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ABSTRACT

Deep clustering – joint representation learning and latent space clustering – is a
well studied problem especially in computer vision and text processing under the
deep learning framework. While the representation learning is generally differ-
entiable, clustering is an inherently discrete optimization task, requiring various
approximations and regularizations to fit in a standard differentiable pipeline. This
leads to a somewhat disjointed representation learning and clustering. Recently,
Associative Memories were utilized in the end-to-end differentiable ClAM cluster-
ing scheme (Saha et al., 2023). In this work, we show how Associative Memories
enable a novel take on deep clustering, DClAM, simplifying the whole pipeline and
tying together the representation learning and clustering more intricately. Our exper-
iments showcase the advantage of DClAM, producing improved clustering quality
regardless of the architecture choice (convolutional, residual or fully-connected) or
data modality (images or text).

1 INTRODUCTION

The goal of clustering is to find coherent groups in a dataset. It is an important unsupervised learning
task, and given the generality of the task, many different methods have been proposed for effective
clustering (Xu & Tian, 2015; Zaki & Meira Jr, 2020). At a technical level, clustering critically
relies on a notion of (pairwise) distance (or similarity) to distinguish pairs of data samples as being
“similar” or “different”, and the insights from clustering can be unintuitive or misleading without
such a meaningful distance. When dealing with numerical data S ⊂ Rd with d dimensions, metrics
such as Euclidean distance are commonly used. Nevertheless, even with numerical data and an
appropriate notion of distance, increasing data dimensionality (that is, increasing d) makes clustering
computationally hard as well as conceptually difficult since the separation between similar pairs and
dissimilar ones can start to vanish (Verleysen & François, 2005; Steinbach et al., 2004; Assent, 2012).

In various domains, both these problems manifest – first, the raw representation of samples can be
extremely high dimensional (consider the number of pixels in an image, or the number of words in
a vocabulary for a bag-of-words representation of documents); second, while we have an ambient
representation, standard notions of vector distances (such as Euclidean) do not necessarily make
sense – for example, Euclidean distance based on pixels can be large between an image and a slightly
shifted version of it, which can be problematic if the content of an image is translation or rotation
invariant.

One effective approach to handle these challenges is through deep clustering (Zhou et al., 2024),
where the goal is to both learning a low dimensional latent space where standard distance metrics
are meaningful, and to cluster or group the points at the same time. For the latent representations to
be faithful to the original samples, deep clustering ensures that there is no significant information
loss in the latent space, leading to the common use of autoencoders (AEs) (Rumelhart et al., 1985;
Baldi, 2012; Bank et al., 2023) that learn latent representations (via an encoder) which can be
used to reconstruct the original samples (via a decoder). The goal of deep clustering is to discover
the cluster structure in the latent space while ensuring low reconstruction loss. This is a widely
studied problem, especially in image datasets (Caron et al., 2018; Chang et al., 2017). While an
autoencoder is usually differentiable, standard clustering schemes (such as k-means (MacQueen,
1967) or agglomerative (Johnson, 1967)) are inherently discrete methods, since hard clustering (where
each sample is only assigned to a single cluster) is a discrete optimization problem. To incorporate it
in a differentiable deep learning pipeline, clustering is often “softened” by allowing samples to be
partially assigned to multiple clusters, although various “regularizations” push the soft assignments to
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match hard assignments approximately (Xie et al., 2016; Guo et al., 2017a). The recent ClAM (Saha
et al., 2023) algorithm handles the dichotomy between hard assignments and differentiability via the
use of associative memories, yielding an end-to-end differentiable clustering approach. Nevertheless,
ClAM works only in the ambient d-dimensional data space, and is not designed to learn effective
lower dimensional latent representations, which poses challenges when clustering high-dimensional
data.

As noted above, deep clustering tackles the joint objective of learning a good latent representation
where the points also cluster well. Whereas minimizing reconstruction loss is a prerequisite for deep
representation learning, one option for clustering in latent space is to first pretrain an autoencoder
to minimize the reconstruction loss, and then to freeze this latent space. Next, one can apply some
clustering scheme to group the points in that (frozen) space. Many AE based existing deep learning
methods adopt this scheme by either freezing both the encoder and decoder, or freezing only the
decoder (Xie et al., 2016; Guo et al., 2017b; 2021; Chazan et al., 2019; Huang et al., 2023).

In this paper, we consider a new approach that fine-tunes the autoencoder (i.e., both the encoder
and decoder) so that it modifies the latent space along with the task of finding clusters, while also
ensuring end-to-end differentiabilty via the use of associative memories (significantly extending
(Saha et al., 2023)). Our key insight and contribution is that we seamlessly combine the clustering
and reconstruction loss objectives into one expression that tackles the task of clustering-guided
latent representations, whereas previous deep clustering methods considered these separately. Our
work makes the following contributions:

• We propose DClAM, which uses associative memories to formulate a novel joint loss function that
simultaneously learns effective representations and clusters in the latent space, resulting in our
simplified deep clustering formulation.

• We conduct a thorough evaluation on image and text datasets, demonstrating that DClAM signifi-
cantly improves the clustering quality over both traditional (in ambient space) and deep clustering
(in latent space) baselines.

• We show that DClAM retains superior representation quality as measured by the reconstruction
loss; it is also agnostic to the encoder/decoder architecture choice.

2 RELATED WORK

Clustering is a long-studied and well-reviewed problem in computer science, with various formula-
tions and several applications (Kaufman & Rousseeuw, 2009; Zaki & Meira Jr, 2020). Given the
success of deep learning, deep clustering has also attracted attention over the past decade (Ren et al.,
2024; Aljalbout et al., 2018; Zhou et al., 2024). Inspired by t-SNE (Van der Maaten & Hinton, 2008),
Xie et al. (2016) introduced DEC, enhancing clustering and feature representation by minimizing
the Kullback-Leibler Divergence (KLD) to an auxiliary target distribution. However, a drawback
is abandoning the decoder layer after pre-training, impacting the embedded space and clustering
performance. Guo et al. (2017a) showed that keeping the decoder layer improves clustering (IDEC),
and Guo et al. (2017b) proposed DCEC using convolutional autoencoders (CAE). Chazan et al. (2019)
proposed DAMIC, a mixture of autoencoders for clustering, determined by minimizing the recon-
struction loss without needing a regularization term. However, they leverage multiple AEs in their
model, while we focus on schemes using a single AE. Huang et al. (2023) introduced an innovative
embedded autoencoder architecture by incorporating it into both the encoding and decoding units of
the outer autoencoder. Guo et al. (2021) proposed DEKM which works on the embedding space (after
pretraining) and transforms it to a new cluster-friendly space using an orthonormal transformation
matrix. However, discarding the decoder after pretraining for both of these methods may lead to the
distortion of the embedded space, consequently hurting clustering performance. In addressing the
automatic inference of the number of clusters in a dataset, Ronen et al. (2022) introduced DeepDPM.
They proposed a novel loss inspired by EM in the Bayesian Gaussian Mixture Model framework,
facilitating a new amortized inference in mixture models. It is worth noting that DeepDPM diverges
from the typical encoder-decoder architecture, opting instead for a multilayer perceptron model.

While many deep clustering methods utilize KLD as a clustering objective, it falls short in preserving
the global data structure (which implies that only within-cluster distances are prioritized, leaving
uncertainties regarding between-cluster similarities), leading Oskouei et al. (2023) (EDCWRN) to
advocate for cross-entropy over KLD. They incorporate feature weighting to emphasize essential
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features for clustering and employ a neighborhood technique to encourage similar representations for
samples within the same cluster. Addressing another challenge with KLD regarding the presence of
hard, misclassified samples, Cai et al. (2022) introduced focal loss to enhance label assignment in
deep clustering methods and improved the representation learning module with a contractive penalty
term, capturing more discriminative representations. However, it could lead to unintentional bias
in the optimization focus between the representation learning and clustering modules. Dang et al.
(2021) introduce a novel deep clustering framework (NNM) based on a two-level nearest neighbors
matching approach. Distinguishing itself from prior methods (Van Gansbeke et al., 2020), NNM
incorporates matching at both local and global levels, resulting in a notable enhancement in clustering
performance. It also leverages SimCLR (Chen et al., 2020) to pretrain a representation learning
model using the state-of-the-art contrastive learning loss. In our work, we rethink the deep clustering
problem at a architecture agnostic level by leveraging the capabilities of associative memories. Thus,
various architectural and pretraining advancements would also benefit our proposed scheme.

Recently, Saha et al. (2023) introduced ClAM, an end-to-end differentiable clustering approach,
utilizing Dense Associative Memories (AMs) for clustering. AMs adeptly store multidimensional
vectors as fixed point attractor states in a recurrent dynamical system. AMs form associations between
the initial state and a final state (memory), creating disjoint basins of attractions which are crucial
for clustering. A prominent example of AM is the classical Hopfield Network (Hopfield, 1982). It
exhibits limited memory capacity, approximately storing only ≈ 0.14d arbitrary memories in a d
dimensional data domain (McEliece et al., 1987; Amit et al., 1985). Subsequently, Krotov & Hopfield
(2016) proposed Dense Associative Memory (Dense AM) or Modern Hopfield Network introducing
rapidly growing non-linearities (activation functions) into the system. This innovation allows for
a denser arrangement of memories and achieves super-linear (in d) memory capacity (Demircigil
et al., 2017; Lucibello & Mézard, 2023). With softmax activation, Dense AMs are closely related
to the attention mechanism used in transformers (Ramsauer et al., 2020; Krotov & Hopfield, 2021;
Hoover et al., 2024). Further, Schaeffer et al. (2023) demonstrates that the energy function of ClAM’s
AM network is equal to a scaled negative log-likelihood of a Gaussian mixture model. In our work,
we study the joint task of learning effective latent representations and clustering in the latent space.
We continuously refine both the encoder and decoder networks and at the same time integrate the
AM learning dynamics to cluster the points into k groups. This bears semblance to vector-quantized
variational AEs (van den Oord et al., 2017), where the task is to learn a discrete vector code for each
point. Nevertheless, this assignment is non-differentiable, requiring gradient approximation, and
there is no clustering objective considered. Also related is the task of deep metric learning (Kaya
& Bilge, 2019), where the task is to learn a distance function between samples in latent space.
Nevertheless, this requires the use of labeled data for full or weak supervision. As such, the coupling
of deep clustering with AMs as done in DClAM for cluster-guided latent space learning has not been
considered in the literature before.

