy (Explosion, 2017) to
extract noun chunks, and then performed a max
sub-string match with all the concepts in Concept-
Net. This results in a set of entities et for the ob-
servation ot at time t.

Our next step is to construct Gt
C from the con-

cepts extracted from the present observation et and
the commonsense subgraph from the previous ob-
servations, Gt−1

C . We first combine the concepts
from Gt−1

C and et to get Et . Et consists of all the
concepts observed by the agent until time step t,
including the description of the room, current ob-
servation from the environment, and the objects in
the inventory. Given Et , we describe three differ-
ent techniques to automatically extract the com-
monsense graph Gt from external knowledge.

(1) Direct Connections: This is the baseline ap-
proach to construct Gt

C. We fetch direct links be-
tween each of the concepts in Et from ConceptNet.

(2) Contextual Direct Connections: Since the
goal of the agent is to clean up the house by putting
objects into its appropriate containers, we
hypothesize that adding links only between ob-
jects and containers may benefit the agent in-
stead of links between all concepts as done by
Direct Connections, as we might overwhelm the
agent with noise. For example, assuming that the
agent has seen the following: clothes, apple,
refrigerator, and washing machine, the
agent can benefit from edges between objects
and containers such as: (1) clothes

⇒ washing machine, and (2) apple ⇒
refrigerator, rather than links between ob-
jects and between containers such as: (1)
washing machine ⇒ refrigerator, and
(2) apple ⇒ clothes. To accomplish this
goal, we split the entities Et into objects and con-
tainers. Since we know the inventory, the objects
from the inventory in Et constitutes objects and
we consider the remaining as containers. We re-
tain only the edges between objects and containers
from ConceptNet.

(3) Neighborhood: The previous techniques fo-
cus only on connecting the links between observed
concepts, Et , from external knowledge. In addi-
tion to the direct relations, it may be beneficial
to include concepts from external knowledge that
is related to Et but has not been directly observed
from the game. Therefore, for each concept in Et ,
we include all its neighboring concepts and asso-
ciated links from the external knowledge.

3.3 Knowledge Integration
We enhance our text-based RL agent by allowing it
to jointly contextualize information from both the
commonsense subgraph as well as the observation
representation. We call this step knowledge inte-
gration. In this step, we encode the retrieved com-
monsense graph using a graph encoder followed
by a co-attention layer.
Graph encoder: The graph Gt

C is encoded as fol-
lows: First, we use pretrained KG embeddings
(Numberbatch) to map the set of nodes Vt to a fea-
ture matrix [e1

t , . . . ,e
|Vt |
t ] ∈ R f×|V t

∗ |. Here, ei
t ∈ R f

is the (averaged) embedding of words in node i ∈
V t
∗ . Following (Lu et al., 2017), we also add a sen-

tinel vector to allow the attention modules to not
attend to any specific nodes in the subgraph. These
node embeddings are updated at each time step by
message passing between the nodes of Gt

c using
Graph Attention Networks (GATs) (Veličković
et al., 2018) to get {z1

t ,z2
t · · ·z

|Vt |
t }, using multi-

head graph attention resulting in a final graph rep-
resentation that better captures the conceptual re-
lations between the nodes in the subgraph.
Co-Attention: In order to combine the ob-
servational context and the retrieved common-
sense graph, we consider a bidirectional attention
flow layer between these representations to re-
contextualize the graph for the current state of the
game (Seo et al., 2016; Yu et al., 2018).
Similar to (Yu et al., 2018), we compute a simi-



6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

EMNLP 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

larity matrix S ∈ RN×|V t
C | between the context and

entities in the extracted common sense subgraph
using a trilinear function. In particular, the similar-
ity between jth token’s context encoding h j

t and ith

node encoding zi
t in the commonsense subgraph is

computed as: Si j = WT
0 [zi

t ;h j
t ;zi

t ◦h j
t ] where ◦ de-

notes element-wise product, ; denotes concatena-
tion and W0 is a learnable parameter. We use the
softmax function to normalize the rows of S and
get the similarity function for the common-sense
knowledge graph S̄G. Similarly, we use the soft-
max function over the column vectors to get a sim-
ilar function for the context representation S̄O. The
commonsense-to-context attention is calculated as
A = S̄T

G ·O and the context-to-common sense at-
tention is calculated as B = S̄GS̄T

O ·G, where G =

[z1
t ,z2

t , · · ·z
|V t

C |
t ] and O= [h1

t ,h2
t · · ·hN

t ] are the com-
monsense graph and observation encodings. Fi-
nally, the attention vectors are combined together
and the final graph encoding vectors G are calcu-
lated as W>[G;A;G ◦A;G ◦B] where W is the
learnable parameter.