3 PRELIMINARIES

We denote an input set as S ⊂ Rd in the ambient space, with an input x ∈ S, and JnK a n-length
index set {1, . . . , n}.

3.1 DEEP CLUSTERING BASICS

Deep clustering is an unsupervised task, where we have to learn (usually lower dimensional) repre-
sentations such that (i) no (critical) information is lost in the latent lower dimensional representations,
and (ii) the data in the latent space forms well-separated clusters. To ensure that no information is lost
in the latent space, we learn an encoder e : Rd → Rm (m < d) that maps the input x ∈ Rd to a latent
space (that is, e(x) ∈ Rm), along with a decoder d : Rm → Rd that maps the latent representation
back to the original ambient space. Encoder e and decoder d together give us an autoencoder, and
the loss of information is often measured as the reconstruction loss:

Lr(e,d) =
∑
x∈S

ℓr(x, e,d) =
∑
x∈S

∥x− d(e(x))∥2. (1)

This loss term does not account for the cluster structure in the latent space. For that purpose, we
consider k cluster centers ρ = {ρ1, . . . , ρk} ⊂ Rm in the latent space, so that the corresponding
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clustering loss is given by:

Lc(e,ρ) =
∑
x∈S

ℓc(x, e,ρ) =
∑
x∈S

min
i∈JkK

∥e(x)− ρi∥2, (2)

which measures how close a sample is to its closest cluster center in the latent space with the mini∈JkK
performed on a per-sample basis to denote the discrete assignment. A small value of Lc(e,ρ) implies
that all points in the latent space are close to their respective cluster centers.

Unsupervised deep clustering is often considered in the following form (Guo et al., 2017a;b; Cai
et al., 2022)

min
e,d,ρ

Lr(e,d) + γLc(e,ρ) (3)

where γ ≥ 0 is a hyperparameter that balances the clustering loss Lc and the reconstruction loss Lr.
This γ plays a critical role in balancing the two terms in Eq. (3).

While this hyperparamter γ can be handled via hyperparameter optimization, there is an inherent
challenge in the above objective — the terms Lc and Lr are not inherently comparable. The per-
sample clustering loss ℓc(x, e,ρ) is a loss computed between entities in the latent space Rm, while
per-sample reconstruction loss ℓr(x, e,d) is a loss between items in the ambient space Rd. Thus, the
scale of these two terms can be very different, making it hard to select a good value for γ.

Usual implementations of deep clustering (Guo et al., 2017a;b; Oskouei et al., 2023) adopt the
following strategy: (i) First, an autoencoder (that is, e and d) is “pretrained” with the data to achieve
low reconstruction error (that is, low Lr by setting γ = 0 in Eq. (3)), and (ii) second, γ is set to a
positive value in Eq. (3), and the clustering loss Lc is minimized by learning the cluster centers ρ,
and “fine-tuning” the encoder e, while the reconstruction loss Lr stays low by changing the decoder
d accordingly if the balancing hyperparameter γ is set appropriately, which can be a challenge.

3.2 DENSE ASSOCIATIVE MEMORIES AND CLUSTERING

Given k memories {ρ1, . . . ,ρk},ρi ∈ Rd, and a point or particle v ∈ Rd, ClAM (Saha et al, 2023)
defines the energy function for v as follows:

E(v) = − 1

β
log

(∑
i∈JkK

exp(−β∥ρi − v∥2)
)

(4)

with the scalar β > 0 playing the role of inverse “temperature”. As β increases, the exp(·) function
emphasizes the leading term, suppressing the others. In ClAM, the attractor dynamics are driven by
gradient descent on the energy landscape. This controls the movement of v over time through dv/dt,
ensuring a decrease in energy:

τ
dv

dt
= −1

2
∇vE =

∑
i∈JkK

(ρi − v) softmax(−β∥ρi − v∥2) (5)

Here, τ > 0 is a characteristic time constant that determines how quickly the particle will move on
the energy landscape, and softmax(·) represents the softmax function applied to the scaled distances
to the memories, given as

softmax(−β∥ρi − v∥2) = exp(−β∥ρi − v∥22)∑
j∈[k] exp(−β∥ρj − v∥22)

(6)

Given the state vector vt as step t, the energy-based AM update for step t+ 1 is given via gradient
descent on the energy:

vt+1 = Aρ(v
t) = vt + τ

dv

dt

∣∣∣∣
v=vt

(7)

Here we denote the AM update via the operator Aρ(v) defined above, and we use the notation AT
ρ (v)

to denote Aρ(Aρ(· · ·Aρ(v))), where the operator Aρ is applied to v recursively for T steps. The
attractor dynamics ensure that every memory ρi, i ∈ JkK, forms a “basin of attraction”, and with
enough recursions T , any particle will usually converge to exactly one of these memories ρi, which
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thus act as cluster centers. The differentiability of the recursive dynamics is what makes ClAM an
end-to-end differentiable clustering scheme, with the memories learned via standard backpropagation.
However, it is important to note that ClAM is not a deep clustering method, since there is no
representation learning involved. Of course, one can apply ClAM in latent space learned by a
pretrained autoencoder, but we show that this is not an effective strategy. Instead, we next propose
our novel DClAM approach that is inherently a deep clustering method that jointly clusters and learns
effective latent representations.

4 DCLAM: DEEP CLUSTERING WITH ASSOCIATIVE MEMORIES

Existing deep clustering methods need to solve Eq. (3) explicitly, which involves the critical γ
hyperparameter to appropriately balance the clustering and reconstruction losses. Here, we will show
how AM enables the removal of the critical γ hyperparameter in the deep clustering objective (Eq. (3)),
while still maintaining the intent of Eq. (3) to balance the clustering loss and the reconstruction loss.

Figure 1: DClAM: AM-enabled deep clustering.
The solid arrows −−→ denote the forward-pass to
compute the single loss term in Eq. (8). The dashed
arrows −→ denote the backward pass showing
the single loss driving all updates.

Algorithm 1: DClAM Algorithm
1 Train(S, k,N, T, ϵe, ϵd, ϵρ, γ)
2 Pretrain (e,d) as autoencoder,

minimizing Lr(e,d)
3 ρ← {e(x), x ∈M}, M are random k

samples from S
4 for epoch n = 1, . . . , N do
5 for batch B ∈ S do
6 Batch loss L̄B ← 0
7 for example x ∈ B do
8 v ← e(x) //encode

9 v̄ ← AT
ρ (v) //AM steps

10 ℓ̄← ∥x− d(v̄)∥2 //loss
11 L̄B ← L̄B + ℓ

12 ρi ← ρi − ϵρ∇ρiLB ∀i ∈ JkK
13 e← e− ϵe∇eLB

14 d← d− ϵd∇dLB

15 return e,d,ρ

16 Infer(S, e,d,ρ)
17 Cluster assignments C ← ∅
18 for x ∈ S do
19 v̄ ← AT

ρ (e(x)) C ←
C ∪

{
argmini∈JkK ∥ρi − v̄∥2

}
20 return Per-point cluster assignments C

Recall from Eq. (7) that Aρ(v
t) denotes the AM dynamics step, given as vt+1 = Aρ(v

t) = vt+τ dvt

dt ,
where vt+1 is the new state vector obtained by updating vt, and recall that AT

ρ (v) denotes the
dynamics for T steps. Consider the pipeline depicted in Fig. 1: The input x is mapped into the latent
space as e(x) by the encoder e, and then the attractor dynamics operator Aρ : Rm → Rm based
on the current centers ρ = {ρ1, . . . , ρk} is applied to e(x) for T recursions, resulting in AT

ρ (e(x))
(which will be close to one of the cluster centers). Then this representation (effectively of a cluster
center) is passed through the decoder d to get d(AT

ρ (e(x))) ∈ Rd in the ambient space. We can then
optimize for the following loss:

min
e,d,ρ

L̄(e,d,ρ) =
∑
x∈S

ℓ̄(x, e,d,ρ) =
∑
x∈S

∥∥x− d
(
AT

ρ (e (x))
)∥∥2 (8)

Here AM becomes the intricate part of the encoder that transforms the embedding space (obtained by
the encoder) into a clustering-friendly new space to find clusters (as opposed to the existing deep
clustering schemes that use different additional loss functions, e.g., clustering loss in Eq. (3) and/or
regularizations to get a similar effect). This AM enabled novel deep clustering loss L̄ is a single
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term that elegantly combines all the parameters in the deep learning pipeline – for the encoder e, the
cluster centers ρ and the decoder d.

To see the relationship between the novel DClAM loss compared to the traditional deep clustering
loss in Eq. (8), let us assume that the decoder d : Rm → Rd is Cd-Lipschitz continuous. Then,
considering the per-sample loss ℓ̄ in Eq. (8), and applying the triangle inequality and the AM–GM
inequality, we can show that

ℓ̄(x, e,d,ρ) = ∥x− d(AT
ρ (e(x)))∥2

≤ 2
(
∥x− d(e(x))∥2 + ∥d(e(x))− d(AT

ρ (e(x)))∥2
)

≤ 2
(
∥x− d(e(x))∥2 + C2

d∥e(x)−AT
ρ (e(x))∥2

)
= 2ℓr(x, e,d) + 2C2

dℓc(x, e,ρ), (9)
where the last inequality uses the Lipschitz continuity, and the last equality comes from the definition
of the clustering loss in the latent space with the AM dynamics operator. Summing the above
inequalities over x ∈ S gives us

Lr ≤ L̄ ≤ γ1Lr + γ2Lc (10)
where the upperbound of L̄ is (a scaled version of) the standard deep clustering objective of the
weighted combination of the reconstruction loss Lr and the clustering loss Lc in Eq. (3).

Alg. 1 shows the pseudo-code for DClAM. It first pretrains encoder e and decoder d, and starts from k
random prototypes ρ. The cluster assignment is done with T recursion of the AM attractor dynamics
operator Aρ parameterized with the centers ρ = {ρi, i ∈ JkK}. The per-sample loss ℓ̄ of DClAM (line
10) is added to the batch loss. We optimize for N epochs via gradient descent, with learning rates
{ϵe, ϵd, ϵρ} for e,d,ρ respectively. Upon solving Eq. (8), we obtain a trained encoder and decoder,
and memories in the latent space, and we can utilize them to obtain the final partition the data (see
the Infer subroutine in Alg. 1).

Our DClAM deep clustering provides various advantages: (i) First, it does not involve any balancing
hyperparameter γ since the loss involves all parameters in a single term in the per-sample loss
ℓ̄(x, e,d,ρ). (ii) Second, the updates for all the parameters in the pipeline are more explicitly tied
together with the d ◦ AT

ρ ◦ e composition in the d(AT
ρ (e(x))) term. This ties the representation

learning and clustering objectives more intricately. (iii) Third, it continues to have all the advantages
of traditional deep clustering, being end-to-end differentiable since all operators in the above compo-
sition are differentiable, and performing a discrete cluster center assignment with T recursions of the
attractor dynamics operator Aρ. (iv) Forth, this deep clustering is completely architecture agnostic
– we can select a problem dependent encoder and decoder (for example, convolutional or residual
networks for images or fully-connected feed-forward networks for text or tabular data). (v) Fifth, it
does not involve any additional entropy regularization based hyperparameters as with existing deep
clustering algorithms.

On a less technical level, Fig. 1 clearly highlights how the overall information flow in the deep
clustering pipeline is simplified. The AM plays a critical role in this pipeline with the ability to obtain
the actual closest center AT

ρ (e(x)) in a differentiable manner. It is also worth emphasizing that there
are fundamental difference between how DClAM uses AMs versus ClAM. In the latter, AM is utilized
to act as a differentiable argmin solver for the k-means objective whereas in DClAM, which involves
representation learning, AM recursion actually has a more elaborate effect. The AM augmented
encoder (AT

ρ ◦ e) explicitly creates basins of attraction in the latent space, and moves/pushes the
latent representations of the points into these basins, thereby explicitly inducing a clustered data
distribution in the latent space. While the encoder is moving points into basins of attraction, the
DClAM loss tries to minimize the information loss in the latent representations by having the decoder
reconstruct these relocated latent representations.

5 EMPIRICAL EVALUATION

Dataset details. To evaluate DClAM, we conducted our experiments on eight standard benchmark
datasets, including USPS1 (Hull, 1994), Fashion-MNIST2 (Xiao et al., 2017), CIFAR-10 and CIFAR-

1
https://www.kaggle.com/datasets/bistaumanga/usps-dataset

2
https://github.com/zalandoresearch/fashion-mnist

6
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1003 (Krizhevsky, 2009), STL-104 (Coates et al., 2011), Caltech birds20105 (Welinder et al., 2010),
20-NG from sklearn6 and Reuters-10k from TensorFlow datasets7. The later two are text datasets,
whereas the others are image datasets. For both text datasets, we calculate TFIDF (Sammut & Webb,
2010) features based on the 2000 most frequent words, following a similar approach as Oskouei
et al. (2023). However, we consider the original number of categories as the true number of clusters,
which is 46 for Reuters-10k and 20 for 20-NG. For Caltech birds2010, as there are images of various
shapes, we resize all images to (128, 128, 3) for uniformity and ease of implementation. Table 1
provides the statistics for the datasets used in our experiments.

Table 1: Descriptions of various benchmark datasets, used in our experiments.

Dataset Short name # Points Shape # Classes # Type

Fashion MNIST FM 60000 (28, 28, 1) 10 Image
CIFAR-10 C-10 50000 (32, 32, 3) 10 Image
CIFAR-100 C-100 50000 (32, 32, 3) 100 Image
USPS USPS 2007 (16, 16, 1) 10 Image
STL-10 STL 5000 (96, 96, 3) 10 Image
Caltech birds2010 CBird 3000 (128, 128, 3) 200 Image

Reuters-10k R-10k 11228 2000 46 Text
20-NG 20NG 18846 2000 20 Text

Baseline methods. We conduct a comparative analysis of DClAM against established clustering
methods like k-means (Lloyd, 1982), agglomerative clustering (or Agglo.) (Müllner, 2011) and
ClAM (Saha et al., 2023) in the ambient space, and with DCEC (Guo et al., 2017b), DEKM (Guo
et al., 2021) and EDCWRN (or EDC) Oskouei et al. (2023) deep clustering methods in the latent
space. We evaluate k-means, agglomerative clustering, and ClAM in the ambient space (denoted as
NAE for No AE) and in the latent space obtained through a pretrained Convolutional Autoencoder
(CAE) as used in DCEC (Guo et al., 2017b). For DCEC amd DEKM, we consider a ResNet-based
AE (RAE) (Wickramasinghe et al., 2021) along with their original CAE. For DClAM, we extend our
exploration to include not only the CAE and RAE architectures but also EDCWRN-based (Oskouei
et al., 2023) Autoencoder (EAE) (originally proposed by Guo et al. (2017a)) to analyze its impact
on the algorithm. We also compare DClAM with state-of-the-art SimCLR (Chen et al., 2020) based
(contrastive learning) SCAN (Van Gansbeke et al., 2020) and NNM (Dang et al., 2021) deep clustering
schemes. Detailed parameter setting of the networks are in Appendix A.2, while implementation
details are in Appendix A.3.

Evaluation of deep clustering. A common metric to evaluate and benchmark deep clustering
algorithms is by computing the overlap between the obtained clusters in the latent space (thus,
partitions) and a semantic partitioning of the data (for example, using some ground-truth labels
of the data that were not used for solving Eq. (3)) with metrics such as the Normalized Mutual
Information (NMI) (Vinh et al., 2009). While this is a fair metric to compare methods on, it is critical
to ensure that NMI (or any other label-dependent metric) is not utilized for hyperparameter selection
since that is leaking supervision into the unsupervised task of deep clustering, making the overall
process a supervised learning pipeline. Unfortunately, for many of reported results, it is not clear how
hyperparameters are selected without being influenced at NMI (since they simply report results with
the highest NMI). Even for the sole purpose of evaluation, NMI like metrics might only tell us how
the learned clusters in the latent space match some semantic partitioning (often manual) of the data,
and do not provide any information regarding the reconstruction quality (and thus the information
loss in the latent space). Thus, it is easily possible to have high NMI with poor reconstruction loss,
which may not align with the primary goals of deep clustering. Existing literature typically report
NMI without explicitly discussing reconstruction loss.

3
https://www.cs.toronto.edu/˜kriz/cifar.html

4
https://cs.stanford.edu/˜acoates/stl10/

5
https://www.tensorflow.org/datasets/catalog/caltech_birds2010

6
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

7
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/reuters/load_data
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We believe that the hyperparameters should be selected based on unsupervised metrics – metrics
that do not utilize any ground-truth label information to evaluate clustering quality – given the
unsupervised nature of the deep clustering problem. Thus, we consider the strategy of optimizing for
the Silhouette Coefficient (SC) (Rousseeuw, 1987) while keeping the reconstruction loss (RL) below
some user-defined threshold. See Appendix A.1 for details on other metrics used.

Table 2: Per-method best SC across all architectures (while RRL is within 10% of the respective
pretrained AE loss), comparing DClAM to baselines. Best for each dataset is in bold. See text for
further details. Higher SC is better, but lower RRL is better. The top set of rows are vision datasets,
and the bottom set are text datasets. A ‘-’ indicates not applicable (NA); e.g., DCEC, DEKM, SCAN,
NNM work only on image datasets. Further, we report SCAN and NNM results only on C-10, C-100
and STL, since these are the only datasets for which pretrained contrastive encoders are available. x▼
indicates negative RRL which means the RL of the method is x% less than the pretrained AE loss.