Finally, we get the commonsense graph encod-
ing gt

i for each action ai ∈ At by applying a gen-
eral attention over the nodes using the state vec-
tor and the action encoding [st ;at

i] (Luong et al.,
2015). The attention score for each node is com-
puted as αi = [st ;at

i]WgG, and the commonsense
graph encoding for action at

i is given as gt
i = α>i G.

3.4 Action Selection
The action score for each action ât

i is computed
based on the context encoding st , the common-
sense graph encoding gt

i and the action encoding
at

i . We concatenate these encoding vectors into a
single vector rt

i = [st ;gt
i;at

i]. Then, we compute
probability score for each action ai ∈ At as

pt = so f tmax(W1 ·ReLU(W2 · rt +b2)+b1)

where W1,W2,b1, and b2 are learnable parameters
of the model. The final action chosen by the agent
is then given by the one with the maximum prob-
ability score, namely ât = argmaxi pt,i.

4 Experiments

In this section, we report the results of our exper-
iments on the TWC games. We measure the per-
formance of the various agents using the normal-
ized score (score achieved ÷ maximum achiev-
able score) and the number of steps taken. Each

agent is trained for 100 episodes and the results
are averaged over 3 runs. Following the win-
ning strategy in the FirstTextWorld competition
(Adolphs and Hofmann, 2019), we use the Advan-
tage Actor-Critic framework (Mnih et al., 2016)
to train the agents using reward signals from the
training games. In our experiments, we use Con-
ceptNet as the commonsense knowledge base.

4.1 Sample Efficient RL

We evaluate the framework shown in Figure 2
on the TWC cleanup games (as described in Sec-
tion 2.3). For comparison, we consider a ran-
dom agent that picks an action at each time step
randomly. We consider two types of RL agents
based on the amount of information available to
them. The Text-based RL agent has access
to the textual description of the current state of
the game provided by the TextWorld environment,
whereas, Commonsense-based RL has access
to both the textual information and ConceptNet.
Our goal in these experiments is to show that the
commonsense-based RL agent has noticeable ad-
vantages over the text-based RL agent. We are in-
terested in a sample efficient exploration where the
external knowledge from the commonsense sub-
graph is used to prune out the reward-poor (state,
action) pairs and focus on the reward-rich pairs.

To show the improvement on this front, we
focus on the average number of steps taken by
the agents to achieve the reported score. Figure
3 shows the performance evaluation of the RL
agents with Text and Text+Commonsense on
the three difficulty levels in TWC games. We see
that the commonsense-based RL agent performs
better than the random and text-based RL agents
in the easy and medium level games. This is not
surprising, as these instances involve picking an
object and placing it in a container in the same
room. Both the text-based and commonsense RL
agents struggle in the hard level, as these games
have more than one room to explore. On the other
hand, we notice that the average steps taken by
the commonsense-based RL agent are noticeably
lower than the other agents: it efficiently uses
commonsense knowledge to rule out implausible
actions. Further exploration of efficient ways to
combine commonsense, observations, and feed-
back from the environment will prove beneficial
for efficient sample exploration of this problem.
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Figure 3: Performance evaluation (showing mean and standard deviation averaged over 3 runs) for the three difficulty levels:
Easy (left), Medium (middle), Hard (right) using normalized score and the number of steps taken.

4.2 Generalization

We evaluated the generalization error of the agents
on the test sets generated along with the training
TWC games. Table 4 reports the results both for
the test games that belong to the same distribution
used at training time, and for test games that were
generated from a different set of entities. For each
difficulty level, we report: the normalized score
achieved by the agent; the number of steps that
the agent needed to reach the goal; and the opti-
mal number of steps to solve the game. The op-
timal number of steps were computed by consid-
ering the objects already in the agent’s possession
(and not), the number of objects to “place” (goals),
and the number of rooms in the instance. We do
not currently consider distractor objects – i.e., ob-
jects that are not part of a goal. The commonsense-
enhanced agent outperforms the text-only agent in
all cases. There is also a clear distinction between
the in distribution and out of distribution instances
for the easy and medium levels. Interestingly, for
the hard level, the agents struggle with both set-
tings – we surmise that this is a result of the ad-
ditional complexity of having to navigate between
rooms. Finally, we also point out the vast gulf be-
tween the agents’ current performance, versus the
optimal number of steps: this attests to the promise
of TWC as a domain for an active research study.

4.3 Commonsense Retrieval

In this section, we describe the behavior of our
commonsense-based RL agent based on common-

sense graphs generated by three different strate-
gies: (1) Direct Connections (DC), (2) Contex-
tual Direct Connections (CDC), and (3) Neighbor-
hood (Section 3.2). The comparison of the agent’s
performance is shown in Figure 4. The results
show that CDC performs the best, particularly in
comparison to DC. Unlike DC that includes all the
links between observed concepts from Concept-
Net, CDC restricts links to those between observed
objects and containers. This selection of relevant
links from ConceptNet significantly improves the
performance of the agent.