Dataset SC RRL

k-means Agglo. ClAM DCEC DEKM EDC SCAN NNM DClAM DCEC DEKM EDC DClAM

FM 0.257 0.201 0.279 0.923 0.260 0.483 - - 0.970 9.8 13.9▼ 10 1.6▼

C-10 0.084 0.372 0.208 0.787 0.116 0.511 0.541 0.587 0.863 9.6 8.6 10 19.5▼

C-100 0.015 0.149 0.053 0.470 -0.007 0.311 0.321 0.358 0.598 7.5 34.3▼ 10 1.4▼

USPS 0.195 0.158 0.194 0.935 0.217 0.461 - - 0.891 5.3▼ 4.3 0.0 8.7
STL 0.079 0.270 0.108 0.259 0.082 0.411 0.552 0.540 0.891 9.2 0.6 4.9▼ 10
CBird -0.019 0.094 -0.026 0.311 -0.032 0.171 - - 0.448 10 0.0 10 9.1

R-10k -0.010 0.114 -0.002 - - 0.023 - - 0.564 - - 10 10
20NG -0.021 0.114 -0.008 - - 0.101 - - 0.197 - - 10 10

Table 3: Per-method best RRL across all architectures (while SC is within 10% of the best SC of the
method) comparing DClAM to baselines. Best for each dataset is in bold. See text for further details.
Higher SC is better, but lower RRL is better. x▼ indicates negative RRL which means the RL of the
method is x% less than the pretrained AE loss.

Dataset SC RRL

k-means Agglo. ClAM DCEC DEKM EDC SCAN NNM DClAM DCEC DEKM EDC DClAM

FM 0.257 0.201 0.279 0.898 0.785 0.521 - - 0.922 9.8▼ 321 143 42.2
C-10 0.084 0.372 0.208 0.786 0.622 0.541 0.541 0.587 0.809 0.9▼ 180 74.3 20.4▼

C-100 0.015 0.149 0.053 0.572 0.047 0.337 0.321 0.358 0.921 18.6 870 33.3 27.5
USPS 0.195 0.158 0.194 0.929 0.843 0.491 - - 0.914 26.3▼ 2326 40 8.7
STL 0.079 0.270 0.108 0.812 0.804 0.431 0.552 0.540 0.923 79.2 234 155 27.7
CBird -0.019 0.094 -0.026 0.282 0.018 0.188 - - 0.413 286 1036 102 1.8

R-10k -0.010 0.114 -0.002 - - 0.035 - - 0.673 - - 60 120
20NG -0.021 0.114 -0.008 - - 0.099 - - 0.287 - - 25▼ 50

Q1: How does DClAM compare against baselines? We present the best Silhouette Coefficient or
SC achieved (while constraining the reconstruction loss or RL to be within 10% of the pretrained AE
loss) by DClAM, and the baselines for all 8 datasets in Table 2. As it is hard to compare the raw RL
numbers if the base AE is different for different methods, we define the relative RL (RRL) metric as
follows:

RRL =
RL−RLp

RLp
(11)

where RLp is the pretrained/base RL. We report the best SC per method with RRL <= 10%. From
Table 2, we see across both image and text datasets, DClAM consistently outperforms traditional
and deep clustering baselines in terms of SC while keeping RRL relatively low. To provide a
comprehensive view alongside SC, we also present the best RRL (while constraining the SC to be
within 10% of the best/peak SC of the method) in Table 3 and visualize both SC and RL in Fig. 2 for
all of the six image datasets. These results demonstrate that DClAM excels not only in achieving the
best SC but also in minimizing RL compared to the baselines. Note that SCAN and NNM do not have
a reconstruction loss term as they work on the pre-trained (pretext) model by SimCLR (Chen et al.,
2020) and utilize only the encoder (discarding the decoder) for clustering purpose. For additional
insights, in Appendix B.1, we present the best SC (while keeping RL within 10% of the pretrained
AE loss) and its corresponding NMI, RL, and cluster sizes and balance obtained by all schemes in
Table 8. Simultaneously, Table 9 displays the best RL (while keeping SC within 10% of the best
SC of the method) and its associated SC, NMI, and cluster sizes. We also present Table 10 which

8
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(a) F-MNIST (b) CIFAR-10 (c) CIFAR-100

(d) USPS (e) STL-10 (f) CBird

Figure 2: Reconstruction loss and clustering quality (1-SC) for all six image datasets. Different
markers stand for various AE architectures, and different colors signify distinct methods. Lower is
better for both axes, since we plot 1-SC on the y-axis.

displays the best NMI and its associated SC, RL, and cluster sizes. DClAM consistently outperforms
traditional and deep clustering baselines in terms of all SC, RL and NMI metrics.

Table 4: SC for image datasets, comparing DClAM to baselines with different encoder/decoder
architectures. Best for each dataset is in bold. See text for details. Higher is better.

Dataset Convolutional AE ResNet AE EAE

DCEC DEKM DClAM DCEC DEKM DClAM EDC DClAM

FM 0.923 0.785 0.970 0.824 0.742 0.922 0.521 0.715
C-10 0.787 0.622 0.863 0.667 0.461 0.697 0.541 0.731
C-100 0.572 0.047 0.598 0.557 0.036 0.921 0.337 0.636
USPS 0.935 0.882 0.914 0.909 0.843 0.914 0.491 0.911
STL 0.766 0.745 0.919 0.812 0.804 0.865 0.431 0.923
CBird 0.386 0.018 0.448 0.282 0.035 0.377 0.188 0.446

Q2: Is DClAM’s improvement agnostic to selected architecture? Table 4 shows that the per-
formance improvements achieved by DClAM is independent of the Autoencoder (AE) architecture
choice. DClAM with all three architectures – CAE, EAE, and RAE – consistently outperforms their
respective baselines, DCEC, DEKM and EDCWRN with similar architecture. That is, within each
type of AE, DClAM has better results than DCEC and DEKM, or EDC. This not only underscores the
superiority of the internal algorithm of DClAM over the corresponding baselines but also suggests the
potential for further improvement with some more advanced AE architecture.

Further results. We qualitatively evaluate the clusters found by DClAM in Fig. 3 for Fashion MNIST
(10 clusters) and Caltech Birds (10 out of 200 clusters), visualizing the learned memories (or cluster
centers), and the corresponding closest and farthest cluster members (as measured in the latent space)
from the centers. In most cases, the memories form an average image that match the closest images
well. The farthest cluster members still appear similar to their memories in most cases, but do start
changing significantly in some cases: (i) In the 2nd row (block 2) for FMNIST an image that looks
like a pant is grouped with dresses though the overall image shape is still similar. (ii) In the 5th row

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(block 1) for CBird, the memory and the closest image are very similar but the farthest image appears
significantly different.

(a) FM (b) CBird
Figure 3: Visualizing DClAM clusters for (a) Fashion MNIST and (b) Caltech Birds, with the learned
memories (left column in each block) and the corresponding closest (center column in block) and
farthest (right column in block) images within their clusters.

In addition to the above, we discuss our thorough empirical evaluation in Appendix B, reporting
various clustering metrics in Appendix B.1, and visualizing the evolution of the latent memories
(cluster centers) in Appendix B.2.

6 LIMITATIONS AND FUTURE WORK

In this paper, we introduce a fresh integration of associative memories in a deep neural network
module to create the innovative deep clustering algorithms DClAM that leverages the AM attractor
dynamics. Our findings demonstrate that DClAM significantly surpasses standard prototype-based
clustering and existing deep clustering methods. However, it is worth noting that DClAM is still
sensitive to hyperparameters and requires pretraining to avoid latent space collapse. Inspired by
DClAM’s outstanding performance, our future work aims to extend it to multimodal deep clustering.
We plan to explore new energy functions and update dynamics to enhance spectral and semantic
clustering. Having flexibility to add other encoder/decoder frameworks with DClAM, we aim to
explore transformer-based AE approaches in the future. Additionally, leveraging DClAM’s flexibility,
we intend to automate the estimation of the number of clusters directly from the data.

REPRODUCIBILITY STATEMENT

We have included details of all the hyperparameter settings and other implementation details in
Section 5 and in Appendix A. Our code will also be made available after the review period to facilitate
reproducibility.

ETHICS

This paper studies the core technical problem of unsupervised deep clustering. We do not anticipate
any obvious issues of concern that need to be highlighted.
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A EXPERIMENTAL DETAILS

A.1 METRICS USED

To assess the performance of DClAM, we utilize the Silhouette Coefficient (SC) (Rousseeuw, 1987)
as an unsupervised metric for measuring clustering quality. SC scores range from −1 to 1, where 1
indicates perfect clustering and −1 indicates completely incorrect labels. A score close to 0 suggests
the existence of overlapping clusters. We also employ Normalized Mutual Information (NMI) (Vinh
et al., 2009) to evaluate the alignment between the partition obtained by DClAM and the ground
truth clustering labels. NMI scores range from 0 (completely incorrect) to 1 (perfect clustering).
Additionally, we compute Reconstruction Loss (RL), representing the mean squared error between
original and reconstructed points, where lower is better. Entropy (ETP) (Bein, 2006) and Cluster
Size (CS) are computed to assess cluster balance. In clustering, higher entropy (the highest value is
log2(k) for each dataset, where k is the number of true clusters) indicates more balanced clusters,
while lower values suggest potential imbalance, possibly involving singleton or very small clusters.
Entropy (H(X)) is calculated based on the distribution of data points across clusters:

H(X) = −
k∑

i=1

P (Ci) log2 P (Ci)

where, P (Ci) is the proportion of data points in cluster Ci relative to the total number of data points.
Cluster Size (CS) indicates the largest and smallest clusters (in terms of the number of data points)
identified in the dataset (more balanced clustering is better).

A.2 PARAMETER SETTING

For Convolutional AE or CAE, for k-means, Agglomerative, ClAM, DCEC, DEKM, and DClAM, we
adopt an architecture identical to DCEC. The encoder network structure follows conv5

32 → conv5
64

→ conv3
128 → FCd, where convk

n represents a convolutional layer with n filters and a kernel size of
k× k, and FCd denotes a fully connected layer of dimension d. Here, d is the number of true clusters
in the dataset, and serves as the latent dimension. The decoder mirrors the encoder.

The ResNet AE or RAE approach draws inspiration from the standard ResNet block described
by Wickramasinghe et al. (2021). For DCEC, DEKM, and DClAM a streamlined configuration
is employed using two filters with sizes 32 and 64. The size of the embedded representation is
maintained at d, corresponding to the number of clusters in the dataset, as in the previous setup. In
this experiment, the number of repeating layers in the ResNet block is set to 2. To enhance model
performance, batch normalization and leakyReLU are incorporated. For a given number of repeats
(f ), the total number of hidden layers is calculated as 2 + (f * number of filters), resulting in 6 layers
in our case.

The EDCWRN AE or EAE, is that from Oskouei et al. (2023), so for both EDC and DClAM, we
follow the proposed architecture, where the encoder network is configured as a fully connected
multilayer perceptron (MLP) with dimensions i-500-500-2000-d for all datasets, where i represents
the dimension of the input space (features), and d is the number of clusters in the dataset. Similarly,
the decoder network mirrors the encoder, constituting an MLP with dimensions d-2000-500-500-i.
All internal layers, except for the input, output, and embedding layers, use the ReLU activation
function.

All three architectures described above are pretrained end-to-end for 100 epochs using Adam (Kingma
& Ba, 2014) with default parameters. The number of clusters k is not a hyperparameter, but rather
is taken as the true number of classes in each dataset. Also, as noted above, we set the latent
dimensionality d (or m) the same as the number of true classes k in the dataset, i.e., m = d = k.

A.3 IMPLEMENTATION DETAILS

We implement and evaluate DClAM using the Tensorflow (Abadi et al., 2016) library while employing
scikit-learn (Pedregosa et al., 2011) for clustering baselines and quality metrics. We train our
models on a single node with 1 NVIDIA RTX A6000 (48GB RAM) and a 16-core 2.4GHz Intel
Xeon(R) Silver 4314 CPU. Hyperparameters are tuned individually for each dataset to maximize
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the Silhouette Coefficient (Rousseeuw, 1987). Table 5 lists the hyperparameters, their roles, and
respective values/ranges.

Table 5: Hyperparameters, their roles and range of values for DClAM.

Hyperparameter Used Values

Inverse temperature, β [10−5, ..., 5]
Number of layers, T = τ/dt [5, ..., 25]

Batch size [16, 32, 64, 128, 256]
Initial learning rate (AM), ϵam [10−4, 10−3, 10−2, 10−1]
Initial learning rate (AE), ϵae [10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1]
Reduce LR patience (epochs) [5, 10, 15]

For baseline schemes like k-means and agglomerative, we use the scikit-learn library imple-
mentation, adjusting hyperparameters for optimal performance on each dataset. For DCEC (Guo
et al., 2017b) and DEKM (Guo et al., 2021), we leverage their Tensorflow implementation8 9and for
EDCWRN (Oskouei et al., 2023), we utilze their Python implemtentation10.

Table 6: Best hyperparameters for different datasets for DClAM. ‘-’ denotes NA.

Dataset Inverse temperature, β Layers, T Batch size Learning rate(AM) Learning rate (e) Learning rate (d)

CAE RAE EAE CAE RAE EAE CAE RAE EAE CAE RAE EAE CAE RAE EAE CAE RAE EAE

FM 0.5 0.09 0.7 15 15 10 64 64 64 0.001 0.001 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001
C-10 2 0.02 0.5 15 15 12 64 64 64 0.001 0.001 0.01 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001
C-100 1 0.005 5 10 10 10 64 64 64 0.001 0.001 0.001 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001
USPS 0.5 1 1 15 10 15 64 64 32 0.01 0.01 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.01
STL 0.5 0.003 0.1 15 10 12 64 64 128 0.001 0.01 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.0001
CBird 0.05 0.00015 0.005 15 10 15 64 64 64 0.01 0.001 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001

R-10K - - 10 - - 10 - - 64 - - 0.01 - - 0.0000001 - - 0.1
20-NG - - 1.5 - - 15 - - 64 - - 0.1 - - 0.0000001 - - 0.1

A.4 HYPERPARAMETERS FOR DCLAM

We extensively tune all hyperparameters (Table 5) for the optimal results in DClAM. We found that
the inverse temperature β serves as the most critical hyperparameter, which we explore in the range of
[10−5, ..., 5] for tuning. We employ the Adam optimizer while keeping separate initial learning rates
for the AM and AE networks. If the training loss does not improve for a certain number of epochs,
we decrease the learning rate by a factor of 0.8 until it reaches the minimum threshold (10−6). Each
hyperparameter configuration is run mostly for 300 epochs (in certain cases longer training is needed
for better results) with 5 restarts using different random seeds. Throughout each epoch, we track the
training loss. The set of hyperparameters and the associated model yielding the lowest training loss
are chosen during the inference step. The best hyperparameter values for various datasets for DClAM
are detailed in Table 6.

A.5 HYPERPARAMETERS FOR BASELINES

We compare DClAM with baseline clustering schemes k-means and agglomerative from
scikit-learn, ClAM, DCEC, DEKM and EDCWRN. For k-means and agglomerative, we
perform a comprehensive search for tuning different hyperparameters available in scikit-learn
and pick the best results. For DCEC, DEKM and EDCWRN, we tuned all related hyperparams
to obtain the best SC (for 10% RRL) and best RL (for 10% of best SC). For ClAM we precisely
replicate the hyperparameter search criteria outlined in its respective paper, which closely aligns
with our approach for DClAM, as detailed in Table 5. Table 7 provides a brief description of the
hyperparameters and their roles in the baseline schemes.

8https://github.com/XifengGuo/DCEC
9https://github.com/spdj2271/DEKM/blob/main/DEKM.py

10https://github.com/Amin-Golzari-Oskouei/EDICWRN

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: Hyperparameters (HPs), their roles and range of values for the baseline clustering schemes.

Baseline HP Role Used Values

k-means
init Initialization method [‘k-means++’, ’random’]
n init Number of time the k-means algorithm will be run 1000

Agglomerative

affinity Metric used to compute the linkage [‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’,
‘cosine’]

linkage Linkage criterion to use [‘single’, ‘average’, ‘complete’,
‘ward’]

DCEC

batch size Size of each batch [64, 128, 256]
maxiter Maximum number of iteration [2e4, 3e4]
alpha Degree of freedom of student’s t-distribution 1
gamma Coefficient of clustering loss [0.01, 0.1, 1, 10]
update interval Interval at which the predicted and target distributions

are updated
[1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 75,
100, 125, 140, 150, 200]

tol Tolerance rate 0.001

DEKM

batch size Size of each batch [64, 128, 256]
maxiter Maximum number of iteration 2e4
hidden units Number of latent dimension Number of true cluster as per dataset
update interval Interval at which the predicted and target distributions

are updated
[10, 20, 30, 40, 50, 75, 100, 125,
140, 150, 200]

tol Tolerance rate 0.000001

EDCWRN

batch size Size of each batch [64, 128, 256]
maxiter pretraining Maximum number of iteration in pertaining 500*batch size
maxiter clustering Maximum number of iteration in clustering [8000, 16000, 24000]
gamma Coefficient of clustering loss [0.01, 0.1, 1, 10]
update interval Interval at which the predicted and target distributions

are updated
[1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 75,
100, 125, 140, 150, 200]

tol Tolerance rate 0.0001

ClAM

β Inverse temperature [10−5 - 5]
T = 1/α = τ/dt Number of layers [2-20]
batch size Size of each batch [8, 16, 32, 64, 128, 256]
ϵ Adam initial learning rate [10−4, 10−3, 10−2, 10−1]
ϵ factor Reduce LR by factor 0.8
ϵ patience Reduce LR patience (epochs) 5
ϵ min Minimum LR 10−5

ϵ loss threshold Reduce LR loss threshold 10−3

max epochs Maximum Number of epochs 200
restart Number of restart 10
mask prob Mask probability [0.1, 0.12, 0.15, 0.2, 0.25, 0.3]
mask val Mask value [‘mean’, ‘min’, ‘max’]

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 DETAILED RESULTS WITH VARIOUS CLUSTERING QUALITY METRICS

Table 8 provides a comprehensive overview of the metrics (SC, NMI, RL, ETP, and CS) for DClAM,
and corresponding baselines, focusing on the best SC in each method across various AE architectures
where RL is constrained to 10% of the pretrained AE loss. RL is not presented for k-means,
Agglomerative and ClAM for the original space and for CAE as it remains consistent across the three
methods after pre-taining. Similarly, Table 9 provides a similar overview of the metrics (SC, NMI,
RL, ETP, and CS) for DClAM, and corresponding baselines, focusing on the best Relative RL (RRL)
in each method across various AE architectures where SC is constrained to 10% of the best/peak
SC of the method. Table 10 represents all corresponding metrics focusing on the best NMI in each
method. These tables highlight that DClAM exhibits strong performance not only in terms of SC and
RL, but also when compared to the ground truth labels via NMI. In fact, for NMI, DClAM has the
best values in 5 out of the 8 datasets (DCEC has the best values on the other 3). Additionally, DClAM
clusters maintain reasonable entropy (ETP) and cluster size (CS), ensuring a balanced clustering
outcome.