The commonsense graph generated for DC and
CDC is comprised of only the observed concepts.
The Neighborhood technique, however, also
includes unobserved concepts that are one-hop
away from the observed concepts. Unfortunately,
due to the enormity of ConceptNet, each concept
can introduce approximately 40 neighboring con-
cepts on average. This introduces more noise for
the agent, and hence as shown in Figure 4 the per-
formance drops. This follows the same trend as
work that uses neighborhood graphs for other NLP
tasks (Wang et al., 2019). However, we believe
that careful inclusion of relevant unobserved con-
cepts and links can improve performance: this is
our future work. We present more results and anal-
ysis in the supplementary file.

5 Related Work

RL Environments and TextWorld: Games are
a rich domain for studying grounded language
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Figure 4: Performance evaluation for the medium level games (showing mean and standard deviation averaged over 3 runs)
with the different techniques for the commonsense sub-graph extraction.

Easy Medium Hard
Opt. #Steps #Steps Norm. Score Opt. #Steps #Steps Norm. Score Opt. #Steps #Steps Norm. Score

IN

Text
2.000 ± 0.000

15.787 ± 8.019 0.920 ± 0.040
3.600 ± 0.548

70.640 ± 7.990 0.747 ± 0.093
15.000 ± 2.000

100.000 ± 0.000 0.393 ± 0.049
+Commonsense 3.760 ± 0.781 1.000 ± 0.000 67.267 ± 5.029 0.780 ± 0.026 95.627 ± 3.898 0.583 ± 0.072

O
U

T Text
2.000 ± 0.000

26.667 ± 5.158 0.887 ± 0.076
4.400 ± 1.140

95.067 ± 1.686 0.530 ± 0.020
14.600 ± 2.673

100.000 ± 0.000 0.220 ± 0.053
+Commonsense 9.587 ± 3.654 0.987 ± 0.023 83.673 ± 5.581 0.650 ± 0.098 99.307 ± 1.201 0.360 ± 0.079

Table 4: Generalization results for within distribution (IN) and out-of-distribution (OUT) games

and how information from text can be utilized
in control. Recent work has explored text-based
RL games to learn strategies for Civilization II
(Branavan et al., 2012), multi-user dungeon games
(Narasimhan et al., 2015), etc. Our work builds
on TextWorld (Côté et al., 2018). A recent
line of work on TextWorld learns symbolic (typ-
ically graphical) representations of the agent’s be-
lief. Notably, Ammanabrolu and Riedl (2019) pro-
posed KG-DQN and Adhikari et al. (2020) pro-
posed GATA; both represent the game state as a
belief graph. This graph is used to prune the ac-
tion space, enabling efficient exploration.

External Knowledge for Efficient RL: Garnelo
et al. (2016) propose Deep Symbolic RL, which
combines aspects of symbolic AI with neural net-
works and RL as a way to introduce common-
sense priors. There has also been work on pol-
icy transfer (Bianchi et al., 2015), which studies
how knowledge acquired in one environment can
be re-used in another environment; and experience
replay (Wang et al., 2016; Lin, 1992, 1993) which
studies how an agent’s previous experiences can
be stored and then later reused. In this paper,
we use commonsense knowledge as a way to im-
prove sample efficiency in text-based RL agents.
To the best of our knowledge, there is no prior
work that practically explores how commonsense
can be used to make RL agents more efficient. The
most relevant prior work is by Martin et al. (2018),
who use commonsense rules to build agents that
can play tabletop role-playing games. However,
unlike our work, the commonsense rules in this

work are manually engineered and fixed.

Leveraging Commonsense: Recently, there has
been a lot of work in NLP to utilize commonsense
for QA, NLI, etc. (Sap et al., 2019; Talmor et al.,
2018). Many of these approaches seek to effec-
tively utilize ConceptNet by reducing the noise re-
trieved from it (Lin et al., 2019; Kapanipathi et al.,
2020). This is also a key challenge in TWC.

6 Conclusion

We proposed the novel problem of using com-
monsense knowledge to build efficient RL agents
for text-based games and created new environ-
ments (TWC) to test these agents in a home set-
ting. We also introduced a new technique which
tracks the state of the world, uses the sequential
context to dynamically retrieve the relevant com-
monsense knowledge from a knowledge graph,
and then combines the state information with the
retrieved commonsense knowledge to act in the
world. Our commonsense agents achieve their
goals with greater efficiency and less exploration
as compared to a text only model, thus showing the
value of our new environments and models. We
invite the research community to test their com-
monsense RL agents on our environments.

Replicability: As part of our contributions, we
will release TWC; the game instances used for
training and evaluating our models; the human an-
notations; and the code to generate the arbitrar-
ily complex text-based games requiring common-
sense knowledge.
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