For an understanding of the importance of ETP and CS in clustering, consider the case of Agglomer-
ative clustering in the latent space (CAE) on the CIFAR-10 dataset (see Table 8). In this instance,
almost all points (49991 out of 50000) belong to one cluster, while the other 9 clusters contain only
one data point each, indicating very poor clustering. The low entropy (0.003) further highlights the
deficiency of the clustering.
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Table 8: Metrics obtained by DClAM and baselines corresponding to the best SC (RL within
10% of the pretrained AE loss). The best performance for each dataset is in boldface. (note
abbreviations DCEC→DC, EDCWRN→EDC, Entropy→ETP, Cluster-size→CS, No-AE→NAE,
Conv-AE→CAE, EDCWRN-AE→EAE, Resnet-AE→RAE). ‘-’ denotes NA. x▼ indicates negative
RRL which means the RL of the method is x% less than the pretrained AE loss.

Data Met Kmeans Agglo ClAM DC DEKM EDC DClAM

NAE CAE NAE CAE NAE CAE CAE RAE CAE RAE CAE EAE RAE

FM

SC 0.154 0.257 0.109 0.201 0.158 0.279 0.923 0.726 0.260 0.258 0.483 0.970 0.663 0.712
NMI 0.511 0.643 0.534 0.624 0.521 0.622 0.558 0.624 0.551 0.609 0.495 0.472 0.511 0.488
RL - 0.0122 - 0.0122 - 0.0122 0.0134 0.0091 0.0105 0.0097 0.0096 0.0120 0.0096 0.0091

RRL - 0.0 - 0.0 - 0.0 9.8 9.6 13.9▼ 18.1 10 1.6▼ 10 9.6
ETP 3.17 3.17 3.14 3.2 2.81 2.80 3.23 3.23 3.14 3.15 3.11 2.83 3.14 3.11
CS 9617-2361 11145-2744 11830-1860 10298-2544 19032-1524 15679-2 10208-2733 8914-3338 12360-2310 10974-2724 12118-1478 20448-504 11734-2251 15906-2082

C-10

SC 0.050 0.084 0.158 0.372 0.073 0.208 0.787 0.659 0.116 0.082 0.511 0.863 0.632 0.697
NMI 0.078 0.122 0.0005 0.0004 0.073 0.015 0.074 0.094 0.123 0.129 0.112 0.075 0.061 0.079
RL - 0.0220 - 0.0220 - 0.0220 0.0241 0.0197 0.0239 0.0199 0.0184 0.0178 0.0184 0.0170

RRL - 0.0 - 0.0 - 0.0 9.6 8.9 8.6 11.1 10 19.5▼ 10 5▼

ETP 3.27 3.19 0.006 0.003 2.50 0.24 3.22 2.99 3.25 3.15 3.24 2.83 2.65 2.81
CS 7105-2734 9779-2524 49979-1 49991-1 23544-582 48234-1 8511-2610 11229-1724 7905-3245 11731-2107 8198-2632 17521-425 13771-570 17121-569

C-100

SC 0.015 -0.020 0.028 0.149 0.018 0.053 0.314 0.470 -0.007 -0.016 0.311 0.598 0.536 0.482
NMI 0.161 0.183 0.036 0.004 0.153 0.156 0.104 0.119 0.238 0.184 0.181 0.110 0.202 0.125
RL - 0.0070 - 0.0070 - 0.0070 0.0059 0.0043 0.0046 0.0041 0.0106 0.0069 0.0099 0.0044

RRL - 0.0 - 0.0 - 0.0 15.7▼ 7.5 34.3▼ 2.5 4.3 1.4▼ 3.1 10
ETP 6.53 6.48 0.940 0.052 6.51 4.38 5.54 4.52 6.25 6.46 6.49 4.16 5.85 4.03
CS 1160-129 1395-23 38814-1 49834-1 1317-177 13950-11 2255-325 12721-122 1715-5 1322-87 999-216 11085-112 4116-32 8245-112

USPS

SC 0.143 0.195 0.124 0.158 0.144 0.194 0.935 0.758 0.195 0.217 0.461 0.820 0.872 0.891
NMI 0.573 0.628 0.627 0.680 0.475 0.619 0.732 0.761 0.631 0.665 0.467 0.444 0.347 0.428
RL - 0.0019 - 0.0019 - 0.0019 0.0018 0.0019 0.0020 0.0024 0.0005 0.0021 0.0006 0.0025

RRL - 0.0 - 0.0 - 0.0 5.3▼ 17.4▼ 5.3 4.3 0.0 10 10 8.7
ETP 3.27 3.23 3.26 3.27 3.10 3.16 3.26 3.29 3.23 3.25 3.29 3.12 2.78 2.99
CS 284-121 359-89 333-121 328-104 420-53 375-64 287-106 281-138 379-90 319-99 295-134 442-71 841-76 524-49

STL

SC 0.039 0.079 0.158 0.270 0.051 0.108 0.132 0.259 0.082 0.081 0.411 0.475 0.891 0.615
NMI 0.127 0.152 0.007 0.004 0.106 0.139 0.180 0.162 0.167 0.167 0.066 0.077 0.073 0.119
RL - 0.0179 - 0.0179 - 0.0179 0.0204 0.0189 0.0180 0.0174 0.0196 0.0187 0.0227 0.0190

RRL - 0.0 - 0.0 - 0.0 13.9 9.2 0.6 0.6 4.9▼ 4.5 10 9.8
ETP 3.26 3.25 0.069 0.025 2.43 1.4 3.19 3.17 3.21 3.19 2.92 2.48 2.99 2.87
CS 764-312 830-287 4969-1 4991-1 2586-82 3888-38 931-239 1003-263 844-191 804-258 2611-33 2076-21 912-45 1219-113

CBird

SC -0.019 -0.021 0.037 0.094 -0.026 -0.062 0.311 0.251 -0.032 -0.037 0.171 0.448 0.446 0.312
NMI 0.412 0.353 0.206 0.132 0.423 0.485 0.347 0.299 0.372 0.370 0.471 0.221 0.467 0.211
RL - 0.0055 - 0.0055 - 0.0055 0.0061 0.0040 0.0055 0.0036 0.0206 0.0060 0.0115 0.0039

RRL - 0.0 - 0.0 - 0.0 10 10 0.0 0.0 10 9.1 39▼ 8.3
ETP 6.34 5.59 2.71 0.958 6.56 7.21 5.41 5.04 5.81 5.80 7.41 5.68 7.02 5.07
CS 131-1 245-1 1722-1 2773-1 101-2 99-2 241-1 291-1 168-1 197-1 37-2 213-1 99-1 676-1

R-10k

SC -0.010 - 0.114 - -0.002 - - - - - 0.023 - 0.564 -
NMI 0.398 - 0.012 - 0.383 - - - - - 0.152 - 0.367 -
RL - - - - - - - - - - 0.0011 - 0.0011 -

RRL - - - - - - - - - - 10 - 10 -
ETP 5.13 - 0.072 - 5.10 - - - - - 5.51 - 4.77 -
CS 916-20 - 11172-1 - 885-18 - - - - - 721-51 - 1046-1 -

20NG

SC -0.021 - 0.114 - -0.008 - - - - - 0.101 - 0.197 -
NMI 0.155 - 0.003 - 0.166 - - - - - 0.019 - 0.181 -
RL - - - - - - - - - - 0.0009 - 0.0009 -

RRL - - - - - - - - - - 10 - 10 -
ETP 4.03 - 0.022 - 3.86 - - - - - 4.32 - 4.21 -
CS 2217-107 - 18818-1 - 3428-26 - - - - - 1131-599 - 1812-199 -

In certain situations, when comparing two clustering methods, it can happen that a method performs
better in terms of SC and RL but still exhibits a lower NMI compared to another method (see Table 8
for USPS where DClAM outperforms DCEC in both CAE and RAE architecture in both SC and RL,
however, the NMI is worse than DCEC in both cases). This indicates that the alignment of semantic
class (ground truth or true underlying structure) with the geometric characteristics of the data might
not be consistent or straightforward.

B.2 HOW INTERPRETABLE ARE THE MEMORIES OF DCLAM?

We explore the prototype-based representation of the learned memories in latent space for DClAM for
Fashion-MNIST and USPS in Fig. 4. For Fashion-MNIST, the 60k images are partitioned into 10
clusters, and the evolution of memories is visualized in Fig. 4a during the training process outlined
in Algorithm 1 for DClAM. In each sub-figure we observe the evolution over epochs. At epoch 0,
there are no distinct memories for clustering; instead, there are pairs of pullover (rows 3 and 5), shirts
(rows 7 and 8), and t-shirts/tops (rows 6 and 9). However, discernible patterns emerge at epoch 10,
refining further by epoch 20. By epoch 100, all ten memories represent distinct shapes, representing
different cluster centroids.
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Table 9: Metrics obtained by DClAM and baselines corresponding to the best RL (SC within
10% of the best SC of the method). The best performance for each dataset is in boldface. (note
abbreviations DCEC→DC, EDCWRN→EDC, Entropy→ETP, Cluster-size→CS, No-AE→NAE,
Conv-AE→CAE, EDCWRN-AE→EAE, Resnet-AE→RAE). ‘-’ denotes NA. x▼ indicates negative
RRL which means the RL of the method is x% less than the pretrained AE loss.

Data Met Kmeans Agglo ClAM DC DEKM EDC DClAM

NAE CAE NAE CAE NAE CAE CAE RAE CAE RAE CAE EAE RAE

FM

SC 0.154 0.257 0.109 0.201 0.158 0.279 0.898 0.824 0.785 0.742 0.521 0.891 0.715 0.922
NMI 0.511 0.643 0.534 0.624 0.521 0.622 0.561 0.623 0.571 0.633 0.493 0.472 0.522 0.401
RL - 0.0122 - 0.0122 - 0.0122 0.0109 0.0105 0.0514 0.0516 0.0211 0.0102 0.0131 0.0118

RRL - 0.0 - 0.0 - 0.0 9.8▼ 26.5 321 522 143 16.4▼ 54.0 42.2
ETP 3.17 3.17 3.14 3.2 2.81 2.80 3.21 3.6 3.15 3.16 3.09 2.83 3.16 2.98
CS 9617-2361 11145-2744 11830-1860 10298-2544 19032-1524 15679-2 11307-2766 9450-3132 12720-2478 11178-2658 13199-1391 17040-504 11886-2148 11830-1290

C-10

SC 0.050 0.084 0.158 0.372 0.073 0.208 0.786 0.667 0.622 0.461 0.541 0.809 0.731 0.697
NMI 0.078 0.122 0.0005 0.0004 0.073 0.015 0.099 0.094 0.092 0.119 0.111 0.079 0.060 0.082
RL - 0.0220 - 0.0220 - 0.0220 0.0217 0.0217 0.0616 0.0502 0.0291 0.0175 0.0252 0.0171

RRL - 0.0 - 0.0 - 0.0 0.9▼ 20 180 179 74.3 20.4▼ 50.9 5▼

ETP 3.27 3.19 0.006 0.003 2.50 0.24 3.15 2.99 2.01 3.07 3.25 2.83 2.64 2.50
CS 7105-2734 9779-2524 49979-1 49991-1 23544-582 48234-1 7145-4055 11025-1542 23420-26 14530-2505 8172-2562 17520-390 14890-120 17121-455

C-100

SC 0.015 -0.020 0.028 0.149 0.018 0.053 0.572 0.557 0.047 0.036 0.337 0.540 0.617 0.921
NMI 0.161 0.183 0.036 0.004 0.153 0.156 0.158 0.119 0.162 0.221 0.186 0.112 0.201 0.094
RL - 0.0070 - 0.0070 - 0.0070 0.0083 0.0047 0.0679 0.0494 0.0128 0.0061 0.0092 0.0051

RRL - 0.0 - 0.0 - 0.0 18.6 17.5 870 1135 33.3 12.9▼ 4.2▼ 27.5
ETP 6.53 6.48 0.940 0.052 6.51 4.38 5.8 4.06 6.18 6.11 6.51 4.02 5.83 3.22
CS 1160-129 1395-23 38814-1 49834-1 1317-177 13950-11 2540-115 13736-12 1950-10 1980-10 996-156 11010-25 4350-10 22480-1

USPS

SC 0.143 0.195 0.124 0.158 0.144 0.194 0.929 0.909 0.882 0.843 0.491 0.914 0.911 0.914
NMI 0.573 0.628 0.627 0.680 0.475 0.619 0.717 0.736 0.691 0.684 0.451 0.477 0.339 0.437
RL - 0.0019 - 0.0019 - 0.0019 0.0014 0.0029 0.0487 0.0558 0.0007 0.0025 0.0013 0.0025

RRL - 0.0 - 0.0 - 0.0 26.3▼ 26.1 2463 2326 40 31.6 160 8.7
ETP 3.27 3.23 3.26 3.27 3.10 3.16 3.27 3.27 3.24 3.25 3.29 3.11 2.55 2.99
CS 284-121 359-89 333-121 328-104 420-53 375-64 283-106 283-127 334-87 312-97 294-156 463-35 947-27 513-49

STL

SC 0.039 0.079 0.158 0.270 0.051 0.108 0.766 0.812 0.745 0.804 0.431 0.919 0.923 0.865
NMI 0.127 0.152 0.007 0.004 0.106 0.139 0.181 0.170 0.149 0.152 0.065 0.144 0.072 0.107
RL - 0.0179 - 0.0179 - 0.0179 0.0242 0.0310 0.0711 0.0578 0.0525 0.0354 0.0263 0.0255

RRL - 0.0 - 0.0 - 0.0 35.8 79.2 297 234 155 97.8 27.7 47.4
ETP 3.26 3.25 0.069 0.025 2.43 1.4 3.23 3.26 1.15 3.22 2.90 2.48 2.98 2.86
CS 764-312 830-287 4969-1 4991-1 2586-82 3888-38 725-229 741-299 4064-16 821-261 2641-23 2280-27 929-34 1466-69

CBird

SC -0.019 -0.021 0.037 0.094 -0.026 -0.062 0.386 0.282 0.018 0.035 0.188 0.413 0.441 0.377
NMI 0.412 0.353 0.206 0.132 0.423 0.485 0.333 0.297 0.316 0.273 0.484 0.222 0.466 0.209
RL - 0.0055 - 0.0055 - 0.0055 0.0229 0.0139 0.0625 0.0560 0.0377 0.0056 0.0104 0.0039

RRL - 0.0 - 0.0 - 0.0 316 286 1036 1455 102 1.8 44.4▼ 8.3
ETP 6.34 5.59 2.71 0.958 6.56 7.21 5.51 5.03 5.16 4.47 7.43 5.68 7.01 5.06
CS 131-1 245-1 1722-1 2773-1 101-2 99-2 248-1 297-1 312-1 519-1 35-2 211-1 100-1 701-1

R-10k

SC -0.010 - 0.114 - -0.002 - - - - - 0.035 - 0.673 -
NMI 0.398 - 0.012 - 0.383 - - - - - 0.147 - 0.378 -
RL - - - - - - - - - - 0.0016 - 0.0022 -

RRL - - - - - - - - - - 60 - 120 -
ETP 5.13 - 0.072 - 5.10 - - - - - 5.55 - 4.79 -
CS 916-20 - 11172-1 - 885-18 - - - - - 727-56 - 1026-1 -

20NG

SC -0.021 - 0.114 - -0.008 - - - - - 0.099 - 0.287 -
NMI 0.155 - 0.003 - 0.166 - - - - - 0.018 - 0.180 -
RL - - - - - - - - - - 0.0006 - 0.0012 -

RRL - - - - - - - - - - 25▼ - 50 -
ETP 4.03 - 0.022 - 3.86 - - - - - 4.31 - 4.19 -
CS 2217-107 - 18818-1 - 3428-26 - - - - - 1142-582 - 1809-197 -

n0 n5 n10 n20 n50 n100

(a) FM

n0 n5 n10 n20 n50 n100

(b) USPS

Figure 4: Evolution of prototypes for Fashion-MNIST and USPS for DClAM. We visualize the
prototypes at the nth training epoch for n = 0, 5, 10, 20, 50, 100 (with T = 10).
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Table 10: Metrics obtained by DClAM and baselines corresponding to the best NMI. The best
performance for each dataset is in boldface. (note abbreviations DCEC→DC, EDCWRN→EDC,
Entropy→ETP, Cluster-size→CS, No-AE→NAE, Conv-AE→CAE, EDCWRN-AE→EAE, Resnet-
AE→RAE). ‘-’ denotes NA. x▼ indicates negative RRL which means the RL of the method is x%
less than the pretrained AE loss.

Data Met Kmeans Agglo ClAM DC DEKM EDC DClAM

NAE CAE NAE CAE NAE CAE CAE RAE CAE RAE CAE EAE RAE

FM

SC 0.154 0.251 0.109 0.201 0.140 0.262 0.861 0.716 0.819 0.784 0.430 0.817 0.619 0.825
NMI 0.511 0.643 0.534 0.625 0.525 0.631 0.629 0.668 0.586 0.639 0.457 0.610 0.534 0.597
RL - 0.0122 - 0.0122 - 0.0122 0.0138 0.0139 0.0574 0.0596 0.0263 0.0406 0.0327 0.0387

RRL - 0.0 - 0.0 - 0.0 13.1 67.5 370 618 202 233 276 366
ETP 3.17 3.17 3.14 3.20 3.13 2.98 3.22 3.20 3.07 3.16 3.00 3.16 3.22 3.18
CS 9617-2361 11145-2744 11830-1860 10298-2544 14068-2435 15262-2100 10886-3030 9734-2847 12974-1191 11023-2652 17140-1578 11028-2658 10332-3054 10404-2610

C-10

SC 0.050 0.072 0.014 0.020 0.064 0.101 0.118 0.653 0.276 0.262 0.541 0.713 0.632 0.420
NMI 0.078 0.122 0.071 0.101 0.086 0.105 0.121 0.120 0.116 0.122 0.111 0.123 0.114 0.119
RL - 0.0220 - 0.0220 - 0.0220 0.0221 0.0245 0.0426 0.0362 0.0291 0.0403 0.0379 0.0326

RRL - 0.0 - 0.0 - 0.0 0.5 36.1 93.6 101 74.3 83.2 127 81.1
ETP 3.27 3.19 3.17 3.02 3.23 2.21 3.07 3.21 3.19 3.11 3.25 3.18 2.98 3.28
CS 7105-2734 9779-2524 10505-1650 11278-1764 9587-2925 26395-361 11022-3374 10235-1968 10275-2454 13746-2168 8172-2562 8595-2365 10721-289 6843-3144

C-100

SC 0.015 -0.014 -0.018 -0.043 0.018 0.001 0.048 0.002 -0.011 -0.028 0.308 0.354 0.200 0.130
NMI 0.161 0.183 0.150 0.167 0.153 0.170 0.162 0.179 0.186 0.189 0.186 0.219 0.225 0.239
RL - 0.0070 - 0.0070 - 0.0070 0.0072 0.0049 0.0112 0.0074 0.0398 0.0257 0.0250 0.0226

RRL - 0.0 - 0.0 - 0.0 2.9 22.5 60 85 315 267 160 465
ETP 6.53 6.48 6.45 6.30 6.51 6.27 6.41 6.41 5.23 6.45 5.51 6.33 6.33 6.36
CS 1160-129 1395-23 1299-77 2308-17 1317-177 2535-39 1623-14 1380-21 2213-32 1440-60 996-156 1210-5 2105-15 1315-5

USPS

SC 0.143 0.195 0.124 0.159 0.142 0.180 0.920 0.896 0.946 0.465 0.43 0.865 0.660 0.857
NMI 0.573 0.628 0.627 0.680 0.564 0.640 0.737 0.736 0.728 0.701 0.451 0.689 0.583 0.660
RL - 0.0019 - 0.0019 - 0.0019 0.0074 0.0039 0.0748 0.0374 0.0006 0.0451 0.0322 0.0409

RRL - 0.0 - 0.0 - 0.0 289 69.6 3836 1526 20 2274 6340 1678
ETP 3.27 3.23 3.26 3.27 3.27 3.21 3.27 3.27 3.24 3.24 3.29 3.11 3.24 3.23
CS 284-121 359-89 333-121 328-104 290-132 343-73 284-108 282-107 298-80 318-91 294-156 396-35 385-107 308-72

STL

SC 0.039 0.074 0.024 0.021 0.042 0.069 0.822 0.837 0.109 0.079 0.332 0.388 0.597 0.280
NMI 0.127 0.152 0.121 0.138 0.130 0.169 0.188 0.165 0.170 0.166 0.103 0.149 0.151 0.159
RL - 0.0179 - 0.0179 - 0.0179 0.0328 0.0362 0.0315 0.0174 0.0433 0.0409 0.0454 0.0364

RRL - 0.0 - 0.0 - 0.0 83.2 109 76.0 0.6 110 128 120 110
ETP 3.26 3.25 3.02 3.02 3.24 2.82 3.24 3.28 3.21 3.20 2.62 3.13 3.18 3.15
CS 764-312 830-287 1379-205 1373-130 945-317 1212-2 849-232 671-326 807-250 876-264 2173-121 982-46 929-232 938-181

CBird

SC -0.019 -0.021 -0.018 -0.064 -0.026 -0.062 0.248 0.152 -0.041 -0.038 0.188 0.135 0.068 0.167
NMI 0.412 0.353 0.469 0.439 0.423 0.485 0.356 0.320 0.364 0.370 0.484 0.421 0.493 0.385
RL - 0.0055 - 0.0055 - 0.0055 0.0229 0.0152 0.0066 0.0036 0.0377 0.0255 0.0237 0.0249

RRL - 0.0 - 0.0 - 0.0 316 322 20 0.0 102 364 26.7 592
ETP 6.34 5.59 6.97 6.58 6.56 7.21 5.84 5.12 5.71 5.80 7.43 6.48 7.39 6.05
CS 131-1 245-1 93-1 232-1 101-2 99-2 167-1 570-1 177-1 197-1 35-2 143-1 58-2 180-1

R-10k

SC -0.010 - -0.012 - -0.007 - - - - - 0.013 - 0.647 -
NMI 0.398 - 0.404 - 0.394 - - - - - 0.169 - 0.414 -
RL - - - - - - - - - - 0.0014 - 0.0020 -

RRL - - - - - - - - - - 40 - 100 -
ETP 5.13 - 5.15 - 5.22 - - - - - 5.47 - 5.2 -
CS 916-20 - 845-18 - 650-41 - - - - - 478-76 - 540-1 -

20NG

SC -0.021 - -0.186 - -0.103 - - - - - 0.066 - 0.199 -
NMI 0.155 - 0.167 - 0.176 - - - - - 0.018 - 0.229 -
RL - - - - - - - - - - 0.0006 - 0.0012 -

RRL - - - - - - - - - - 25▼ - 50 -
ETP 4.03 - 3.64 - 3.77 - - - - - 4.31 - 3.87 -
CS 2217-107 - 4024-52 - 4227-103 - - - - - 1142-582 - 3203-105 -
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C ADDITIONAL EXPERIMENTS AND RESULTS

C.1 PRETRAINED LOSSES FOR ALL ARCHITECTURE AND ALL DATASETS

Table 11 records the pretrained reconstruction losses (RL) for all architectures and all datasets. These
are the base RL values RLp used when computing RRL in Eq. (11).

Table 11: Per-dataset, per-architecture pretrained loss. Note abbreviations Conv-AE→CAE, Resnet-
AE→RAE, and EDCWRN-AE→EAE. Further, ‘-’ denotes NA.

Dataset Architecture

CAE RAE EAE

FM 0.0122 0.0083 0.0087
C-10 0.0220 0.0180 0.0167
C-100 0.0070 0.0040 0.0096
USPS 0.0019 0.0023 0.0005
STL 0.0179 0.0173 0.0206
CBird 0.0055 0.0036 0.0187
R-10K - - 0.0010
20NG - - 0.0008

C.2 ADDITIONAL DETAILS ON HYPERPARAMETER SELECTION

In Figs. 5 to 9, we plot the reconstruction loss (RL) and the silhouette coefficient (SC) for each
hyperparameter configuration considered for DClAM and the baselines DCEC and DEKM for the
different vision datasets (reported in Tables 2, 3, 4, 8, and 9). We also highlight the Pareto front
for each of the dataset/method pairs, and the dotted vertical and horizontal lines denote the RL and
(1-SC) values corresponding to the 10% margin from the best RL and (1-SC). Furthermore, the
red and cyan highlighted points show the best hyperparameter configuration corresponding to the
metric reported in Table 8 and 9. These results clearly highlight how we thoroughly optimize the
hyperparameters, and how we select the final Pareto optimal performance values from the Pareto
front to be consistent and fair across all methods. Some of the results in Table 8 and 9 have been
updated based on our extended exploration of the Pareto front of hyperparameters based on reviewer
comments. The overall trend and performance are in accord with our main claim, namely that DClAM
offers the best clustering performance in terms of SC, as well as having low reconstruction loss. It
also performs very well on the supervised NMI metric. In fact, for NMI, DClAM has the best value in
5 out of the 8 datasets (see Table 10).

C.3 EFFECT OF LATENT DIMENSIONALITY

In Figure 10, we demonstrate the effect of varying the dimensionality m of the latent space for USPS
dataset, which has 10 classes. We can see that m=10 has a good trade-off between RL and SC
compared to other values which strengthens our motivation to set the latent dimension as equal to the
number of clusters.

C.4 ABLATING THE NUMBER OF AM LAYERS T

In Figure 11, we ablate the effect of T , the number of AM layers. We see that T controls the trade-off
between RL and SC, with high values of T leading to high SC. However, we see there are moderate
values of T where are able to obtain high values of SC while maintaining low RL (after sufficient
number of epochs of training), and varying the value of T allows us to explore the Pareto front of RL
and SC.
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(a) CAE: DCEC (b) CAE: DClAM (c) CAE: DEKM

(d) RAE: DCEC (e) RAE: DClAM (f) RAE: DEKM

Figure 5: FMNIST: Reconstruction loss and clustering quality (1-SC) for all hyperparameter
configurations for DCEC, DClAM and DEKM with CAE and RAE architectures. Lower is better for
both axes, since we plot 1-SC on the y-axis.

(a) CAE: DCEC (b) CAE: DClAM (c) CAE: DEKM

(d) RAE: DCEC (e) RAE: DClAM (f) RAE: DEKM

Figure 6: USPS: Reconstruction loss and clustering quality (1-SC) for all hyperparameter configu-
rations for DCEC, DClAM and DEKM with CAE and RAE architectures. Lower is better for both
axes.
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(a) CAE: DCEC (b) CAE: DClAM (c) CAE: DEKM

(d) RAE: DCEC (e) RAE: DClAM (f) RAE: DEKM

Figure 7: CIFAR10: Reconstruction loss and clustering quality (1-SC) for all hyperparameter
configurations for DCEC, DClAM and DEKM with CAE and RAE architectures. Lower is better for
both axes.

(a) CAE: DCEC (b) CAE: DClAM (c) CAE: DEKM

(d) RAE: DCEC (e) RAE: DClAM (f) RAE: DEKM

Figure 8: CIFAR100: Reconstruction loss and clustering quality (1-SC) for all hyperparameter
configurations for DCEC, DClAM and DEKM with CAE and RAE architectures. Lower is better for
both axes.
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(a) CAE: DCEC (b) CAE: DClAM (c) CAE: DEKM

(d) RAE: DCEC (e) RAE: DClAM (f) RAE: DEKM

Figure 9: STL10: Reconstruction loss and clustering quality (1-SC) for all hyperparameter configu-
rations for DCEC, DClAM and DEKM with CAE and RAE architectures. Lower is better for both
axes.

(a) RL vs Training (b) SC vs Training

Figure 10: Reconstruction loss (RL) and clustering quality (SC) for varying latent dimension (m) for
USPS (T is set to 10).
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(a) USPS: RL vs Training (b) USPS: SC vs Training

(c) FMNIST: RL vs Training (d) FMNIST: SC vs Training

Figure 11: Reconstruction loss (RL) and clustering quality (SC) for varying number of steps (T)
for USPS and FMNIST. From the figure, we can see that with increasing T, SC improves while RL
worsens.
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